Compare commits
182 Commits
Author | SHA1 | Date | |
---|---|---|---|
b90e558238 | |||
64970cf7f7 | |||
b571a4da4d | |||
8a9f329ff9 | |||
e2781ee525 | |||
56a2d3ead0 | |||
dc32a0fc47 | |||
3d6b4f0614 | |||
18844c7da7 | |||
43ceefd2c9 | |||
e6501502d1 | |||
d84adf6172 | |||
268a86cbe0 | |||
fc4c93b299 | |||
86f2bc44fc | |||
f0f3d9ad6e | |||
9a323cd7a3 | |||
cb949ac7e5 | |||
2c297ea15d | |||
4e4b6e67f4 | |||
82847774ee | |||
d0955d9369 | |||
2d34eb8c89 | |||
0159c397fa | |||
0bbc8328a9 | |||
35ca862eca | |||
26eb58b104 | |||
6fcc15d39a | |||
9a14133be5 | |||
59c1cf5b3b | |||
8e9090d283 | |||
02bcab01be | |||
716748e18c | |||
0b31780d39 | |||
fa26aa80f7 | |||
3eb61905fb | |||
ca0ae4dacf | |||
b34869cc61 | |||
27a3e5a5e0 | |||
684443a788 | |||
6d9badc33b | |||
015b1b0c0f | |||
7bb8e4df01 | |||
53710378de | |||
c833e9ba32 | |||
f5cb46ee29 | |||
fa35681abe | |||
b0bd0e6eee | |||
d43be27821 | |||
a2853dd2e5 | |||
0341bd5648 | |||
22b742f068 | |||
2584e8294d | |||
291ba0fb0e | |||
80043d5181 | |||
677ec5613d | |||
cccaa6e0af | |||
2e3e0e0fc2 | |||
8784a24898 | |||
54496c68f1 | |||
1f236a70db | |||
ef3c74633c | |||
7efd95095c | |||
0e24135d46 | |||
521bfd2a8e | |||
e2e0fb0c40 | |||
56b62a67cc | |||
c0fc107abb | |||
d8c44b3b7c | |||
6ab7cd2cbd | |||
b578ea8a2d | |||
9a752d15dc | |||
4992685e94 | |||
346b693c79 | |||
164c8bd90c | |||
ced29a2c2e | |||
0ec53f405f | |||
f806015b29 | |||
8115f25c06 | |||
618a1e539c | |||
7aeffba740 | |||
e79ea63afb | |||
3c7382a93a | |||
b4a222b100 | |||
23ef0cc5f7 | |||
793b2d3cd5 | |||
ae469b8146 | |||
f014928411 | |||
c4b563a339 | |||
49bb0582e6 | |||
b4c5261e01 | |||
b956aa3873 | |||
1f06631f69 | |||
6dd589bd61 | |||
6475f10825 | |||
7d906b24d1 | |||
464fe029ea | |||
09a1369122 | |||
503ad687dc | |||
8eeaa1beee | |||
a2de1c9522 | |||
cf9b5716ac | |||
1326891d6a | |||
da2a969686 | |||
f9553a38d7 | |||
8b6121eaf2 | |||
fbbed8ad68 | |||
a1178554ff | |||
d12a779bd9 | |||
a8fc29e2b2 | |||
50543e7929 | |||
9014649a0d | |||
0d6a081d01 | |||
46cb8d30eb | |||
cb26ef2562 | |||
df45fddd45 | |||
a1f9086780 | |||
e55365c41c | |||
de23303801 | |||
56b5158ff3 | |||
a5a29eb66f | |||
d5eba5710a | |||
8c61840d81 | |||
bc0b938cfc | |||
58d5a35a35 | |||
45c048f635 | |||
6e854dfda3 | |||
5826702fc7 | |||
42e2be3263 | |||
827b0dd893 | |||
882d905a28 | |||
422129802a | |||
eb97a5a14b | |||
eb72f13bf0 | |||
5db168d87b | |||
8f3bb47cfd | |||
1986d05c34 | |||
7c98ba9bea | |||
538af0253b | |||
0b65e34772 | |||
635ef22520 | |||
1231f4522a | |||
cc34f79b91 | |||
6899033806 | |||
8e2d05e663 | |||
eba2095718 | |||
199ffc95d2 | |||
cbe15e317d | |||
debd890519 | |||
46e929ff4d | |||
d858e26e4b | |||
0ee3eaed53 | |||
093c197f0a | |||
78d7ea7c4d | |||
d6af1ffe8e | |||
20669dd161 | |||
272dbad4f3 | |||
8bccc3e4bc | |||
903b143338 | |||
f10d0daf2e | |||
d39a17089e | |||
2e325cd114 | |||
fc3d63b7db | |||
43dc79a345 | |||
b8589bcd0a | |||
3007e22a7d | |||
02e456befb | |||
8477698d8d | |||
52abd2d670 | |||
3116eaa763 | |||
443e5cc882 | |||
e1c4221c11 | |||
a63a35df3f | |||
c7555dac3f | |||
f3b8150e2c | |||
03f8b8653b | |||
2163e95c4a | |||
b33da34655 | |||
e17aee7bdb | |||
37c31ee4c2 | |||
80afdc06f7 | |||
|
666782217e |
@ -5,11 +5,12 @@ Checks: '-*,
|
|||||||
cppcoreguidelines-*,
|
cppcoreguidelines-*,
|
||||||
modernize-*,
|
modernize-*,
|
||||||
performance-*,
|
performance-*,
|
||||||
|
-modernize-use-nodiscard,
|
||||||
-cppcoreguidelines-pro-type-vararg,
|
-cppcoreguidelines-pro-type-vararg,
|
||||||
-modernize-use-trailing-return-type,
|
-modernize-use-trailing-return-type,
|
||||||
-bugprone-exception-escape'
|
-bugprone-exception-escape'
|
||||||
|
|
||||||
HeaderFilterRegex: 'src/*'
|
HeaderFilterRegex: 'bayesnet/*'
|
||||||
AnalyzeTemporaryDtors: false
|
AnalyzeTemporaryDtors: false
|
||||||
WarningsAsErrors: ''
|
WarningsAsErrors: ''
|
||||||
FormatStyle: file
|
FormatStyle: file
|
||||||
|
39
.clang-uml
Normal file
39
.clang-uml
Normal file
@ -0,0 +1,39 @@
|
|||||||
|
compilation_database_dir: build_Debug
|
||||||
|
output_directory: diagrams
|
||||||
|
diagrams:
|
||||||
|
BayesNet:
|
||||||
|
type: class
|
||||||
|
glob:
|
||||||
|
- bayesnet/*.h
|
||||||
|
- bayesnet/classifiers/*.h
|
||||||
|
- bayesnet/classifiers/*.cc
|
||||||
|
- bayesnet/ensembles/*.h
|
||||||
|
- bayesnet/ensembles/*.cc
|
||||||
|
- bayesnet/feature_selection/*.h
|
||||||
|
- bayesnet/feature_selection/*.cc
|
||||||
|
- bayesnet/network/*.h
|
||||||
|
- bayesnet/network/*.cc
|
||||||
|
- bayesnet/utils/*.h
|
||||||
|
- bayesnet/utils/*.cc
|
||||||
|
include:
|
||||||
|
# Only include entities from the following namespaces
|
||||||
|
namespaces:
|
||||||
|
- bayesnet
|
||||||
|
exclude:
|
||||||
|
access:
|
||||||
|
- private
|
||||||
|
plantuml:
|
||||||
|
style:
|
||||||
|
# Apply this style to all classes in the diagram
|
||||||
|
class: "#aliceblue;line:blue;line.dotted;text:blue"
|
||||||
|
# Apply this style to all packages in the diagram
|
||||||
|
package: "#back:grey"
|
||||||
|
# Make all template instantiation relations point upwards and draw them
|
||||||
|
# as green and dotted lines
|
||||||
|
instantiation: "up[#green,dotted]"
|
||||||
|
cmd: "/usr/bin/plantuml -tsvg \"diagrams/{}.puml\""
|
||||||
|
before:
|
||||||
|
- 'title clang-uml class diagram model'
|
||||||
|
mermaid:
|
||||||
|
before:
|
||||||
|
- 'classDiagram'
|
57
.devcontainer/Dockerfile
Normal file
57
.devcontainer/Dockerfile
Normal file
@ -0,0 +1,57 @@
|
|||||||
|
FROM mcr.microsoft.com/devcontainers/cpp:ubuntu22.04
|
||||||
|
|
||||||
|
ARG REINSTALL_CMAKE_VERSION_FROM_SOURCE="3.29.3"
|
||||||
|
|
||||||
|
# Optionally install the cmake for vcpkg
|
||||||
|
COPY ./reinstall-cmake.sh /tmp/
|
||||||
|
|
||||||
|
RUN if [ "${REINSTALL_CMAKE_VERSION_FROM_SOURCE}" != "none" ]; then \
|
||||||
|
chmod +x /tmp/reinstall-cmake.sh && /tmp/reinstall-cmake.sh ${REINSTALL_CMAKE_VERSION_FROM_SOURCE}; \
|
||||||
|
fi \
|
||||||
|
&& rm -f /tmp/reinstall-cmake.sh
|
||||||
|
|
||||||
|
|
||||||
|
# [Optional] Uncomment this section to install additional vcpkg ports.
|
||||||
|
# RUN su vscode -c "${VCPKG_ROOT}/vcpkg install <your-port-name-here>"
|
||||||
|
|
||||||
|
# [Optional] Uncomment this section to install additional packages.
|
||||||
|
RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \
|
||||||
|
&& apt-get -y install --no-install-recommends wget software-properties-common libdatetime-perl libcapture-tiny-perl libdatetime-format-dateparse-perl libgd-perl
|
||||||
|
|
||||||
|
# Add PPA for GCC 13
|
||||||
|
RUN add-apt-repository ppa:ubuntu-toolchain-r/test
|
||||||
|
RUN apt-get update
|
||||||
|
|
||||||
|
# Install GCC 13.1
|
||||||
|
RUN apt-get install -y gcc-13 g++-13 doxygen
|
||||||
|
|
||||||
|
# Install lcov 2.1
|
||||||
|
RUN wget --quiet https://github.com/linux-test-project/lcov/releases/download/v2.1/lcov-2.1.tar.gz && \
|
||||||
|
tar -xvf lcov-2.1.tar.gz && \
|
||||||
|
cd lcov-2.1 && \
|
||||||
|
make install
|
||||||
|
RUN rm lcov-2.1.tar.gz
|
||||||
|
RUN rm -fr lcov-2.1
|
||||||
|
|
||||||
|
# Install Miniconda
|
||||||
|
RUN mkdir -p /opt/conda
|
||||||
|
RUN wget --quiet "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh" -O /opt/conda/miniconda.sh && \
|
||||||
|
bash /opt/conda/miniconda.sh -b -p /opt/miniconda
|
||||||
|
|
||||||
|
# Add conda to PATH
|
||||||
|
ENV PATH=/opt/miniconda/bin:$PATH
|
||||||
|
|
||||||
|
# add CXX and CC to the environment with gcc 13
|
||||||
|
ENV CXX=/usr/bin/g++-13
|
||||||
|
ENV CC=/usr/bin/gcc-13
|
||||||
|
|
||||||
|
# link the last gcov version
|
||||||
|
RUN rm /usr/bin/gcov
|
||||||
|
RUN ln -s /usr/bin/gcov-13 /usr/bin/gcov
|
||||||
|
|
||||||
|
# change ownership of /opt/miniconda to vscode user
|
||||||
|
RUN chown -R vscode:vscode /opt/miniconda
|
||||||
|
|
||||||
|
USER vscode
|
||||||
|
RUN conda init
|
||||||
|
RUN conda install -y -c conda-forge yaml pytorch
|
37
.devcontainer/devcontainer.json
Normal file
37
.devcontainer/devcontainer.json
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
|
||||||
|
// README at: https://github.com/devcontainers/templates/tree/main/src/cpp
|
||||||
|
{
|
||||||
|
"name": "C++",
|
||||||
|
"build": {
|
||||||
|
"dockerfile": "Dockerfile"
|
||||||
|
},
|
||||||
|
// "features": {
|
||||||
|
// "ghcr.io/devcontainers/features/conda:1": {}
|
||||||
|
// }
|
||||||
|
// Features to add to the dev container. More info: https://containers.dev/features.
|
||||||
|
// "features": {},
|
||||||
|
// Use 'forwardPorts' to make a list of ports inside the container available locally.
|
||||||
|
// "forwardPorts": [],
|
||||||
|
// Use 'postCreateCommand' to run commands after the container is created.
|
||||||
|
"postCreateCommand": "make release && make debug && echo 'Done!'",
|
||||||
|
// Configure tool-specific properties.
|
||||||
|
// "customizations": {},
|
||||||
|
"customizations": {
|
||||||
|
// Configure properties specific to VS Code.
|
||||||
|
"vscode": {
|
||||||
|
"settings": {},
|
||||||
|
"extensions": [
|
||||||
|
"ms-vscode.cpptools",
|
||||||
|
"ms-vscode.cpptools-extension-pack",
|
||||||
|
"ms-vscode.cpptools-themes",
|
||||||
|
"ms-vscode.cmake-tools",
|
||||||
|
"ms-azuretools.vscode-docker",
|
||||||
|
"jbenden.c-cpp-flylint",
|
||||||
|
"matepek.vscode-catch2-test-adapter",
|
||||||
|
"GitHub.copilot"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Uncomment to connect as root instead. More info: https://aka.ms/dev-containers-non-root.
|
||||||
|
// "remoteUser": "root"
|
||||||
|
}
|
59
.devcontainer/reinstall-cmake.sh
Normal file
59
.devcontainer/reinstall-cmake.sh
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
#-------------------------------------------------------------------------------------------------------------
|
||||||
|
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||||
|
# Licensed under the MIT License. See https://go.microsoft.com/fwlink/?linkid=2090316 for license information.
|
||||||
|
#-------------------------------------------------------------------------------------------------------------
|
||||||
|
#
|
||||||
|
set -e
|
||||||
|
|
||||||
|
CMAKE_VERSION=${1:-"none"}
|
||||||
|
|
||||||
|
if [ "${CMAKE_VERSION}" = "none" ]; then
|
||||||
|
echo "No CMake version specified, skipping CMake reinstallation"
|
||||||
|
exit 0
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Cleanup temporary directory and associated files when exiting the script.
|
||||||
|
cleanup() {
|
||||||
|
EXIT_CODE=$?
|
||||||
|
set +e
|
||||||
|
if [[ -n "${TMP_DIR}" ]]; then
|
||||||
|
echo "Executing cleanup of tmp files"
|
||||||
|
rm -Rf "${TMP_DIR}"
|
||||||
|
fi
|
||||||
|
exit $EXIT_CODE
|
||||||
|
}
|
||||||
|
trap cleanup EXIT
|
||||||
|
|
||||||
|
|
||||||
|
echo "Installing CMake..."
|
||||||
|
apt-get -y purge --auto-remove cmake
|
||||||
|
mkdir -p /opt/cmake
|
||||||
|
|
||||||
|
architecture=$(dpkg --print-architecture)
|
||||||
|
case "${architecture}" in
|
||||||
|
arm64)
|
||||||
|
ARCH=aarch64 ;;
|
||||||
|
amd64)
|
||||||
|
ARCH=x86_64 ;;
|
||||||
|
*)
|
||||||
|
echo "Unsupported architecture ${architecture}."
|
||||||
|
exit 1
|
||||||
|
;;
|
||||||
|
esac
|
||||||
|
|
||||||
|
CMAKE_BINARY_NAME="cmake-${CMAKE_VERSION}-linux-${ARCH}.sh"
|
||||||
|
CMAKE_CHECKSUM_NAME="cmake-${CMAKE_VERSION}-SHA-256.txt"
|
||||||
|
TMP_DIR=$(mktemp -d -t cmake-XXXXXXXXXX)
|
||||||
|
|
||||||
|
echo "${TMP_DIR}"
|
||||||
|
cd "${TMP_DIR}"
|
||||||
|
|
||||||
|
curl -sSL "https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/${CMAKE_BINARY_NAME}" -O
|
||||||
|
curl -sSL "https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/${CMAKE_CHECKSUM_NAME}" -O
|
||||||
|
|
||||||
|
sha256sum -c --ignore-missing "${CMAKE_CHECKSUM_NAME}"
|
||||||
|
sh "${TMP_DIR}/${CMAKE_BINARY_NAME}" --prefix=/opt/cmake --skip-license
|
||||||
|
|
||||||
|
ln -s /opt/cmake/bin/cmake /usr/local/bin/cmake
|
||||||
|
ln -s /opt/cmake/bin/ctest /usr/local/bin/ctest
|
12
.github/dependabot.yml
vendored
Normal file
12
.github/dependabot.yml
vendored
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
# To get started with Dependabot version updates, you'll need to specify which
|
||||||
|
# package ecosystems to update and where the package manifests are located.
|
||||||
|
# Please see the documentation for more information:
|
||||||
|
# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
|
||||||
|
# https://containers.dev/guide/dependabot
|
||||||
|
|
||||||
|
version: 2
|
||||||
|
updates:
|
||||||
|
- package-ecosystem: "devcontainers"
|
||||||
|
directory: "/"
|
||||||
|
schedule:
|
||||||
|
interval: weekly
|
7
.gitignore
vendored
7
.gitignore
vendored
@ -38,3 +38,10 @@ cmake-build*/**
|
|||||||
.idea
|
.idea
|
||||||
puml/**
|
puml/**
|
||||||
.vscode/settings.json
|
.vscode/settings.json
|
||||||
|
sample/build
|
||||||
|
**/.DS_Store
|
||||||
|
docs/manual
|
||||||
|
docs/man3
|
||||||
|
docs/man
|
||||||
|
docs/Doxyfile
|
||||||
|
|
||||||
|
28
.gitmodules
vendored
28
.gitmodules
vendored
@ -1,18 +1,3 @@
|
|||||||
[submodule "lib/mdlp"]
|
|
||||||
path = lib/mdlp
|
|
||||||
url = https://github.com/rmontanana/mdlp
|
|
||||||
main = main
|
|
||||||
update = merge
|
|
||||||
[submodule "lib/catch2"]
|
|
||||||
path = lib/catch2
|
|
||||||
main = v2.x
|
|
||||||
update = merge
|
|
||||||
url = https://github.com/catchorg/Catch2.git
|
|
||||||
[submodule "lib/argparse"]
|
|
||||||
path = lib/argparse
|
|
||||||
url = https://github.com/p-ranav/argparse
|
|
||||||
master = master
|
|
||||||
update = merge
|
|
||||||
[submodule "lib/json"]
|
[submodule "lib/json"]
|
||||||
path = lib/json
|
path = lib/json
|
||||||
url = https://github.com/nlohmann/json.git
|
url = https://github.com/nlohmann/json.git
|
||||||
@ -21,3 +6,16 @@
|
|||||||
[submodule "lib/folding"]
|
[submodule "lib/folding"]
|
||||||
path = lib/folding
|
path = lib/folding
|
||||||
url = https://github.com/rmontanana/folding
|
url = https://github.com/rmontanana/folding
|
||||||
|
main = main
|
||||||
|
update = merge
|
||||||
|
[submodule "tests/lib/catch2"]
|
||||||
|
path = tests/lib/catch2
|
||||||
|
url = https://github.com/catchorg/Catch2.git
|
||||||
|
main = main
|
||||||
|
update = merge
|
||||||
|
[submodule "tests/lib/Files"]
|
||||||
|
path = tests/lib/Files
|
||||||
|
url = https://github.com/rmontanana/ArffFiles
|
||||||
|
[submodule "lib/mdlp"]
|
||||||
|
path = lib/mdlp
|
||||||
|
url = https://github.com/rmontanana/mdlp
|
4
.sonarlint/connectedMode.json
Normal file
4
.sonarlint/connectedMode.json
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
{
|
||||||
|
"sonarCloudOrganization": "rmontanana",
|
||||||
|
"projectKey": "rmontanana_BayesNet"
|
||||||
|
}
|
38
.vscode/c_cpp_properties.json
vendored
38
.vscode/c_cpp_properties.json
vendored
@ -3,15 +3,47 @@
|
|||||||
{
|
{
|
||||||
"name": "Mac",
|
"name": "Mac",
|
||||||
"includePath": [
|
"includePath": [
|
||||||
"${workspaceFolder}/**"
|
"/Users/rmontanana/Code/BayesNet/**"
|
||||||
],
|
],
|
||||||
"defines": [],
|
"defines": [],
|
||||||
"macFrameworkPath": [
|
"macFrameworkPath": [
|
||||||
"/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/System/Library/Frameworks"
|
"/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/include"
|
||||||
],
|
],
|
||||||
"cStandard": "c17",
|
"cStandard": "c17",
|
||||||
"cppStandard": "c++17",
|
"cppStandard": "c++17",
|
||||||
"compileCommands": "${workspaceFolder}/cmake-build-release/compile_commands.json"
|
"compileCommands": "",
|
||||||
|
"intelliSenseMode": "macos-clang-arm64",
|
||||||
|
"mergeConfigurations": false,
|
||||||
|
"browse": {
|
||||||
|
"path": [
|
||||||
|
"/Users/rmontanana/Code/BayesNet/**",
|
||||||
|
"${workspaceFolder}"
|
||||||
|
],
|
||||||
|
"limitSymbolsToIncludedHeaders": true
|
||||||
|
},
|
||||||
|
"configurationProvider": "ms-vscode.cmake-tools"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "Linux",
|
||||||
|
"includePath": [
|
||||||
|
"/home/rmontanana/Code/BayesNet/**",
|
||||||
|
"/home/rmontanana/Code/libtorch/include/torch/csrc/api/include/",
|
||||||
|
"/home/rmontanana/Code/BayesNet/lib/"
|
||||||
|
],
|
||||||
|
"defines": [],
|
||||||
|
"cStandard": "c17",
|
||||||
|
"cppStandard": "c++17",
|
||||||
|
"intelliSenseMode": "linux-gcc-x64",
|
||||||
|
"mergeConfigurations": false,
|
||||||
|
"compilerPath": "/usr/bin/g++",
|
||||||
|
"browse": {
|
||||||
|
"path": [
|
||||||
|
"/home/rmontanana/Code/BayesNet/**",
|
||||||
|
"${workspaceFolder}"
|
||||||
|
],
|
||||||
|
"limitSymbolsToIncludedHeaders": true
|
||||||
|
},
|
||||||
|
"configurationProvider": "ms-vscode.cmake-tools"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"version": 4
|
"version": 4
|
||||||
|
126
.vscode/launch.json
vendored
126
.vscode/launch.json
vendored
@ -5,126 +5,44 @@
|
|||||||
"type": "lldb",
|
"type": "lldb",
|
||||||
"request": "launch",
|
"request": "launch",
|
||||||
"name": "sample",
|
"name": "sample",
|
||||||
"program": "${workspaceFolder}/build_debug/sample/BayesNetSample",
|
"program": "${workspaceFolder}/build_release/sample/bayesnet_sample",
|
||||||
"args": [
|
"args": [
|
||||||
"-d",
|
"${workspaceFolder}/tests/data/glass.arff"
|
||||||
"iris",
|
]
|
||||||
"-m",
|
|
||||||
"TANLd",
|
|
||||||
"-s",
|
|
||||||
"271",
|
|
||||||
"-p",
|
|
||||||
"/Users/rmontanana/Code/discretizbench/datasets/",
|
|
||||||
],
|
|
||||||
//"cwd": "${workspaceFolder}/build/sample/",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"type": "lldb",
|
|
||||||
"request": "launch",
|
|
||||||
"name": "experimentPy",
|
|
||||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
|
|
||||||
"args": [
|
|
||||||
"-m",
|
|
||||||
"STree",
|
|
||||||
"--stratified",
|
|
||||||
"-d",
|
|
||||||
"iris",
|
|
||||||
//"--discretize"
|
|
||||||
// "--hyperparameters",
|
|
||||||
// "{\"repeatSparent\": true, \"maxModels\": 12}"
|
|
||||||
],
|
|
||||||
"cwd": "${workspaceFolder}/../discretizbench",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"type": "lldb",
|
|
||||||
"request": "launch",
|
|
||||||
"name": "gridsearch",
|
|
||||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_grid",
|
|
||||||
"args": [
|
|
||||||
"-m",
|
|
||||||
"KDB",
|
|
||||||
"--discretize",
|
|
||||||
"--continue",
|
|
||||||
"glass",
|
|
||||||
"--only",
|
|
||||||
"--compute"
|
|
||||||
],
|
|
||||||
"cwd": "${workspaceFolder}/../discretizbench",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"type": "lldb",
|
|
||||||
"request": "launch",
|
|
||||||
"name": "experimentBayes",
|
|
||||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_main",
|
|
||||||
"args": [
|
|
||||||
"-m",
|
|
||||||
"TAN",
|
|
||||||
"--stratified",
|
|
||||||
"--discretize",
|
|
||||||
"-d",
|
|
||||||
"iris",
|
|
||||||
"--hyperparameters",
|
|
||||||
"{\"repeatSparent\": true, \"maxModels\": 12}"
|
|
||||||
],
|
|
||||||
"cwd": "/home/rmontanana/Code/discretizbench",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"type": "lldb",
|
|
||||||
"request": "launch",
|
|
||||||
"name": "best",
|
|
||||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_best",
|
|
||||||
"args": [
|
|
||||||
"-m",
|
|
||||||
"BoostAODE",
|
|
||||||
"-s",
|
|
||||||
"accuracy",
|
|
||||||
"--build",
|
|
||||||
],
|
|
||||||
"cwd": "${workspaceFolder}/../discretizbench",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"type": "lldb",
|
|
||||||
"request": "launch",
|
|
||||||
"name": "manage",
|
|
||||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_manage",
|
|
||||||
"args": [
|
|
||||||
"-n",
|
|
||||||
"20"
|
|
||||||
],
|
|
||||||
"cwd": "${workspaceFolder}/../discretizbench",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"type": "lldb",
|
|
||||||
"request": "launch",
|
|
||||||
"name": "list",
|
|
||||||
"program": "${workspaceFolder}/build_debug/src/Platform/b_list",
|
|
||||||
"args": [],
|
|
||||||
//"cwd": "/Users/rmontanana/Code/discretizbench",
|
|
||||||
"cwd": "${workspaceFolder}/../discretizbench",
|
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"type": "lldb",
|
"type": "lldb",
|
||||||
"request": "launch",
|
"request": "launch",
|
||||||
"name": "test",
|
"name": "test",
|
||||||
"program": "${workspaceFolder}/build_debug/tests/unit_tests",
|
"program": "${workspaceFolder}/build_Debug/tests/TestBayesNet",
|
||||||
"args": [
|
"args": [
|
||||||
"-c=\"Metrics Test\"",
|
"No features selected"
|
||||||
// "-s",
|
|
||||||
],
|
],
|
||||||
"cwd": "${workspaceFolder}/build/tests",
|
"cwd": "${workspaceFolder}/build_Debug/tests"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "Build & debug active file",
|
"name": "(gdb) Launch",
|
||||||
"type": "cppdbg",
|
"type": "cppdbg",
|
||||||
"request": "launch",
|
"request": "launch",
|
||||||
"program": "${workspaceFolder}/build_debug/bayesnet",
|
"program": "enter program name, for example ${workspaceFolder}/a.out",
|
||||||
"args": [],
|
"args": [],
|
||||||
"stopAtEntry": false,
|
"stopAtEntry": false,
|
||||||
"cwd": "${workspaceFolder}",
|
"cwd": "${fileDirname}",
|
||||||
"environment": [],
|
"environment": [],
|
||||||
"externalConsole": false,
|
"externalConsole": false,
|
||||||
"MIMode": "lldb",
|
"MIMode": "gdb",
|
||||||
"preLaunchTask": "CMake: build"
|
"setupCommands": [
|
||||||
|
{
|
||||||
|
"description": "Enable pretty-printing for gdb",
|
||||||
|
"text": "-enable-pretty-printing",
|
||||||
|
"ignoreFailures": true
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"description": "Set Disassembly Flavor to Intel",
|
||||||
|
"text": "-gdb-set disassembly-flavor intel",
|
||||||
|
"ignoreFailures": true
|
||||||
|
}
|
||||||
|
]
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
}
|
}
|
139
CHANGELOG.md
Normal file
139
CHANGELOG.md
Normal file
@ -0,0 +1,139 @@
|
|||||||
|
# Changelog
|
||||||
|
|
||||||
|
All notable changes to this project will be documented in this file.
|
||||||
|
|
||||||
|
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/),
|
||||||
|
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||||
|
|
||||||
|
## [Unreleased]
|
||||||
|
|
||||||
|
### Added
|
||||||
|
|
||||||
|
- Add a new hyperparameter to the BoostAODE class, *alphablock*, to control the way α is computed, with the last model or with the ensmble built so far. Default value is *false*.
|
||||||
|
- Add a new hyperparameter to the SPODE class, *parent*, to set the root node of the model. If no value is set the root parameter of the constructor is used.
|
||||||
|
- Add a new hyperparameter to the TAN class, *parent*, to set the root node of the model. If not set the first feature is used as root.
|
||||||
|
|
||||||
|
### Changed
|
||||||
|
|
||||||
|
- Hyperparameter *maxTolerance* in the BoostAODE class is now in [1, 6] range (it was in [1, 4] range before).
|
||||||
|
|
||||||
|
## [1.0.6] 2024-11-23
|
||||||
|
|
||||||
|
### Fixed
|
||||||
|
|
||||||
|
- Prevent existing edges to be added to the network in the `add_edge` method.
|
||||||
|
- Don't allow to add nodes or edges on already fiited networks.
|
||||||
|
- Number of threads spawned
|
||||||
|
- Network class tests
|
||||||
|
|
||||||
|
### Added
|
||||||
|
|
||||||
|
- Library logo generated with <https://openart.ai> to README.md
|
||||||
|
- Link to the coverage report in the README.md coverage label.
|
||||||
|
- *convergence_best* hyperparameter to the BoostAODE class, to control the way the prior accuracy is computed if convergence is set. Default value is *false*.
|
||||||
|
- SPnDE model.
|
||||||
|
- A2DE model.
|
||||||
|
- BoostA2DE model.
|
||||||
|
- A2DE & SPnDE tests.
|
||||||
|
- Add tests to reach 99% of coverage.
|
||||||
|
- Add tests to check the correct version of the mdlp, folding and json libraries.
|
||||||
|
- Library documentation generated with Doxygen.
|
||||||
|
- Link to documentation in the README.md.
|
||||||
|
- Three types of smoothing the Bayesian Network ORIGINAL, LAPLACE and CESTNIK.
|
||||||
|
|
||||||
|
### Internal
|
||||||
|
|
||||||
|
- Fixed doxygen optional dependency
|
||||||
|
- Add env parallel variable to Makefile
|
||||||
|
- Add CountingSemaphore class to manage the number of threads spawned.
|
||||||
|
- Ignore CUDA language in CMake CodeCoverage module.
|
||||||
|
- Update mdlp library as a git submodule.
|
||||||
|
- Create library ShuffleArffFile to limit the number of samples with a parameter and shuffle them.
|
||||||
|
- Refactor catch2 library location to test/lib
|
||||||
|
- Refactor loadDataset function in tests.
|
||||||
|
- Remove conditionalEdgeWeights method in BayesMetrics.
|
||||||
|
- Refactor Coverage Report generation.
|
||||||
|
- Add devcontainer to work on apple silicon.
|
||||||
|
- Change build cmake folder names to Debug & Release.
|
||||||
|
- Add a Makefile target (doc) to generate the documentation.
|
||||||
|
- Add a Makefile target (doc-install) to install the documentation.
|
||||||
|
|
||||||
|
### Libraries versions
|
||||||
|
|
||||||
|
- mdlp: 2.0.1
|
||||||
|
- Folding: 1.1.0
|
||||||
|
- json: 3.11
|
||||||
|
- ArffFiles: 1.1.0
|
||||||
|
|
||||||
|
## [1.0.5] 2024-04-20
|
||||||
|
|
||||||
|
### Added
|
||||||
|
|
||||||
|
- Install command and instructions in README.md
|
||||||
|
- Prefix to install command to install the package in the any location.
|
||||||
|
- The 'block_update' hyperparameter to the BoostAODE class, to control the way weights/significances are updated. Default value is false.
|
||||||
|
- Html report of coverage in the coverage folder. It is created with *make viewcoverage*
|
||||||
|
- Badges of coverage and code quality (codacy) in README.md. Coverage badge is updated with *make viewcoverage*
|
||||||
|
- Tests to reach 97% of coverage.
|
||||||
|
- Copyright header to source files.
|
||||||
|
- Diagrams to README.md: UML class diagram & dependency diagram
|
||||||
|
- Action to create diagrams to Makefile: *make diagrams*
|
||||||
|
|
||||||
|
### Changed
|
||||||
|
|
||||||
|
- Sample app now is a separate target in the Makefile and shows how to use the library with a sample dataset
|
||||||
|
- The worse model count in BoostAODE is reset to 0 every time a new model produces better accuracy, so the tolerance of the model is meant to be the number of **consecutive** models that produce worse accuracy.
|
||||||
|
- Default hyperparameter values in BoostAODE: bisection is true, maxTolerance is 3, convergence is true
|
||||||
|
|
||||||
|
### Removed
|
||||||
|
|
||||||
|
- The 'predict_single' hyperparameter from the BoostAODE class.
|
||||||
|
- The 'repeatSparent' hyperparameter from the BoostAODE class.
|
||||||
|
|
||||||
|
## [1.0.4] 2024-03-06
|
||||||
|
|
||||||
|
### Added
|
||||||
|
|
||||||
|
- Change *ascending* hyperparameter to *order* with these possible values *{"asc", "desc", "rand"}*, Default is *"desc"*.
|
||||||
|
- Add the *predict_single* hyperparameter to control if only the last model created is used to predict in boost training or the whole ensemble (all the models built so far). Default is true.
|
||||||
|
- sample app to show how to use the library (make sample)
|
||||||
|
|
||||||
|
### Changed
|
||||||
|
|
||||||
|
- Change the library structure adding folders for each group of classes (classifiers, ensembles, etc).
|
||||||
|
- The significances of the models generated under the feature selection algorithm are now computed after all the models have been generated and an α<sub>t</sub> value is computed and assigned to each model.
|
||||||
|
|
||||||
|
## [1.0.3] 2024-02-25
|
||||||
|
|
||||||
|
### Added
|
||||||
|
|
||||||
|
- Voting / probability aggregation in Ensemble classes
|
||||||
|
- predict_proba method in Classifier
|
||||||
|
- predict_proba method in BoostAODE
|
||||||
|
- predict_voting parameter in BoostAODE constructor to use voting or probability to predict (default is voting)
|
||||||
|
- hyperparameter predict_voting to AODE, AODELd and BoostAODE (Ensemble child classes)
|
||||||
|
- tests to check predict & predict_proba coherence
|
||||||
|
|
||||||
|
## [1.0.2] - 2024-02-20
|
||||||
|
|
||||||
|
### Fixed
|
||||||
|
|
||||||
|
- Fix bug in BoostAODE: do not include the model if epsilon sub t is greater than 0.5
|
||||||
|
- Fix bug in BoostAODE: compare accuracy with previous accuracy instead of the first of the ensemble if convergence true
|
||||||
|
|
||||||
|
## [1.0.1] - 2024-02-12
|
||||||
|
|
||||||
|
### Added
|
||||||
|
|
||||||
|
- Notes in Classifier class
|
||||||
|
- BoostAODE: Add note with used features in initialization with feature selection
|
||||||
|
- BoostAODE: Add note with the number of models
|
||||||
|
- BoostAODE: Add note with the number of features used to create models if not all features are used
|
||||||
|
- Test version number in TestBayesModels
|
||||||
|
- Add tests with feature_select and notes on BoostAODE
|
||||||
|
|
||||||
|
### Fixed
|
||||||
|
|
||||||
|
- Network predict test
|
||||||
|
- Network predict_proba test
|
||||||
|
- Network score test
|
5
CMakeGraphVizOptions.cmake
Normal file
5
CMakeGraphVizOptions.cmake
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
# Set the default graph title
|
||||||
|
set(GRAPHVIZ_GRAPH_NAME "BayesNet dependency graph")
|
||||||
|
|
||||||
|
set(GRAPHVIZ_SHARED_LIBS OFF)
|
||||||
|
set(GRAPHVIZ_STATIC_LIBS ON)
|
@ -1,7 +1,7 @@
|
|||||||
cmake_minimum_required(VERSION 3.20)
|
cmake_minimum_required(VERSION 3.20)
|
||||||
|
|
||||||
project(BayesNet
|
project(BayesNet
|
||||||
VERSION 1.0.0
|
VERSION 1.0.6
|
||||||
DESCRIPTION "Bayesian Network and basic classifiers Library."
|
DESCRIPTION "Bayesian Network and basic classifiers Library."
|
||||||
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
|
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
|
||||||
LANGUAGES CXX
|
LANGUAGES CXX
|
||||||
@ -25,22 +25,36 @@ set(CMAKE_CXX_EXTENSIONS OFF)
|
|||||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
||||||
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
||||||
|
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fprofile-arcs -ftest-coverage -fno-elide-constructors")
|
||||||
|
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -Ofast")
|
||||||
|
if (NOT ${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||||
|
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-default-inline")
|
||||||
|
endif()
|
||||||
|
|
||||||
# Options
|
# Options
|
||||||
# -------
|
# -------
|
||||||
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
|
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
|
||||||
option(ENABLE_TESTING "Unit testing build" OFF)
|
option(ENABLE_TESTING "Unit testing build" OFF)
|
||||||
option(CODE_COVERAGE "Collect coverage from test library" OFF)
|
option(CODE_COVERAGE "Collect coverage from test library" OFF)
|
||||||
|
option(INSTALL_GTEST "Enable installation of googletest." OFF)
|
||||||
|
|
||||||
# CMakes modules
|
# CMakes modules
|
||||||
# --------------
|
# --------------
|
||||||
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
|
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
|
||||||
include(AddGitSubmodule)
|
include(AddGitSubmodule)
|
||||||
|
|
||||||
|
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
|
||||||
|
MESSAGE("Debug mode")
|
||||||
|
set(ENABLE_TESTING ON)
|
||||||
|
set(CODE_COVERAGE ON)
|
||||||
|
endif (CMAKE_BUILD_TYPE STREQUAL "Debug")
|
||||||
|
|
||||||
|
get_property(LANGUAGES GLOBAL PROPERTY ENABLED_LANGUAGES)
|
||||||
|
message(STATUS "Languages=${LANGUAGES}")
|
||||||
if (CODE_COVERAGE)
|
if (CODE_COVERAGE)
|
||||||
enable_testing()
|
enable_testing()
|
||||||
include(CodeCoverage)
|
include(CodeCoverage)
|
||||||
MESSAGE("Code coverage enabled")
|
MESSAGE(STATUS "Code coverage enabled")
|
||||||
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage -O0 -g")
|
|
||||||
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||||
endif (CODE_COVERAGE)
|
endif (CODE_COVERAGE)
|
||||||
|
|
||||||
@ -50,26 +64,45 @@ endif (ENABLE_CLANG_TIDY)
|
|||||||
|
|
||||||
# External libraries - dependencies of BayesNet
|
# External libraries - dependencies of BayesNet
|
||||||
# ---------------------------------------------
|
# ---------------------------------------------
|
||||||
|
|
||||||
# include(FetchContent)
|
# include(FetchContent)
|
||||||
add_git_submodule("lib/mdlp")
|
|
||||||
add_git_submodule("lib/argparse")
|
|
||||||
add_git_submodule("lib/json")
|
add_git_submodule("lib/json")
|
||||||
|
add_git_submodule("lib/mdlp")
|
||||||
|
|
||||||
# Subdirectories
|
# Subdirectories
|
||||||
# --------------
|
# --------------
|
||||||
add_subdirectory(config)
|
add_subdirectory(config)
|
||||||
add_subdirectory(lib/Files)
|
add_subdirectory(bayesnet)
|
||||||
add_subdirectory(src/BayesNet)
|
|
||||||
|
|
||||||
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.h)
|
|
||||||
file(GLOB BayesNet_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cc ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cpp)
|
|
||||||
|
|
||||||
# Testing
|
# Testing
|
||||||
# -------
|
# -------
|
||||||
|
|
||||||
if (ENABLE_TESTING)
|
if (ENABLE_TESTING)
|
||||||
MESSAGE("Testing enabled")
|
MESSAGE(STATUS "Testing enabled")
|
||||||
add_git_submodule("lib/catch2")
|
add_subdirectory(tests/lib/catch2)
|
||||||
include(CTest)
|
include(CTest)
|
||||||
add_subdirectory(tests)
|
add_subdirectory(tests)
|
||||||
endif (ENABLE_TESTING)
|
endif (ENABLE_TESTING)
|
||||||
|
|
||||||
|
# Installation
|
||||||
|
# ------------
|
||||||
|
install(TARGETS BayesNet
|
||||||
|
ARCHIVE DESTINATION lib
|
||||||
|
LIBRARY DESTINATION lib
|
||||||
|
CONFIGURATIONS Release)
|
||||||
|
install(DIRECTORY bayesnet/ DESTINATION include/bayesnet FILES_MATCHING CONFIGURATIONS Release PATTERN "*.h")
|
||||||
|
install(FILES ${CMAKE_BINARY_DIR}/configured_files/include/bayesnet/config.h DESTINATION include/bayesnet CONFIGURATIONS Release)
|
||||||
|
|
||||||
|
# Documentation
|
||||||
|
# -------------
|
||||||
|
find_package(Doxygen)
|
||||||
|
if (Doxygen_FOUND)
|
||||||
|
set(DOC_DIR ${CMAKE_CURRENT_SOURCE_DIR}/docs)
|
||||||
|
set(doxyfile_in ${DOC_DIR}/Doxyfile.in)
|
||||||
|
set(doxyfile ${DOC_DIR}/Doxyfile)
|
||||||
|
configure_file(${doxyfile_in} ${doxyfile} @ONLY)
|
||||||
|
doxygen_add_docs(doxygen
|
||||||
|
WORKING_DIRECTORY ${DOC_DIR}
|
||||||
|
CONFIG_FILE ${doxyfile})
|
||||||
|
else (Doxygen_FOUND)
|
||||||
|
MESSAGE("* Doxygen not found")
|
||||||
|
endif (Doxygen_FOUND)
|
||||||
|
2
LICENSE
2
LICENSE
@ -1,6 +1,6 @@
|
|||||||
MIT License
|
MIT License
|
||||||
|
|
||||||
Copyright (c) <year> <copyright holders>
|
Copyright (c) 2023 Ricardo Montañana Gómez
|
||||||
|
|
||||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
127
Makefile
127
Makefile
@ -1,12 +1,22 @@
|
|||||||
SHELL := /bin/bash
|
SHELL := /bin/bash
|
||||||
.DEFAULT_GOAL := help
|
.DEFAULT_GOAL := help
|
||||||
.PHONY: coverage setup help buildr buildd test clean debug release
|
.PHONY: viewcoverage coverage setup help install uninstall diagrams buildr buildd test clean debug release sample updatebadge doc doc-install
|
||||||
|
|
||||||
f_release = build_release
|
f_release = build_Release
|
||||||
f_debug = build_debug
|
f_debug = build_Debug
|
||||||
|
f_diagrams = diagrams
|
||||||
app_targets = BayesNet
|
app_targets = BayesNet
|
||||||
test_targets = unit_tests_bayesnet
|
test_targets = TestBayesNet
|
||||||
n_procs = -j 16
|
clang-uml = clang-uml
|
||||||
|
plantuml = plantuml
|
||||||
|
lcov = lcov
|
||||||
|
genhtml = genhtml
|
||||||
|
dot = dot
|
||||||
|
docsrcdir = docs/manual
|
||||||
|
mansrcdir = docs/man3
|
||||||
|
mandestdir = /usr/local/share/man
|
||||||
|
sed_command_link = 's/e">LCOV -/e"><a href="https:\/\/rmontanana.github.io\/bayesnet">Back to manual<\/a> LCOV -/g'
|
||||||
|
sed_command_diagram = 's/Diagram"/Diagram" width="100%" height="100%" /g'
|
||||||
|
|
||||||
define ClearTests
|
define ClearTests
|
||||||
@for t in $(test_targets); do \
|
@for t in $(test_targets); do \
|
||||||
@ -29,24 +39,46 @@ setup: ## Install dependencies for tests and coverage
|
|||||||
fi
|
fi
|
||||||
@if [ "$(shell uname)" = "Linux" ]; then \
|
@if [ "$(shell uname)" = "Linux" ]; then \
|
||||||
pip install gcovr; \
|
pip install gcovr; \
|
||||||
|
sudo dnf install lcov;\
|
||||||
fi
|
fi
|
||||||
|
@echo "* You should install plantuml & graphviz for the diagrams"
|
||||||
|
|
||||||
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
|
diagrams: ## Create an UML class diagram & dependency of the project (diagrams/BayesNet.png)
|
||||||
|
@which $(plantuml) || (echo ">>> Please install plantuml"; exit 1)
|
||||||
|
@which $(dot) || (echo ">>> Please install graphviz"; exit 1)
|
||||||
|
@which $(clang-uml) || (echo ">>> Please install clang-uml"; exit 1)
|
||||||
|
@export PLANTUML_LIMIT_SIZE=16384
|
||||||
|
@echo ">>> Creating UML class diagram of the project...";
|
||||||
|
@$(clang-uml) -p
|
||||||
|
@cd $(f_diagrams); \
|
||||||
|
$(plantuml) -tsvg BayesNet.puml
|
||||||
@echo ">>> Creating dependency graph diagram of the project...";
|
@echo ">>> Creating dependency graph diagram of the project...";
|
||||||
$(MAKE) debug
|
$(MAKE) debug
|
||||||
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
cd $(f_debug) && cmake .. --graphviz=dependency.dot
|
||||||
|
@$(dot) -Tsvg $(f_debug)/dependency.dot.BayesNet -o $(f_diagrams)/dependency.svg
|
||||||
|
|
||||||
buildd: ## Build the debug targets
|
buildd: ## Build the debug targets
|
||||||
cmake --build $(f_debug) -t $(app_targets) $(n_procs)
|
cmake --build $(f_debug) -t $(app_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
|
||||||
|
|
||||||
buildr: ## Build the release targets
|
buildr: ## Build the release targets
|
||||||
cmake --build $(f_release) -t $(app_targets) $(n_procs)
|
cmake --build $(f_release) -t $(app_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
|
||||||
|
|
||||||
clean: ## Clean the tests info
|
clean: ## Clean the tests info
|
||||||
@echo ">>> Cleaning Debug BayesNet tests...";
|
@echo ">>> Cleaning Debug BayesNet tests...";
|
||||||
$(call ClearTests)
|
$(call ClearTests)
|
||||||
@echo ">>> Done";
|
@echo ">>> Done";
|
||||||
|
|
||||||
|
uninstall: ## Uninstall library
|
||||||
|
@echo ">>> Uninstalling BayesNet...";
|
||||||
|
xargs rm < $(f_release)/install_manifest.txt
|
||||||
|
@echo ">>> Done";
|
||||||
|
|
||||||
|
prefix = "/usr/local"
|
||||||
|
install: ## Install library
|
||||||
|
@echo ">>> Installing BayesNet...";
|
||||||
|
@cmake --install $(f_release) --prefix $(prefix)
|
||||||
|
@echo ">>> Done";
|
||||||
|
|
||||||
debug: ## Build a debug version of the project
|
debug: ## Build a debug version of the project
|
||||||
@echo ">>> Building Debug BayesNet...";
|
@echo ">>> Building Debug BayesNet...";
|
||||||
@if [ -d ./$(f_debug) ]; then rm -rf ./$(f_debug); fi
|
@if [ -d ./$(f_debug) ]; then rm -rf ./$(f_debug); fi
|
||||||
@ -61,25 +93,94 @@ release: ## Build a Release version of the project
|
|||||||
@cmake -S . -B $(f_release) -D CMAKE_BUILD_TYPE=Release
|
@cmake -S . -B $(f_release) -D CMAKE_BUILD_TYPE=Release
|
||||||
@echo ">>> Done";
|
@echo ">>> Done";
|
||||||
|
|
||||||
|
fname = "tests/data/iris.arff"
|
||||||
|
sample: ## Build sample
|
||||||
|
@echo ">>> Building Sample...";
|
||||||
|
@if [ -d ./sample/build ]; then rm -rf ./sample/build; fi
|
||||||
|
@cd sample && cmake -B build -S . && cmake --build build -t bayesnet_sample
|
||||||
|
sample/build/bayesnet_sample $(fname)
|
||||||
|
@echo ">>> Done";
|
||||||
|
|
||||||
opt = ""
|
opt = ""
|
||||||
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
|
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
|
||||||
@echo ">>> Running BayesNet & Platform tests...";
|
@echo ">>> Running BayesNet tests...";
|
||||||
@$(MAKE) clean
|
@$(MAKE) clean
|
||||||
@cmake --build $(f_debug) -t $(test_targets) $(n_procs)
|
@cmake --build $(f_debug) -t $(test_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
|
||||||
@for t in $(test_targets); do \
|
@for t in $(test_targets); do \
|
||||||
|
echo ">>> Running $$t...";\
|
||||||
if [ -f $(f_debug)/tests/$$t ]; then \
|
if [ -f $(f_debug)/tests/$$t ]; then \
|
||||||
cd $(f_debug)/tests ; \
|
cd $(f_debug)/tests ; \
|
||||||
./$$t $(opt) ; \
|
./$$t $(opt) ; \
|
||||||
|
cd ../.. ; \
|
||||||
fi ; \
|
fi ; \
|
||||||
done
|
done
|
||||||
@echo ">>> Done";
|
@echo ">>> Done";
|
||||||
|
|
||||||
coverage: ## Run tests and generate coverage report (build/index.html)
|
coverage: ## Run tests and generate coverage report (build/index.html)
|
||||||
@echo ">>> Building tests with coverage..."
|
@echo ">>> Building tests with coverage..."
|
||||||
@$(MAKE) test
|
@which $(lcov) || (echo ">>ease install lcov"; exit 1)
|
||||||
@gcovr $(f_debug)/tests
|
@if [ ! -f $(f_debug)/tests/coverage.info ] ; then $(MAKE) test ; fi
|
||||||
|
@echo ">>> Building report..."
|
||||||
|
@cd $(f_debug)/tests; \
|
||||||
|
$(lcov) --directory CMakeFiles --capture --demangle-cpp --ignore-errors source,source --output-file coverage.info >/dev/null 2>&1; \
|
||||||
|
$(lcov) --remove coverage.info '/usr/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||||
|
$(lcov) --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||||
|
$(lcov) --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||||
|
$(lcov) --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||||
|
$(lcov) --remove coverage.info 'bayesnet/utils/loguru.*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1; \
|
||||||
|
$(lcov) --remove coverage.info '/opt/miniconda/*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1; \
|
||||||
|
$(lcov) --summary coverage.info
|
||||||
|
@$(MAKE) updatebadge
|
||||||
@echo ">>> Done";
|
@echo ">>> Done";
|
||||||
|
|
||||||
|
viewcoverage: ## View the html coverage report
|
||||||
|
@which $(genhtml) >/dev/null || (echo ">>> Please install lcov (genhtml not found)"; exit 1)
|
||||||
|
@if [ ! -d $(docsrcdir)/coverage ]; then mkdir -p $(docsrcdir)/coverage; fi
|
||||||
|
@if [ ! -f $(f_debug)/tests/coverage.info ]; then \
|
||||||
|
echo ">>> No coverage.info file found. Run make coverage first!"; \
|
||||||
|
exit 1; \
|
||||||
|
fi
|
||||||
|
@$(genhtml) $(f_debug)/tests/coverage.info --demangle-cpp --output-directory $(docsrcdir)/coverage --title "BayesNet Coverage Report" -s -k -f --legend >/dev/null 2>&1;
|
||||||
|
@xdg-open $(docsrcdir)/coverage/index.html || open $(docsrcdir)/coverage/index.html 2>/dev/null
|
||||||
|
@echo ">>> Done";
|
||||||
|
|
||||||
|
updatebadge: ## Update the coverage badge in README.md
|
||||||
|
@which python || (echo ">>> Please install python"; exit 1)
|
||||||
|
@if [ ! -f $(f_debug)/tests/coverage.info ]; then \
|
||||||
|
echo ">>> No coverage.info file found. Run make coverage first!"; \
|
||||||
|
exit 1; \
|
||||||
|
fi
|
||||||
|
@echo ">>> Updating coverage badge..."
|
||||||
|
@env python update_coverage.py $(f_debug)/tests
|
||||||
|
@echo ">>> Done";
|
||||||
|
|
||||||
|
doc: ## Generate documentation
|
||||||
|
@echo ">>> Generating documentation..."
|
||||||
|
@cmake --build $(f_release) -t doxygen
|
||||||
|
@cp -rp diagrams $(docsrcdir)
|
||||||
|
@
|
||||||
|
@if [ "$(shell uname)" = "Darwin" ]; then \
|
||||||
|
sed -i "" $(sed_command_link) $(docsrcdir)/coverage/index.html ; \
|
||||||
|
sed -i "" $(sed_command_diagram) $(docsrcdir)/index.html ; \
|
||||||
|
else \
|
||||||
|
sed -i $(sed_command_link) $(docsrcdir)/coverage/index.html ; \
|
||||||
|
sed -i $(sed_command_diagram) $(docsrcdir)/index.html ; \
|
||||||
|
fi
|
||||||
|
@echo ">>> Done";
|
||||||
|
|
||||||
|
docdir = ""
|
||||||
|
doc-install: ## Install documentation
|
||||||
|
@echo ">>> Installing documentation..."
|
||||||
|
@if [ "$(docdir)" = "" ]; then \
|
||||||
|
echo "docdir parameter has to be set when calling doc-install, i.e. docdir=../bayesnet_help"; \
|
||||||
|
exit 1; \
|
||||||
|
fi
|
||||||
|
@if [ ! -d $(docdir) ]; then \
|
||||||
|
@$(MAKE) doc; \
|
||||||
|
fi
|
||||||
|
@cp -rp $(docsrcdir)/* $(docdir)
|
||||||
|
@sudo cp -rp $(mansrcdir) $(mandestdir)
|
||||||
|
@echo ">>> Done";
|
||||||
|
|
||||||
help: ## Show help message
|
help: ## Show help message
|
||||||
@IFS=$$'\n' ; \
|
@IFS=$$'\n' ; \
|
||||||
|
93
README.md
93
README.md
@ -1,14 +1,40 @@
|
|||||||
# BayesNet
|
# <img src="logo.png" alt="logo" width="50"/> BayesNet
|
||||||
|
|
||||||
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
|
![C++](https://img.shields.io/badge/c++-%2300599C.svg?style=flat&logo=c%2B%2B&logoColor=white)
|
||||||
|
[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](<https://opensource.org/licenses/MIT>)
|
||||||
|
![Gitea Release](https://img.shields.io/gitea/v/release/rmontanana/bayesnet?gitea_url=https://gitea.rmontanana.es:3000)
|
||||||
|
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/cf3e0ac71d764650b1bf4d8d00d303b1)](https://app.codacy.com/gh/Doctorado-ML/BayesNet/dashboard?utm_source=gh&utm_medium=referral&utm_content=&utm_campaign=Badge_grade)
|
||||||
|
[![Security Rating](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_BayesNet&metric=security_rating)](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
||||||
|
[![Reliability Rating](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_BayesNet&metric=reliability_rating)](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
||||||
|
![Gitea Last Commit](https://img.shields.io/gitea/last-commit/rmontanana/bayesnet?gitea_url=https://gitea.rmontanana.es:3000&logo=gitea)
|
||||||
|
[![Coverage Badge](https://img.shields.io/badge/Coverage-99,1%25-green)](html/index.html)
|
||||||
|
[![DOI](https://zenodo.org/badge/667782806.svg)](https://doi.org/10.5281/zenodo.14210344)
|
||||||
|
|
||||||
Bayesian Network Classifiers using libtorch from scratch
|
Bayesian Network Classifiers library
|
||||||
|
|
||||||
|
## Dependencies
|
||||||
|
|
||||||
|
The only external dependency is [libtorch](https://pytorch.org/cppdocs/installing.html) which can be installed with the following commands:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
wget https://download.pytorch.org/libtorch/nightly/cpu/libtorch-shared-with-deps-latest.zip
|
||||||
|
unzip libtorch-shared-with-deps-latest.zip
|
||||||
|
```
|
||||||
|
|
||||||
|
## Setup
|
||||||
|
|
||||||
|
### Getting the code
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone --recurse-submodules https://github.com/doctorado-ml/bayesnet
|
||||||
|
```
|
||||||
|
|
||||||
### Release
|
### Release
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
make release
|
make release
|
||||||
make buildr
|
make buildr
|
||||||
|
sudo make install
|
||||||
```
|
```
|
||||||
|
|
||||||
### Debug & Tests
|
### Debug & Tests
|
||||||
@ -16,7 +42,64 @@ make buildr
|
|||||||
```bash
|
```bash
|
||||||
make debug
|
make debug
|
||||||
make test
|
make test
|
||||||
make coverage
|
|
||||||
```
|
```
|
||||||
|
|
||||||
## 1. Introduction
|
### Coverage
|
||||||
|
|
||||||
|
```bash
|
||||||
|
make coverage
|
||||||
|
make viewcoverage
|
||||||
|
```
|
||||||
|
|
||||||
|
### Sample app
|
||||||
|
|
||||||
|
After building and installing the release version, you can run the sample app with the following commands:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
make sample
|
||||||
|
make sample fname=tests/data/glass.arff
|
||||||
|
```
|
||||||
|
|
||||||
|
## Models
|
||||||
|
|
||||||
|
#### - TAN
|
||||||
|
|
||||||
|
#### - KDB
|
||||||
|
|
||||||
|
#### - SPODE
|
||||||
|
|
||||||
|
#### - SPnDE
|
||||||
|
|
||||||
|
#### - AODE
|
||||||
|
|
||||||
|
#### - A2DE
|
||||||
|
|
||||||
|
#### - [BoostAODE](docs/BoostAODE.md)
|
||||||
|
|
||||||
|
#### - BoostA2DE
|
||||||
|
|
||||||
|
### With Local Discretization
|
||||||
|
|
||||||
|
#### - TANLd
|
||||||
|
|
||||||
|
#### - KDBLd
|
||||||
|
|
||||||
|
#### - SPODELd
|
||||||
|
|
||||||
|
#### - AODELd
|
||||||
|
|
||||||
|
## Documentation
|
||||||
|
|
||||||
|
### [Manual](https://rmontanana.github.io/bayesnet/)
|
||||||
|
|
||||||
|
### [Coverage report](https://rmontanana.github.io/bayesnet/coverage/index.html)
|
||||||
|
|
||||||
|
## Diagrams
|
||||||
|
|
||||||
|
### UML Class Diagram
|
||||||
|
|
||||||
|
![BayesNet UML Class Diagram](diagrams/BayesNet.svg)
|
||||||
|
|
||||||
|
### Dependency Diagram
|
||||||
|
|
||||||
|
![BayesNet Dependency Diagram](diagrams/dependency.svg)
|
||||||
|
@ -1,37 +1,47 @@
|
|||||||
#ifndef BASE_H
|
// ***************************************************************
|
||||||
#define BASE_H
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include <vector>
|
||||||
#include <torch/torch.h>
|
#include <torch/torch.h>
|
||||||
#include <nlohmann/json.hpp>
|
#include <nlohmann/json.hpp>
|
||||||
#include <vector>
|
#include "bayesnet/network/Network.h"
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
enum status_t { NORMAL, WARNING, ERROR };
|
enum status_t { NORMAL, WARNING, ERROR };
|
||||||
class BaseClassifier {
|
class BaseClassifier {
|
||||||
public:
|
public:
|
||||||
// X is nxm std::vector, y is nx1 std::vector
|
// X is nxm std::vector, y is nx1 std::vector
|
||||||
virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
|
||||||
// X is nxm tensor, y is nx1 tensor
|
// X is nxm tensor, y is nx1 tensor
|
||||||
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
|
||||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
|
||||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) = 0;
|
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing) = 0;
|
||||||
virtual ~BaseClassifier() = default;
|
virtual ~BaseClassifier() = default;
|
||||||
torch::Tensor virtual predict(torch::Tensor& X) = 0;
|
torch::Tensor virtual predict(torch::Tensor& X) = 0;
|
||||||
std::vector<int> virtual predict(std::vector<std::vector<int >>& X) = 0;
|
std::vector<int> virtual predict(std::vector<std::vector<int >>& X) = 0;
|
||||||
|
torch::Tensor virtual predict_proba(torch::Tensor& X) = 0;
|
||||||
|
std::vector<std::vector<double>> virtual predict_proba(std::vector<std::vector<int >>& X) = 0;
|
||||||
status_t virtual getStatus() const = 0;
|
status_t virtual getStatus() const = 0;
|
||||||
float virtual score(std::vector<std::vector<int>>& X, std::vector<int>& y) = 0;
|
float virtual score(std::vector<std::vector<int>>& X, std::vector<int>& y) = 0;
|
||||||
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
|
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
|
||||||
int virtual getNumberOfNodes()const = 0;
|
int virtual getNumberOfNodes()const = 0;
|
||||||
int virtual getNumberOfEdges()const = 0;
|
int virtual getNumberOfEdges()const = 0;
|
||||||
int virtual getNumberOfStates() const = 0;
|
int virtual getNumberOfStates() const = 0;
|
||||||
|
int virtual getClassNumStates() const = 0;
|
||||||
std::vector<std::string> virtual show() const = 0;
|
std::vector<std::string> virtual show() const = 0;
|
||||||
std::vector<std::string> virtual graph(const std::string& title = "") const = 0;
|
std::vector<std::string> virtual graph(const std::string& title = "") const = 0;
|
||||||
virtual std::string getVersion() = 0;
|
virtual std::string getVersion() = 0;
|
||||||
std::vector<std::string> virtual topological_order() = 0;
|
std::vector<std::string> virtual topological_order() = 0;
|
||||||
void virtual dump_cpt()const = 0;
|
std::vector<std::string> virtual getNotes() const = 0;
|
||||||
|
std::string virtual dump_cpt()const = 0;
|
||||||
virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
|
virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
|
||||||
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
|
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
|
||||||
protected:
|
protected:
|
||||||
virtual void trainModel(const torch::Tensor& weights) = 0;
|
virtual void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) = 0;
|
||||||
std::vector<std::string> validHyperparameters;
|
std::vector<std::string> validHyperparameters;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
|
12
bayesnet/CMakeLists.txt
Normal file
12
bayesnet/CMakeLists.txt
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
include_directories(
|
||||||
|
${BayesNet_SOURCE_DIR}/lib/mdlp/src
|
||||||
|
${BayesNet_SOURCE_DIR}/lib/folding
|
||||||
|
${BayesNet_SOURCE_DIR}/lib/json/include
|
||||||
|
${BayesNet_SOURCE_DIR}
|
||||||
|
${CMAKE_BINARY_DIR}/configured_files/include
|
||||||
|
)
|
||||||
|
|
||||||
|
file(GLOB_RECURSE Sources "*.cc")
|
||||||
|
|
||||||
|
add_library(BayesNet ${Sources})
|
||||||
|
target_link_libraries(BayesNet fimdlp "${TORCH_LIBRARIES}")
|
@ -1,21 +1,29 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#include <sstream>
|
||||||
|
#include "bayesnet/utils/bayesnetUtils.h"
|
||||||
#include "Classifier.h"
|
#include "Classifier.h"
|
||||||
#include "bayesnetUtils.h"
|
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
|
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
|
||||||
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
|
||||||
|
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
this->features = features;
|
this->features = features;
|
||||||
this->className = className;
|
this->className = className;
|
||||||
this->states = states;
|
this->states = states;
|
||||||
m = dataset.size(1);
|
m = dataset.size(1);
|
||||||
n = dataset.size(0) - 1;
|
n = features.size();
|
||||||
checkFitParameters();
|
checkFitParameters();
|
||||||
auto n_classes = states.at(className).size();
|
auto n_classes = states.at(className).size();
|
||||||
metrics = Metrics(dataset, features, className, n_classes);
|
metrics = Metrics(dataset, features, className, n_classes);
|
||||||
model.initialize();
|
model.initialize();
|
||||||
buildModel(weights);
|
buildModel(weights);
|
||||||
trainModel(weights);
|
trainModel(weights, smoothing);
|
||||||
fitted = true;
|
fitted = true;
|
||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
@ -26,26 +34,27 @@ namespace bayesnet {
|
|||||||
dataset = torch::cat({ dataset, yresized }, 0);
|
dataset = torch::cat({ dataset, yresized }, 0);
|
||||||
}
|
}
|
||||||
catch (const std::exception& e) {
|
catch (const std::exception& e) {
|
||||||
std::cerr << e.what() << '\n';
|
std::stringstream oss;
|
||||||
std::cout << "X dimensions: " << dataset.sizes() << "\n";
|
oss << "* Error in X and y dimensions *\n";
|
||||||
std::cout << "y dimensions: " << ytmp.sizes() << "\n";
|
oss << "X dimensions: " << dataset.sizes() << "\n";
|
||||||
exit(1);
|
oss << "y dimensions: " << ytmp.sizes();
|
||||||
|
throw std::runtime_error(oss.str());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
void Classifier::trainModel(const torch::Tensor& weights)
|
void Classifier::trainModel(const torch::Tensor& weights, Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
model.fit(dataset, weights, features, className, states);
|
model.fit(dataset, weights, features, className, states, smoothing);
|
||||||
}
|
}
|
||||||
// X is nxm where n is the number of features and m the number of samples
|
// X is nxm where n is the number of features and m the number of samples
|
||||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
dataset = X;
|
dataset = X;
|
||||||
buildDataset(y);
|
buildDataset(y);
|
||||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||||
return build(features, className, states, weights);
|
return build(features, className, states, weights, smoothing);
|
||||||
}
|
}
|
||||||
// X is nxm where n is the number of features and m the number of samples
|
// X is nxm where n is the number of features and m the number of samples
|
||||||
Classifier& Classifier::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
Classifier& Classifier::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kInt32);
|
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kInt32);
|
||||||
for (int i = 0; i < X.size(); ++i) {
|
for (int i = 0; i < X.size(); ++i) {
|
||||||
@ -54,29 +63,29 @@ namespace bayesnet {
|
|||||||
auto ytmp = torch::tensor(y, torch::kInt32);
|
auto ytmp = torch::tensor(y, torch::kInt32);
|
||||||
buildDataset(ytmp);
|
buildDataset(ytmp);
|
||||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||||
return build(features, className, states, weights);
|
return build(features, className, states, weights, smoothing);
|
||||||
}
|
}
|
||||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
this->dataset = dataset;
|
this->dataset = dataset;
|
||||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||||
return build(features, className, states, weights);
|
return build(features, className, states, weights, smoothing);
|
||||||
}
|
}
|
||||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
this->dataset = dataset;
|
this->dataset = dataset;
|
||||||
return build(features, className, states, weights);
|
return build(features, className, states, weights, smoothing);
|
||||||
}
|
}
|
||||||
void Classifier::checkFitParameters()
|
void Classifier::checkFitParameters()
|
||||||
{
|
{
|
||||||
if (torch::is_floating_point(dataset)) {
|
if (torch::is_floating_point(dataset)) {
|
||||||
throw std::invalid_argument("dataset (X, y) must be of type Integer");
|
throw std::invalid_argument("dataset (X, y) must be of type Integer");
|
||||||
}
|
}
|
||||||
if (n != features.size()) {
|
if (dataset.size(0) - 1 != features.size()) {
|
||||||
throw std::invalid_argument("Classifier: X " + std::to_string(n) + " and features " + std::to_string(features.size()) + " must have the same number of features");
|
throw std::invalid_argument("Classifier: X " + std::to_string(dataset.size(0) - 1) + " and features " + std::to_string(features.size()) + " must have the same number of features");
|
||||||
}
|
}
|
||||||
if (states.find(className) == states.end()) {
|
if (states.find(className) == states.end()) {
|
||||||
throw std::invalid_argument("className not found in states");
|
throw std::invalid_argument("class name not found in states");
|
||||||
}
|
}
|
||||||
for (auto feature : features) {
|
for (auto feature : features) {
|
||||||
if (states.find(feature) == states.end()) {
|
if (states.find(feature) == states.end()) {
|
||||||
@ -87,14 +96,14 @@ namespace bayesnet {
|
|||||||
torch::Tensor Classifier::predict(torch::Tensor& X)
|
torch::Tensor Classifier::predict(torch::Tensor& X)
|
||||||
{
|
{
|
||||||
if (!fitted) {
|
if (!fitted) {
|
||||||
throw std::logic_error("Classifier has not been fitted");
|
throw std::logic_error(CLASSIFIER_NOT_FITTED);
|
||||||
}
|
}
|
||||||
return model.predict(X);
|
return model.predict(X);
|
||||||
}
|
}
|
||||||
std::vector<int> Classifier::predict(std::vector<std::vector<int>>& X)
|
std::vector<int> Classifier::predict(std::vector<std::vector<int>>& X)
|
||||||
{
|
{
|
||||||
if (!fitted) {
|
if (!fitted) {
|
||||||
throw std::logic_error("Classifier has not been fitted");
|
throw std::logic_error(CLASSIFIER_NOT_FITTED);
|
||||||
}
|
}
|
||||||
auto m_ = X[0].size();
|
auto m_ = X[0].size();
|
||||||
auto n_ = X.size();
|
auto n_ = X.size();
|
||||||
@ -105,18 +114,37 @@ namespace bayesnet {
|
|||||||
auto yp = model.predict(Xd);
|
auto yp = model.predict(Xd);
|
||||||
return yp;
|
return yp;
|
||||||
}
|
}
|
||||||
float Classifier::score(torch::Tensor& X, torch::Tensor& y)
|
torch::Tensor Classifier::predict_proba(torch::Tensor& X)
|
||||||
{
|
{
|
||||||
if (!fitted) {
|
if (!fitted) {
|
||||||
throw std::logic_error("Classifier has not been fitted");
|
throw std::logic_error(CLASSIFIER_NOT_FITTED);
|
||||||
}
|
}
|
||||||
|
return model.predict_proba(X);
|
||||||
|
}
|
||||||
|
std::vector<std::vector<double>> Classifier::predict_proba(std::vector<std::vector<int>>& X)
|
||||||
|
{
|
||||||
|
if (!fitted) {
|
||||||
|
throw std::logic_error(CLASSIFIER_NOT_FITTED);
|
||||||
|
}
|
||||||
|
auto m_ = X[0].size();
|
||||||
|
auto n_ = X.size();
|
||||||
|
std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));
|
||||||
|
// Convert to nxm vector
|
||||||
|
for (auto i = 0; i < n_; i++) {
|
||||||
|
Xd[i] = std::vector<int>(X[i].begin(), X[i].end());
|
||||||
|
}
|
||||||
|
auto yp = model.predict_proba(Xd);
|
||||||
|
return yp;
|
||||||
|
}
|
||||||
|
float Classifier::score(torch::Tensor& X, torch::Tensor& y)
|
||||||
|
{
|
||||||
torch::Tensor y_pred = predict(X);
|
torch::Tensor y_pred = predict(X);
|
||||||
return (y_pred == y).sum().item<float>() / y.size(0);
|
return (y_pred == y).sum().item<float>() / y.size(0);
|
||||||
}
|
}
|
||||||
float Classifier::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
|
float Classifier::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
|
||||||
{
|
{
|
||||||
if (!fitted) {
|
if (!fitted) {
|
||||||
throw std::logic_error("Classifier has not been fitted");
|
throw std::logic_error(CLASSIFIER_NOT_FITTED);
|
||||||
}
|
}
|
||||||
return model.score(X, y);
|
return model.score(X, y);
|
||||||
}
|
}
|
||||||
@ -145,16 +173,22 @@ namespace bayesnet {
|
|||||||
{
|
{
|
||||||
return fitted ? model.getStates() : 0;
|
return fitted ? model.getStates() : 0;
|
||||||
}
|
}
|
||||||
|
int Classifier::getClassNumStates() const
|
||||||
|
{
|
||||||
|
return fitted ? model.getClassNumStates() : 0;
|
||||||
|
}
|
||||||
std::vector<std::string> Classifier::topological_order()
|
std::vector<std::string> Classifier::topological_order()
|
||||||
{
|
{
|
||||||
return model.topological_sort();
|
return model.topological_sort();
|
||||||
}
|
}
|
||||||
void Classifier::dump_cpt() const
|
std::string Classifier::dump_cpt() const
|
||||||
{
|
{
|
||||||
model.dump_cpt();
|
return model.dump_cpt();
|
||||||
}
|
}
|
||||||
void Classifier::setHyperparameters(const nlohmann::json& hyperparameters)
|
void Classifier::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||||
{
|
{
|
||||||
//For classifiers that don't have hyperparameters
|
if (!hyperparameters.empty()) {
|
||||||
|
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
@ -1,17 +1,45 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#ifndef CLASSIFIER_H
|
#ifndef CLASSIFIER_H
|
||||||
#define CLASSIFIER_H
|
#define CLASSIFIER_H
|
||||||
#include <torch/torch.h>
|
#include <torch/torch.h>
|
||||||
#include "BaseClassifier.h"
|
#include "bayesnet/utils/BayesMetrics.h"
|
||||||
#include "Network.h"
|
#include "bayesnet/BaseClassifier.h"
|
||||||
#include "BayesMetrics.h"
|
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
class Classifier : public BaseClassifier {
|
class Classifier : public BaseClassifier {
|
||||||
private:
|
public:
|
||||||
Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
Classifier(Network model);
|
||||||
|
virtual ~Classifier() = default;
|
||||||
|
Classifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||||
|
Classifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||||
|
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||||
|
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||||
|
void addNodes();
|
||||||
|
int getNumberOfNodes() const override;
|
||||||
|
int getNumberOfEdges() const override;
|
||||||
|
int getNumberOfStates() const override;
|
||||||
|
int getClassNumStates() const override;
|
||||||
|
torch::Tensor predict(torch::Tensor& X) override;
|
||||||
|
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
|
||||||
|
torch::Tensor predict_proba(torch::Tensor& X) override;
|
||||||
|
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
|
||||||
|
status_t getStatus() const override { return status; }
|
||||||
|
std::string getVersion() override { return { project_version.begin(), project_version.end() }; };
|
||||||
|
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||||
|
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
|
||||||
|
std::vector<std::string> show() const override;
|
||||||
|
std::vector<std::string> topological_order() override;
|
||||||
|
std::vector<std::string> getNotes() const override { return notes; }
|
||||||
|
std::string dump_cpt() const override;
|
||||||
|
void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters
|
||||||
protected:
|
protected:
|
||||||
bool fitted;
|
bool fitted;
|
||||||
int m, n; // m: number of samples, n: number of features
|
unsigned int m, n; // m: number of samples, n: number of features
|
||||||
Network model;
|
Network model;
|
||||||
Metrics metrics;
|
Metrics metrics;
|
||||||
std::vector<std::string> features;
|
std::vector<std::string> features;
|
||||||
@ -19,31 +47,13 @@ namespace bayesnet {
|
|||||||
std::map<std::string, std::vector<int>> states;
|
std::map<std::string, std::vector<int>> states;
|
||||||
torch::Tensor dataset; // (n+1)xm tensor
|
torch::Tensor dataset; // (n+1)xm tensor
|
||||||
status_t status = NORMAL;
|
status_t status = NORMAL;
|
||||||
|
std::vector<std::string> notes; // Used to store messages occurred during the fit process
|
||||||
void checkFitParameters();
|
void checkFitParameters();
|
||||||
virtual void buildModel(const torch::Tensor& weights) = 0;
|
virtual void buildModel(const torch::Tensor& weights) = 0;
|
||||||
void trainModel(const torch::Tensor& weights) override;
|
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||||
void buildDataset(torch::Tensor& y);
|
void buildDataset(torch::Tensor& y);
|
||||||
public:
|
private:
|
||||||
Classifier(Network model);
|
Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing);
|
||||||
virtual ~Classifier() = default;
|
|
||||||
Classifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
|
||||||
Classifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
|
||||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
|
||||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) override;
|
|
||||||
void addNodes();
|
|
||||||
int getNumberOfNodes() const override;
|
|
||||||
int getNumberOfEdges() const override;
|
|
||||||
int getNumberOfStates() const override;
|
|
||||||
torch::Tensor predict(torch::Tensor& X) override;
|
|
||||||
status_t getStatus() const override { return status; }
|
|
||||||
std::string getVersion() override { return "0.2.0"; };
|
|
||||||
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
|
|
||||||
float score(torch::Tensor& X, torch::Tensor& y) override;
|
|
||||||
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
|
|
||||||
std::vector<std::string> show() const override;
|
|
||||||
std::vector<std::string> topological_order() override;
|
|
||||||
void dump_cpt() const override;
|
|
||||||
void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters
|
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
@ -1,3 +1,9 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#include "KDB.h"
|
#include "KDB.h"
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
@ -6,14 +12,18 @@ namespace bayesnet {
|
|||||||
validHyperparameters = { "k", "theta" };
|
validHyperparameters = { "k", "theta" };
|
||||||
|
|
||||||
}
|
}
|
||||||
void KDB::setHyperparameters(const nlohmann::json& hyperparameters)
|
void KDB::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||||
{
|
{
|
||||||
|
auto hyperparameters = hyperparameters_;
|
||||||
if (hyperparameters.contains("k")) {
|
if (hyperparameters.contains("k")) {
|
||||||
k = hyperparameters["k"];
|
k = hyperparameters["k"];
|
||||||
|
hyperparameters.erase("k");
|
||||||
}
|
}
|
||||||
if (hyperparameters.contains("theta")) {
|
if (hyperparameters.contains("theta")) {
|
||||||
theta = hyperparameters["theta"];
|
theta = hyperparameters["theta"];
|
||||||
|
hyperparameters.erase("theta");
|
||||||
}
|
}
|
||||||
|
Classifier::setHyperparameters(hyperparameters);
|
||||||
}
|
}
|
||||||
void KDB::buildModel(const torch::Tensor& weights)
|
void KDB::buildModel(const torch::Tensor& weights)
|
||||||
{
|
{
|
@ -1,8 +1,14 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#ifndef KDB_H
|
#ifndef KDB_H
|
||||||
#define KDB_H
|
#define KDB_H
|
||||||
#include <torch/torch.h>
|
#include <torch/torch.h>
|
||||||
|
#include "bayesnet/utils/bayesnetUtils.h"
|
||||||
#include "Classifier.h"
|
#include "Classifier.h"
|
||||||
#include "bayesnetUtils.h"
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
class KDB : public Classifier {
|
class KDB : public Classifier {
|
||||||
private:
|
private:
|
||||||
@ -14,7 +20,7 @@ namespace bayesnet {
|
|||||||
public:
|
public:
|
||||||
explicit KDB(int k, float theta = 0.03);
|
explicit KDB(int k, float theta = 0.03);
|
||||||
virtual ~KDB() = default;
|
virtual ~KDB() = default;
|
||||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||||
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
||||||
};
|
};
|
||||||
}
|
}
|
@ -1,8 +1,14 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#include "KDBLd.h"
|
#include "KDBLd.h"
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
|
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
|
||||||
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
checkInput(X_, y_);
|
checkInput(X_, y_);
|
||||||
features = features_;
|
features = features_;
|
||||||
@ -13,7 +19,7 @@ namespace bayesnet {
|
|||||||
states = fit_local_discretization(y);
|
states = fit_local_discretization(y);
|
||||||
// We have discretized the input data
|
// We have discretized the input data
|
||||||
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
|
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
|
||||||
KDB::fit(dataset, features, className, states);
|
KDB::fit(dataset, features, className, states, smoothing);
|
||||||
states = localDiscretizationProposal(states, model);
|
states = localDiscretizationProposal(states, model);
|
||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
@ -1,7 +1,13 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#ifndef KDBLD_H
|
#ifndef KDBLD_H
|
||||||
#define KDBLD_H
|
#define KDBLD_H
|
||||||
#include "KDB.h"
|
|
||||||
#include "Proposal.h"
|
#include "Proposal.h"
|
||||||
|
#include "KDB.h"
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
class KDBLd : public KDB, public Proposal {
|
class KDBLd : public KDB, public Proposal {
|
||||||
@ -9,7 +15,7 @@ namespace bayesnet {
|
|||||||
public:
|
public:
|
||||||
explicit KDBLd(int k);
|
explicit KDBLd(int k);
|
||||||
virtual ~KDBLd() = default;
|
virtual ~KDBLd() = default;
|
||||||
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||||
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
||||||
torch::Tensor predict(torch::Tensor& X) override;
|
torch::Tensor predict(torch::Tensor& X) override;
|
||||||
static inline std::string version() { return "0.0.1"; };
|
static inline std::string version() { return "0.0.1"; };
|
@ -1,5 +1,10 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#include "Proposal.h"
|
#include "Proposal.h"
|
||||||
#include "ArffFiles.h"
|
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
|
Proposal::Proposal(torch::Tensor& dataset_, std::vector<std::string>& features_, std::string& className_) : pDataset(dataset_), pFeatures(features_), pClassName(className_) {}
|
||||||
@ -48,8 +53,7 @@ namespace bayesnet {
|
|||||||
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
|
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
auto arff = ArffFiles();
|
auto yxv = factorize(yJoinParents);
|
||||||
auto yxv = arff.factorize(yJoinParents);
|
|
||||||
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
|
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
|
||||||
auto xvf = std::vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
auto xvf = std::vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
||||||
discretizers[feature]->fit(xvf, yxv);
|
discretizers[feature]->fit(xvf, yxv);
|
||||||
@ -66,7 +70,7 @@ namespace bayesnet {
|
|||||||
states[pFeatures[index]] = xStates;
|
states[pFeatures[index]] = xStates;
|
||||||
}
|
}
|
||||||
const torch::Tensor weights = torch::full({ pDataset.size(1) }, 1.0 / pDataset.size(1), torch::kDouble);
|
const torch::Tensor weights = torch::full({ pDataset.size(1) }, 1.0 / pDataset.size(1), torch::kDouble);
|
||||||
model.fit(pDataset, weights, pFeatures, pClassName, states);
|
model.fit(pDataset, weights, pFeatures, pClassName, states, Smoothing_t::ORIGINAL);
|
||||||
}
|
}
|
||||||
return states;
|
return states;
|
||||||
}
|
}
|
||||||
@ -107,4 +111,19 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return Xtd;
|
return Xtd;
|
||||||
}
|
}
|
||||||
|
std::vector<int> Proposal::factorize(const std::vector<std::string>& labels_t)
|
||||||
|
{
|
||||||
|
std::vector<int> yy;
|
||||||
|
yy.reserve(labels_t.size());
|
||||||
|
std::map<std::string, int> labelMap;
|
||||||
|
int i = 0;
|
||||||
|
for (const std::string& label : labels_t) {
|
||||||
|
if (labelMap.find(label) == labelMap.end()) {
|
||||||
|
labelMap[label] = i++;
|
||||||
|
bool allDigits = std::all_of(label.begin(), label.end(), ::isdigit);
|
||||||
|
}
|
||||||
|
yy.push_back(labelMap[label]);
|
||||||
|
}
|
||||||
|
return yy;
|
||||||
|
}
|
||||||
}
|
}
|
@ -1,10 +1,16 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#ifndef PROPOSAL_H
|
#ifndef PROPOSAL_H
|
||||||
#define PROPOSAL_H
|
#define PROPOSAL_H
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <map>
|
#include <map>
|
||||||
#include <torch/torch.h>
|
#include <torch/torch.h>
|
||||||
#include "Network.h"
|
#include <CPPFImdlp.h>
|
||||||
#include "CPPFImdlp.h"
|
#include "bayesnet/network/Network.h"
|
||||||
#include "Classifier.h"
|
#include "Classifier.h"
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
@ -21,6 +27,7 @@ namespace bayesnet {
|
|||||||
torch::Tensor y; // y discrete nx1 tensor
|
torch::Tensor y; // y discrete nx1 tensor
|
||||||
map<std::string, mdlp::CPPFImdlp*> discretizers;
|
map<std::string, mdlp::CPPFImdlp*> discretizers;
|
||||||
private:
|
private:
|
||||||
|
std::vector<int> factorize(const std::vector<std::string>& labels_t);
|
||||||
torch::Tensor& pDataset; // (n+1)xm tensor
|
torch::Tensor& pDataset; // (n+1)xm tensor
|
||||||
std::vector<std::string>& pFeatures;
|
std::vector<std::string>& pFeatures;
|
||||||
std::string& pClassName;
|
std::string& pClassName;
|
46
bayesnet/classifiers/SPODE.cc
Normal file
46
bayesnet/classifiers/SPODE.cc
Normal file
@ -0,0 +1,46 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#include "SPODE.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
|
||||||
|
SPODE::SPODE(int root) : Classifier(Network()), root(root)
|
||||||
|
{
|
||||||
|
validHyperparameters = { "parent" };
|
||||||
|
}
|
||||||
|
|
||||||
|
void SPODE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||||
|
{
|
||||||
|
auto hyperparameters = hyperparameters_;
|
||||||
|
if (hyperparameters.contains("parent")) {
|
||||||
|
root = hyperparameters["parent"];
|
||||||
|
hyperparameters.erase("parent");
|
||||||
|
}
|
||||||
|
Classifier::setHyperparameters(hyperparameters);
|
||||||
|
}
|
||||||
|
void SPODE::buildModel(const torch::Tensor& weights)
|
||||||
|
{
|
||||||
|
// 0. Add all nodes to the model
|
||||||
|
addNodes();
|
||||||
|
// 1. Add edges from the class node to all other nodes
|
||||||
|
// 2. Add edges from the root node to all other nodes
|
||||||
|
if (root >= static_cast<int>(features.size())) {
|
||||||
|
throw std::invalid_argument("The parent node is not in the dataset");
|
||||||
|
}
|
||||||
|
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
||||||
|
model.addEdge(className, features[i]);
|
||||||
|
if (i != root) {
|
||||||
|
model.addEdge(features[root], features[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::vector<std::string> SPODE::graph(const std::string& name) const
|
||||||
|
{
|
||||||
|
return model.graph(name);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
@ -1,17 +1,24 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#ifndef SPODE_H
|
#ifndef SPODE_H
|
||||||
#define SPODE_H
|
#define SPODE_H
|
||||||
#include "Classifier.h"
|
#include "Classifier.h"
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
class SPODE : public Classifier {
|
class SPODE : public Classifier {
|
||||||
private:
|
|
||||||
int root;
|
|
||||||
protected:
|
|
||||||
void buildModel(const torch::Tensor& weights) override;
|
|
||||||
public:
|
public:
|
||||||
explicit SPODE(int root);
|
explicit SPODE(int root);
|
||||||
virtual ~SPODE() = default;
|
virtual ~SPODE() = default;
|
||||||
|
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||||
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
||||||
|
protected:
|
||||||
|
void buildModel(const torch::Tensor& weights) override;
|
||||||
|
private:
|
||||||
|
int root;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
@ -1,40 +1,43 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#include "SPODELd.h"
|
#include "SPODELd.h"
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
|
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
|
||||||
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
checkInput(X_, y_);
|
checkInput(X_, y_);
|
||||||
features = features_;
|
|
||||||
className = className_;
|
|
||||||
Xf = X_;
|
Xf = X_;
|
||||||
y = y_;
|
y = y_;
|
||||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
return commonFit(features_, className_, states_, smoothing);
|
||||||
states = fit_local_discretization(y);
|
|
||||||
// We have discretized the input data
|
|
||||||
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
|
||||||
SPODE::fit(dataset, features, className, states);
|
|
||||||
states = localDiscretizationProposal(states, model);
|
|
||||||
return *this;
|
|
||||||
}
|
}
|
||||||
SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
|
||||||
|
SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
if (!torch::is_floating_point(dataset)) {
|
if (!torch::is_floating_point(dataset)) {
|
||||||
throw std::runtime_error("Dataset must be a floating point tensor");
|
throw std::runtime_error("Dataset must be a floating point tensor");
|
||||||
}
|
}
|
||||||
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
|
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
|
||||||
y = dataset.index({ -1, "..." }).clone();
|
y = dataset.index({ -1, "..." }).clone().to(torch::kInt32);
|
||||||
|
return commonFit(features_, className_, states_, smoothing);
|
||||||
|
}
|
||||||
|
|
||||||
|
SPODELd& SPODELd::commonFit(const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||||
|
{
|
||||||
features = features_;
|
features = features_;
|
||||||
className = className_;
|
className = className_;
|
||||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||||
states = fit_local_discretization(y);
|
states = fit_local_discretization(y);
|
||||||
// We have discretized the input data
|
// We have discretized the input data
|
||||||
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
||||||
SPODE::fit(dataset, features, className, states);
|
SPODE::fit(dataset, features, className, states, smoothing);
|
||||||
states = localDiscretizationProposal(states, model);
|
states = localDiscretizationProposal(states, model);
|
||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
|
|
||||||
torch::Tensor SPODELd::predict(torch::Tensor& X)
|
torch::Tensor SPODELd::predict(torch::Tensor& X)
|
||||||
{
|
{
|
||||||
auto Xt = prepareX(X);
|
auto Xt = prepareX(X);
|
@ -1,3 +1,9 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#ifndef SPODELD_H
|
#ifndef SPODELD_H
|
||||||
#define SPODELD_H
|
#define SPODELD_H
|
||||||
#include "SPODE.h"
|
#include "SPODE.h"
|
||||||
@ -8,9 +14,10 @@ namespace bayesnet {
|
|||||||
public:
|
public:
|
||||||
explicit SPODELd(int root);
|
explicit SPODELd(int root);
|
||||||
virtual ~SPODELd() = default;
|
virtual ~SPODELd() = default;
|
||||||
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||||
SPODELd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
SPODELd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||||
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
SPODELd& commonFit(const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||||
|
std::vector<std::string> graph(const std::string& name = "SPODELd") const override;
|
||||||
torch::Tensor predict(torch::Tensor& X) override;
|
torch::Tensor predict(torch::Tensor& X) override;
|
||||||
static inline std::string version() { return "0.0.1"; };
|
static inline std::string version() { return "0.0.1"; };
|
||||||
};
|
};
|
38
bayesnet/classifiers/SPnDE.cc
Normal file
38
bayesnet/classifiers/SPnDE.cc
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#include "SPnDE.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
|
||||||
|
SPnDE::SPnDE(std::vector<int> parents) : Classifier(Network()), parents(parents) {}
|
||||||
|
|
||||||
|
void SPnDE::buildModel(const torch::Tensor& weights)
|
||||||
|
{
|
||||||
|
// 0. Add all nodes to the model
|
||||||
|
addNodes();
|
||||||
|
std::vector<int> attributes;
|
||||||
|
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
||||||
|
if (std::find(parents.begin(), parents.end(), i) == parents.end()) {
|
||||||
|
attributes.push_back(i);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// 1. Add edges from the class node to all other nodes
|
||||||
|
// 2. Add edges from the parents nodes to all other nodes
|
||||||
|
for (const auto& attribute : attributes) {
|
||||||
|
model.addEdge(className, features[attribute]);
|
||||||
|
for (const auto& root : parents) {
|
||||||
|
|
||||||
|
model.addEdge(features[root], features[attribute]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::vector<std::string> SPnDE::graph(const std::string& name) const
|
||||||
|
{
|
||||||
|
return model.graph(name);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
26
bayesnet/classifiers/SPnDE.h
Normal file
26
bayesnet/classifiers/SPnDE.h
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#ifndef SPnDE_H
|
||||||
|
#define SPnDE_H
|
||||||
|
#include <vector>
|
||||||
|
#include "Classifier.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
class SPnDE : public Classifier {
|
||||||
|
public:
|
||||||
|
explicit SPnDE(std::vector<int> parents);
|
||||||
|
virtual ~SPnDE() = default;
|
||||||
|
std::vector<std::string> graph(const std::string& name = "SPnDE") const override;
|
||||||
|
protected:
|
||||||
|
void buildModel(const torch::Tensor& weights) override;
|
||||||
|
private:
|
||||||
|
std::vector<int> parents;
|
||||||
|
|
||||||
|
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif
|
@ -1,8 +1,26 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#include "TAN.h"
|
#include "TAN.h"
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
TAN::TAN() : Classifier(Network()) {}
|
TAN::TAN() : Classifier(Network())
|
||||||
|
{
|
||||||
|
validHyperparameters = { "parent" };
|
||||||
|
}
|
||||||
|
|
||||||
|
void TAN::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||||
|
{
|
||||||
|
auto hyperparameters = hyperparameters_;
|
||||||
|
if (hyperparameters.contains("parent")) {
|
||||||
|
parent = hyperparameters["parent"];
|
||||||
|
hyperparameters.erase("parent");
|
||||||
|
}
|
||||||
|
Classifier::setHyperparameters(hyperparameters);
|
||||||
|
}
|
||||||
void TAN::buildModel(const torch::Tensor& weights)
|
void TAN::buildModel(const torch::Tensor& weights)
|
||||||
{
|
{
|
||||||
// 0. Add all nodes to the model
|
// 0. Add all nodes to the model
|
||||||
@ -17,7 +35,10 @@ namespace bayesnet {
|
|||||||
mi.push_back({ i, mi_value });
|
mi.push_back({ i, mi_value });
|
||||||
}
|
}
|
||||||
sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
|
sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
|
||||||
auto root = mi[mi.size() - 1].first;
|
auto root = parent == -1 ? mi[mi.size() - 1].first : parent;
|
||||||
|
if (root >= static_cast<int>(features.size())) {
|
||||||
|
throw std::invalid_argument("The parent node is not in the dataset");
|
||||||
|
}
|
||||||
// 2. Compute mutual information between each feature and the class
|
// 2. Compute mutual information between each feature and the class
|
||||||
auto weights_matrix = metrics.conditionalEdge(weights);
|
auto weights_matrix = metrics.conditionalEdge(weights);
|
||||||
// 3. Compute the maximum spanning tree
|
// 3. Compute the maximum spanning tree
|
23
bayesnet/classifiers/TAN.h
Normal file
23
bayesnet/classifiers/TAN.h
Normal file
@ -0,0 +1,23 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#ifndef TAN_H
|
||||||
|
#define TAN_H
|
||||||
|
#include "Classifier.h"
|
||||||
|
namespace bayesnet {
|
||||||
|
class TAN : public Classifier {
|
||||||
|
public:
|
||||||
|
TAN();
|
||||||
|
virtual ~TAN() = default;
|
||||||
|
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||||
|
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
||||||
|
protected:
|
||||||
|
void buildModel(const torch::Tensor& weights) override;
|
||||||
|
private:
|
||||||
|
int parent = -1;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif
|
@ -1,8 +1,14 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#include "TANLd.h"
|
#include "TANLd.h"
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
|
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
|
||||||
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
checkInput(X_, y_);
|
checkInput(X_, y_);
|
||||||
features = features_;
|
features = features_;
|
||||||
@ -13,7 +19,7 @@ namespace bayesnet {
|
|||||||
states = fit_local_discretization(y);
|
states = fit_local_discretization(y);
|
||||||
// We have discretized the input data
|
// We have discretized the input data
|
||||||
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
||||||
TAN::fit(dataset, features, className, states);
|
TAN::fit(dataset, features, className, states, smoothing);
|
||||||
states = localDiscretizationProposal(states, model);
|
states = localDiscretizationProposal(states, model);
|
||||||
return *this;
|
return *this;
|
||||||
|
|
@ -1,3 +1,9 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#ifndef TANLD_H
|
#ifndef TANLD_H
|
||||||
#define TANLD_H
|
#define TANLD_H
|
||||||
#include "TAN.h"
|
#include "TAN.h"
|
||||||
@ -9,10 +15,9 @@ namespace bayesnet {
|
|||||||
public:
|
public:
|
||||||
TANLd();
|
TANLd();
|
||||||
virtual ~TANLd() = default;
|
virtual ~TANLd() = default;
|
||||||
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||||
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
std::vector<std::string> graph(const std::string& name = "TANLd") const override;
|
||||||
torch::Tensor predict(torch::Tensor& X) override;
|
torch::Tensor predict(torch::Tensor& X) override;
|
||||||
static inline std::string version() { return "0.0.1"; };
|
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif // !TANLD_H
|
#endif // !TANLD_H
|
40
bayesnet/ensembles/A2DE.cc
Normal file
40
bayesnet/ensembles/A2DE.cc
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#include "A2DE.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
A2DE::A2DE(bool predict_voting) : Ensemble(predict_voting)
|
||||||
|
{
|
||||||
|
validHyperparameters = { "predict_voting" };
|
||||||
|
}
|
||||||
|
void A2DE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||||
|
{
|
||||||
|
auto hyperparameters = hyperparameters_;
|
||||||
|
if (hyperparameters.contains("predict_voting")) {
|
||||||
|
predict_voting = hyperparameters["predict_voting"];
|
||||||
|
hyperparameters.erase("predict_voting");
|
||||||
|
}
|
||||||
|
Classifier::setHyperparameters(hyperparameters);
|
||||||
|
}
|
||||||
|
void A2DE::buildModel(const torch::Tensor& weights)
|
||||||
|
{
|
||||||
|
models.clear();
|
||||||
|
significanceModels.clear();
|
||||||
|
for (int i = 0; i < features.size() - 1; ++i) {
|
||||||
|
for (int j = i + 1; j < features.size(); ++j) {
|
||||||
|
auto model = std::make_unique<SPnDE>(std::vector<int>({ i, j }));
|
||||||
|
models.push_back(std::move(model));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
n_models = static_cast<unsigned>(models.size());
|
||||||
|
significanceModels = std::vector<double>(n_models, 1.0);
|
||||||
|
}
|
||||||
|
std::vector<std::string> A2DE::graph(const std::string& title) const
|
||||||
|
{
|
||||||
|
return Ensemble::graph(title);
|
||||||
|
}
|
||||||
|
}
|
22
bayesnet/ensembles/A2DE.h
Normal file
22
bayesnet/ensembles/A2DE.h
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#ifndef A2DE_H
|
||||||
|
#define A2DE_H
|
||||||
|
#include "bayesnet/classifiers/SPnDE.h"
|
||||||
|
#include "Ensemble.h"
|
||||||
|
namespace bayesnet {
|
||||||
|
class A2DE : public Ensemble {
|
||||||
|
public:
|
||||||
|
A2DE(bool predict_voting = false);
|
||||||
|
virtual ~A2DE() {};
|
||||||
|
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||||
|
std::vector<std::string> graph(const std::string& title = "A2DE") const override;
|
||||||
|
protected:
|
||||||
|
void buildModel(const torch::Tensor& weights) override;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif
|
38
bayesnet/ensembles/AODE.cc
Normal file
38
bayesnet/ensembles/AODE.cc
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#include "AODE.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
AODE::AODE(bool predict_voting) : Ensemble(predict_voting)
|
||||||
|
{
|
||||||
|
validHyperparameters = { "predict_voting" };
|
||||||
|
|
||||||
|
}
|
||||||
|
void AODE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||||
|
{
|
||||||
|
auto hyperparameters = hyperparameters_;
|
||||||
|
if (hyperparameters.contains("predict_voting")) {
|
||||||
|
predict_voting = hyperparameters["predict_voting"];
|
||||||
|
hyperparameters.erase("predict_voting");
|
||||||
|
}
|
||||||
|
Classifier::setHyperparameters(hyperparameters);
|
||||||
|
}
|
||||||
|
void AODE::buildModel(const torch::Tensor& weights)
|
||||||
|
{
|
||||||
|
models.clear();
|
||||||
|
significanceModels.clear();
|
||||||
|
for (int i = 0; i < features.size(); ++i) {
|
||||||
|
models.push_back(std::make_unique<SPODE>(i));
|
||||||
|
}
|
||||||
|
n_models = models.size();
|
||||||
|
significanceModels = std::vector<double>(n_models, 1.0);
|
||||||
|
}
|
||||||
|
std::vector<std::string> AODE::graph(const std::string& title) const
|
||||||
|
{
|
||||||
|
return Ensemble::graph(title);
|
||||||
|
}
|
||||||
|
}
|
22
bayesnet/ensembles/AODE.h
Normal file
22
bayesnet/ensembles/AODE.h
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#ifndef AODE_H
|
||||||
|
#define AODE_H
|
||||||
|
#include "bayesnet/classifiers/SPODE.h"
|
||||||
|
#include "Ensemble.h"
|
||||||
|
namespace bayesnet {
|
||||||
|
class AODE : public Ensemble {
|
||||||
|
public:
|
||||||
|
AODE(bool predict_voting = false);
|
||||||
|
virtual ~AODE() {};
|
||||||
|
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||||
|
std::vector<std::string> graph(const std::string& title = "AODE") const override;
|
||||||
|
protected:
|
||||||
|
void buildModel(const torch::Tensor& weights) override;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif
|
@ -1,8 +1,16 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#include "AODELd.h"
|
#include "AODELd.h"
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
AODELd::AODELd() : Ensemble(), Proposal(dataset, features, className) {}
|
AODELd::AODELd(bool predict_voting) : Ensemble(predict_voting), Proposal(dataset, features, className)
|
||||||
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
{
|
||||||
|
}
|
||||||
|
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
checkInput(X_, y_);
|
checkInput(X_, y_);
|
||||||
features = features_;
|
features = features_;
|
||||||
@ -12,8 +20,9 @@ namespace bayesnet {
|
|||||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||||
states = fit_local_discretization(y);
|
states = fit_local_discretization(y);
|
||||||
// We have discretized the input data
|
// We have discretized the input data
|
||||||
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
// 1st we need to fit the model to build the normal AODE structure, Ensemble::fit
|
||||||
Ensemble::fit(dataset, features, className, states);
|
// calls buildModel to initialize the base models
|
||||||
|
Ensemble::fit(dataset, features, className, states, smoothing);
|
||||||
return *this;
|
return *this;
|
||||||
|
|
||||||
}
|
}
|
||||||
@ -26,10 +35,10 @@ namespace bayesnet {
|
|||||||
n_models = models.size();
|
n_models = models.size();
|
||||||
significanceModels = std::vector<double>(n_models, 1.0);
|
significanceModels = std::vector<double>(n_models, 1.0);
|
||||||
}
|
}
|
||||||
void AODELd::trainModel(const torch::Tensor& weights)
|
void AODELd::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
for (const auto& model : models) {
|
for (const auto& model : models) {
|
||||||
model->fit(Xf, y, features, className, states);
|
model->fit(Xf, y, features, className, states, smoothing);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
std::vector<std::string> AODELd::graph(const std::string& name) const
|
std::vector<std::string> AODELd::graph(const std::string& name) const
|
25
bayesnet/ensembles/AODELd.h
Normal file
25
bayesnet/ensembles/AODELd.h
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#ifndef AODELD_H
|
||||||
|
#define AODELD_H
|
||||||
|
#include "bayesnet/classifiers/Proposal.h"
|
||||||
|
#include "bayesnet/classifiers/SPODELd.h"
|
||||||
|
#include "Ensemble.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
class AODELd : public Ensemble, public Proposal {
|
||||||
|
public:
|
||||||
|
AODELd(bool predict_voting = true);
|
||||||
|
virtual ~AODELd() = default;
|
||||||
|
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing) override;
|
||||||
|
std::vector<std::string> graph(const std::string& name = "AODELd") const override;
|
||||||
|
protected:
|
||||||
|
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||||
|
void buildModel(const torch::Tensor& weights) override;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif // !AODELD_H
|
256
bayesnet/ensembles/Boost.cc
Normal file
256
bayesnet/ensembles/Boost.cc
Normal file
@ -0,0 +1,256 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
#include <folding.hpp>
|
||||||
|
#include "bayesnet/feature_selection/CFS.h"
|
||||||
|
#include "bayesnet/feature_selection/FCBF.h"
|
||||||
|
#include "bayesnet/feature_selection/IWSS.h"
|
||||||
|
#include "Boost.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
Boost::Boost(bool predict_voting) : Ensemble(predict_voting)
|
||||||
|
{
|
||||||
|
validHyperparameters = { "alpha_block", "order", "convergence", "convergence_best", "bisection", "threshold", "maxTolerance",
|
||||||
|
"predict_voting", "select_features", "block_update" };
|
||||||
|
}
|
||||||
|
void Boost::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||||
|
{
|
||||||
|
auto hyperparameters = hyperparameters_;
|
||||||
|
if (hyperparameters.contains("order")) {
|
||||||
|
std::vector<std::string> algos = { Orders.ASC, Orders.DESC, Orders.RAND };
|
||||||
|
order_algorithm = hyperparameters["order"];
|
||||||
|
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
|
||||||
|
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC + ", " + Orders.RAND + "]");
|
||||||
|
}
|
||||||
|
hyperparameters.erase("order");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("alpha_block")) {
|
||||||
|
alpha_block = hyperparameters["alpha_block"];
|
||||||
|
hyperparameters.erase("alpha_block");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("convergence")) {
|
||||||
|
convergence = hyperparameters["convergence"];
|
||||||
|
hyperparameters.erase("convergence");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("convergence_best")) {
|
||||||
|
convergence_best = hyperparameters["convergence_best"];
|
||||||
|
hyperparameters.erase("convergence_best");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("bisection")) {
|
||||||
|
bisection = hyperparameters["bisection"];
|
||||||
|
hyperparameters.erase("bisection");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("threshold")) {
|
||||||
|
threshold = hyperparameters["threshold"];
|
||||||
|
hyperparameters.erase("threshold");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("maxTolerance")) {
|
||||||
|
maxTolerance = hyperparameters["maxTolerance"];
|
||||||
|
if (maxTolerance < 1 || maxTolerance > 6)
|
||||||
|
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 6]");
|
||||||
|
hyperparameters.erase("maxTolerance");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("predict_voting")) {
|
||||||
|
predict_voting = hyperparameters["predict_voting"];
|
||||||
|
hyperparameters.erase("predict_voting");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("select_features")) {
|
||||||
|
auto selectedAlgorithm = hyperparameters["select_features"];
|
||||||
|
std::vector<std::string> algos = { SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF };
|
||||||
|
selectFeatures = true;
|
||||||
|
select_features_algorithm = selectedAlgorithm;
|
||||||
|
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
||||||
|
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " + SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
|
||||||
|
}
|
||||||
|
hyperparameters.erase("select_features");
|
||||||
|
}
|
||||||
|
if (hyperparameters.contains("block_update")) {
|
||||||
|
block_update = hyperparameters["block_update"];
|
||||||
|
hyperparameters.erase("block_update");
|
||||||
|
}
|
||||||
|
if (block_update && alpha_block) {
|
||||||
|
throw std::invalid_argument("alpha_block and block_update cannot be true at the same time");
|
||||||
|
}
|
||||||
|
if (block_update && !bisection) {
|
||||||
|
throw std::invalid_argument("block_update needs bisection to be true");
|
||||||
|
}
|
||||||
|
Classifier::setHyperparameters(hyperparameters);
|
||||||
|
}
|
||||||
|
void Boost::buildModel(const torch::Tensor& weights)
|
||||||
|
{
|
||||||
|
// Models shall be built in trainModel
|
||||||
|
models.clear();
|
||||||
|
significanceModels.clear();
|
||||||
|
n_models = 0;
|
||||||
|
// Prepare the validation dataset
|
||||||
|
auto y_ = dataset.index({ -1, "..." });
|
||||||
|
if (convergence) {
|
||||||
|
// Prepare train & validation sets from train data
|
||||||
|
auto fold = folding::StratifiedKFold(5, y_, 271);
|
||||||
|
auto [train, test] = fold.getFold(0);
|
||||||
|
auto train_t = torch::tensor(train);
|
||||||
|
auto test_t = torch::tensor(test);
|
||||||
|
// Get train and validation sets
|
||||||
|
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
|
||||||
|
y_train = dataset.index({ -1, train_t });
|
||||||
|
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
|
||||||
|
y_test = dataset.index({ -1, test_t });
|
||||||
|
dataset = X_train;
|
||||||
|
m = X_train.size(1);
|
||||||
|
auto n_classes = states.at(className).size();
|
||||||
|
// Build dataset with train data
|
||||||
|
buildDataset(y_train);
|
||||||
|
metrics = Metrics(dataset, features, className, n_classes);
|
||||||
|
} else {
|
||||||
|
// Use all data to train
|
||||||
|
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
||||||
|
y_train = y_;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::vector<int> Boost::featureSelection(torch::Tensor& weights_)
|
||||||
|
{
|
||||||
|
int maxFeatures = 0;
|
||||||
|
if (select_features_algorithm == SelectFeatures.CFS) {
|
||||||
|
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
|
||||||
|
} else if (select_features_algorithm == SelectFeatures.IWSS) {
|
||||||
|
if (threshold < 0 || threshold >0.5) {
|
||||||
|
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
|
||||||
|
}
|
||||||
|
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||||
|
} else if (select_features_algorithm == SelectFeatures.FCBF) {
|
||||||
|
if (threshold < 1e-7 || threshold > 1) {
|
||||||
|
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
|
||||||
|
}
|
||||||
|
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||||
|
}
|
||||||
|
featureSelector->fit();
|
||||||
|
auto featuresUsed = featureSelector->getFeatures();
|
||||||
|
delete featureSelector;
|
||||||
|
return featuresUsed;
|
||||||
|
}
|
||||||
|
std::tuple<torch::Tensor&, double, bool> Boost::update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights)
|
||||||
|
{
|
||||||
|
bool terminate = false;
|
||||||
|
double alpha_t = 0;
|
||||||
|
auto mask_wrong = ypred != ytrain;
|
||||||
|
auto mask_right = ypred == ytrain;
|
||||||
|
auto masked_weights = weights * mask_wrong.to(weights.dtype());
|
||||||
|
double epsilon_t = masked_weights.sum().item<double>();
|
||||||
|
if (epsilon_t > 0.5) {
|
||||||
|
// Inverse the weights policy (plot ln(wt))
|
||||||
|
// "In each round of AdaBoost, there is a sanity check to ensure that the current base
|
||||||
|
// learner is better than random guess" (Zhi-Hua Zhou, 2012)
|
||||||
|
terminate = true;
|
||||||
|
} else {
|
||||||
|
double wt = (1 - epsilon_t) / epsilon_t;
|
||||||
|
alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
||||||
|
// Step 3.2: Update weights for next classifier
|
||||||
|
// Step 3.2.1: Update weights of wrong samples
|
||||||
|
weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights;
|
||||||
|
// Step 3.2.2: Update weights of right samples
|
||||||
|
weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights;
|
||||||
|
// Step 3.3: Normalise the weights
|
||||||
|
double totalWeights = torch::sum(weights).item<double>();
|
||||||
|
weights = weights / totalWeights;
|
||||||
|
}
|
||||||
|
return { weights, alpha_t, terminate };
|
||||||
|
}
|
||||||
|
std::tuple<torch::Tensor&, double, bool> Boost::update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights)
|
||||||
|
{
|
||||||
|
/* Update Block algorithm
|
||||||
|
k = # of models in block
|
||||||
|
n_models = # of models in ensemble to make predictions
|
||||||
|
n_models_bak = # models saved
|
||||||
|
models = vector of models to make predictions
|
||||||
|
models_bak = models not used to make predictions
|
||||||
|
significances_bak = backup of significances vector
|
||||||
|
|
||||||
|
Case list
|
||||||
|
A) k = 1, n_models = 1 => n = 0 , n_models = n + k
|
||||||
|
B) k = 1, n_models = n + 1 => n_models = n + k
|
||||||
|
C) k > 1, n_models = k + 1 => n= 1, n_models = n + k
|
||||||
|
D) k > 1, n_models = k => n = 0, n_models = n + k
|
||||||
|
E) k > 1, n_models = k + n => n_models = n + k
|
||||||
|
|
||||||
|
A, D) n=0, k > 0, n_models == k
|
||||||
|
1. n_models_bak <- n_models
|
||||||
|
2. significances_bak <- significances
|
||||||
|
3. significances = vector(k, 1)
|
||||||
|
4. Don’t move any classifiers out of models
|
||||||
|
5. n_models <- k
|
||||||
|
6. Make prediction, compute alpha, update weights
|
||||||
|
7. Don’t restore any classifiers to models
|
||||||
|
8. significances <- significances_bak
|
||||||
|
9. Update last k significances
|
||||||
|
10. n_models <- n_models_bak
|
||||||
|
|
||||||
|
B, C, E) n > 0, k > 0, n_models == n + k
|
||||||
|
1. n_models_bak <- n_models
|
||||||
|
2. significances_bak <- significances
|
||||||
|
3. significances = vector(k, 1)
|
||||||
|
4. Move first n classifiers to models_bak
|
||||||
|
5. n_models <- k
|
||||||
|
6. Make prediction, compute alpha, update weights
|
||||||
|
7. Insert classifiers in models_bak to be the first n models
|
||||||
|
8. significances <- significances_bak
|
||||||
|
9. Update last k significances
|
||||||
|
10. n_models <- n_models_bak
|
||||||
|
*/
|
||||||
|
//
|
||||||
|
// Make predict with only the last k models
|
||||||
|
//
|
||||||
|
std::unique_ptr<Classifier> model;
|
||||||
|
std::vector<std::unique_ptr<Classifier>> models_bak;
|
||||||
|
// 1. n_models_bak <- n_models 2. significances_bak <- significances
|
||||||
|
auto significance_bak = significanceModels;
|
||||||
|
auto n_models_bak = n_models;
|
||||||
|
// 3. significances = vector(k, 1)
|
||||||
|
significanceModels = std::vector<double>(k, 1.0);
|
||||||
|
// 4. Move first n classifiers to models_bak
|
||||||
|
// backup the first n_models - k models (if n_models == k, don't backup any)
|
||||||
|
for (int i = 0; i < n_models - k; ++i) {
|
||||||
|
model = std::move(models[0]);
|
||||||
|
models.erase(models.begin());
|
||||||
|
models_bak.push_back(std::move(model));
|
||||||
|
}
|
||||||
|
assert(models.size() == k);
|
||||||
|
// 5. n_models <- k
|
||||||
|
n_models = k;
|
||||||
|
// 6. Make prediction, compute alpha, update weights
|
||||||
|
auto ypred = predict(X_train);
|
||||||
|
//
|
||||||
|
// Update weights
|
||||||
|
//
|
||||||
|
double alpha_t;
|
||||||
|
bool terminate;
|
||||||
|
std::tie(weights, alpha_t, terminate) = update_weights(y_train, ypred, weights);
|
||||||
|
//
|
||||||
|
// Restore the models if needed
|
||||||
|
//
|
||||||
|
// 7. Insert classifiers in models_bak to be the first n models
|
||||||
|
// if n_models_bak == k, don't restore any, because none of them were moved
|
||||||
|
if (k != n_models_bak) {
|
||||||
|
// Insert in the same order as they were extracted
|
||||||
|
int bak_size = models_bak.size();
|
||||||
|
for (int i = 0; i < bak_size; ++i) {
|
||||||
|
model = std::move(models_bak[bak_size - 1 - i]);
|
||||||
|
models_bak.erase(models_bak.end() - 1);
|
||||||
|
models.insert(models.begin(), std::move(model));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// 8. significances <- significances_bak
|
||||||
|
significanceModels = significance_bak;
|
||||||
|
//
|
||||||
|
// Update the significance of the last k models
|
||||||
|
//
|
||||||
|
// 9. Update last k significances
|
||||||
|
for (int i = 0; i < k; ++i) {
|
||||||
|
significanceModels[n_models_bak - k + i] = alpha_t;
|
||||||
|
}
|
||||||
|
// 10. n_models <- n_models_bak
|
||||||
|
n_models = n_models_bak;
|
||||||
|
return { weights, alpha_t, terminate };
|
||||||
|
}
|
||||||
|
}
|
52
bayesnet/ensembles/Boost.h
Normal file
52
bayesnet/ensembles/Boost.h
Normal file
@ -0,0 +1,52 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#ifndef BOOST_H
|
||||||
|
#define BOOST_H
|
||||||
|
#include <string>
|
||||||
|
#include <tuple>
|
||||||
|
#include <vector>
|
||||||
|
#include <nlohmann/json.hpp>
|
||||||
|
#include <torch/torch.h>
|
||||||
|
#include "Ensemble.h"
|
||||||
|
#include "bayesnet/feature_selection/FeatureSelect.h"
|
||||||
|
namespace bayesnet {
|
||||||
|
const struct {
|
||||||
|
std::string CFS = "CFS";
|
||||||
|
std::string FCBF = "FCBF";
|
||||||
|
std::string IWSS = "IWSS";
|
||||||
|
}SelectFeatures;
|
||||||
|
const struct {
|
||||||
|
std::string ASC = "asc";
|
||||||
|
std::string DESC = "desc";
|
||||||
|
std::string RAND = "rand";
|
||||||
|
}Orders;
|
||||||
|
class Boost : public Ensemble {
|
||||||
|
public:
|
||||||
|
explicit Boost(bool predict_voting = false);
|
||||||
|
virtual ~Boost() = default;
|
||||||
|
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||||
|
protected:
|
||||||
|
std::vector<int> featureSelection(torch::Tensor& weights_);
|
||||||
|
void buildModel(const torch::Tensor& weights) override;
|
||||||
|
std::tuple<torch::Tensor&, double, bool> update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights);
|
||||||
|
std::tuple<torch::Tensor&, double, bool> update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights);
|
||||||
|
torch::Tensor X_train, y_train, X_test, y_test;
|
||||||
|
// Hyperparameters
|
||||||
|
bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble
|
||||||
|
int maxTolerance = 3;
|
||||||
|
std::string order_algorithm; // order to process the KBest features asc, desc, rand
|
||||||
|
bool convergence = true; //if true, stop when the model does not improve
|
||||||
|
bool convergence_best = false; // wether to keep the best accuracy to the moment or the last accuracy as prior accuracy
|
||||||
|
bool selectFeatures = false; // if true, use feature selection
|
||||||
|
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
|
||||||
|
FeatureSelect* featureSelector = nullptr;
|
||||||
|
double threshold = -1;
|
||||||
|
bool block_update = false; // if true, use block update algorithm, only meaningful if bisection is true
|
||||||
|
bool alpha_block = false; // if true, the alpha is computed with the ensemble built so far and the new model
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif
|
170
bayesnet/ensembles/BoostA2DE.cc
Normal file
170
bayesnet/ensembles/BoostA2DE.cc
Normal file
@ -0,0 +1,170 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#include <set>
|
||||||
|
#include <functional>
|
||||||
|
#include <limits.h>
|
||||||
|
#include <tuple>
|
||||||
|
#include <folding.hpp>
|
||||||
|
#include "bayesnet/feature_selection/CFS.h"
|
||||||
|
#include "bayesnet/feature_selection/FCBF.h"
|
||||||
|
#include "bayesnet/feature_selection/IWSS.h"
|
||||||
|
#include "BoostA2DE.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
|
||||||
|
BoostA2DE::BoostA2DE(bool predict_voting) : Boost(predict_voting)
|
||||||
|
{
|
||||||
|
}
|
||||||
|
std::vector<int> BoostA2DE::initializeModels(const Smoothing_t smoothing)
|
||||||
|
{
|
||||||
|
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||||
|
std::vector<int> featuresSelected = featureSelection(weights_);
|
||||||
|
if (featuresSelected.size() < 2) {
|
||||||
|
notes.push_back("No features selected in initialization");
|
||||||
|
status = ERROR;
|
||||||
|
return std::vector<int>();
|
||||||
|
}
|
||||||
|
for (int i = 0; i < featuresSelected.size() - 1; i++) {
|
||||||
|
for (int j = i + 1; j < featuresSelected.size(); j++) {
|
||||||
|
auto parents = { featuresSelected[i], featuresSelected[j] };
|
||||||
|
std::unique_ptr<Classifier> model = std::make_unique<SPnDE>(parents);
|
||||||
|
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||||
|
models.push_back(std::move(model));
|
||||||
|
significanceModels.push_back(1.0); // They will be updated later in trainModel
|
||||||
|
n_models++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||||
|
return featuresSelected;
|
||||||
|
}
|
||||||
|
void BoostA2DE::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||||
|
{
|
||||||
|
//
|
||||||
|
// Logging setup
|
||||||
|
//
|
||||||
|
// loguru::set_thread_name("BoostA2DE");
|
||||||
|
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||||||
|
// loguru::add_file("boostA2DE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||||||
|
|
||||||
|
// Algorithm based on the adaboost algorithm for classification
|
||||||
|
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||||
|
fitted = true;
|
||||||
|
double alpha_t = 0;
|
||||||
|
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||||
|
bool finished = false;
|
||||||
|
std::vector<int> featuresUsed;
|
||||||
|
if (selectFeatures) {
|
||||||
|
featuresUsed = initializeModels(smoothing);
|
||||||
|
if (featuresUsed.size() == 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
auto ypred = predict(X_train);
|
||||||
|
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||||
|
// Update significance of the models
|
||||||
|
for (int i = 0; i < n_models; ++i) {
|
||||||
|
significanceModels[i] = alpha_t;
|
||||||
|
}
|
||||||
|
if (finished) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
int numItemsPack = 0; // The counter of the models inserted in the current pack
|
||||||
|
// Variables to control the accuracy finish condition
|
||||||
|
double priorAccuracy = 0.0;
|
||||||
|
double improvement = 1.0;
|
||||||
|
double convergence_threshold = 1e-4;
|
||||||
|
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
|
||||||
|
// Step 0: Set the finish condition
|
||||||
|
// epsilon sub t > 0.5 => inverse the weights policy
|
||||||
|
// validation error is not decreasing
|
||||||
|
// run out of features
|
||||||
|
bool ascending = order_algorithm == Orders.ASC;
|
||||||
|
std::mt19937 g{ 173 };
|
||||||
|
std::vector<std::pair<int, int>> pairSelection;
|
||||||
|
while (!finished) {
|
||||||
|
// Step 1: Build ranking with mutual information
|
||||||
|
pairSelection = metrics.SelectKPairs(weights_, featuresUsed, ascending, 0); // Get all the pairs sorted
|
||||||
|
if (order_algorithm == Orders.RAND) {
|
||||||
|
std::shuffle(pairSelection.begin(), pairSelection.end(), g);
|
||||||
|
}
|
||||||
|
int k = bisection ? pow(2, tolerance) : 1;
|
||||||
|
int counter = 0; // The model counter of the current pack
|
||||||
|
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||||
|
while (counter++ < k && pairSelection.size() > 0) {
|
||||||
|
auto feature_pair = pairSelection[0];
|
||||||
|
pairSelection.erase(pairSelection.begin());
|
||||||
|
std::unique_ptr<Classifier> model;
|
||||||
|
model = std::make_unique<SPnDE>(std::vector<int>({ feature_pair.first, feature_pair.second }));
|
||||||
|
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||||
|
alpha_t = 0.0;
|
||||||
|
if (!block_update) {
|
||||||
|
auto ypred = model->predict(X_train);
|
||||||
|
// Step 3.1: Compute the classifier amout of say
|
||||||
|
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||||
|
}
|
||||||
|
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||||
|
numItemsPack++;
|
||||||
|
models.push_back(std::move(model));
|
||||||
|
significanceModels.push_back(alpha_t);
|
||||||
|
n_models++;
|
||||||
|
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
|
||||||
|
}
|
||||||
|
if (block_update) {
|
||||||
|
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
||||||
|
}
|
||||||
|
if (convergence && !finished) {
|
||||||
|
auto y_val_predict = predict(X_test);
|
||||||
|
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||||||
|
if (priorAccuracy == 0) {
|
||||||
|
priorAccuracy = accuracy;
|
||||||
|
} else {
|
||||||
|
improvement = accuracy - priorAccuracy;
|
||||||
|
}
|
||||||
|
if (improvement < convergence_threshold) {
|
||||||
|
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||||
|
tolerance++;
|
||||||
|
} else {
|
||||||
|
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||||
|
tolerance = 0; // Reset the counter if the model performs better
|
||||||
|
numItemsPack = 0;
|
||||||
|
}
|
||||||
|
if (convergence_best) {
|
||||||
|
// Keep the best accuracy until now as the prior accuracy
|
||||||
|
priorAccuracy = std::max(accuracy, priorAccuracy);
|
||||||
|
} else {
|
||||||
|
// Keep the last accuray obtained as the prior accuracy
|
||||||
|
priorAccuracy = accuracy;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
||||||
|
finished = finished || tolerance > maxTolerance || pairSelection.size() == 0;
|
||||||
|
}
|
||||||
|
if (tolerance > maxTolerance) {
|
||||||
|
if (numItemsPack < n_models) {
|
||||||
|
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
||||||
|
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
||||||
|
for (int i = 0; i < numItemsPack; ++i) {
|
||||||
|
significanceModels.pop_back();
|
||||||
|
models.pop_back();
|
||||||
|
n_models--;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||||
|
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (pairSelection.size() > 0) {
|
||||||
|
notes.push_back("Pairs not used in train: " + std::to_string(pairSelection.size()));
|
||||||
|
status = WARNING;
|
||||||
|
}
|
||||||
|
notes.push_back("Number of models: " + std::to_string(n_models));
|
||||||
|
}
|
||||||
|
std::vector<std::string> BoostA2DE::graph(const std::string& title) const
|
||||||
|
{
|
||||||
|
return Ensemble::graph(title);
|
||||||
|
}
|
||||||
|
}
|
25
bayesnet/ensembles/BoostA2DE.h
Normal file
25
bayesnet/ensembles/BoostA2DE.h
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#ifndef BOOSTA2DE_H
|
||||||
|
#define BOOSTA2DE_H
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
#include "bayesnet/classifiers/SPnDE.h"
|
||||||
|
#include "Boost.h"
|
||||||
|
namespace bayesnet {
|
||||||
|
class BoostA2DE : public Boost {
|
||||||
|
public:
|
||||||
|
explicit BoostA2DE(bool predict_voting = false);
|
||||||
|
virtual ~BoostA2DE() = default;
|
||||||
|
std::vector<std::string> graph(const std::string& title = "BoostA2DE") const override;
|
||||||
|
protected:
|
||||||
|
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||||
|
private:
|
||||||
|
std::vector<int> initializeModels(const Smoothing_t smoothing);
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif
|
179
bayesnet/ensembles/BoostAODE.cc
Normal file
179
bayesnet/ensembles/BoostAODE.cc
Normal file
@ -0,0 +1,179 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#include <random>
|
||||||
|
#include <set>
|
||||||
|
#include <functional>
|
||||||
|
#include <limits.h>
|
||||||
|
#include <tuple>
|
||||||
|
#include "BoostAODE.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
|
||||||
|
BoostAODE::BoostAODE(bool predict_voting) : Boost(predict_voting)
|
||||||
|
{
|
||||||
|
}
|
||||||
|
std::vector<int> BoostAODE::initializeModels(const Smoothing_t smoothing)
|
||||||
|
{
|
||||||
|
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||||
|
std::vector<int> featuresSelected = featureSelection(weights_);
|
||||||
|
for (const int& feature : featuresSelected) {
|
||||||
|
std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
|
||||||
|
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||||
|
models.push_back(std::move(model));
|
||||||
|
significanceModels.push_back(1.0); // They will be updated later in trainModel
|
||||||
|
n_models++;
|
||||||
|
}
|
||||||
|
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||||
|
return featuresSelected;
|
||||||
|
}
|
||||||
|
void BoostAODE::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||||
|
{
|
||||||
|
//
|
||||||
|
// Logging setup
|
||||||
|
//
|
||||||
|
// loguru::set_thread_name("BoostAODE");
|
||||||
|
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||||||
|
// loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||||||
|
|
||||||
|
// Algorithm based on the adaboost algorithm for classification
|
||||||
|
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||||
|
fitted = true;
|
||||||
|
double alpha_t = 0;
|
||||||
|
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||||
|
bool finished = false;
|
||||||
|
std::vector<int> featuresUsed;
|
||||||
|
if (selectFeatures) {
|
||||||
|
featuresUsed = initializeModels(smoothing);
|
||||||
|
auto ypred = predict(X_train);
|
||||||
|
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||||
|
// Update significance of the models
|
||||||
|
for (int i = 0; i < n_models; ++i) {
|
||||||
|
significanceModels[i] = alpha_t;
|
||||||
|
}
|
||||||
|
if (finished) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
int numItemsPack = 0; // The counter of the models inserted in the current pack
|
||||||
|
// Variables to control the accuracy finish condition
|
||||||
|
double priorAccuracy = 0.0;
|
||||||
|
double improvement = 1.0;
|
||||||
|
double convergence_threshold = 1e-4;
|
||||||
|
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
|
||||||
|
// Step 0: Set the finish condition
|
||||||
|
// epsilon sub t > 0.5 => inverse the weights policy
|
||||||
|
// validation error is not decreasing
|
||||||
|
// run out of features
|
||||||
|
bool ascending = order_algorithm == Orders.ASC;
|
||||||
|
std::mt19937 g{ 173 };
|
||||||
|
while (!finished) {
|
||||||
|
// Step 1: Build ranking with mutual information
|
||||||
|
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
|
||||||
|
if (order_algorithm == Orders.RAND) {
|
||||||
|
std::shuffle(featureSelection.begin(), featureSelection.end(), g);
|
||||||
|
}
|
||||||
|
// Remove used features
|
||||||
|
featureSelection.erase(remove_if(begin(featureSelection), end(featureSelection), [&](auto x)
|
||||||
|
{ return std::find(begin(featuresUsed), end(featuresUsed), x) != end(featuresUsed);}),
|
||||||
|
end(featureSelection)
|
||||||
|
);
|
||||||
|
int k = bisection ? pow(2, tolerance) : 1;
|
||||||
|
int counter = 0; // The model counter of the current pack
|
||||||
|
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||||
|
while (counter++ < k && featureSelection.size() > 0) {
|
||||||
|
auto feature = featureSelection[0];
|
||||||
|
featureSelection.erase(featureSelection.begin());
|
||||||
|
std::unique_ptr<Classifier> model;
|
||||||
|
model = std::make_unique<SPODE>(feature);
|
||||||
|
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||||
|
alpha_t = 0.0;
|
||||||
|
if (!block_update) {
|
||||||
|
torch::Tensor ypred;
|
||||||
|
if (alpha_block) {
|
||||||
|
//
|
||||||
|
// Compute the prediction with the current ensemble + model
|
||||||
|
//
|
||||||
|
// Add the model to the ensemble
|
||||||
|
n_models++;
|
||||||
|
models.push_back(std::move(model));
|
||||||
|
significanceModels.push_back(1);
|
||||||
|
// Compute the prediction
|
||||||
|
ypred = predict(X_train);
|
||||||
|
// Remove the model from the ensemble
|
||||||
|
model = std::move(models.back());
|
||||||
|
models.pop_back();
|
||||||
|
significanceModels.pop_back();
|
||||||
|
n_models--;
|
||||||
|
} else {
|
||||||
|
ypred = model->predict(X_train);
|
||||||
|
}
|
||||||
|
// Step 3.1: Compute the classifier amout of say
|
||||||
|
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||||
|
}
|
||||||
|
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||||
|
numItemsPack++;
|
||||||
|
featuresUsed.push_back(feature);
|
||||||
|
models.push_back(std::move(model));
|
||||||
|
significanceModels.push_back(alpha_t);
|
||||||
|
n_models++;
|
||||||
|
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
|
||||||
|
}
|
||||||
|
if (block_update) {
|
||||||
|
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
||||||
|
}
|
||||||
|
if (convergence && !finished) {
|
||||||
|
auto y_val_predict = predict(X_test);
|
||||||
|
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||||||
|
if (priorAccuracy == 0) {
|
||||||
|
priorAccuracy = accuracy;
|
||||||
|
} else {
|
||||||
|
improvement = accuracy - priorAccuracy;
|
||||||
|
}
|
||||||
|
if (improvement < convergence_threshold) {
|
||||||
|
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||||
|
tolerance++;
|
||||||
|
} else {
|
||||||
|
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||||
|
tolerance = 0; // Reset the counter if the model performs better
|
||||||
|
numItemsPack = 0;
|
||||||
|
}
|
||||||
|
if (convergence_best) {
|
||||||
|
// Keep the best accuracy until now as the prior accuracy
|
||||||
|
priorAccuracy = std::max(accuracy, priorAccuracy);
|
||||||
|
} else {
|
||||||
|
// Keep the last accuray obtained as the prior accuracy
|
||||||
|
priorAccuracy = accuracy;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
||||||
|
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
|
||||||
|
}
|
||||||
|
if (tolerance > maxTolerance) {
|
||||||
|
if (numItemsPack < n_models) {
|
||||||
|
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
||||||
|
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
||||||
|
for (int i = 0; i < numItemsPack; ++i) {
|
||||||
|
significanceModels.pop_back();
|
||||||
|
models.pop_back();
|
||||||
|
n_models--;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||||
|
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (featuresUsed.size() != features.size()) {
|
||||||
|
notes.push_back("Used features in train: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()));
|
||||||
|
status = WARNING;
|
||||||
|
}
|
||||||
|
notes.push_back("Number of models: " + std::to_string(n_models));
|
||||||
|
}
|
||||||
|
std::vector<std::string> BoostAODE::graph(const std::string& title) const
|
||||||
|
{
|
||||||
|
return Ensemble::graph(title);
|
||||||
|
}
|
||||||
|
}
|
26
bayesnet/ensembles/BoostAODE.h
Normal file
26
bayesnet/ensembles/BoostAODE.h
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#ifndef BOOSTAODE_H
|
||||||
|
#define BOOSTAODE_H
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
#include "bayesnet/classifiers/SPODE.h"
|
||||||
|
#include "Boost.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
class BoostAODE : public Boost {
|
||||||
|
public:
|
||||||
|
explicit BoostAODE(bool predict_voting = false);
|
||||||
|
virtual ~BoostAODE() = default;
|
||||||
|
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
|
||||||
|
protected:
|
||||||
|
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||||
|
private:
|
||||||
|
std::vector<int> initializeModels(const Smoothing_t smoothing);
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif
|
197
bayesnet/ensembles/Ensemble.cc
Normal file
197
bayesnet/ensembles/Ensemble.cc
Normal file
@ -0,0 +1,197 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
#include "Ensemble.h"
|
||||||
|
#include "bayesnet/utils/CountingSemaphore.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
|
||||||
|
Ensemble::Ensemble(bool predict_voting) : Classifier(Network()), n_models(0), predict_voting(predict_voting)
|
||||||
|
{
|
||||||
|
};
|
||||||
|
const std::string ENSEMBLE_NOT_FITTED = "Ensemble has not been fitted";
|
||||||
|
void Ensemble::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||||
|
{
|
||||||
|
n_models = models.size();
|
||||||
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
|
// fit with std::vectors
|
||||||
|
models[i]->fit(dataset, features, className, states, smoothing);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::vector<int> Ensemble::compute_arg_max(std::vector<std::vector<double>>& X)
|
||||||
|
{
|
||||||
|
std::vector<int> y_pred;
|
||||||
|
for (auto i = 0; i < X.size(); ++i) {
|
||||||
|
auto max = std::max_element(X[i].begin(), X[i].end());
|
||||||
|
y_pred.push_back(std::distance(X[i].begin(), max));
|
||||||
|
}
|
||||||
|
return y_pred;
|
||||||
|
}
|
||||||
|
torch::Tensor Ensemble::compute_arg_max(torch::Tensor& X)
|
||||||
|
{
|
||||||
|
auto y_pred = torch::argmax(X, 1);
|
||||||
|
return y_pred;
|
||||||
|
}
|
||||||
|
torch::Tensor Ensemble::voting(torch::Tensor& votes)
|
||||||
|
{
|
||||||
|
// Convert m x n_models tensor to a m x n_class_states with voting probabilities
|
||||||
|
auto y_pred_ = votes.accessor<int, 2>();
|
||||||
|
std::vector<int> y_pred_final;
|
||||||
|
int numClasses = states.at(className).size();
|
||||||
|
// votes is m x n_models with the prediction of every model for each sample
|
||||||
|
auto result = torch::zeros({ votes.size(0), numClasses }, torch::kFloat32);
|
||||||
|
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
||||||
|
for (int i = 0; i < votes.size(0); ++i) {
|
||||||
|
// n_votes store in each index (value of class) the significance added by each model
|
||||||
|
// i.e. n_votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
|
||||||
|
std::vector<double> n_votes(numClasses, 0.0);
|
||||||
|
for (int j = 0; j < n_models; ++j) {
|
||||||
|
n_votes[y_pred_[i][j]] += significanceModels.at(j);
|
||||||
|
}
|
||||||
|
result[i] = torch::tensor(n_votes);
|
||||||
|
}
|
||||||
|
// To only do one division and gain precision
|
||||||
|
result /= sum;
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
std::vector<std::vector<double>> Ensemble::predict_proba(std::vector<std::vector<int>>& X)
|
||||||
|
{
|
||||||
|
if (!fitted) {
|
||||||
|
throw std::logic_error(ENSEMBLE_NOT_FITTED);
|
||||||
|
}
|
||||||
|
return predict_voting ? predict_average_voting(X) : predict_average_proba(X);
|
||||||
|
}
|
||||||
|
torch::Tensor Ensemble::predict_proba(torch::Tensor& X)
|
||||||
|
{
|
||||||
|
if (!fitted) {
|
||||||
|
throw std::logic_error(ENSEMBLE_NOT_FITTED);
|
||||||
|
}
|
||||||
|
return predict_voting ? predict_average_voting(X) : predict_average_proba(X);
|
||||||
|
}
|
||||||
|
std::vector<int> Ensemble::predict(std::vector<std::vector<int>>& X)
|
||||||
|
{
|
||||||
|
auto res = predict_proba(X);
|
||||||
|
return compute_arg_max(res);
|
||||||
|
}
|
||||||
|
torch::Tensor Ensemble::predict(torch::Tensor& X)
|
||||||
|
{
|
||||||
|
auto res = predict_proba(X);
|
||||||
|
return compute_arg_max(res);
|
||||||
|
}
|
||||||
|
torch::Tensor Ensemble::predict_average_proba(torch::Tensor& X)
|
||||||
|
{
|
||||||
|
auto n_states = models[0]->getClassNumStates();
|
||||||
|
torch::Tensor y_pred = torch::zeros({ X.size(1), n_states }, torch::kFloat32);
|
||||||
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
|
auto ypredict = models[i]->predict_proba(X);
|
||||||
|
y_pred += ypredict * significanceModels[i];
|
||||||
|
}
|
||||||
|
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
||||||
|
y_pred /= sum;
|
||||||
|
return y_pred;
|
||||||
|
}
|
||||||
|
std::vector<std::vector<double>> Ensemble::predict_average_proba(std::vector<std::vector<int>>& X)
|
||||||
|
{
|
||||||
|
auto n_states = models[0]->getClassNumStates();
|
||||||
|
std::vector<std::vector<double>> y_pred(X[0].size(), std::vector<double>(n_states, 0.0));
|
||||||
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
|
auto ypredict = models[i]->predict_proba(X);
|
||||||
|
assert(ypredict.size() == y_pred.size());
|
||||||
|
assert(ypredict[0].size() == y_pred[0].size());
|
||||||
|
// Multiply each prediction by the significance of the model and then add it to the final prediction
|
||||||
|
for (auto j = 0; j < ypredict.size(); ++j) {
|
||||||
|
std::transform(y_pred[j].begin(), y_pred[j].end(), ypredict[j].begin(), y_pred[j].begin(),
|
||||||
|
[significanceModels = significanceModels[i]](double x, double y) { return x + y * significanceModels; });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
||||||
|
//Divide each element of the prediction by the sum of the significances
|
||||||
|
for (auto j = 0; j < y_pred.size(); ++j) {
|
||||||
|
std::transform(y_pred[j].begin(), y_pred[j].end(), y_pred[j].begin(), [sum](double x) { return x / sum; });
|
||||||
|
}
|
||||||
|
return y_pred;
|
||||||
|
}
|
||||||
|
std::vector<std::vector<double>> Ensemble::predict_average_voting(std::vector<std::vector<int>>& X)
|
||||||
|
{
|
||||||
|
torch::Tensor Xt = bayesnet::vectorToTensor(X, false);
|
||||||
|
auto y_pred = predict_average_voting(Xt);
|
||||||
|
std::vector<std::vector<double>> result = tensorToVectorDouble(y_pred);
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
torch::Tensor Ensemble::predict_average_voting(torch::Tensor& X)
|
||||||
|
{
|
||||||
|
// Build a m x n_models tensor with the predictions of each model
|
||||||
|
torch::Tensor y_pred = torch::zeros({ X.size(1), n_models }, torch::kInt32);
|
||||||
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
|
auto ypredict = models[i]->predict(X);
|
||||||
|
y_pred.index_put_({ "...", i }, ypredict);
|
||||||
|
}
|
||||||
|
return voting(y_pred);
|
||||||
|
}
|
||||||
|
float Ensemble::score(torch::Tensor& X, torch::Tensor& y)
|
||||||
|
{
|
||||||
|
auto y_pred = predict(X);
|
||||||
|
int correct = 0;
|
||||||
|
for (int i = 0; i < y_pred.size(0); ++i) {
|
||||||
|
if (y_pred[i].item<int>() == y[i].item<int>()) {
|
||||||
|
correct++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return (double)correct / y_pred.size(0);
|
||||||
|
}
|
||||||
|
float Ensemble::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
|
||||||
|
{
|
||||||
|
auto y_pred = predict(X);
|
||||||
|
int correct = 0;
|
||||||
|
for (int i = 0; i < y_pred.size(); ++i) {
|
||||||
|
if (y_pred[i] == y[i]) {
|
||||||
|
correct++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return (double)correct / y_pred.size();
|
||||||
|
}
|
||||||
|
std::vector<std::string> Ensemble::show() const
|
||||||
|
{
|
||||||
|
auto result = std::vector<std::string>();
|
||||||
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
|
auto res = models[i]->show();
|
||||||
|
result.insert(result.end(), res.begin(), res.end());
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
std::vector<std::string> Ensemble::graph(const std::string& title) const
|
||||||
|
{
|
||||||
|
auto result = std::vector<std::string>();
|
||||||
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
|
auto res = models[i]->graph(title + "_" + std::to_string(i));
|
||||||
|
result.insert(result.end(), res.begin(), res.end());
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
int Ensemble::getNumberOfNodes() const
|
||||||
|
{
|
||||||
|
int nodes = 0;
|
||||||
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
|
nodes += models[i]->getNumberOfNodes();
|
||||||
|
}
|
||||||
|
return nodes;
|
||||||
|
}
|
||||||
|
int Ensemble::getNumberOfEdges() const
|
||||||
|
{
|
||||||
|
int edges = 0;
|
||||||
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
|
edges += models[i]->getNumberOfEdges();
|
||||||
|
}
|
||||||
|
return edges;
|
||||||
|
}
|
||||||
|
int Ensemble::getNumberOfStates() const
|
||||||
|
{
|
||||||
|
int nstates = 0;
|
||||||
|
for (auto i = 0; i < n_models; ++i) {
|
||||||
|
nstates += models[i]->getNumberOfStates();
|
||||||
|
}
|
||||||
|
return nstates;
|
||||||
|
}
|
||||||
|
}
|
53
bayesnet/ensembles/Ensemble.h
Normal file
53
bayesnet/ensembles/Ensemble.h
Normal file
@ -0,0 +1,53 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#ifndef ENSEMBLE_H
|
||||||
|
#define ENSEMBLE_H
|
||||||
|
#include <torch/torch.h>
|
||||||
|
#include "bayesnet/utils/BayesMetrics.h"
|
||||||
|
#include "bayesnet/utils/bayesnetUtils.h"
|
||||||
|
#include "bayesnet/classifiers/Classifier.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
class Ensemble : public Classifier {
|
||||||
|
public:
|
||||||
|
Ensemble(bool predict_voting = true);
|
||||||
|
virtual ~Ensemble() = default;
|
||||||
|
torch::Tensor predict(torch::Tensor& X) override;
|
||||||
|
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
|
||||||
|
torch::Tensor predict_proba(torch::Tensor& X) override;
|
||||||
|
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
|
||||||
|
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||||
|
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
|
||||||
|
int getNumberOfNodes() const override;
|
||||||
|
int getNumberOfEdges() const override;
|
||||||
|
int getNumberOfStates() const override;
|
||||||
|
std::vector<std::string> show() const override;
|
||||||
|
std::vector<std::string> graph(const std::string& title) const override;
|
||||||
|
std::vector<std::string> topological_order() override
|
||||||
|
{
|
||||||
|
return std::vector<std::string>();
|
||||||
|
}
|
||||||
|
std::string dump_cpt() const override
|
||||||
|
{
|
||||||
|
return "";
|
||||||
|
}
|
||||||
|
protected:
|
||||||
|
torch::Tensor predict_average_voting(torch::Tensor& X);
|
||||||
|
std::vector<std::vector<double>> predict_average_voting(std::vector<std::vector<int>>& X);
|
||||||
|
torch::Tensor predict_average_proba(torch::Tensor& X);
|
||||||
|
std::vector<std::vector<double>> predict_average_proba(std::vector<std::vector<int>>& X);
|
||||||
|
torch::Tensor compute_arg_max(torch::Tensor& X);
|
||||||
|
std::vector<int> compute_arg_max(std::vector<std::vector<double>>& X);
|
||||||
|
torch::Tensor voting(torch::Tensor& votes);
|
||||||
|
unsigned n_models;
|
||||||
|
std::vector<std::unique_ptr<Classifier>> models;
|
||||||
|
std::vector<double> significanceModels;
|
||||||
|
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||||
|
bool predict_voting;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif
|
@ -1,6 +1,12 @@
|
|||||||
#include "CFS.h"
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#include <limits>
|
#include <limits>
|
||||||
#include "bayesnetUtils.h"
|
#include "bayesnet/utils/bayesnetUtils.h"
|
||||||
|
#include "CFS.h"
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
void CFS::fit()
|
void CFS::fit()
|
||||||
{
|
{
|
||||||
@ -11,7 +17,7 @@ namespace bayesnet {
|
|||||||
auto feature = featureOrder[0];
|
auto feature = featureOrder[0];
|
||||||
selectedFeatures.push_back(feature);
|
selectedFeatures.push_back(feature);
|
||||||
selectedScores.push_back(suLabels[feature]);
|
selectedScores.push_back(suLabels[feature]);
|
||||||
selectedFeatures.erase(selectedFeatures.begin());
|
featureOrder.erase(featureOrder.begin());
|
||||||
while (continueCondition) {
|
while (continueCondition) {
|
||||||
double merit = std::numeric_limits<double>::lowest();
|
double merit = std::numeric_limits<double>::lowest();
|
||||||
int bestFeature = -1;
|
int bestFeature = -1;
|
@ -1,8 +1,14 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#ifndef CFS_H
|
#ifndef CFS_H
|
||||||
#define CFS_H
|
#define CFS_H
|
||||||
#include <torch/torch.h>
|
#include <torch/torch.h>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include "FeatureSelect.h"
|
#include "bayesnet/feature_selection/FeatureSelect.h"
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
class CFS : public FeatureSelect {
|
class CFS : public FeatureSelect {
|
||||||
public:
|
public:
|
@ -1,4 +1,10 @@
|
|||||||
#include "bayesnetUtils.h"
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#include "bayesnet/utils/bayesnetUtils.h"
|
||||||
#include "FCBF.h"
|
#include "FCBF.h"
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
|
|
@ -1,8 +1,14 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#ifndef FCBF_H
|
#ifndef FCBF_H
|
||||||
#define FCBF_H
|
#define FCBF_H
|
||||||
#include <torch/torch.h>
|
#include <torch/torch.h>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include "FeatureSelect.h"
|
#include "bayesnet/feature_selection/FeatureSelect.h"
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
class FCBF : public FeatureSelect {
|
class FCBF : public FeatureSelect {
|
||||||
public:
|
public:
|
@ -1,6 +1,12 @@
|
|||||||
#include "FeatureSelect.h"
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#include <limits>
|
#include <limits>
|
||||||
#include "bayesnetUtils.h"
|
#include "bayesnet/utils/bayesnetUtils.h"
|
||||||
|
#include "FeatureSelect.h"
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
FeatureSelect::FeatureSelect(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
|
FeatureSelect::FeatureSelect(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights) :
|
||||||
Metrics(samples, features, className, classNumStates), maxFeatures(maxFeatures == 0 ? samples.size(0) - 1 : maxFeatures), weights(weights)
|
Metrics(samples, features, className, classNumStates), maxFeatures(maxFeatures == 0 ? samples.size(0) - 1 : maxFeatures), weights(weights)
|
||||||
@ -50,7 +56,6 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
double FeatureSelect::computeMeritCFS()
|
double FeatureSelect::computeMeritCFS()
|
||||||
{
|
{
|
||||||
double result;
|
|
||||||
double rcf = 0;
|
double rcf = 0;
|
||||||
for (auto feature : selectedFeatures) {
|
for (auto feature : selectedFeatures) {
|
||||||
rcf += suLabels[feature];
|
rcf += suLabels[feature];
|
@ -1,8 +1,14 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#ifndef FEATURE_SELECT_H
|
#ifndef FEATURE_SELECT_H
|
||||||
#define FEATURE_SELECT_H
|
#define FEATURE_SELECT_H
|
||||||
#include <torch/torch.h>
|
#include <torch/torch.h>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include "BayesMetrics.h"
|
#include "bayesnet/utils/BayesMetrics.h"
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
class FeatureSelect : public Metrics {
|
class FeatureSelect : public Metrics {
|
||||||
public:
|
public:
|
@ -1,6 +1,12 @@
|
|||||||
#include "IWSS.h"
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#include <limits>
|
#include <limits>
|
||||||
#include "bayesnetUtils.h"
|
#include "bayesnet/utils/bayesnetUtils.h"
|
||||||
|
#include "IWSS.h"
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
IWSS::IWSS(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
|
IWSS::IWSS(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int maxFeatures, const int classNumStates, const torch::Tensor& weights, const double threshold) :
|
||||||
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
|
FeatureSelect(samples, features, className, maxFeatures, classNumStates, weights), threshold(threshold)
|
||||||
@ -28,7 +34,7 @@ namespace bayesnet {
|
|||||||
selectedFeatures.push_back(feature);
|
selectedFeatures.push_back(feature);
|
||||||
// Compute merit with selectedFeatures
|
// Compute merit with selectedFeatures
|
||||||
auto meritNew = computeMeritCFS();
|
auto meritNew = computeMeritCFS();
|
||||||
double delta = merit != 0.0 ? abs(merit - meritNew) / merit : 0.0;
|
double delta = merit != 0.0 ? std::abs(merit - meritNew) / merit : 0.0;
|
||||||
if (meritNew > merit || delta < threshold) {
|
if (meritNew > merit || delta < threshold) {
|
||||||
if (meritNew > merit) {
|
if (meritNew > merit) {
|
||||||
merit = meritNew;
|
merit = meritNew;
|
@ -1,7 +1,13 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#ifndef IWSS_H
|
#ifndef IWSS_H
|
||||||
#define IWSS_H
|
#define IWSS_H
|
||||||
#include <torch/torch.h>
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
#include <torch/torch.h>
|
||||||
#include "FeatureSelect.h"
|
#include "FeatureSelect.h"
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
class IWSS : public FeatureSelect {
|
class IWSS : public FeatureSelect {
|
@ -1,36 +1,49 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#include <thread>
|
#include <thread>
|
||||||
#include <mutex>
|
#include <sstream>
|
||||||
|
#include <numeric>
|
||||||
|
#include <algorithm>
|
||||||
#include "Network.h"
|
#include "Network.h"
|
||||||
#include "bayesnetUtils.h"
|
#include "bayesnet/utils/bayesnetUtils.h"
|
||||||
|
#include "bayesnet/utils/CountingSemaphore.h"
|
||||||
|
#include <pthread.h>
|
||||||
|
#include <fstream>
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
Network::Network() : features(std::vector<std::string>()), className(""), classNumStates(0), fitted(false), laplaceSmoothing(0) {}
|
Network::Network() : fitted{ false }, classNumStates{ 0 }
|
||||||
Network::Network(float maxT) : features(std::vector<std::string>()), className(""), classNumStates(0), maxThreads(maxT), fitted(false), laplaceSmoothing(0) {}
|
|
||||||
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.
|
|
||||||
getmaxThreads()), fitted(other.fitted)
|
|
||||||
{
|
{
|
||||||
|
}
|
||||||
|
Network::Network(const Network& other) : features(other.features), className(other.className), classNumStates(other.getClassNumStates()),
|
||||||
|
fitted(other.fitted), samples(other.samples)
|
||||||
|
{
|
||||||
|
if (samples.defined())
|
||||||
|
samples = samples.clone();
|
||||||
for (const auto& node : other.nodes) {
|
for (const auto& node : other.nodes) {
|
||||||
nodes[node.first] = std::make_unique<Node>(*node.second);
|
nodes[node.first] = std::make_unique<Node>(*node.second);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
void Network::initialize()
|
void Network::initialize()
|
||||||
{
|
{
|
||||||
features = std::vector<std::string>();
|
features.clear();
|
||||||
className = "";
|
className = "";
|
||||||
classNumStates = 0;
|
classNumStates = 0;
|
||||||
fitted = false;
|
fitted = false;
|
||||||
nodes.clear();
|
nodes.clear();
|
||||||
samples = torch::Tensor();
|
samples = torch::Tensor();
|
||||||
}
|
}
|
||||||
float Network::getmaxThreads()
|
|
||||||
{
|
|
||||||
return maxThreads;
|
|
||||||
}
|
|
||||||
torch::Tensor& Network::getSamples()
|
torch::Tensor& Network::getSamples()
|
||||||
{
|
{
|
||||||
return samples;
|
return samples;
|
||||||
}
|
}
|
||||||
void Network::addNode(const std::string& name)
|
void Network::addNode(const std::string& name)
|
||||||
{
|
{
|
||||||
|
if (fitted) {
|
||||||
|
throw std::invalid_argument("Cannot add node to a fitted network. Initialize first.");
|
||||||
|
}
|
||||||
if (name == "") {
|
if (name == "") {
|
||||||
throw std::invalid_argument("Node name cannot be empty");
|
throw std::invalid_argument("Node name cannot be empty");
|
||||||
}
|
}
|
||||||
@ -71,7 +84,7 @@ namespace bayesnet {
|
|||||||
for (Node* child : nodes[nodeId]->getChildren()) {
|
for (Node* child : nodes[nodeId]->getChildren()) {
|
||||||
if (visited.find(child->getName()) == visited.end() && isCyclic(child->getName(), visited, recStack))
|
if (visited.find(child->getName()) == visited.end() && isCyclic(child->getName(), visited, recStack))
|
||||||
return true;
|
return true;
|
||||||
else if (recStack.find(child->getName()) != recStack.end())
|
if (recStack.find(child->getName()) != recStack.end())
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -80,12 +93,21 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
void Network::addEdge(const std::string& parent, const std::string& child)
|
void Network::addEdge(const std::string& parent, const std::string& child)
|
||||||
{
|
{
|
||||||
|
if (fitted) {
|
||||||
|
throw std::invalid_argument("Cannot add edge to a fitted network. Initialize first.");
|
||||||
|
}
|
||||||
if (nodes.find(parent) == nodes.end()) {
|
if (nodes.find(parent) == nodes.end()) {
|
||||||
throw std::invalid_argument("Parent node " + parent + " does not exist");
|
throw std::invalid_argument("Parent node " + parent + " does not exist");
|
||||||
}
|
}
|
||||||
if (nodes.find(child) == nodes.end()) {
|
if (nodes.find(child) == nodes.end()) {
|
||||||
throw std::invalid_argument("Child node " + child + " does not exist");
|
throw std::invalid_argument("Child node " + child + " does not exist");
|
||||||
}
|
}
|
||||||
|
// Check if the edge is already in the graph
|
||||||
|
for (auto& node : nodes[parent]->getChildren()) {
|
||||||
|
if (node->getName() == child) {
|
||||||
|
throw std::invalid_argument("Edge " + parent + " -> " + child + " already exists");
|
||||||
|
}
|
||||||
|
}
|
||||||
// Temporarily add edge to check for cycles
|
// Temporarily add edge to check for cycles
|
||||||
nodes[parent]->addChild(nodes[child].get());
|
nodes[parent]->addChild(nodes[child].get());
|
||||||
nodes[child]->addParent(nodes[parent].get());
|
nodes[child]->addParent(nodes[parent].get());
|
||||||
@ -114,11 +136,14 @@ namespace bayesnet {
|
|||||||
if (n_features != featureNames.size()) {
|
if (n_features != featureNames.size()) {
|
||||||
throw std::invalid_argument("X and features must have the same number of features in Network::fit (" + std::to_string(n_features) + " != " + std::to_string(featureNames.size()) + ")");
|
throw std::invalid_argument("X and features must have the same number of features in Network::fit (" + std::to_string(n_features) + " != " + std::to_string(featureNames.size()) + ")");
|
||||||
}
|
}
|
||||||
|
if (features.size() == 0) {
|
||||||
|
throw std::invalid_argument("The network has not been initialized. You must call addNode() before calling fit()");
|
||||||
|
}
|
||||||
if (n_features != features.size() - 1) {
|
if (n_features != features.size() - 1) {
|
||||||
throw std::invalid_argument("X and local features must have the same number of features in Network::fit (" + std::to_string(n_features) + " != " + std::to_string(features.size() - 1) + ")");
|
throw std::invalid_argument("X and local features must have the same number of features in Network::fit (" + std::to_string(n_features) + " != " + std::to_string(features.size() - 1) + ")");
|
||||||
}
|
}
|
||||||
if (find(features.begin(), features.end(), className) == features.end()) {
|
if (find(features.begin(), features.end(), className) == features.end()) {
|
||||||
throw std::invalid_argument("className not found in Network::features");
|
throw std::invalid_argument("Class Name not found in Network::features");
|
||||||
}
|
}
|
||||||
for (auto& feature : featureNames) {
|
for (auto& feature : featureNames) {
|
||||||
if (find(features.begin(), features.end(), feature) == features.end()) {
|
if (find(features.begin(), features.end(), feature) == features.end()) {
|
||||||
@ -138,7 +163,7 @@ namespace bayesnet {
|
|||||||
classNumStates = nodes.at(className)->getNumStates();
|
classNumStates = nodes.at(className)->getNumStates();
|
||||||
}
|
}
|
||||||
// X comes in nxm, where n is the number of features and m the number of samples
|
// X comes in nxm, where n is the number of features and m the number of samples
|
||||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states, weights);
|
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states, weights);
|
||||||
this->className = className;
|
this->className = className;
|
||||||
@ -147,17 +172,17 @@ namespace bayesnet {
|
|||||||
for (int i = 0; i < featureNames.size(); ++i) {
|
for (int i = 0; i < featureNames.size(); ++i) {
|
||||||
auto row_feature = X.index({ i, "..." });
|
auto row_feature = X.index({ i, "..." });
|
||||||
}
|
}
|
||||||
completeFit(states, weights);
|
completeFit(states, weights, smoothing);
|
||||||
}
|
}
|
||||||
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states, weights);
|
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states, weights);
|
||||||
this->className = className;
|
this->className = className;
|
||||||
this->samples = samples;
|
this->samples = samples;
|
||||||
completeFit(states, weights);
|
completeFit(states, weights, smoothing);
|
||||||
}
|
}
|
||||||
// input_data comes in nxm, where n is the number of features and m the number of samples
|
// input_data comes in nxm, where n is the number of features and m the number of samples
|
||||||
void Network::fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights_, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
void Network::fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights_, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
|
const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
|
||||||
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
|
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
|
||||||
@ -168,17 +193,43 @@ namespace bayesnet {
|
|||||||
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
|
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
|
||||||
}
|
}
|
||||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||||
completeFit(states, weights);
|
completeFit(states, weights, smoothing);
|
||||||
}
|
}
|
||||||
void Network::completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
void Network::completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||||
{
|
{
|
||||||
setStates(states);
|
setStates(states);
|
||||||
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
|
|
||||||
std::vector<std::thread> threads;
|
std::vector<std::thread> threads;
|
||||||
|
auto& semaphore = CountingSemaphore::getInstance();
|
||||||
|
const double n_samples = static_cast<double>(samples.size(1));
|
||||||
|
auto worker = [&](std::pair<const std::string, std::unique_ptr<Node>>& node, int i) {
|
||||||
|
std::string threadName = "FitWorker-" + std::to_string(i);
|
||||||
|
#if defined(__linux__)
|
||||||
|
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||||
|
#else
|
||||||
|
pthread_setname_np(threadName.c_str());
|
||||||
|
#endif
|
||||||
|
double numStates = static_cast<double>(node.second->getNumStates());
|
||||||
|
double smoothing_factor;
|
||||||
|
switch (smoothing) {
|
||||||
|
case Smoothing_t::ORIGINAL:
|
||||||
|
smoothing_factor = 1.0 / n_samples;
|
||||||
|
break;
|
||||||
|
case Smoothing_t::LAPLACE:
|
||||||
|
smoothing_factor = 1.0;
|
||||||
|
break;
|
||||||
|
case Smoothing_t::CESTNIK:
|
||||||
|
smoothing_factor = 1 / numStates;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
smoothing_factor = 0.0; // No smoothing
|
||||||
|
}
|
||||||
|
node.second->computeCPT(samples, features, smoothing_factor, weights);
|
||||||
|
semaphore.release();
|
||||||
|
};
|
||||||
|
int i = 0;
|
||||||
for (auto& node : nodes) {
|
for (auto& node : nodes) {
|
||||||
threads.emplace_back([this, &node, &weights]() {
|
semaphore.acquire();
|
||||||
node.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
threads.emplace_back(worker, std::ref(node), i++);
|
||||||
});
|
|
||||||
}
|
}
|
||||||
for (auto& thread : threads) {
|
for (auto& thread : threads) {
|
||||||
thread.join();
|
thread.join();
|
||||||
@ -190,15 +241,39 @@ namespace bayesnet {
|
|||||||
if (!fitted) {
|
if (!fitted) {
|
||||||
throw std::logic_error("You must call fit() before calling predict()");
|
throw std::logic_error("You must call fit() before calling predict()");
|
||||||
}
|
}
|
||||||
|
// Ensure the sample size is equal to the number of features
|
||||||
|
if (samples.size(0) != features.size() - 1) {
|
||||||
|
throw std::invalid_argument("(T) Sample size (" + std::to_string(samples.size(0)) +
|
||||||
|
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||||
|
}
|
||||||
torch::Tensor result;
|
torch::Tensor result;
|
||||||
|
std::vector<std::thread> threads;
|
||||||
|
std::mutex mtx;
|
||||||
|
auto& semaphore = CountingSemaphore::getInstance();
|
||||||
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
|
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
|
||||||
for (int i = 0; i < samples.size(1); ++i) {
|
auto worker = [&](const torch::Tensor& sample, int i) {
|
||||||
const torch::Tensor sample = samples.index({ "...", i });
|
std::string threadName = "PredictWorker-" + std::to_string(i);
|
||||||
|
#if defined(__linux__)
|
||||||
|
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||||
|
#else
|
||||||
|
pthread_setname_np(threadName.c_str());
|
||||||
|
#endif
|
||||||
auto psample = predict_sample(sample);
|
auto psample = predict_sample(sample);
|
||||||
auto temp = torch::tensor(psample, torch::kFloat64);
|
auto temp = torch::tensor(psample, torch::kFloat64);
|
||||||
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
|
{
|
||||||
|
std::lock_guard<std::mutex> lock(mtx);
|
||||||
result.index_put_({ i, "..." }, temp);
|
result.index_put_({ i, "..." }, temp);
|
||||||
}
|
}
|
||||||
|
semaphore.release();
|
||||||
|
};
|
||||||
|
for (int i = 0; i < samples.size(1); ++i) {
|
||||||
|
semaphore.acquire();
|
||||||
|
const torch::Tensor sample = samples.index({ "...", i });
|
||||||
|
threads.emplace_back(worker, sample, i);
|
||||||
|
}
|
||||||
|
for (auto& thread : threads) {
|
||||||
|
thread.join();
|
||||||
|
}
|
||||||
if (proba)
|
if (proba)
|
||||||
return result;
|
return result;
|
||||||
return result.argmax(1);
|
return result.argmax(1);
|
||||||
@ -222,35 +297,78 @@ namespace bayesnet {
|
|||||||
if (!fitted) {
|
if (!fitted) {
|
||||||
throw std::logic_error("You must call fit() before calling predict()");
|
throw std::logic_error("You must call fit() before calling predict()");
|
||||||
}
|
}
|
||||||
std::vector<int> predictions;
|
// Ensure the sample size is equal to the number of features
|
||||||
|
if (tsamples.size() != features.size() - 1) {
|
||||||
|
throw std::invalid_argument("(V) Sample size (" + std::to_string(tsamples.size()) +
|
||||||
|
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||||
|
}
|
||||||
|
std::vector<int> predictions(tsamples[0].size(), 0);
|
||||||
std::vector<int> sample;
|
std::vector<int> sample;
|
||||||
|
std::vector<std::thread> threads;
|
||||||
|
auto& semaphore = CountingSemaphore::getInstance();
|
||||||
|
auto worker = [&](const std::vector<int>& sample, const int row, int& prediction) {
|
||||||
|
std::string threadName = "(V)PWorker-" + std::to_string(row);
|
||||||
|
#if defined(__linux__)
|
||||||
|
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||||
|
#else
|
||||||
|
pthread_setname_np(threadName.c_str());
|
||||||
|
#endif
|
||||||
|
auto classProbabilities = predict_sample(sample);
|
||||||
|
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
|
||||||
|
int predictedClass = distance(classProbabilities.begin(), maxElem);
|
||||||
|
prediction = predictedClass;
|
||||||
|
semaphore.release();
|
||||||
|
};
|
||||||
for (int row = 0; row < tsamples[0].size(); ++row) {
|
for (int row = 0; row < tsamples[0].size(); ++row) {
|
||||||
sample.clear();
|
sample.clear();
|
||||||
for (int col = 0; col < tsamples.size(); ++col) {
|
for (int col = 0; col < tsamples.size(); ++col) {
|
||||||
sample.push_back(tsamples[col][row]);
|
sample.push_back(tsamples[col][row]);
|
||||||
}
|
}
|
||||||
std::vector<double> classProbabilities = predict_sample(sample);
|
semaphore.acquire();
|
||||||
// Find the class with the maximum posterior probability
|
threads.emplace_back(worker, sample, row, std::ref(predictions[row]));
|
||||||
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
|
}
|
||||||
int predictedClass = distance(classProbabilities.begin(), maxElem);
|
for (auto& thread : threads) {
|
||||||
predictions.push_back(predictedClass);
|
thread.join();
|
||||||
}
|
}
|
||||||
return predictions;
|
return predictions;
|
||||||
}
|
}
|
||||||
// Return mxn std::vector of probabilities
|
// Return mxn std::vector of probabilities
|
||||||
|
// tsamples is nxm std::vector of samples
|
||||||
std::vector<std::vector<double>> Network::predict_proba(const std::vector<std::vector<int>>& tsamples)
|
std::vector<std::vector<double>> Network::predict_proba(const std::vector<std::vector<int>>& tsamples)
|
||||||
{
|
{
|
||||||
if (!fitted) {
|
if (!fitted) {
|
||||||
throw std::logic_error("You must call fit() before calling predict_proba()");
|
throw std::logic_error("You must call fit() before calling predict_proba()");
|
||||||
}
|
}
|
||||||
std::vector<std::vector<double>> predictions;
|
// Ensure the sample size is equal to the number of features
|
||||||
|
if (tsamples.size() != features.size() - 1) {
|
||||||
|
throw std::invalid_argument("(V) Sample size (" + std::to_string(tsamples.size()) +
|
||||||
|
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||||
|
}
|
||||||
|
std::vector<std::vector<double>> predictions(tsamples[0].size(), std::vector<double>(classNumStates, 0.0));
|
||||||
std::vector<int> sample;
|
std::vector<int> sample;
|
||||||
|
std::vector<std::thread> threads;
|
||||||
|
auto& semaphore = CountingSemaphore::getInstance();
|
||||||
|
auto worker = [&](const std::vector<int>& sample, int row, std::vector<double>& predictions) {
|
||||||
|
std::string threadName = "(V)PWorker-" + std::to_string(row);
|
||||||
|
#if defined(__linux__)
|
||||||
|
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||||
|
#else
|
||||||
|
pthread_setname_np(threadName.c_str());
|
||||||
|
#endif
|
||||||
|
std::vector<double> classProbabilities = predict_sample(sample);
|
||||||
|
predictions = classProbabilities;
|
||||||
|
semaphore.release();
|
||||||
|
};
|
||||||
for (int row = 0; row < tsamples[0].size(); ++row) {
|
for (int row = 0; row < tsamples[0].size(); ++row) {
|
||||||
sample.clear();
|
sample.clear();
|
||||||
for (int col = 0; col < tsamples.size(); ++col) {
|
for (int col = 0; col < tsamples.size(); ++col) {
|
||||||
sample.push_back(tsamples[col][row]);
|
sample.push_back(tsamples[col][row]);
|
||||||
}
|
}
|
||||||
predictions.push_back(predict_sample(sample));
|
semaphore.acquire();
|
||||||
|
threads.emplace_back(worker, sample, row, std::ref(predictions[row]));
|
||||||
|
}
|
||||||
|
for (auto& thread : threads) {
|
||||||
|
thread.join();
|
||||||
}
|
}
|
||||||
return predictions;
|
return predictions;
|
||||||
}
|
}
|
||||||
@ -268,11 +386,6 @@ namespace bayesnet {
|
|||||||
// Return 1xn std::vector of probabilities
|
// Return 1xn std::vector of probabilities
|
||||||
std::vector<double> Network::predict_sample(const std::vector<int>& sample)
|
std::vector<double> Network::predict_sample(const std::vector<int>& sample)
|
||||||
{
|
{
|
||||||
// Ensure the sample size is equal to the number of features
|
|
||||||
if (sample.size() != features.size() - 1) {
|
|
||||||
throw std::invalid_argument("Sample size (" + std::to_string(sample.size()) +
|
|
||||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
|
||||||
}
|
|
||||||
std::map<std::string, int> evidence;
|
std::map<std::string, int> evidence;
|
||||||
for (int i = 0; i < sample.size(); ++i) {
|
for (int i = 0; i < sample.size(); ++i) {
|
||||||
evidence[features[i]] = sample[i];
|
evidence[features[i]] = sample[i];
|
||||||
@ -282,44 +395,26 @@ namespace bayesnet {
|
|||||||
// Return 1xn std::vector of probabilities
|
// Return 1xn std::vector of probabilities
|
||||||
std::vector<double> Network::predict_sample(const torch::Tensor& sample)
|
std::vector<double> Network::predict_sample(const torch::Tensor& sample)
|
||||||
{
|
{
|
||||||
// Ensure the sample size is equal to the number of features
|
|
||||||
if (sample.size(0) != features.size() - 1) {
|
|
||||||
throw std::invalid_argument("Sample size (" + std::to_string(sample.size(0)) +
|
|
||||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
|
||||||
}
|
|
||||||
std::map<std::string, int> evidence;
|
std::map<std::string, int> evidence;
|
||||||
for (int i = 0; i < sample.size(0); ++i) {
|
for (int i = 0; i < sample.size(0); ++i) {
|
||||||
evidence[features[i]] = sample[i].item<int>();
|
evidence[features[i]] = sample[i].item<int>();
|
||||||
}
|
}
|
||||||
return exactInference(evidence);
|
return exactInference(evidence);
|
||||||
}
|
}
|
||||||
double Network::computeFactor(std::map<std::string, int>& completeEvidence)
|
|
||||||
{
|
|
||||||
double result = 1.0;
|
|
||||||
for (auto& node : getNodes()) {
|
|
||||||
result *= node.second->getFactorValue(completeEvidence);
|
|
||||||
}
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
std::vector<double> Network::exactInference(std::map<std::string, int>& evidence)
|
std::vector<double> Network::exactInference(std::map<std::string, int>& evidence)
|
||||||
{
|
{
|
||||||
std::vector<double> result(classNumStates, 0.0);
|
std::vector<double> result(classNumStates, 0.0);
|
||||||
std::vector<std::thread> threads;
|
|
||||||
std::mutex mtx;
|
|
||||||
for (int i = 0; i < classNumStates; ++i) {
|
|
||||||
threads.emplace_back([this, &result, &evidence, i, &mtx]() {
|
|
||||||
auto completeEvidence = std::map<std::string, int>(evidence);
|
auto completeEvidence = std::map<std::string, int>(evidence);
|
||||||
|
for (int i = 0; i < classNumStates; ++i) {
|
||||||
completeEvidence[getClassName()] = i;
|
completeEvidence[getClassName()] = i;
|
||||||
double factor = computeFactor(completeEvidence);
|
double partial = 1.0;
|
||||||
std::lock_guard<std::mutex> lock(mtx);
|
for (auto& node : getNodes()) {
|
||||||
result[i] = factor;
|
partial *= node.second->getFactorValue(completeEvidence);
|
||||||
});
|
|
||||||
}
|
}
|
||||||
for (auto& thread : threads) {
|
result[i] = partial;
|
||||||
thread.join();
|
|
||||||
}
|
}
|
||||||
// Normalize result
|
// Normalize result
|
||||||
double sum = accumulate(result.begin(), result.end(), 0.0);
|
double sum = std::accumulate(result.begin(), result.end(), 0.0);
|
||||||
transform(result.begin(), result.end(), result.begin(), [sum](const double& value) { return value / sum; });
|
transform(result.begin(), result.end(), result.begin(), [sum](const double& value) { return value / sum; });
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
@ -392,22 +487,20 @@ namespace bayesnet {
|
|||||||
result.insert(it2, fatherName);
|
result.insert(it2, fatherName);
|
||||||
ending = false;
|
ending = false;
|
||||||
}
|
}
|
||||||
} else {
|
|
||||||
throw std::logic_error("Error in topological sort because of node " + feature + " is not in result");
|
|
||||||
}
|
}
|
||||||
} else {
|
|
||||||
throw std::logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
void Network::dump_cpt() const
|
std::string Network::dump_cpt() const
|
||||||
{
|
{
|
||||||
|
std::stringstream oss;
|
||||||
for (auto& node : nodes) {
|
for (auto& node : nodes) {
|
||||||
std::cout << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << std::endl;
|
oss << "* " << node.first << ": (" << node.second->getNumStates() << ") : " << node.second->getCPT().sizes() << std::endl;
|
||||||
std::cout << node.second->getCPT() << std::endl;
|
oss << node.second->getCPT() << std::endl;
|
||||||
}
|
}
|
||||||
|
return oss.str();
|
||||||
}
|
}
|
||||||
}
|
}
|
@ -1,36 +1,29 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#ifndef NETWORK_H
|
#ifndef NETWORK_H
|
||||||
#define NETWORK_H
|
#define NETWORK_H
|
||||||
#include "Node.h"
|
|
||||||
#include <map>
|
#include <map>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include "config.h"
|
#include "bayesnet/config.h"
|
||||||
|
#include "Node.h"
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
|
enum class Smoothing_t {
|
||||||
|
NONE = -1,
|
||||||
|
ORIGINAL = 0,
|
||||||
|
LAPLACE,
|
||||||
|
CESTNIK
|
||||||
|
};
|
||||||
class Network {
|
class Network {
|
||||||
private:
|
|
||||||
std::map<std::string, std::unique_ptr<Node>> nodes;
|
|
||||||
bool fitted;
|
|
||||||
float maxThreads = 0.95;
|
|
||||||
int classNumStates;
|
|
||||||
std::vector<std::string> features; // Including classname
|
|
||||||
std::string className;
|
|
||||||
double laplaceSmoothing;
|
|
||||||
torch::Tensor samples; // nxm tensor used to fit the model
|
|
||||||
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
|
|
||||||
std::vector<double> predict_sample(const std::vector<int>&);
|
|
||||||
std::vector<double> predict_sample(const torch::Tensor&);
|
|
||||||
std::vector<double> exactInference(std::map<std::string, int>&);
|
|
||||||
double computeFactor(std::map<std::string, int>&);
|
|
||||||
void completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
|
||||||
void checkFitData(int n_features, int n_samples, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
|
||||||
void setStates(const std::map<std::string, std::vector<int>>&);
|
|
||||||
public:
|
public:
|
||||||
Network();
|
Network();
|
||||||
explicit Network(float);
|
explicit Network(const Network&);
|
||||||
explicit Network(Network&);
|
|
||||||
~Network() = default;
|
~Network() = default;
|
||||||
torch::Tensor& getSamples();
|
torch::Tensor& getSamples();
|
||||||
float getmaxThreads();
|
|
||||||
void addNode(const std::string&);
|
void addNode(const std::string&);
|
||||||
void addEdge(const std::string&, const std::string&);
|
void addEdge(const std::string&, const std::string&);
|
||||||
std::map<std::string, std::unique_ptr<Node>>& getNodes();
|
std::map<std::string, std::unique_ptr<Node>>& getNodes();
|
||||||
@ -43,9 +36,9 @@ namespace bayesnet {
|
|||||||
/*
|
/*
|
||||||
Notice: Nodes have to be inserted in the same order as they are in the dataset, i.e., first node is first column and so on.
|
Notice: Nodes have to be inserted in the same order as they are in the dataset, i.e., first node is first column and so on.
|
||||||
*/
|
*/
|
||||||
void fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
void fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||||
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||||
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||||
std::vector<int> predict(const std::vector<std::vector<int>>&); // Return mx1 std::vector of predictions
|
std::vector<int> predict(const std::vector<std::vector<int>>&); // Return mx1 std::vector of predictions
|
||||||
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
|
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
|
||||||
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
|
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
|
||||||
@ -56,8 +49,22 @@ namespace bayesnet {
|
|||||||
std::vector<std::string> show() const;
|
std::vector<std::string> show() const;
|
||||||
std::vector<std::string> graph(const std::string& title) const; // Returns a std::vector of std::strings representing the graph in graphviz format
|
std::vector<std::string> graph(const std::string& title) const; // Returns a std::vector of std::strings representing the graph in graphviz format
|
||||||
void initialize();
|
void initialize();
|
||||||
void dump_cpt() const;
|
std::string dump_cpt() const;
|
||||||
inline std::string version() { return { project_version.begin(), project_version.end() }; }
|
inline std::string version() { return { project_version.begin(), project_version.end() }; }
|
||||||
|
private:
|
||||||
|
std::map<std::string, std::unique_ptr<Node>> nodes;
|
||||||
|
bool fitted;
|
||||||
|
int classNumStates;
|
||||||
|
std::vector<std::string> features; // Including classname
|
||||||
|
std::string className;
|
||||||
|
torch::Tensor samples; // n+1xm tensor used to fit the model
|
||||||
|
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
|
||||||
|
std::vector<double> predict_sample(const std::vector<int>&);
|
||||||
|
std::vector<double> predict_sample(const torch::Tensor&);
|
||||||
|
std::vector<double> exactInference(std::map<std::string, int>&);
|
||||||
|
void completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing);
|
||||||
|
void checkFitData(int n_samples, int n_features, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||||
|
void setStates(const std::map<std::string, std::vector<int>>&);
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
@ -1,9 +1,15 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#include "Node.h"
|
#include "Node.h"
|
||||||
|
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
|
|
||||||
Node::Node(const std::string& name)
|
Node::Node(const std::string& name)
|
||||||
: name(name), numStates(0), cpTable(torch::Tensor()), parents(std::vector<Node*>()), children(std::vector<Node*>())
|
: name(name)
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
void Node::clear()
|
void Node::clear()
|
||||||
@ -84,52 +90,54 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
void Node::computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
|
void Node::computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double smoothing, const torch::Tensor& weights)
|
||||||
{
|
{
|
||||||
dimensions.clear();
|
dimensions.clear();
|
||||||
// Get dimensions of the CPT
|
// Get dimensions of the CPT
|
||||||
dimensions.push_back(numStates);
|
dimensions.push_back(numStates);
|
||||||
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
|
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
|
||||||
|
|
||||||
// Create a tensor of zeros with the dimensions of the CPT
|
// Create a tensor of zeros with the dimensions of the CPT
|
||||||
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
|
cpTable = torch::zeros(dimensions, torch::kDouble) + smoothing;
|
||||||
// Fill table with counts
|
// Fill table with counts
|
||||||
auto pos = find(features.begin(), features.end(), name);
|
auto pos = find(features.begin(), features.end(), name);
|
||||||
if (pos == features.end()) {
|
if (pos == features.end()) {
|
||||||
throw std::logic_error("Feature " + name + " not found in dataset");
|
throw std::logic_error("Feature " + name + " not found in dataset");
|
||||||
}
|
}
|
||||||
int name_index = pos - features.begin();
|
int name_index = pos - features.begin();
|
||||||
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
|
|
||||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||||
coordinates.push_back(dataset.index({ name_index, n_sample }));
|
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
|
||||||
|
coordinates.clear();
|
||||||
|
auto sample = dataset.index({ "...", n_sample });
|
||||||
|
coordinates.push_back(sample[name_index]);
|
||||||
for (auto parent : parents) {
|
for (auto parent : parents) {
|
||||||
pos = find(features.begin(), features.end(), parent->getName());
|
pos = find(features.begin(), features.end(), parent->getName());
|
||||||
if (pos == features.end()) {
|
if (pos == features.end()) {
|
||||||
throw std::logic_error("Feature parent " + parent->getName() + " not found in dataset");
|
throw std::logic_error("Feature parent " + parent->getName() + " not found in dataset");
|
||||||
}
|
}
|
||||||
int parent_index = pos - features.begin();
|
int parent_index = pos - features.begin();
|
||||||
coordinates.push_back(dataset.index({ parent_index, n_sample }));
|
coordinates.push_back(sample[parent_index]);
|
||||||
}
|
}
|
||||||
// Increment the count of the corresponding coordinate
|
// Increment the count of the corresponding coordinate
|
||||||
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + weights.index({ n_sample }).item<double>());
|
cpTable.index_put_({ coordinates }, weights.index({ n_sample }), true);
|
||||||
}
|
}
|
||||||
// Normalize the counts
|
// Normalize the counts
|
||||||
|
// Divide each row by the sum of the row
|
||||||
cpTable = cpTable / cpTable.sum(0);
|
cpTable = cpTable / cpTable.sum(0);
|
||||||
}
|
}
|
||||||
float Node::getFactorValue(std::map<std::string, int>& evidence)
|
double Node::getFactorValue(std::map<std::string, int>& evidence)
|
||||||
{
|
{
|
||||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||||
// following predetermined order of indices in the cpTable (see Node.h)
|
// following predetermined order of indices in the cpTable (see Node.h)
|
||||||
coordinates.push_back(at::tensor(evidence[name]));
|
coordinates.push_back(at::tensor(evidence[name]));
|
||||||
transform(parents.begin(), parents.end(), std::back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
|
transform(parents.begin(), parents.end(), std::back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
|
||||||
return cpTable.index({ coordinates }).item<float>();
|
return cpTable.index({ coordinates }).item<double>();
|
||||||
}
|
}
|
||||||
std::vector<std::string> Node::graph(const std::string& className)
|
std::vector<std::string> Node::graph(const std::string& className)
|
||||||
{
|
{
|
||||||
auto output = std::vector<std::string>();
|
auto output = std::vector<std::string>();
|
||||||
auto suffix = name == className ? ", fontcolor=red, fillcolor=lightblue, style=filled " : "";
|
auto suffix = name == className ? ", fontcolor=red, fillcolor=lightblue, style=filled " : "";
|
||||||
output.push_back(name + " [shape=circle" + suffix + "] \n");
|
output.push_back("\"" + name + "\" [shape=circle" + suffix + "] \n");
|
||||||
transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return name + " -> " + child->getName(); });
|
transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return "\"" + name + "\" -> \"" + child->getName() + "\""; });
|
||||||
return output;
|
return output;
|
||||||
}
|
}
|
||||||
}
|
}
|
@ -1,19 +1,17 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#ifndef NODE_H
|
#ifndef NODE_H
|
||||||
#define NODE_H
|
#define NODE_H
|
||||||
#include <torch/torch.h>
|
|
||||||
#include <unordered_set>
|
#include <unordered_set>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <string>
|
#include <string>
|
||||||
|
#include <torch/torch.h>
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
class Node {
|
class Node {
|
||||||
private:
|
|
||||||
std::string name;
|
|
||||||
std::vector<Node*> parents;
|
|
||||||
std::vector<Node*> children;
|
|
||||||
int numStates; // number of states of the variable
|
|
||||||
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
|
|
||||||
std::vector<int64_t> dimensions; // dimensions of the cpTable
|
|
||||||
std::vector<std::pair<std::string, std::string>> combinations(const std::vector<std::string>&);
|
|
||||||
public:
|
public:
|
||||||
explicit Node(const std::string&);
|
explicit Node(const std::string&);
|
||||||
void clear();
|
void clear();
|
||||||
@ -25,12 +23,20 @@ namespace bayesnet {
|
|||||||
std::vector<Node*>& getParents();
|
std::vector<Node*>& getParents();
|
||||||
std::vector<Node*>& getChildren();
|
std::vector<Node*>& getChildren();
|
||||||
torch::Tensor& getCPT();
|
torch::Tensor& getCPT();
|
||||||
void computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights);
|
void computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double smoothing, const torch::Tensor& weights);
|
||||||
int getNumStates() const;
|
int getNumStates() const;
|
||||||
void setNumStates(int);
|
void setNumStates(int);
|
||||||
unsigned minFill();
|
unsigned minFill();
|
||||||
std::vector<std::string> graph(const std::string& clasName); // Returns a std::vector of std::strings representing the graph in graphviz format
|
std::vector<std::string> graph(const std::string& clasName); // Returns a std::vector of std::strings representing the graph in graphviz format
|
||||||
float getFactorValue(std::map<std::string, int>&);
|
double getFactorValue(std::map<std::string, int>&);
|
||||||
|
private:
|
||||||
|
std::string name;
|
||||||
|
std::vector<Node*> parents;
|
||||||
|
std::vector<Node*> children;
|
||||||
|
int numStates = 0; // number of states of the variable
|
||||||
|
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
|
||||||
|
std::vector<int64_t> dimensions; // dimensions of the cpTable
|
||||||
|
std::vector<std::pair<std::string, std::string>> combinations(const std::vector<std::string>&);
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
@ -1,30 +1,86 @@
|
|||||||
#include "BayesMetrics.h"
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#include <map>
|
||||||
|
#include <unordered_map>
|
||||||
|
#include <tuple>
|
||||||
#include "Mst.h"
|
#include "Mst.h"
|
||||||
|
#include "BayesMetrics.h"
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
//samples is n+1xm tensor used to fit the model
|
//samples is n+1xm tensor used to fit the model
|
||||||
Metrics::Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
|
Metrics::Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
|
||||||
: samples(samples)
|
: samples(samples)
|
||||||
, features(features)
|
|
||||||
, className(className)
|
, className(className)
|
||||||
|
, features(features)
|
||||||
, classNumStates(classNumStates)
|
, classNumStates(classNumStates)
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
//samples is nxm std::vector used to fit the model
|
//samples is n+1xm std::vector used to fit the model
|
||||||
Metrics::Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
|
Metrics::Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
|
||||||
: features(features)
|
: samples(torch::zeros({ static_cast<int>(vsamples.size() + 1), static_cast<int>(vsamples[0].size()) }, torch::kInt32))
|
||||||
, className(className)
|
, className(className)
|
||||||
|
, features(features)
|
||||||
, classNumStates(classNumStates)
|
, classNumStates(classNumStates)
|
||||||
, samples(torch::zeros({ static_cast<int>(vsamples[0].size()), static_cast<int>(vsamples.size() + 1) }, torch::kInt32))
|
|
||||||
{
|
{
|
||||||
for (int i = 0; i < vsamples.size(); ++i) {
|
for (int i = 0; i < vsamples.size(); ++i) {
|
||||||
samples.index_put_({ i, "..." }, torch::tensor(vsamples[i], torch::kInt32));
|
samples.index_put_({ i, "..." }, torch::tensor(vsamples[i], torch::kInt32));
|
||||||
}
|
}
|
||||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||||
}
|
}
|
||||||
|
std::vector<std::pair<int, int>> Metrics::SelectKPairs(const torch::Tensor& weights, std::vector<int>& featuresExcluded, bool ascending, unsigned k)
|
||||||
|
{
|
||||||
|
// Return the K Best features
|
||||||
|
auto n = features.size();
|
||||||
|
// compute scores
|
||||||
|
scoresKPairs.clear();
|
||||||
|
pairsKBest.clear();
|
||||||
|
auto labels = samples.index({ -1, "..." });
|
||||||
|
for (int i = 0; i < n - 1; ++i) {
|
||||||
|
if (std::find(featuresExcluded.begin(), featuresExcluded.end(), i) != featuresExcluded.end()) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
for (int j = i + 1; j < n; ++j) {
|
||||||
|
if (std::find(featuresExcluded.begin(), featuresExcluded.end(), j) != featuresExcluded.end()) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
auto key = std::make_pair(i, j);
|
||||||
|
auto value = conditionalMutualInformation(samples.index({ i, "..." }), samples.index({ j, "..." }), labels, weights);
|
||||||
|
scoresKPairs.push_back({ key, value });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// sort scores
|
||||||
|
if (ascending) {
|
||||||
|
sort(scoresKPairs.begin(), scoresKPairs.end(), [](auto& a, auto& b)
|
||||||
|
{ return a.second < b.second; });
|
||||||
|
|
||||||
|
} else {
|
||||||
|
sort(scoresKPairs.begin(), scoresKPairs.end(), [](auto& a, auto& b)
|
||||||
|
{ return a.second > b.second; });
|
||||||
|
}
|
||||||
|
for (auto& [pairs, score] : scoresKPairs) {
|
||||||
|
pairsKBest.push_back(pairs);
|
||||||
|
}
|
||||||
|
if (k != 0 && k < pairsKBest.size()) {
|
||||||
|
if (ascending) {
|
||||||
|
int limit = pairsKBest.size() - k;
|
||||||
|
for (int i = 0; i < limit; i++) {
|
||||||
|
pairsKBest.erase(pairsKBest.begin());
|
||||||
|
scoresKPairs.erase(scoresKPairs.begin());
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
pairsKBest.resize(k);
|
||||||
|
scoresKPairs.resize(k);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return pairsKBest;
|
||||||
|
}
|
||||||
std::vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
|
std::vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
|
||||||
{
|
{
|
||||||
// Return the K Best features
|
// Return the K Best features
|
||||||
auto n = samples.size(0) - 1;
|
auto n = features.size();
|
||||||
if (k == 0) {
|
if (k == 0) {
|
||||||
k = n;
|
k = n;
|
||||||
}
|
}
|
||||||
@ -60,7 +116,10 @@ namespace bayesnet {
|
|||||||
{
|
{
|
||||||
return scoresKBest;
|
return scoresKBest;
|
||||||
}
|
}
|
||||||
|
std::vector<std::pair<std::pair<int, int>, double>> Metrics::getScoresKPairs() const
|
||||||
|
{
|
||||||
|
return scoresKPairs;
|
||||||
|
}
|
||||||
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
|
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
|
||||||
{
|
{
|
||||||
auto result = std::vector<double>();
|
auto result = std::vector<double>();
|
||||||
@ -99,14 +158,8 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return matrix;
|
return matrix;
|
||||||
}
|
}
|
||||||
// To use in Python
|
// Measured in nats (natural logarithm (log) base e)
|
||||||
std::vector<float> Metrics::conditionalEdgeWeights(std::vector<float>& weights_)
|
// Elements of Information Theory, 2nd Edition, Thomas M. Cover, Joy A. Thomas p. 14
|
||||||
{
|
|
||||||
const torch::Tensor weights = torch::tensor(weights_);
|
|
||||||
auto matrix = conditionalEdge(weights);
|
|
||||||
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
double Metrics::entropy(const torch::Tensor& feature, const torch::Tensor& weights)
|
double Metrics::entropy(const torch::Tensor& feature, const torch::Tensor& weights)
|
||||||
{
|
{
|
||||||
torch::Tensor counts = feature.bincount(weights);
|
torch::Tensor counts = feature.bincount(weights);
|
||||||
@ -145,10 +198,54 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
return entropyValue;
|
return entropyValue;
|
||||||
}
|
}
|
||||||
// I(X;Y) = H(Y) - H(Y|X)
|
// H(X|Y,C) = sum_{y in Y, c in C} p(x,c) H(X|Y=y,C=c)
|
||||||
|
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights)
|
||||||
|
{
|
||||||
|
// Ensure the tensors are of the same length
|
||||||
|
assert(firstFeature.size(0) == secondFeature.size(0) && firstFeature.size(0) == labels.size(0) && firstFeature.size(0) == weights.size(0));
|
||||||
|
// Convert tensors to vectors for easier processing
|
||||||
|
auto firstFeatureData = firstFeature.accessor<int, 1>();
|
||||||
|
auto secondFeatureData = secondFeature.accessor<int, 1>();
|
||||||
|
auto labelsData = labels.accessor<int, 1>();
|
||||||
|
auto weightsData = weights.accessor<double, 1>();
|
||||||
|
int numSamples = firstFeature.size(0);
|
||||||
|
// Maps for joint and marginal probabilities
|
||||||
|
std::map<std::tuple<int, int, int>, double> jointCount;
|
||||||
|
std::map<std::tuple<int, int>, double> marginalCount;
|
||||||
|
// Compute joint and marginal counts
|
||||||
|
for (int i = 0; i < numSamples; ++i) {
|
||||||
|
auto keyJoint = std::make_tuple(firstFeatureData[i], labelsData[i], secondFeatureData[i]);
|
||||||
|
auto keyMarginal = std::make_tuple(firstFeatureData[i], labelsData[i]);
|
||||||
|
|
||||||
|
jointCount[keyJoint] += weightsData[i];
|
||||||
|
marginalCount[keyMarginal] += weightsData[i];
|
||||||
|
}
|
||||||
|
// Total weight sum
|
||||||
|
double totalWeight = torch::sum(weights).item<double>();
|
||||||
|
if (totalWeight == 0)
|
||||||
|
return 0;
|
||||||
|
// Compute the conditional entropy
|
||||||
|
double conditionalEntropy = 0.0;
|
||||||
|
for (const auto& [keyJoint, jointFreq] : jointCount) {
|
||||||
|
auto [x, c, y] = keyJoint;
|
||||||
|
auto keyMarginal = std::make_tuple(x, c);
|
||||||
|
//double p_xc = marginalCount[keyMarginal] / totalWeight;
|
||||||
|
double p_y_given_xc = jointFreq / marginalCount[keyMarginal];
|
||||||
|
if (p_y_given_xc > 0) {
|
||||||
|
conditionalEntropy -= (jointFreq / totalWeight) * std::log(p_y_given_xc);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return conditionalEntropy;
|
||||||
|
}
|
||||||
|
// I(X;Y) = H(Y) - H(Y|X) ; I(X;Y) >= 0
|
||||||
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
|
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
|
||||||
{
|
{
|
||||||
return entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights);
|
return std::max(entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights), 0.0);
|
||||||
|
}
|
||||||
|
// I(X;Y|C) = H(X|C) - H(X|Y,C) >= 0
|
||||||
|
double Metrics::conditionalMutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights)
|
||||||
|
{
|
||||||
|
return std::max(conditionalEntropy(firstFeature, labels, weights) - conditionalEntropy(firstFeature, secondFeature, labels, weights), 0.0);
|
||||||
}
|
}
|
||||||
/*
|
/*
|
||||||
Compute the maximum spanning tree considering the weights as distances
|
Compute the maximum spanning tree considering the weights as distances
|
@ -1,25 +1,41 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#ifndef BAYESNET_METRICS_H
|
#ifndef BAYESNET_METRICS_H
|
||||||
#define BAYESNET_METRICS_H
|
#define BAYESNET_METRICS_H
|
||||||
#include <torch/torch.h>
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <string>
|
#include <string>
|
||||||
|
#include <torch/torch.h>
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
class Metrics {
|
class Metrics {
|
||||||
private:
|
public:
|
||||||
int classNumStates = 0;
|
Metrics() = default;
|
||||||
std::vector<double> scoresKBest;
|
Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
||||||
std::vector<int> featuresKBest; // sorted indices of the features
|
Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
||||||
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
|
||||||
|
std::vector<std::pair<int, int>> SelectKPairs(const torch::Tensor& weights, std::vector<int>& featuresExcluded, bool ascending = false, unsigned k = 0);
|
||||||
|
std::vector<double> getScoresKBest() const;
|
||||||
|
std::vector<std::pair<std::pair<int, int>, double>> getScoresKPairs() const;
|
||||||
|
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
||||||
|
double conditionalMutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights);
|
||||||
|
torch::Tensor conditionalEdge(const torch::Tensor& weights);
|
||||||
|
std::vector<std::pair<int, int>> maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
|
||||||
|
// Measured in nats (natural logarithm (log) base e)
|
||||||
|
// Elements of Information Theory, 2nd Edition, Thomas M. Cover, Joy A. Thomas p. 14
|
||||||
|
double entropy(const torch::Tensor& feature, const torch::Tensor& weights);
|
||||||
|
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights);
|
||||||
protected:
|
protected:
|
||||||
torch::Tensor samples; // n+1xm torch::Tensor used to fit the model where samples[-1] is the y std::vector
|
torch::Tensor samples; // n+1xm torch::Tensor used to fit the model where samples[-1] is the y std::vector
|
||||||
std::string className;
|
std::string className;
|
||||||
double entropy(const torch::Tensor& feature, const torch::Tensor& weights);
|
|
||||||
std::vector<std::string> features;
|
std::vector<std::string> features;
|
||||||
template <class T>
|
template <class T>
|
||||||
std::vector<std::pair<T, T>> doCombinations(const std::vector<T>& source)
|
std::vector<std::pair<T, T>> doCombinations(const std::vector<T>& source)
|
||||||
{
|
{
|
||||||
std::vector<std::pair<T, T>> result;
|
std::vector<std::pair<T, T>> result;
|
||||||
for (int i = 0; i < source.size(); ++i) {
|
for (int i = 0; i < source.size() - 1; ++i) {
|
||||||
T temp = source[i];
|
T temp = source[i];
|
||||||
for (int j = i + 1; j < source.size(); ++j) {
|
for (int j = i + 1; j < source.size(); ++j) {
|
||||||
result.push_back({ temp, source[j] });
|
result.push_back({ temp, source[j] });
|
||||||
@ -34,16 +50,13 @@ namespace bayesnet {
|
|||||||
v.erase(v.begin());
|
v.erase(v.begin());
|
||||||
return temp;
|
return temp;
|
||||||
}
|
}
|
||||||
public:
|
private:
|
||||||
Metrics() = default;
|
int classNumStates = 0;
|
||||||
Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
std::vector<double> scoresKBest;
|
||||||
Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
std::vector<int> featuresKBest; // sorted indices of the features
|
||||||
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
|
std::vector<std::pair<int, int>> pairsKBest; // sorted indices of the pairs
|
||||||
std::vector<double> getScoresKBest() const;
|
std::vector<std::pair<std::pair<int, int>, double>> scoresKPairs;
|
||||||
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
||||||
std::vector<float> conditionalEdgeWeights(std::vector<float>& weights); // To use in Python
|
|
||||||
torch::Tensor conditionalEdge(const torch::Tensor& weights);
|
|
||||||
std::vector<std::pair<int, int>> maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
|
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
46
bayesnet/utils/CountingSemaphore.h
Normal file
46
bayesnet/utils/CountingSemaphore.h
Normal file
@ -0,0 +1,46 @@
|
|||||||
|
#ifndef COUNTING_SEMAPHORE_H
|
||||||
|
#define COUNTING_SEMAPHORE_H
|
||||||
|
#include <mutex>
|
||||||
|
#include <condition_variable>
|
||||||
|
#include <algorithm>
|
||||||
|
#include <thread>
|
||||||
|
#include <mutex>
|
||||||
|
#include <condition_variable>
|
||||||
|
#include <thread>
|
||||||
|
|
||||||
|
class CountingSemaphore {
|
||||||
|
public:
|
||||||
|
static CountingSemaphore& getInstance()
|
||||||
|
{
|
||||||
|
static CountingSemaphore instance;
|
||||||
|
return instance;
|
||||||
|
}
|
||||||
|
// Delete copy constructor and assignment operator
|
||||||
|
CountingSemaphore(const CountingSemaphore&) = delete;
|
||||||
|
CountingSemaphore& operator=(const CountingSemaphore&) = delete;
|
||||||
|
void acquire()
|
||||||
|
{
|
||||||
|
std::unique_lock<std::mutex> lock(mtx_);
|
||||||
|
cv_.wait(lock, [this]() { return count_ > 0; });
|
||||||
|
--count_;
|
||||||
|
}
|
||||||
|
void release()
|
||||||
|
{
|
||||||
|
std::lock_guard<std::mutex> lock(mtx_);
|
||||||
|
++count_;
|
||||||
|
if (count_ <= max_count_) {
|
||||||
|
cv_.notify_one();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
private:
|
||||||
|
CountingSemaphore()
|
||||||
|
: max_count_(std::max(1u, static_cast<uint>(0.95 * std::thread::hardware_concurrency()))),
|
||||||
|
count_(max_count_)
|
||||||
|
{
|
||||||
|
}
|
||||||
|
std::mutex mtx_;
|
||||||
|
std::condition_variable cv_;
|
||||||
|
const uint max_count_;
|
||||||
|
uint count_;
|
||||||
|
};
|
||||||
|
#endif
|
@ -1,6 +1,13 @@
|
|||||||
#include "Mst.h"
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#include <sstream>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <list>
|
#include <list>
|
||||||
|
#include "Mst.h"
|
||||||
/*
|
/*
|
||||||
Based on the code from https://www.softwaretestinghelp.com/minimum-spanning-tree-tutorial/
|
Based on the code from https://www.softwaretestinghelp.com/minimum-spanning-tree-tutorial/
|
||||||
|
|
||||||
@ -45,24 +52,15 @@ namespace bayesnet {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
void Graph::display_mst()
|
|
||||||
{
|
|
||||||
std::cout << "Edge :" << " Weight" << std::endl;
|
|
||||||
for (int i = 0; i < T.size(); i++) {
|
|
||||||
std::cout << T[i].second.first << " - " << T[i].second.second << " : "
|
|
||||||
<< T[i].first;
|
|
||||||
std::cout << std::endl;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void insertElement(std::list<int>& variables, int variable)
|
void MST::insertElement(std::list<int>& variables, int variable)
|
||||||
{
|
{
|
||||||
if (std::find(variables.begin(), variables.end(), variable) == variables.end()) {
|
if (std::find(variables.begin(), variables.end(), variable) == variables.end()) {
|
||||||
variables.push_front(variable);
|
variables.push_front(variable);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<std::pair<int, int>> reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original)
|
std::vector<std::pair<int, int>> MST::reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original)
|
||||||
{
|
{
|
||||||
// Create the edges of a DAG from the MST
|
// Create the edges of a DAG from the MST
|
||||||
// replacing unordered_set with list because unordered_set cannot guarantee the order of the elements inserted
|
// replacing unordered_set with list because unordered_set cannot guarantee the order of the elements inserted
|
@ -1,33 +1,40 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
#ifndef MST_H
|
#ifndef MST_H
|
||||||
#define MST_H
|
#define MST_H
|
||||||
#include <torch/torch.h>
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <string>
|
#include <string>
|
||||||
|
#include <torch/torch.h>
|
||||||
namespace bayesnet {
|
namespace bayesnet {
|
||||||
class MST {
|
class MST {
|
||||||
|
public:
|
||||||
|
MST() = default;
|
||||||
|
MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
|
||||||
|
void insertElement(std::list<int>& variables, int variable);
|
||||||
|
std::vector<std::pair<int, int>> reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original);
|
||||||
|
std::vector<std::pair<int, int>> maximumSpanningTree();
|
||||||
private:
|
private:
|
||||||
torch::Tensor weights;
|
torch::Tensor weights;
|
||||||
std::vector<std::string> features;
|
std::vector<std::string> features;
|
||||||
int root = 0;
|
int root = 0;
|
||||||
public:
|
|
||||||
MST() = default;
|
|
||||||
MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
|
|
||||||
std::vector<std::pair<int, int>> maximumSpanningTree();
|
|
||||||
};
|
};
|
||||||
class Graph {
|
class Graph {
|
||||||
private:
|
|
||||||
int V; // number of nodes in graph
|
|
||||||
std::vector <std::pair<float, std::pair<int, int>>> G; // std::vector for graph
|
|
||||||
std::vector <std::pair<float, std::pair<int, int>>> T; // std::vector for mst
|
|
||||||
std::vector<int> parent;
|
|
||||||
public:
|
public:
|
||||||
explicit Graph(int V);
|
explicit Graph(int V);
|
||||||
void addEdge(int u, int v, float wt);
|
void addEdge(int u, int v, float wt);
|
||||||
int find_set(int i);
|
int find_set(int i);
|
||||||
void union_set(int u, int v);
|
void union_set(int u, int v);
|
||||||
void kruskal_algorithm();
|
void kruskal_algorithm();
|
||||||
void display_mst();
|
|
||||||
std::vector <std::pair<float, std::pair<int, int>>> get_mst() { return T; }
|
std::vector <std::pair<float, std::pair<int, int>>> get_mst() { return T; }
|
||||||
|
private:
|
||||||
|
int V; // number of nodes in graph
|
||||||
|
std::vector <std::pair<float, std::pair<int, int>>> G; // std::vector for graph
|
||||||
|
std::vector <std::pair<float, std::pair<int, int>>> T; // std::vector for mst
|
||||||
|
std::vector<int> parent;
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
44
bayesnet/utils/bayesnetUtils.cc
Normal file
44
bayesnet/utils/bayesnetUtils.cc
Normal file
@ -0,0 +1,44 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
|
||||||
|
#include "bayesnetUtils.h"
|
||||||
|
namespace bayesnet {
|
||||||
|
// Return the indices in descending order
|
||||||
|
std::vector<int> argsort(std::vector<double>& nums)
|
||||||
|
{
|
||||||
|
int n = nums.size();
|
||||||
|
std::vector<int> indices(n);
|
||||||
|
iota(indices.begin(), indices.end(), 0);
|
||||||
|
sort(indices.begin(), indices.end(), [&nums](int i, int j) {return nums[i] > nums[j];});
|
||||||
|
return indices;
|
||||||
|
}
|
||||||
|
std::vector<std::vector<double>> tensorToVectorDouble(torch::Tensor& dtensor)
|
||||||
|
{
|
||||||
|
// convert mxn tensor to mxn std::vector
|
||||||
|
std::vector<std::vector<double>> result;
|
||||||
|
// Iterate over cols
|
||||||
|
for (int i = 0; i < dtensor.size(0); ++i) {
|
||||||
|
auto col_tensor = dtensor.index({ i, "..." });
|
||||||
|
auto col = std::vector<double>(col_tensor.data_ptr<float>(), col_tensor.data_ptr<float>() + dtensor.size(1));
|
||||||
|
result.push_back(col);
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
torch::Tensor vectorToTensor(std::vector<std::vector<int>>& vector, bool transpose)
|
||||||
|
{
|
||||||
|
// convert nxm std::vector to mxn tensor if transpose
|
||||||
|
long int m = transpose ? vector[0].size() : vector.size();
|
||||||
|
long int n = transpose ? vector.size() : vector[0].size();
|
||||||
|
auto tensor = torch::zeros({ m, n }, torch::kInt32);
|
||||||
|
for (int i = 0; i < m; ++i) {
|
||||||
|
for (int j = 0; j < n; ++j) {
|
||||||
|
tensor[i][j] = transpose ? vector[j][i] : vector[i][j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return tensor;
|
||||||
|
}
|
||||||
|
}
|
16
bayesnet/utils/bayesnetUtils.h
Normal file
16
bayesnet/utils/bayesnetUtils.h
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
// ***************************************************************
|
||||||
|
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||||
|
// SPDX-FileType: SOURCE
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
// ***************************************************************
|
||||||
|
|
||||||
|
#ifndef BAYESNET_UTILS_H
|
||||||
|
#define BAYESNET_UTILS_H
|
||||||
|
#include <vector>
|
||||||
|
#include <torch/torch.h>
|
||||||
|
namespace bayesnet {
|
||||||
|
std::vector<int> argsort(std::vector<double>& nums);
|
||||||
|
std::vector<std::vector<double>> tensorToVectorDouble(torch::Tensor& dtensor);
|
||||||
|
torch::Tensor vectorToTensor(std::vector<std::vector<int>>& vector, bool transpose = true);
|
||||||
|
}
|
||||||
|
#endif //BAYESNET_UTILS_H
|
@ -137,7 +137,7 @@
|
|||||||
|
|
||||||
include(CMakeParseArguments)
|
include(CMakeParseArguments)
|
||||||
|
|
||||||
option(CODE_COVERAGE_VERBOSE "Verbose information" FALSE)
|
option(CODE_COVERAGE_VERBOSE "Verbose information" TRUE)
|
||||||
|
|
||||||
# Check prereqs
|
# Check prereqs
|
||||||
find_program( GCOV_PATH gcov )
|
find_program( GCOV_PATH gcov )
|
||||||
@ -160,8 +160,12 @@ foreach(LANG ${LANGUAGES})
|
|||||||
endif()
|
endif()
|
||||||
elseif(NOT "${CMAKE_${LANG}_COMPILER_ID}" MATCHES "GNU"
|
elseif(NOT "${CMAKE_${LANG}_COMPILER_ID}" MATCHES "GNU"
|
||||||
AND NOT "${CMAKE_${LANG}_COMPILER_ID}" MATCHES "(LLVM)?[Ff]lang")
|
AND NOT "${CMAKE_${LANG}_COMPILER_ID}" MATCHES "(LLVM)?[Ff]lang")
|
||||||
|
if ("${LANG}" MATCHES "CUDA")
|
||||||
|
message(STATUS "Ignoring CUDA")
|
||||||
|
else()
|
||||||
message(FATAL_ERROR "Compiler is not GNU or Flang! Aborting...")
|
message(FATAL_ERROR "Compiler is not GNU or Flang! Aborting...")
|
||||||
endif()
|
endif()
|
||||||
|
endif()
|
||||||
endforeach()
|
endforeach()
|
||||||
|
|
||||||
set(COVERAGE_COMPILER_FLAGS "-g --coverage"
|
set(COVERAGE_COMPILER_FLAGS "-g --coverage"
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
configure_file(
|
configure_file(
|
||||||
"config.h.in"
|
"config.h.in"
|
||||||
"${CMAKE_BINARY_DIR}/configured_files/include/config.h" ESCAPE_QUOTES
|
"${CMAKE_BINARY_DIR}/configured_files/include/bayesnet/config.h" ESCAPE_QUOTES
|
||||||
)
|
)
|
||||||
|
Binary file not shown.
580
diagrams/BayesNet.puml
Normal file
580
diagrams/BayesNet.puml
Normal file
@ -0,0 +1,580 @@
|
|||||||
|
@startuml
|
||||||
|
title clang-uml class diagram model
|
||||||
|
class "bayesnet::Node" as C_0010428199432536647474
|
||||||
|
class C_0010428199432536647474 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+Node(const std::string &) : void
|
||||||
|
..
|
||||||
|
+addChild(Node *) : void
|
||||||
|
+addParent(Node *) : void
|
||||||
|
+clear() : void
|
||||||
|
+computeCPT(const torch::Tensor & dataset, const std::vector<std::string> & features, const double smoothing, const torch::Tensor & weights) : void
|
||||||
|
+getCPT() : torch::Tensor &
|
||||||
|
+getChildren() : std::vector<Node *> &
|
||||||
|
+getFactorValue(std::map<std::string,int> &) : double
|
||||||
|
+getName() const : std::string
|
||||||
|
+getNumStates() const : int
|
||||||
|
+getParents() : std::vector<Node *> &
|
||||||
|
+graph(const std::string & clasName) : std::vector<std::string>
|
||||||
|
+minFill() : unsigned int
|
||||||
|
+removeChild(Node *) : void
|
||||||
|
+removeParent(Node *) : void
|
||||||
|
+setNumStates(int) : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
enum "bayesnet::Smoothing_t" as C_0013393078277439680282
|
||||||
|
enum C_0013393078277439680282 {
|
||||||
|
NONE
|
||||||
|
ORIGINAL
|
||||||
|
LAPLACE
|
||||||
|
CESTNIK
|
||||||
|
}
|
||||||
|
class "bayesnet::Network" as C_0009493661199123436603
|
||||||
|
class C_0009493661199123436603 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+Network() : void
|
||||||
|
+Network(const Network &) : void
|
||||||
|
+~Network() = default : void
|
||||||
|
..
|
||||||
|
+addEdge(const std::string &, const std::string &) : void
|
||||||
|
+addNode(const std::string &) : void
|
||||||
|
+dump_cpt() const : std::string
|
||||||
|
+fit(const torch::Tensor & samples, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : void
|
||||||
|
+fit(const torch::Tensor & X, const torch::Tensor & y, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : void
|
||||||
|
+fit(const std::vector<std::vector<int>> & input_data, const std::vector<int> & labels, const std::vector<double> & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : void
|
||||||
|
+getClassName() const : std::string
|
||||||
|
+getClassNumStates() const : int
|
||||||
|
+getEdges() const : std::vector<std::pair<std::string,std::string>>
|
||||||
|
+getFeatures() const : std::vector<std::string>
|
||||||
|
+getNodes() : std::map<std::string,std::unique_ptr<Node>> &
|
||||||
|
+getNumEdges() const : int
|
||||||
|
+getSamples() : torch::Tensor &
|
||||||
|
+getStates() const : int
|
||||||
|
+graph(const std::string & title) const : std::vector<std::string>
|
||||||
|
+initialize() : void
|
||||||
|
+predict(const std::vector<std::vector<int>> &) : std::vector<int>
|
||||||
|
+predict(const torch::Tensor &) : torch::Tensor
|
||||||
|
+predict_proba(const std::vector<std::vector<int>> &) : std::vector<std::vector<double>>
|
||||||
|
+predict_proba(const torch::Tensor &) : torch::Tensor
|
||||||
|
+predict_tensor(const torch::Tensor & samples, const bool proba) : torch::Tensor
|
||||||
|
+score(const std::vector<std::vector<int>> &, const std::vector<int> &) : double
|
||||||
|
+show() const : std::vector<std::string>
|
||||||
|
+topological_sort() : std::vector<std::string>
|
||||||
|
+version() : std::string
|
||||||
|
__
|
||||||
|
}
|
||||||
|
enum "bayesnet::status_t" as C_0005907365846270811004
|
||||||
|
enum C_0005907365846270811004 {
|
||||||
|
NORMAL
|
||||||
|
WARNING
|
||||||
|
ERROR
|
||||||
|
}
|
||||||
|
abstract "bayesnet::BaseClassifier" as C_0002617087915615796317
|
||||||
|
abstract C_0002617087915615796317 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+~BaseClassifier() = default : void
|
||||||
|
..
|
||||||
|
{abstract} +dump_cpt() const = 0 : std::string
|
||||||
|
{abstract} +fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
||||||
|
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
||||||
|
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
||||||
|
{abstract} +fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
||||||
|
{abstract} +getClassNumStates() const = 0 : int
|
||||||
|
{abstract} +getNotes() const = 0 : std::vector<std::string>
|
||||||
|
{abstract} +getNumberOfEdges() const = 0 : int
|
||||||
|
{abstract} +getNumberOfNodes() const = 0 : int
|
||||||
|
{abstract} +getNumberOfStates() const = 0 : int
|
||||||
|
{abstract} +getStatus() const = 0 : status_t
|
||||||
|
+getValidHyperparameters() : std::vector<std::string> &
|
||||||
|
{abstract} +getVersion() = 0 : std::string
|
||||||
|
{abstract} +graph(const std::string & title = "") const = 0 : std::vector<std::string>
|
||||||
|
{abstract} +predict(std::vector<std::vector<int>> & X) = 0 : std::vector<int>
|
||||||
|
{abstract} +predict(torch::Tensor & X) = 0 : torch::Tensor
|
||||||
|
{abstract} +predict_proba(std::vector<std::vector<int>> & X) = 0 : std::vector<std::vector<double>>
|
||||||
|
{abstract} +predict_proba(torch::Tensor & X) = 0 : torch::Tensor
|
||||||
|
{abstract} +score(std::vector<std::vector<int>> & X, std::vector<int> & y) = 0 : float
|
||||||
|
{abstract} +score(torch::Tensor & X, torch::Tensor & y) = 0 : float
|
||||||
|
{abstract} +setHyperparameters(const nlohmann::json & hyperparameters) = 0 : void
|
||||||
|
{abstract} +show() const = 0 : std::vector<std::string>
|
||||||
|
{abstract} +topological_order() = 0 : std::vector<std::string>
|
||||||
|
{abstract} #trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) = 0 : void
|
||||||
|
__
|
||||||
|
#validHyperparameters : std::vector<std::string>
|
||||||
|
}
|
||||||
|
class "bayesnet::Metrics" as C_0005895723015084986588
|
||||||
|
class C_0005895723015084986588 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+Metrics() = default : void
|
||||||
|
+Metrics(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
||||||
|
+Metrics(const std::vector<std::vector<int>> & vsamples, const std::vector<int> & labels, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
||||||
|
..
|
||||||
|
+SelectKBestWeighted(const torch::Tensor & weights, bool ascending = false, unsigned int k = 0) : std::vector<int>
|
||||||
|
+SelectKPairs(const torch::Tensor & weights, std::vector<int> & featuresExcluded, bool ascending = false, unsigned int k = 0) : std::vector<std::pair<int,int>>
|
||||||
|
+conditionalEdge(const torch::Tensor & weights) : torch::Tensor
|
||||||
|
+conditionalEntropy(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & labels, const torch::Tensor & weights) : double
|
||||||
|
+conditionalMutualInformation(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & labels, const torch::Tensor & weights) : double
|
||||||
|
#doCombinations<T>(const std::vector<T> & source) : std::vector<std::pair<T, T> >
|
||||||
|
+entropy(const torch::Tensor & feature, const torch::Tensor & weights) : double
|
||||||
|
+getScoresKBest() const : std::vector<double>
|
||||||
|
+getScoresKPairs() const : std::vector<std::pair<std::pair<int,int>,double>>
|
||||||
|
+maximumSpanningTree(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : std::vector<std::pair<int,int>>
|
||||||
|
+mutualInformation(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & weights) : double
|
||||||
|
#pop_first<T>(std::vector<T> & v) : T
|
||||||
|
__
|
||||||
|
#className : std::string
|
||||||
|
#features : std::vector<std::string>
|
||||||
|
#samples : torch::Tensor
|
||||||
|
}
|
||||||
|
abstract "bayesnet::Classifier" as C_0016351972983202413152
|
||||||
|
abstract C_0016351972983202413152 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+Classifier(Network model) : void
|
||||||
|
+~Classifier() = default : void
|
||||||
|
..
|
||||||
|
+addNodes() : void
|
||||||
|
#buildDataset(torch::Tensor & y) : void
|
||||||
|
{abstract} #buildModel(const torch::Tensor & weights) = 0 : void
|
||||||
|
#checkFitParameters() : void
|
||||||
|
+dump_cpt() const : std::string
|
||||||
|
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : Classifier &
|
||||||
|
+fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : Classifier &
|
||||||
|
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : Classifier &
|
||||||
|
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights, const Smoothing_t smoothing) : Classifier &
|
||||||
|
+getClassNumStates() const : int
|
||||||
|
+getNotes() const : std::vector<std::string>
|
||||||
|
+getNumberOfEdges() const : int
|
||||||
|
+getNumberOfNodes() const : int
|
||||||
|
+getNumberOfStates() const : int
|
||||||
|
+getStatus() const : status_t
|
||||||
|
+getVersion() : std::string
|
||||||
|
+predict(std::vector<std::vector<int>> & X) : std::vector<int>
|
||||||
|
+predict(torch::Tensor & X) : torch::Tensor
|
||||||
|
+predict_proba(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
|
||||||
|
+predict_proba(torch::Tensor & X) : torch::Tensor
|
||||||
|
+score(torch::Tensor & X, torch::Tensor & y) : float
|
||||||
|
+score(std::vector<std::vector<int>> & X, std::vector<int> & y) : float
|
||||||
|
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
||||||
|
+show() const : std::vector<std::string>
|
||||||
|
+topological_order() : std::vector<std::string>
|
||||||
|
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||||
|
__
|
||||||
|
#className : std::string
|
||||||
|
#dataset : torch::Tensor
|
||||||
|
#features : std::vector<std::string>
|
||||||
|
#fitted : bool
|
||||||
|
#m : unsigned int
|
||||||
|
#metrics : Metrics
|
||||||
|
#model : Network
|
||||||
|
#n : unsigned int
|
||||||
|
#notes : std::vector<std::string>
|
||||||
|
#states : std::map<std::string,std::vector<int>>
|
||||||
|
#status : status_t
|
||||||
|
}
|
||||||
|
class "bayesnet::KDB" as C_0008902920152122000044
|
||||||
|
class C_0008902920152122000044 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+KDB(int k, float theta = 0.03) : void
|
||||||
|
+~KDB() = default : void
|
||||||
|
..
|
||||||
|
#buildModel(const torch::Tensor & weights) : void
|
||||||
|
+graph(const std::string & name = "KDB") const : std::vector<std::string>
|
||||||
|
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::SPODE" as C_0004096182510460307610
|
||||||
|
class C_0004096182510460307610 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+SPODE(int root) : void
|
||||||
|
+~SPODE() = default : void
|
||||||
|
..
|
||||||
|
#buildModel(const torch::Tensor & weights) : void
|
||||||
|
+graph(const std::string & name = "SPODE") const : std::vector<std::string>
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::SPnDE" as C_0016268916386101512883
|
||||||
|
class C_0016268916386101512883 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+SPnDE(std::vector<int> parents) : void
|
||||||
|
+~SPnDE() = default : void
|
||||||
|
..
|
||||||
|
#buildModel(const torch::Tensor & weights) : void
|
||||||
|
+graph(const std::string & name = "SPnDE") const : std::vector<std::string>
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::TAN" as C_0014087955399074584137
|
||||||
|
class C_0014087955399074584137 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+TAN() : void
|
||||||
|
+~TAN() = default : void
|
||||||
|
..
|
||||||
|
#buildModel(const torch::Tensor & weights) : void
|
||||||
|
+graph(const std::string & name = "TAN") const : std::vector<std::string>
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::Proposal" as C_0017759964713298103839
|
||||||
|
class C_0017759964713298103839 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+Proposal(torch::Tensor & pDataset, std::vector<std::string> & features_, std::string & className_) : void
|
||||||
|
+~Proposal() : void
|
||||||
|
..
|
||||||
|
#checkInput(const torch::Tensor & X, const torch::Tensor & y) : void
|
||||||
|
#fit_local_discretization(const torch::Tensor & y) : std::map<std::string,std::vector<int>>
|
||||||
|
#localDiscretizationProposal(const std::map<std::string,std::vector<int>> & states, Network & model) : std::map<std::string,std::vector<int>>
|
||||||
|
#prepareX(torch::Tensor & X) : torch::Tensor
|
||||||
|
__
|
||||||
|
#Xf : torch::Tensor
|
||||||
|
#discretizers : map<std::string,mdlp::CPPFImdlp *>
|
||||||
|
#y : torch::Tensor
|
||||||
|
}
|
||||||
|
class "bayesnet::KDBLd" as C_0002756018222998454702
|
||||||
|
class C_0002756018222998454702 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+KDBLd(int k) : void
|
||||||
|
+~KDBLd() = default : void
|
||||||
|
..
|
||||||
|
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : KDBLd &
|
||||||
|
+graph(const std::string & name = "KDB") const : std::vector<std::string>
|
||||||
|
+predict(torch::Tensor & X) : torch::Tensor
|
||||||
|
{static} +version() : std::string
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::SPODELd" as C_0010957245114062042836
|
||||||
|
class C_0010957245114062042836 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+SPODELd(int root) : void
|
||||||
|
+~SPODELd() = default : void
|
||||||
|
..
|
||||||
|
+commonFit(const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : SPODELd &
|
||||||
|
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : SPODELd &
|
||||||
|
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : SPODELd &
|
||||||
|
+graph(const std::string & name = "SPODELd") const : std::vector<std::string>
|
||||||
|
+predict(torch::Tensor & X) : torch::Tensor
|
||||||
|
{static} +version() : std::string
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::TANLd" as C_0013350632773616302678
|
||||||
|
class C_0013350632773616302678 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+TANLd() : void
|
||||||
|
+~TANLd() = default : void
|
||||||
|
..
|
||||||
|
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : TANLd &
|
||||||
|
+graph(const std::string & name = "TANLd") const : std::vector<std::string>
|
||||||
|
+predict(torch::Tensor & X) : torch::Tensor
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::Ensemble" as C_0015881931090842884611
|
||||||
|
class C_0015881931090842884611 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+Ensemble(bool predict_voting = true) : void
|
||||||
|
+~Ensemble() = default : void
|
||||||
|
..
|
||||||
|
#compute_arg_max(std::vector<std::vector<double>> & X) : std::vector<int>
|
||||||
|
#compute_arg_max(torch::Tensor & X) : torch::Tensor
|
||||||
|
+dump_cpt() const : std::string
|
||||||
|
+getNumberOfEdges() const : int
|
||||||
|
+getNumberOfNodes() const : int
|
||||||
|
+getNumberOfStates() const : int
|
||||||
|
+graph(const std::string & title) const : std::vector<std::string>
|
||||||
|
+predict(std::vector<std::vector<int>> & X) : std::vector<int>
|
||||||
|
+predict(torch::Tensor & X) : torch::Tensor
|
||||||
|
#predict_average_proba(torch::Tensor & X) : torch::Tensor
|
||||||
|
#predict_average_proba(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
|
||||||
|
#predict_average_voting(torch::Tensor & X) : torch::Tensor
|
||||||
|
#predict_average_voting(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
|
||||||
|
+predict_proba(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
|
||||||
|
+predict_proba(torch::Tensor & X) : torch::Tensor
|
||||||
|
+score(std::vector<std::vector<int>> & X, std::vector<int> & y) : float
|
||||||
|
+score(torch::Tensor & X, torch::Tensor & y) : float
|
||||||
|
+show() const : std::vector<std::string>
|
||||||
|
+topological_order() : std::vector<std::string>
|
||||||
|
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||||
|
#voting(torch::Tensor & votes) : torch::Tensor
|
||||||
|
__
|
||||||
|
#models : std::vector<std::unique_ptr<Classifier>>
|
||||||
|
#n_models : unsigned int
|
||||||
|
#predict_voting : bool
|
||||||
|
#significanceModels : std::vector<double>
|
||||||
|
}
|
||||||
|
class "bayesnet::A2DE" as C_0001410789567057647859
|
||||||
|
class C_0001410789567057647859 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+A2DE(bool predict_voting = false) : void
|
||||||
|
+~A2DE() : void
|
||||||
|
..
|
||||||
|
#buildModel(const torch::Tensor & weights) : void
|
||||||
|
+graph(const std::string & title = "A2DE") const : std::vector<std::string>
|
||||||
|
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::AODE" as C_0006288892608974306258
|
||||||
|
class C_0006288892608974306258 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+AODE(bool predict_voting = false) : void
|
||||||
|
+~AODE() : void
|
||||||
|
..
|
||||||
|
#buildModel(const torch::Tensor & weights) : void
|
||||||
|
+graph(const std::string & title = "AODE") const : std::vector<std::string>
|
||||||
|
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
abstract "bayesnet::FeatureSelect" as C_0013562609546004646591
|
||||||
|
abstract C_0013562609546004646591 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+FeatureSelect(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
||||||
|
+~FeatureSelect() : void
|
||||||
|
..
|
||||||
|
#computeMeritCFS() : double
|
||||||
|
#computeSuFeatures(const int a, const int b) : double
|
||||||
|
#computeSuLabels() : void
|
||||||
|
{abstract} +fit() = 0 : void
|
||||||
|
+getFeatures() const : std::vector<int>
|
||||||
|
+getScores() const : std::vector<double>
|
||||||
|
#initialize() : void
|
||||||
|
#symmetricalUncertainty(int a, int b) : double
|
||||||
|
__
|
||||||
|
#fitted : bool
|
||||||
|
#maxFeatures : int
|
||||||
|
#selectedFeatures : std::vector<int>
|
||||||
|
#selectedScores : std::vector<double>
|
||||||
|
#suFeatures : std::map<std::pair<int,int>,double>
|
||||||
|
#suLabels : std::vector<double>
|
||||||
|
#weights : const torch::Tensor &
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60342586)" as C_0005584545181746538542
|
||||||
|
class C_0005584545181746538542 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+CFS : std::string
|
||||||
|
+FCBF : std::string
|
||||||
|
+IWSS : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60343240)" as C_0016227156982041949444
|
||||||
|
class C_0016227156982041949444 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+ASC : std::string
|
||||||
|
+DESC : std::string
|
||||||
|
+RAND : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::Boost" as C_0009819322948617116148
|
||||||
|
class C_0009819322948617116148 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+Boost(bool predict_voting = false) : void
|
||||||
|
+~Boost() = default : void
|
||||||
|
..
|
||||||
|
#buildModel(const torch::Tensor & weights) : void
|
||||||
|
#featureSelection(torch::Tensor & weights_) : std::vector<int>
|
||||||
|
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||||
|
#update_weights(torch::Tensor & ytrain, torch::Tensor & ypred, torch::Tensor & weights) : std::tuple<torch::Tensor &,double,bool>
|
||||||
|
#update_weights_block(int k, torch::Tensor & ytrain, torch::Tensor & weights) : std::tuple<torch::Tensor &,double,bool>
|
||||||
|
__
|
||||||
|
#X_test : torch::Tensor
|
||||||
|
#X_train : torch::Tensor
|
||||||
|
#bisection : bool
|
||||||
|
#block_update : bool
|
||||||
|
#convergence : bool
|
||||||
|
#convergence_best : bool
|
||||||
|
#featureSelector : FeatureSelect *
|
||||||
|
#maxTolerance : int
|
||||||
|
#order_algorithm : std::string
|
||||||
|
#selectFeatures : bool
|
||||||
|
#select_features_algorithm : std::string
|
||||||
|
#threshold : double
|
||||||
|
#y_test : torch::Tensor
|
||||||
|
#y_train : torch::Tensor
|
||||||
|
}
|
||||||
|
class "bayesnet::AODELd" as C_0003898187834670349177
|
||||||
|
class C_0003898187834670349177 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+AODELd(bool predict_voting = true) : void
|
||||||
|
+~AODELd() = default : void
|
||||||
|
..
|
||||||
|
#buildModel(const torch::Tensor & weights) : void
|
||||||
|
+fit(torch::Tensor & X_, torch::Tensor & y_, const std::vector<std::string> & features_, const std::string & className_, std::map<std::string,std::vector<int>> & states_, const Smoothing_t smoothing) : AODELd &
|
||||||
|
+graph(const std::string & name = "AODELd") const : std::vector<std::string>
|
||||||
|
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60275628)" as C_0009086919615463763584
|
||||||
|
class C_0009086919615463763584 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+CFS : std::string
|
||||||
|
+FCBF : std::string
|
||||||
|
+IWSS : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60276282)" as C_0015251985607563196159
|
||||||
|
class C_0015251985607563196159 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+ASC : std::string
|
||||||
|
+DESC : std::string
|
||||||
|
+RAND : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::BoostA2DE" as C_0000272055465257861326
|
||||||
|
class C_0000272055465257861326 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+BoostA2DE(bool predict_voting = false) : void
|
||||||
|
+~BoostA2DE() = default : void
|
||||||
|
..
|
||||||
|
+graph(const std::string & title = "BoostA2DE") const : std::vector<std::string>
|
||||||
|
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60275502)" as C_0016033655851510053155
|
||||||
|
class C_0016033655851510053155 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+CFS : std::string
|
||||||
|
+FCBF : std::string
|
||||||
|
+IWSS : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60276156)" as C_0000379522761622473555
|
||||||
|
class C_0000379522761622473555 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+ASC : std::string
|
||||||
|
+DESC : std::string
|
||||||
|
+RAND : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::BoostAODE" as C_0002867772739198819061
|
||||||
|
class C_0002867772739198819061 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+BoostAODE(bool predict_voting = false) : void
|
||||||
|
+~BoostAODE() = default : void
|
||||||
|
..
|
||||||
|
+graph(const std::string & title = "BoostAODE") const : std::vector<std::string>
|
||||||
|
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::CFS" as C_0000093018845530739957
|
||||||
|
class C_0000093018845530739957 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+CFS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
||||||
|
+~CFS() : void
|
||||||
|
..
|
||||||
|
+fit() : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::FCBF" as C_0001157456122733975432
|
||||||
|
class C_0001157456122733975432 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+FCBF(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
||||||
|
+~FCBF() : void
|
||||||
|
..
|
||||||
|
+fit() : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::IWSS" as C_0000066148117395428429
|
||||||
|
class C_0000066148117395428429 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+IWSS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
||||||
|
+~IWSS() : void
|
||||||
|
..
|
||||||
|
+fit() : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60730495)" as C_0004857727320042830573
|
||||||
|
class C_0004857727320042830573 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+CFS : std::string
|
||||||
|
+FCBF : std::string
|
||||||
|
+IWSS : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60731150)" as C_0000076541533312623385
|
||||||
|
class C_0000076541533312623385 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+ASC : std::string
|
||||||
|
+DESC : std::string
|
||||||
|
+RAND : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60653004)" as C_0001444063444142949758
|
||||||
|
class C_0001444063444142949758 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+CFS : std::string
|
||||||
|
+FCBF : std::string
|
||||||
|
+IWSS : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60653658)" as C_0007139277546931322856
|
||||||
|
class C_0007139277546931322856 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+ASC : std::string
|
||||||
|
+DESC : std::string
|
||||||
|
+RAND : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60731375)" as C_0010493853592456211189
|
||||||
|
class C_0010493853592456211189 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+CFS : std::string
|
||||||
|
+FCBF : std::string
|
||||||
|
+IWSS : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::(anonymous_60732030)" as C_0007011438637915849564
|
||||||
|
class C_0007011438637915849564 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
__
|
||||||
|
+ASC : std::string
|
||||||
|
+DESC : std::string
|
||||||
|
+RAND : std::string
|
||||||
|
}
|
||||||
|
class "bayesnet::MST" as C_0001054867409378333602
|
||||||
|
class C_0001054867409378333602 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+MST() = default : void
|
||||||
|
+MST(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : void
|
||||||
|
..
|
||||||
|
+insertElement(std::list<int> & variables, int variable) : void
|
||||||
|
+maximumSpanningTree() : std::vector<std::pair<int,int>>
|
||||||
|
+reorder(std::vector<std::pair<float,std::pair<int,int>>> T, int root_original) : std::vector<std::pair<int,int>>
|
||||||
|
__
|
||||||
|
}
|
||||||
|
class "bayesnet::Graph" as C_0009576333456015187741
|
||||||
|
class C_0009576333456015187741 #aliceblue;line:blue;line.dotted;text:blue {
|
||||||
|
+Graph(int V) : void
|
||||||
|
..
|
||||||
|
+addEdge(int u, int v, float wt) : void
|
||||||
|
+find_set(int i) : int
|
||||||
|
+get_mst() : std::vector<std::pair<float,std::pair<int,int>>>
|
||||||
|
+kruskal_algorithm() : void
|
||||||
|
+union_set(int u, int v) : void
|
||||||
|
__
|
||||||
|
}
|
||||||
|
C_0010428199432536647474 --> C_0010428199432536647474 : -parents
|
||||||
|
C_0010428199432536647474 --> C_0010428199432536647474 : -children
|
||||||
|
C_0009493661199123436603 ..> C_0013393078277439680282
|
||||||
|
C_0009493661199123436603 o-- C_0010428199432536647474 : -nodes
|
||||||
|
C_0002617087915615796317 ..> C_0013393078277439680282
|
||||||
|
C_0002617087915615796317 ..> C_0005907365846270811004
|
||||||
|
C_0016351972983202413152 ..> C_0013393078277439680282
|
||||||
|
C_0016351972983202413152 o-- C_0009493661199123436603 : #model
|
||||||
|
C_0016351972983202413152 o-- C_0005895723015084986588 : #metrics
|
||||||
|
C_0016351972983202413152 o-- C_0005907365846270811004 : #status
|
||||||
|
C_0002617087915615796317 <|-- C_0016351972983202413152
|
||||||
|
|
||||||
|
C_0016351972983202413152 <|-- C_0008902920152122000044
|
||||||
|
|
||||||
|
C_0016351972983202413152 <|-- C_0004096182510460307610
|
||||||
|
|
||||||
|
C_0016351972983202413152 <|-- C_0016268916386101512883
|
||||||
|
|
||||||
|
C_0016351972983202413152 <|-- C_0014087955399074584137
|
||||||
|
|
||||||
|
C_0017759964713298103839 ..> C_0009493661199123436603
|
||||||
|
C_0002756018222998454702 ..> C_0013393078277439680282
|
||||||
|
C_0008902920152122000044 <|-- C_0002756018222998454702
|
||||||
|
|
||||||
|
C_0017759964713298103839 <|-- C_0002756018222998454702
|
||||||
|
|
||||||
|
C_0010957245114062042836 ..> C_0013393078277439680282
|
||||||
|
C_0004096182510460307610 <|-- C_0010957245114062042836
|
||||||
|
|
||||||
|
C_0017759964713298103839 <|-- C_0010957245114062042836
|
||||||
|
|
||||||
|
C_0013350632773616302678 ..> C_0013393078277439680282
|
||||||
|
C_0014087955399074584137 <|-- C_0013350632773616302678
|
||||||
|
|
||||||
|
C_0017759964713298103839 <|-- C_0013350632773616302678
|
||||||
|
|
||||||
|
C_0015881931090842884611 ..> C_0013393078277439680282
|
||||||
|
C_0015881931090842884611 o-- C_0016351972983202413152 : #models
|
||||||
|
C_0016351972983202413152 <|-- C_0015881931090842884611
|
||||||
|
|
||||||
|
C_0015881931090842884611 <|-- C_0001410789567057647859
|
||||||
|
|
||||||
|
C_0015881931090842884611 <|-- C_0006288892608974306258
|
||||||
|
|
||||||
|
C_0005895723015084986588 <|-- C_0013562609546004646591
|
||||||
|
|
||||||
|
C_0009819322948617116148 --> C_0013562609546004646591 : #featureSelector
|
||||||
|
C_0015881931090842884611 <|-- C_0009819322948617116148
|
||||||
|
|
||||||
|
C_0003898187834670349177 ..> C_0013393078277439680282
|
||||||
|
C_0015881931090842884611 <|-- C_0003898187834670349177
|
||||||
|
|
||||||
|
C_0017759964713298103839 <|-- C_0003898187834670349177
|
||||||
|
|
||||||
|
C_0000272055465257861326 ..> C_0013393078277439680282
|
||||||
|
C_0009819322948617116148 <|-- C_0000272055465257861326
|
||||||
|
|
||||||
|
C_0002867772739198819061 ..> C_0013393078277439680282
|
||||||
|
C_0009819322948617116148 <|-- C_0002867772739198819061
|
||||||
|
|
||||||
|
C_0013562609546004646591 <|-- C_0000093018845530739957
|
||||||
|
|
||||||
|
C_0013562609546004646591 <|-- C_0001157456122733975432
|
||||||
|
|
||||||
|
C_0013562609546004646591 <|-- C_0000066148117395428429
|
||||||
|
|
||||||
|
|
||||||
|
'Generated with clang-uml, version 0.5.5
|
||||||
|
'LLVM version clang version 18.1.8 (Fedora 18.1.8-5.fc41)
|
||||||
|
@enduml
|
1
diagrams/BayesNet.svg
Normal file
1
diagrams/BayesNet.svg
Normal file
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 196 KiB |
314
diagrams/dependency.svg
Normal file
314
diagrams/dependency.svg
Normal file
@ -0,0 +1,314 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
|
||||||
|
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||||
|
<!-- Generated by graphviz version 12.1.0 (20240811.2233)
|
||||||
|
-->
|
||||||
|
<!-- Title: BayesNet Pages: 1 -->
|
||||||
|
<svg width="3725pt" height="432pt"
|
||||||
|
viewBox="0.00 0.00 3724.84 431.80" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||||
|
<g id="graph0" class="graph" transform="scale(1 1) rotate(0) translate(4 427.8)">
|
||||||
|
<title>BayesNet</title>
|
||||||
|
<polygon fill="white" stroke="none" points="-4,4 -4,-427.8 3720.84,-427.8 3720.84,4 -4,4"/>
|
||||||
|
<!-- node0 -->
|
||||||
|
<g id="node1" class="node">
|
||||||
|
<title>node0</title>
|
||||||
|
<polygon fill="none" stroke="black" points="1655.43,-398.35 1655.43,-413.26 1625.69,-423.8 1583.63,-423.8 1553.89,-413.26 1553.89,-398.35 1583.63,-387.8 1625.69,-387.8 1655.43,-398.35"/>
|
||||||
|
<text text-anchor="middle" x="1604.66" y="-401.53" font-family="Times,serif" font-size="12.00">BayesNet</text>
|
||||||
|
</g>
|
||||||
|
<!-- node1 -->
|
||||||
|
<g id="node2" class="node">
|
||||||
|
<title>node1</title>
|
||||||
|
<polygon fill="none" stroke="black" points="413.32,-257.8 372.39,-273.03 206.66,-279.8 40.93,-273.03 0,-257.8 114.69,-245.59 298.64,-245.59 413.32,-257.8"/>
|
||||||
|
<text text-anchor="middle" x="206.66" y="-257.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libc10.so</text>
|
||||||
|
</g>
|
||||||
|
<!-- node0->node1 -->
|
||||||
|
<g id="edge1" class="edge">
|
||||||
|
<title>node0->node1</title>
|
||||||
|
<path fill="none" stroke="black" d="M1553.59,-400.53C1451.65,-391.91 1215.69,-371.61 1017.66,-351.8 773.36,-327.37 488.07,-295.22 329.31,-277.01"/>
|
||||||
|
<polygon fill="black" stroke="black" points="329.93,-273.56 319.6,-275.89 329.14,-280.51 329.93,-273.56"/>
|
||||||
|
</g>
|
||||||
|
<!-- node2 -->
|
||||||
|
<g id="node3" class="node">
|
||||||
|
<title>node2</title>
|
||||||
|
<polygon fill="none" stroke="black" points="894.21,-257.8 848.35,-273.03 662.66,-279.8 476.98,-273.03 431.12,-257.8 559.61,-245.59 765.71,-245.59 894.21,-257.8"/>
|
||||||
|
<text text-anchor="middle" x="662.66" y="-257.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libc10_cuda.so</text>
|
||||||
|
</g>
|
||||||
|
<!-- node0->node2 -->
|
||||||
|
<g id="edge2" class="edge">
|
||||||
|
<title>node0->node2</title>
|
||||||
|
<path fill="none" stroke="black" d="M1555.34,-397.37C1408.12,-375.18 969.52,-309.06 767.13,-278.55"/>
|
||||||
|
<polygon fill="black" stroke="black" points="767.81,-275.12 757.4,-277.09 766.77,-282.04 767.81,-275.12"/>
|
||||||
|
</g>
|
||||||
|
<!-- node3 -->
|
||||||
|
<g id="node4" class="node">
|
||||||
|
<title>node3</title>
|
||||||
|
<polygon fill="none" stroke="black" points="1338.68,-257.8 1296.49,-273.03 1125.66,-279.8 954.84,-273.03 912.65,-257.8 1030.86,-245.59 1220.46,-245.59 1338.68,-257.8"/>
|
||||||
|
<text text-anchor="middle" x="1125.66" y="-257.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libkineto.a</text>
|
||||||
|
</g>
|
||||||
|
<!-- node0->node3 -->
|
||||||
|
<g id="edge3" class="edge">
|
||||||
|
<title>node0->node3</title>
|
||||||
|
<path fill="none" stroke="black" d="M1566.68,-393.54C1484.46,-369.17 1289.3,-311.32 1188.44,-281.41"/>
|
||||||
|
<polygon fill="black" stroke="black" points="1189.53,-278.09 1178.95,-278.6 1187.54,-284.8 1189.53,-278.09"/>
|
||||||
|
</g>
|
||||||
|
<!-- node4 -->
|
||||||
|
<g id="node5" class="node">
|
||||||
|
<title>node4</title>
|
||||||
|
<polygon fill="none" stroke="black" points="1552.26,-257.8 1532.93,-273.03 1454.66,-279.8 1376.4,-273.03 1357.07,-257.8 1411.23,-245.59 1498.1,-245.59 1552.26,-257.8"/>
|
||||||
|
<text text-anchor="middle" x="1454.66" y="-257.53" font-family="Times,serif" font-size="12.00">/usr/lib64/libcuda.so</text>
|
||||||
|
</g>
|
||||||
|
<!-- node0->node4 -->
|
||||||
|
<g id="edge4" class="edge">
|
||||||
|
<title>node0->node4</title>
|
||||||
|
<path fill="none" stroke="black" d="M1586.27,-387.39C1559.5,-362.05 1509.72,-314.92 1479.65,-286.46"/>
|
||||||
|
<polygon fill="black" stroke="black" points="1482.13,-283.99 1472.46,-279.65 1477.31,-289.07 1482.13,-283.99"/>
|
||||||
|
</g>
|
||||||
|
<!-- node5 -->
|
||||||
|
<g id="node6" class="node">
|
||||||
|
<title>node5</title>
|
||||||
|
<polygon fill="none" stroke="black" points="1873.26,-257.8 1843.23,-273.03 1721.66,-279.8 1600.09,-273.03 1570.06,-257.8 1654.19,-245.59 1789.13,-245.59 1873.26,-257.8"/>
|
||||||
|
<text text-anchor="middle" x="1721.66" y="-257.53" font-family="Times,serif" font-size="12.00">/usr/local/cuda/lib64/libcudart.so</text>
|
||||||
|
</g>
|
||||||
|
<!-- node0->node5 -->
|
||||||
|
<g id="edge5" class="edge">
|
||||||
|
<title>node0->node5</title>
|
||||||
|
<path fill="none" stroke="black" d="M1619.76,-387.77C1628.83,-377.46 1640.53,-363.98 1650.66,-351.8 1668.32,-330.59 1687.84,-306.03 1701.94,-288.1"/>
|
||||||
|
<polygon fill="black" stroke="black" points="1704.43,-290.59 1707.84,-280.56 1698.92,-286.27 1704.43,-290.59"/>
|
||||||
|
</g>
|
||||||
|
<!-- node6 -->
|
||||||
|
<g id="node7" class="node">
|
||||||
|
<title>node6</title>
|
||||||
|
<polygon fill="none" stroke="black" points="2231.79,-257.8 2198.1,-273.03 2061.66,-279.8 1925.23,-273.03 1891.53,-257.8 1985.95,-245.59 2137.38,-245.59 2231.79,-257.8"/>
|
||||||
|
<text text-anchor="middle" x="2061.66" y="-257.53" font-family="Times,serif" font-size="12.00">/usr/local/cuda/lib64/libnvToolsExt.so</text>
|
||||||
|
</g>
|
||||||
|
<!-- node0->node6 -->
|
||||||
|
<g id="edge6" class="edge">
|
||||||
|
<title>node0->node6</title>
|
||||||
|
<path fill="none" stroke="black" d="M1642.06,-393.18C1721.31,-368.56 1906.71,-310.95 2002.32,-281.24"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2003.28,-284.61 2011.79,-278.3 2001.21,-277.92 2003.28,-284.61"/>
|
||||||
|
</g>
|
||||||
|
<!-- node7 -->
|
||||||
|
<g id="node8" class="node">
|
||||||
|
<title>node7</title>
|
||||||
|
<polygon fill="none" stroke="black" points="2541.44,-257.8 2512.56,-273.03 2395.66,-279.8 2278.76,-273.03 2249.89,-257.8 2330.79,-245.59 2460.54,-245.59 2541.44,-257.8"/>
|
||||||
|
<text text-anchor="middle" x="2395.66" y="-257.53" font-family="Times,serif" font-size="12.00">/usr/local/cuda/lib64/libnvrtc.so</text>
|
||||||
|
</g>
|
||||||
|
<!-- node0->node7 -->
|
||||||
|
<g id="edge7" class="edge">
|
||||||
|
<title>node0->node7</title>
|
||||||
|
<path fill="none" stroke="black" d="M1651.19,-396.45C1780.36,-373.26 2144.76,-307.85 2311.05,-277.99"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2311.47,-281.47 2320.7,-276.26 2310.24,-274.58 2311.47,-281.47"/>
|
||||||
|
</g>
|
||||||
|
<!-- node8 -->
|
||||||
|
<g id="node9" class="node">
|
||||||
|
<title>node8</title>
|
||||||
|
<polygon fill="none" stroke="black" points="1642.01,-326.35 1642.01,-341.26 1620.13,-351.8 1589.19,-351.8 1567.31,-341.26 1567.31,-326.35 1589.19,-315.8 1620.13,-315.8 1642.01,-326.35"/>
|
||||||
|
<text text-anchor="middle" x="1604.66" y="-329.53" font-family="Times,serif" font-size="12.00">fimdlp</text>
|
||||||
|
</g>
|
||||||
|
<!-- node0->node8 -->
|
||||||
|
<g id="edge8" class="edge">
|
||||||
|
<title>node0->node8</title>
|
||||||
|
<path fill="none" stroke="black" d="M1604.66,-387.5C1604.66,-380.21 1604.66,-371.53 1604.66,-363.34"/>
|
||||||
|
<polygon fill="black" stroke="black" points="1608.16,-363.42 1604.66,-353.42 1601.16,-363.42 1608.16,-363.42"/>
|
||||||
|
</g>
|
||||||
|
<!-- node19 -->
|
||||||
|
<g id="node10" class="node">
|
||||||
|
<title>node19</title>
|
||||||
|
<polygon fill="none" stroke="black" points="2709.74,-267.37 2634.66,-279.8 2559.58,-267.37 2588.26,-247.24 2681.06,-247.24 2709.74,-267.37"/>
|
||||||
|
<text text-anchor="middle" x="2634.66" y="-257.53" font-family="Times,serif" font-size="12.00">torch_library</text>
|
||||||
|
</g>
|
||||||
|
<!-- node0->node19 -->
|
||||||
|
<g id="edge29" class="edge">
|
||||||
|
<title>node0->node19</title>
|
||||||
|
<path fill="none" stroke="black" d="M1655.87,-399.32C1798.23,-383.79 2210.64,-336.94 2550.66,-279.8 2559.43,-278.33 2568.68,-276.62 2577.72,-274.86"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2578.38,-278.3 2587.5,-272.92 2577.01,-271.43 2578.38,-278.3"/>
|
||||||
|
</g>
|
||||||
|
<!-- node8->node1 -->
|
||||||
|
<g id="edge9" class="edge">
|
||||||
|
<title>node8->node1</title>
|
||||||
|
<path fill="none" stroke="black" d="M1566.84,-331.58C1419.81,-326.72 872.06,-307.69 421.66,-279.8 401.07,-278.53 379.38,-277.02 358.03,-275.43"/>
|
||||||
|
<polygon fill="black" stroke="black" points="358.3,-271.94 348.06,-274.67 357.77,-278.92 358.3,-271.94"/>
|
||||||
|
</g>
|
||||||
|
<!-- node8->node2 -->
|
||||||
|
<g id="edge10" class="edge">
|
||||||
|
<title>node8->node2</title>
|
||||||
|
<path fill="none" stroke="black" d="M1566.86,-330C1445.11,-320.95 1057.97,-292.18 831.67,-275.36"/>
|
||||||
|
<polygon fill="black" stroke="black" points="832.09,-271.89 821.86,-274.63 831.57,-278.87 832.09,-271.89"/>
|
||||||
|
</g>
|
||||||
|
<!-- node8->node3 -->
|
||||||
|
<g id="edge11" class="edge">
|
||||||
|
<title>node8->node3</title>
|
||||||
|
<path fill="none" stroke="black" d="M1567.08,-327.31C1495.4,-316.84 1336.86,-293.67 1230.62,-278.14"/>
|
||||||
|
<polygon fill="black" stroke="black" points="1231.44,-274.72 1221.04,-276.74 1230.42,-281.65 1231.44,-274.72"/>
|
||||||
|
</g>
|
||||||
|
<!-- node8->node4 -->
|
||||||
|
<g id="edge12" class="edge">
|
||||||
|
<title>node8->node4</title>
|
||||||
|
<path fill="none" stroke="black" d="M1578.53,-320.61C1555.96,-310.08 1522.92,-294.66 1496.64,-282.4"/>
|
||||||
|
<polygon fill="black" stroke="black" points="1498.12,-279.22 1487.58,-278.17 1495.16,-285.57 1498.12,-279.22"/>
|
||||||
|
</g>
|
||||||
|
<!-- node8->node5 -->
|
||||||
|
<g id="edge13" class="edge">
|
||||||
|
<title>node8->node5</title>
|
||||||
|
<path fill="none" stroke="black" d="M1627.78,-318.97C1644.15,-309.18 1666.44,-295.84 1685.2,-284.62"/>
|
||||||
|
<polygon fill="black" stroke="black" points="1686.83,-287.73 1693.61,-279.59 1683.23,-281.72 1686.83,-287.73"/>
|
||||||
|
</g>
|
||||||
|
<!-- node8->node6 -->
|
||||||
|
<g id="edge14" class="edge">
|
||||||
|
<title>node8->node6</title>
|
||||||
|
<path fill="none" stroke="black" d="M1642.45,-327.02C1712.36,-316.31 1863.89,-293.1 1964.32,-277.71"/>
|
||||||
|
<polygon fill="black" stroke="black" points="1964.84,-281.18 1974.2,-276.2 1963.78,-274.26 1964.84,-281.18"/>
|
||||||
|
</g>
|
||||||
|
<!-- node8->node7 -->
|
||||||
|
<g id="edge15" class="edge">
|
||||||
|
<title>node8->node7</title>
|
||||||
|
<path fill="none" stroke="black" d="M1642.33,-330.01C1740.75,-322.64 2013.75,-301.7 2240.66,-279.8 2254.16,-278.5 2268.32,-277.06 2282.35,-275.58"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2282.49,-279.08 2292.06,-274.54 2281.75,-272.12 2282.49,-279.08"/>
|
||||||
|
</g>
|
||||||
|
<!-- node8->node19 -->
|
||||||
|
<g id="edge16" class="edge">
|
||||||
|
<title>node8->node19</title>
|
||||||
|
<path fill="none" stroke="black" d="M1642.25,-332.63C1770.06,-331.64 2199.48,-324.94 2550.66,-279.8 2560.1,-278.59 2570.07,-276.92 2579.71,-275.1"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2580.21,-278.57 2589.34,-273.21 2578.86,-271.7 2580.21,-278.57"/>
|
||||||
|
</g>
|
||||||
|
<!-- node20 -->
|
||||||
|
<g id="node11" class="node">
|
||||||
|
<title>node20</title>
|
||||||
|
<polygon fill="none" stroke="black" points="2606.81,-185.8 2533.89,-201.03 2238.66,-207.8 1943.43,-201.03 1870.52,-185.8 2074.82,-173.59 2402.5,-173.59 2606.81,-185.8"/>
|
||||||
|
<text text-anchor="middle" x="2238.66" y="-185.53" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch.so" -Wl,--as-needed</text>
|
||||||
|
</g>
|
||||||
|
<!-- node19->node20 -->
|
||||||
|
<g id="edge17" class="edge">
|
||||||
|
<title>node19->node20</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2583.63,-250.21C2572.76,-248.03 2561.34,-245.79 2550.66,-243.8 2482.14,-231.05 2404.92,-217.93 2344.44,-207.93"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2345.28,-204.52 2334.84,-206.34 2344.14,-211.42 2345.28,-204.52"/>
|
||||||
|
</g>
|
||||||
|
<!-- node9 -->
|
||||||
|
<g id="node12" class="node">
|
||||||
|
<title>node9</title>
|
||||||
|
<polygon fill="none" stroke="black" points="2542.56,-123.37 2445.66,-135.8 2348.77,-123.37 2385.78,-103.24 2505.55,-103.24 2542.56,-123.37"/>
|
||||||
|
<text text-anchor="middle" x="2445.66" y="-113.53" font-family="Times,serif" font-size="12.00">torch_cpu_library</text>
|
||||||
|
</g>
|
||||||
|
<!-- node19->node9 -->
|
||||||
|
<g id="edge18" class="edge">
|
||||||
|
<title>node19->node9</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2635.72,-246.84C2636.4,-227.49 2634.61,-192.58 2615.66,-171.8 2601.13,-155.87 2551.93,-141.56 2510.18,-131.84"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2511.2,-128.48 2500.67,-129.68 2509.65,-135.31 2511.2,-128.48"/>
|
||||||
|
</g>
|
||||||
|
<!-- node13 -->
|
||||||
|
<g id="node16" class="node">
|
||||||
|
<title>node13</title>
|
||||||
|
<polygon fill="none" stroke="black" points="3056.45,-195.37 2953.66,-207.8 2850.87,-195.37 2890.13,-175.24 3017.19,-175.24 3056.45,-195.37"/>
|
||||||
|
<text text-anchor="middle" x="2953.66" y="-185.53" font-family="Times,serif" font-size="12.00">torch_cuda_library</text>
|
||||||
|
</g>
|
||||||
|
<!-- node19->node13 -->
|
||||||
|
<g id="edge22" class="edge">
|
||||||
|
<title>node19->node13</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2685.21,-249.71C2741.11,-237.45 2831.21,-217.67 2891.42,-204.46"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2891.8,-207.96 2900.82,-202.4 2890.3,-201.13 2891.8,-207.96"/>
|
||||||
|
</g>
|
||||||
|
<!-- node10 -->
|
||||||
|
<g id="node13" class="node">
|
||||||
|
<title>node10</title>
|
||||||
|
<polygon fill="none" stroke="black" points="2362.4,-27.9 2285.6,-43.12 1974.66,-49.9 1663.72,-43.12 1586.93,-27.9 1802.1,-15.68 2147.22,-15.68 2362.4,-27.9"/>
|
||||||
|
<text text-anchor="middle" x="1974.66" y="-27.63" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch_cpu.so" -Wl,--as-needed</text>
|
||||||
|
</g>
|
||||||
|
<!-- node9->node10 -->
|
||||||
|
<g id="edge19" class="edge">
|
||||||
|
<title>node9->node10</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2381.16,-105.31C2301.63,-91.15 2165.65,-66.92 2073.05,-50.43"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2073.93,-47.03 2063.48,-48.72 2072.71,-53.92 2073.93,-47.03"/>
|
||||||
|
</g>
|
||||||
|
<!-- node11 -->
|
||||||
|
<g id="node14" class="node">
|
||||||
|
<title>node11</title>
|
||||||
|
<polygon fill="none" stroke="black" points="2510.72,-37.46 2445.66,-49.9 2380.61,-37.46 2405.46,-17.34 2485.87,-17.34 2510.72,-37.46"/>
|
||||||
|
<text text-anchor="middle" x="2445.66" y="-27.63" font-family="Times,serif" font-size="12.00">caffe2::mkl</text>
|
||||||
|
</g>
|
||||||
|
<!-- node9->node11 -->
|
||||||
|
<g id="edge20" class="edge">
|
||||||
|
<title>node9->node11</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2445.66,-102.95C2445.66,-91.68 2445.66,-75.4 2445.66,-61.37"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2449.16,-61.78 2445.66,-51.78 2442.16,-61.78 2449.16,-61.78"/>
|
||||||
|
</g>
|
||||||
|
<!-- node12 -->
|
||||||
|
<g id="node15" class="node">
|
||||||
|
<title>node12</title>
|
||||||
|
<polygon fill="none" stroke="black" points="2794.95,-41.76 2661.66,-63.8 2528.37,-41.76 2579.28,-6.09 2744.04,-6.09 2794.95,-41.76"/>
|
||||||
|
<text text-anchor="middle" x="2661.66" y="-34.75" font-family="Times,serif" font-size="12.00">dummy</text>
|
||||||
|
<text text-anchor="middle" x="2661.66" y="-20.5" font-family="Times,serif" font-size="12.00">(protobuf::libprotobuf)</text>
|
||||||
|
</g>
|
||||||
|
<!-- node9->node12 -->
|
||||||
|
<g id="edge21" class="edge">
|
||||||
|
<title>node9->node12</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2481.82,-102.76C2512.55,-90.82 2557.5,-73.36 2594.77,-58.89"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2595.6,-62.32 2603.65,-55.44 2593.06,-55.79 2595.6,-62.32"/>
|
||||||
|
</g>
|
||||||
|
<!-- node13->node9 -->
|
||||||
|
<g id="edge28" class="edge">
|
||||||
|
<title>node13->node9</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2880.59,-179.79C2799.97,-169.71 2666.42,-152.57 2551.66,-135.8 2540.2,-134.13 2528.06,-132.27 2516.24,-130.41"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2516.96,-126.98 2506.54,-128.86 2515.87,-133.89 2516.96,-126.98"/>
|
||||||
|
</g>
|
||||||
|
<!-- node14 -->
|
||||||
|
<g id="node17" class="node">
|
||||||
|
<title>node14</title>
|
||||||
|
<polygon fill="none" stroke="black" points="3346.69,-113.8 3268.85,-129.03 2953.66,-135.8 2638.48,-129.03 2560.63,-113.8 2778.75,-101.59 3128.58,-101.59 3346.69,-113.8"/>
|
||||||
|
<text text-anchor="middle" x="2953.66" y="-113.53" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch_cuda.so" -Wl,--as-needed</text>
|
||||||
|
</g>
|
||||||
|
<!-- node13->node14 -->
|
||||||
|
<g id="edge23" class="edge">
|
||||||
|
<title>node13->node14</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2953.66,-174.97C2953.66,-167.13 2953.66,-157.01 2953.66,-147.53"/>
|
||||||
|
<polygon fill="black" stroke="black" points="2957.16,-147.59 2953.66,-137.59 2950.16,-147.59 2957.16,-147.59"/>
|
||||||
|
</g>
|
||||||
|
<!-- node15 -->
|
||||||
|
<g id="node18" class="node">
|
||||||
|
<title>node15</title>
|
||||||
|
<polygon fill="none" stroke="black" points="3514.74,-123.37 3439.66,-135.8 3364.58,-123.37 3393.26,-103.24 3486.06,-103.24 3514.74,-123.37"/>
|
||||||
|
<text text-anchor="middle" x="3439.66" y="-113.53" font-family="Times,serif" font-size="12.00">torch::cudart</text>
|
||||||
|
</g>
|
||||||
|
<!-- node13->node15 -->
|
||||||
|
<g id="edge24" class="edge">
|
||||||
|
<title>node13->node15</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M3028.35,-180.51C3109.24,-171.17 3241.96,-154.78 3355.66,-135.8 3364.43,-134.34 3373.69,-132.63 3382.72,-130.88"/>
|
||||||
|
<polygon fill="black" stroke="black" points="3383.38,-134.31 3392.51,-128.93 3382.02,-127.45 3383.38,-134.31"/>
|
||||||
|
</g>
|
||||||
|
<!-- node17 -->
|
||||||
|
<g id="node20" class="node">
|
||||||
|
<title>node17</title>
|
||||||
|
<polygon fill="none" stroke="black" points="3716.84,-123.37 3624.66,-135.8 3532.48,-123.37 3567.69,-103.24 3681.63,-103.24 3716.84,-123.37"/>
|
||||||
|
<text text-anchor="middle" x="3624.66" y="-113.53" font-family="Times,serif" font-size="12.00">torch::nvtoolsext</text>
|
||||||
|
</g>
|
||||||
|
<!-- node13->node17 -->
|
||||||
|
<g id="edge26" class="edge">
|
||||||
|
<title>node13->node17</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M3033.64,-183.25C3144.1,-175.14 3349.47,-158.53 3523.66,-135.8 3534.84,-134.35 3546.67,-132.57 3558.15,-130.72"/>
|
||||||
|
<polygon fill="black" stroke="black" points="3558.68,-134.18 3567.98,-129.1 3557.54,-127.27 3558.68,-134.18"/>
|
||||||
|
</g>
|
||||||
|
<!-- node16 -->
|
||||||
|
<g id="node19" class="node">
|
||||||
|
<title>node16</title>
|
||||||
|
<polygon fill="none" stroke="black" points="3510.78,-27.9 3496.7,-43.12 3439.66,-49.9 3382.63,-43.12 3368.54,-27.9 3408.01,-15.68 3471.31,-15.68 3510.78,-27.9"/>
|
||||||
|
<text text-anchor="middle" x="3439.66" y="-27.63" font-family="Times,serif" font-size="12.00">CUDA::cudart</text>
|
||||||
|
</g>
|
||||||
|
<!-- node15->node16 -->
|
||||||
|
<g id="edge25" class="edge">
|
||||||
|
<title>node15->node16</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M3439.66,-102.95C3439.66,-91.68 3439.66,-75.4 3439.66,-61.37"/>
|
||||||
|
<polygon fill="black" stroke="black" points="3443.16,-61.78 3439.66,-51.78 3436.16,-61.78 3443.16,-61.78"/>
|
||||||
|
</g>
|
||||||
|
<!-- node18 -->
|
||||||
|
<g id="node21" class="node">
|
||||||
|
<title>node18</title>
|
||||||
|
<polygon fill="none" stroke="black" points="3714.32,-27.9 3696.56,-43.12 3624.66,-49.9 3552.77,-43.12 3535.01,-27.9 3584.76,-15.68 3664.56,-15.68 3714.32,-27.9"/>
|
||||||
|
<text text-anchor="middle" x="3624.66" y="-27.63" font-family="Times,serif" font-size="12.00">CUDA::nvToolsExt</text>
|
||||||
|
</g>
|
||||||
|
<!-- node17->node18 -->
|
||||||
|
<g id="edge27" class="edge">
|
||||||
|
<title>node17->node18</title>
|
||||||
|
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M3624.66,-102.95C3624.66,-91.68 3624.66,-75.4 3624.66,-61.37"/>
|
||||||
|
<polygon fill="black" stroke="black" points="3628.16,-61.78 3624.66,-51.78 3621.16,-61.78 3628.16,-61.78"/>
|
||||||
|
</g>
|
||||||
|
</g>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 18 KiB |
30
docs/BoostAODE.md
Normal file
30
docs/BoostAODE.md
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
# BoostAODE Algorithm Operation
|
||||||
|
|
||||||
|
## Hyperparameters
|
||||||
|
|
||||||
|
The hyperparameters defined in the algorithm are:
|
||||||
|
|
||||||
|
- ***bisection*** (*boolean*): If set to true allows the algorithm to add *k* models at once (as specified in the algorithm) to the ensemble. Default value: *true*.
|
||||||
|
- ***bisection_best*** (*boolean*): If set to *true*, the algorithm will take as *priorAccuracy* the best accuracy computed. If set to *false⁺ it will take the last accuracy as *priorAccuracy*. Default value: *false*.
|
||||||
|
|
||||||
|
- ***order*** (*{"asc", "desc", "rand"}*): Sets the order (ascending/descending/random) in which dataset variables will be processed to choose the parents of the *SPODEs*. Default value: *"desc"*.
|
||||||
|
|
||||||
|
- ***block_update*** (*boolean*): Sets whether the algorithm will update the weights of the models in blocks. If set to false, the algorithm will update the weights of the models one by one. Default value: *false*.
|
||||||
|
|
||||||
|
- ***convergence*** (*boolean*): Sets whether the convergence of the result will be used as a termination condition. If this hyperparameter is set to true, the training dataset passed to the model is divided into two sets, one serving as training data and the other as a test set (so the original test partition will become a validation partition in this case). The partition is made by taking the first partition generated by a process of generating a 5 fold partition with stratification using a predetermined seed. The exit condition used in this *convergence* is that the difference between the accuracy obtained by the current model and that obtained by the previous model is greater than *1e-4*; otherwise, one will be added to the number of models that worsen the result (see next hyperparameter). Default value: *true*.
|
||||||
|
|
||||||
|
- ***maxTolerance*** (*int*): Sets the maximum number of models that can worsen the result without constituting a termination condition. if ***bisection*** is set to *true*, the value of this hyperparameter will be exponent of base 2 to compute the number of models to insert at once. Default value: *3*
|
||||||
|
|
||||||
|
- ***select_features*** (*{"IWSS", "FCBF", "CFS", ""}*): Selects the variable selection method to be used to build initial models for the ensemble that will be included without considering any of the other exit conditions. Once the models of the selected variables are built, the algorithm will update the weights using the ensemble and set the significance of all the models built with the same α<sub>t</sub>. Default value: *""*.
|
||||||
|
|
||||||
|
- ***threshold*** (*double*): Sets the necessary value for the IWSS and FCBF algorithms to function. Accepted values are:
|
||||||
|
- IWSS: $threshold \in [0, 0.5]$
|
||||||
|
- FCBF: $threshold \in [10^{-7}, 1]$
|
||||||
|
|
||||||
|
Default value is *-1* so every time any of those algorithms are called, the threshold has to be set to the desired value.
|
||||||
|
|
||||||
|
- ***predict_voting*** (*boolean*): Sets whether the algorithm will use *model voting* to predict the result. If set to false, the weighted average of the probabilities of each model's prediction will be used. Default value: *false*.
|
||||||
|
|
||||||
|
## Operation
|
||||||
|
|
||||||
|
### [Base Algorithm](./algorithm.md)
|
BIN
docs/BoostAODE_train_predict.odp
Normal file
BIN
docs/BoostAODE_train_predict.odp
Normal file
Binary file not shown.
BIN
docs/BoostAODE_train_predict.pdf
Normal file
BIN
docs/BoostAODE_train_predict.pdf
Normal file
Binary file not shown.
2912
docs/Doxyfile.in
Normal file
2912
docs/Doxyfile.in
Normal file
File diff suppressed because it is too large
Load Diff
117
docs/algorithm.md
Normal file
117
docs/algorithm.md
Normal file
@ -0,0 +1,117 @@
|
|||||||
|
# Algorithm
|
||||||
|
|
||||||
|
- // notation
|
||||||
|
|
||||||
|
- $n$ features ${\cal{X}} = \{X_1, \dots, X_n\}$ and the class $Y$
|
||||||
|
|
||||||
|
- $m$ instances.
|
||||||
|
|
||||||
|
- $D = \{ (x_1^i, \dots, x_n^i, y^i) \}_{i=1}^{m}$
|
||||||
|
|
||||||
|
- $W$ a weights vector. $W_0$ are the initial weights.
|
||||||
|
|
||||||
|
- $D[W]$ dataset with weights $W$ for the instances.
|
||||||
|
|
||||||
|
1. // initialization
|
||||||
|
|
||||||
|
2. $W_0 \leftarrow (w_1, \dots, w_m) \leftarrow 1/m$
|
||||||
|
|
||||||
|
3. $W \leftarrow W_0$
|
||||||
|
|
||||||
|
4. $Vars \leftarrow {\cal{X}}$
|
||||||
|
|
||||||
|
5. $\delta \leftarrow 10^{-4}$
|
||||||
|
|
||||||
|
6. $convergence \leftarrow True$ // hyperparameter
|
||||||
|
|
||||||
|
7. $maxTolerancia \leftarrow 3$ // hyperparameter
|
||||||
|
|
||||||
|
8. $bisection \leftarrow False$ // hyperparameter
|
||||||
|
|
||||||
|
9. $finished \leftarrow False$
|
||||||
|
|
||||||
|
10. $AODE \leftarrow \emptyset$ // the ensemble
|
||||||
|
|
||||||
|
11. $tolerance \leftarrow 0$
|
||||||
|
|
||||||
|
12. $numModelsInPack \leftarrow 0$
|
||||||
|
|
||||||
|
13. $maxAccuracy \leftarrow -1$
|
||||||
|
|
||||||
|
14.
|
||||||
|
|
||||||
|
15. // main loop
|
||||||
|
|
||||||
|
16. While $(\lnot finished)$
|
||||||
|
|
||||||
|
1. $\pi \leftarrow SortFeatures(Vars, criterio, D[W])$
|
||||||
|
|
||||||
|
2. $k \leftarrow 2^{tolerance}$
|
||||||
|
|
||||||
|
3. if ($tolerance == 0$) $numItemsPack \leftarrow0$
|
||||||
|
|
||||||
|
4. $P \leftarrow Head(\pi,k)$ // first k features in order
|
||||||
|
|
||||||
|
5. $spodes \leftarrow \emptyset$
|
||||||
|
|
||||||
|
6. $i \leftarrow 0$
|
||||||
|
|
||||||
|
7. While ($i < size(P)$)
|
||||||
|
|
||||||
|
1. $X \leftarrow P[i]$
|
||||||
|
|
||||||
|
2. $i \leftarrow i + 1$
|
||||||
|
|
||||||
|
3. $numItemsPack \leftarrow numItemsPack + 1$
|
||||||
|
|
||||||
|
4. $Vars.remove(X)$
|
||||||
|
|
||||||
|
5. $spode \leftarrow BuildSpode(X, {\cal{X}}, D[W])$
|
||||||
|
|
||||||
|
6. $\hat{y}[] \leftarrow spode.Predict(D)$
|
||||||
|
|
||||||
|
7. $\epsilon \leftarrow error(\hat{y}[], y[])$
|
||||||
|
|
||||||
|
8. $\alpha \leftarrow \frac{1}{2} ln \left ( \frac{1-\epsilon}{\epsilon} \right )$
|
||||||
|
|
||||||
|
9. if ($\epsilon > 0.5$)
|
||||||
|
|
||||||
|
1. $finished \leftarrow True$
|
||||||
|
|
||||||
|
2. break
|
||||||
|
|
||||||
|
10. $spodes.add( (spode,\alpha_t) )$
|
||||||
|
|
||||||
|
11. $W \leftarrow UpdateWeights(W,\alpha,y[],\hat{y}[])$
|
||||||
|
|
||||||
|
8. $AODE.add( spodes )$
|
||||||
|
|
||||||
|
9. if ($convergence \land \lnot finished$)
|
||||||
|
|
||||||
|
1. $\hat{y}[] \leftarrow AODE.Predict(D)$
|
||||||
|
|
||||||
|
2. $actualAccuracy \leftarrow accuracy(\hat{y}[], y[])$
|
||||||
|
|
||||||
|
3. $if (maxAccuracy == -1)\; maxAccuracy \leftarrow actualAccuracy$
|
||||||
|
|
||||||
|
4. if $((accuracy - maxAccuracy) < \delta)$ // result doesn't
|
||||||
|
improve enough
|
||||||
|
|
||||||
|
1. $tolerance \leftarrow tolerance + 1$
|
||||||
|
|
||||||
|
5. else
|
||||||
|
|
||||||
|
1. $tolerance \leftarrow 0$
|
||||||
|
|
||||||
|
2. $numItemsPack \leftarrow 0$
|
||||||
|
|
||||||
|
10. If $(Vars == \emptyset \lor tolerance>maxTolerance) \; finished \leftarrow True$
|
||||||
|
|
||||||
|
11. $lastAccuracy \leftarrow max(lastAccuracy, actualAccuracy)$
|
||||||
|
|
||||||
|
17. if ($tolerance > maxTolerance$) // algorithm finished because of
|
||||||
|
lack of convergence
|
||||||
|
|
||||||
|
1. $removeModels(AODE, numItemsPack)$
|
||||||
|
|
||||||
|
18. Return $AODE$
|
80
docs/algorithm.tex
Normal file
80
docs/algorithm.tex
Normal file
@ -0,0 +1,80 @@
|
|||||||
|
\section{Algorithm}
|
||||||
|
\begin{itemize}
|
||||||
|
\item[] // notation
|
||||||
|
\item $n$ features ${\cal{X}} = \{X_1, \dots, X_n\}$ and the class $Y$
|
||||||
|
\item $m$ instances.
|
||||||
|
\item $D = \{ (x_1^i, \dots, x_n^i, y^i) \}_{i=1}^{m}$
|
||||||
|
\item $W$ a weights vector. $W_0$ are the initial weights.
|
||||||
|
\item $D[W]$ dataset with weights $W$ for the instances.
|
||||||
|
\end{itemize}
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
|
||||||
|
\begin{enumerate}
|
||||||
|
\item[] // initialization
|
||||||
|
\item $W_0 \leftarrow (w_1, \dots, w_m) \leftarrow 1/m$
|
||||||
|
\item $W \leftarrow W_0$
|
||||||
|
\item $Vars \leftarrow {\cal{X}}$
|
||||||
|
\item $\delta \leftarrow 10^{-4}$
|
||||||
|
\item $convergence \leftarrow True$ // hyperparameter
|
||||||
|
\item $maxTolerancia \leftarrow 3$ // hyperparameter
|
||||||
|
\item $bisection \leftarrow False$ // hyperparameter
|
||||||
|
\item $finished \leftarrow False$
|
||||||
|
\item $AODE \leftarrow \emptyset$ \hspace*{2cm} // the ensemble
|
||||||
|
\item $tolerance \leftarrow 0$
|
||||||
|
\item $numModelsInPack \leftarrow 0$
|
||||||
|
\item $maxAccuracy \leftarrow -1$
|
||||||
|
\item[]
|
||||||
|
\newpage
|
||||||
|
\item[] // main loop
|
||||||
|
\item While $(\lnot finished)$
|
||||||
|
\begin{enumerate}
|
||||||
|
\item $\pi \leftarrow SortFeatures(Vars, criterio, D[W])$
|
||||||
|
\item $k \leftarrow 2^{tolerance}$
|
||||||
|
\item if ($tolerance == 0$) $numItemsPack \leftarrow0$
|
||||||
|
\item $P \leftarrow Head(\pi,k)$ \hspace*{2cm} // first k features in order
|
||||||
|
\item $spodes \leftarrow \emptyset$
|
||||||
|
\item $i \leftarrow 0$
|
||||||
|
\item While ($ i < size(P)$)
|
||||||
|
\begin{enumerate}
|
||||||
|
\item $X \leftarrow P[i]$
|
||||||
|
\item $i \leftarrow i + 1$
|
||||||
|
\item $numItemsPack \leftarrow numItemsPack + 1$
|
||||||
|
\item $Vars.remove(X)$
|
||||||
|
\item $spode \leftarrow BuildSpode(X, {\cal{X}}, D[W])$
|
||||||
|
\item $\hat{y}[] \leftarrow spode.Predict(D)$
|
||||||
|
\item $\epsilon \leftarrow error(\hat{y}[], y[])$
|
||||||
|
\item $\alpha \leftarrow \frac{1}{2} ln \left ( \frac{1-\epsilon}{\epsilon} \right )$
|
||||||
|
\item if ($\epsilon > 0.5$)
|
||||||
|
\begin{enumerate}
|
||||||
|
\item $finished \leftarrow True$
|
||||||
|
\item break
|
||||||
|
\end{enumerate}
|
||||||
|
\item $spodes.add( (spode,\alpha_t) )$
|
||||||
|
\item $W \leftarrow UpdateWeights(W,\alpha,y[],\hat{y}[])$
|
||||||
|
\end{enumerate}
|
||||||
|
\item $AODE.add( spodes )$
|
||||||
|
\item if ($convergence \land \lnot finished$)
|
||||||
|
\begin{enumerate}
|
||||||
|
\item $\hat{y}[] \leftarrow AODE.Predict(D)$
|
||||||
|
\item $actualAccuracy \leftarrow accuracy(\hat{y}[], y[])$
|
||||||
|
\item $if (maxAccuracy == -1)\; maxAccuracy \leftarrow actualAccuracy$
|
||||||
|
\item if $((accuracy - maxAccuracy) < \delta)$\hspace*{2cm} // result doesn't improve enough
|
||||||
|
\begin{enumerate}
|
||||||
|
\item $tolerance \leftarrow tolerance + 1$
|
||||||
|
\end{enumerate}
|
||||||
|
\item else
|
||||||
|
\begin{enumerate}
|
||||||
|
\item $tolerance \leftarrow 0$
|
||||||
|
\item $numItemsPack \leftarrow 0$
|
||||||
|
\end{enumerate}
|
||||||
|
\end{enumerate}
|
||||||
|
\item If $(Vars == \emptyset \lor tolerance>maxTolerance) \; finished \leftarrow True$
|
||||||
|
\item $lastAccuracy \leftarrow max(lastAccuracy, actualAccuracy)$
|
||||||
|
\end{enumerate}
|
||||||
|
\item if ($tolerance > maxTolerance$) \hspace*{1cm} // algorithm finished because of lack of convergence
|
||||||
|
\begin{enumerate}
|
||||||
|
\item $removeModels(AODE, numItemsPack)$
|
||||||
|
\end{enumerate}
|
||||||
|
\item Return $AODE$
|
||||||
|
\end{enumerate}
|
BIN
docs/logo_small.png
Normal file
BIN
docs/logo_small.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 11 KiB |
@ -1,4 +0,0 @@
|
|||||||
filter = src/
|
|
||||||
exclude-directories = build_debug/lib/
|
|
||||||
print-summary = yes
|
|
||||||
sort-percentage = yes
|
|
@ -1,168 +0,0 @@
|
|||||||
#include "ArffFiles.h"
|
|
||||||
#include <fstream>
|
|
||||||
#include <sstream>
|
|
||||||
#include <map>
|
|
||||||
#include <iostream>
|
|
||||||
|
|
||||||
ArffFiles::ArffFiles() = default;
|
|
||||||
|
|
||||||
std::vector<std::string> ArffFiles::getLines() const
|
|
||||||
{
|
|
||||||
return lines;
|
|
||||||
}
|
|
||||||
|
|
||||||
unsigned long int ArffFiles::getSize() const
|
|
||||||
{
|
|
||||||
return lines.size();
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<std::pair<std::string, std::string>> ArffFiles::getAttributes() const
|
|
||||||
{
|
|
||||||
return attributes;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::string ArffFiles::getClassName() const
|
|
||||||
{
|
|
||||||
return className;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::string ArffFiles::getClassType() const
|
|
||||||
{
|
|
||||||
return classType;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<std::vector<float>>& ArffFiles::getX()
|
|
||||||
{
|
|
||||||
return X;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<int>& ArffFiles::getY()
|
|
||||||
{
|
|
||||||
return y;
|
|
||||||
}
|
|
||||||
|
|
||||||
void ArffFiles::loadCommon(std::string fileName)
|
|
||||||
{
|
|
||||||
std::ifstream file(fileName);
|
|
||||||
if (!file.is_open()) {
|
|
||||||
throw std::invalid_argument("Unable to open file");
|
|
||||||
}
|
|
||||||
std::string line;
|
|
||||||
std::string keyword;
|
|
||||||
std::string attribute;
|
|
||||||
std::string type;
|
|
||||||
std::string type_w;
|
|
||||||
while (getline(file, line)) {
|
|
||||||
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
|
|
||||||
std::stringstream ss(line);
|
|
||||||
ss >> keyword >> attribute;
|
|
||||||
type = "";
|
|
||||||
while (ss >> type_w)
|
|
||||||
type += type_w + " ";
|
|
||||||
attributes.emplace_back(trim(attribute), trim(type));
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if (line[0] == '@') {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
lines.push_back(line);
|
|
||||||
}
|
|
||||||
file.close();
|
|
||||||
if (attributes.empty())
|
|
||||||
throw std::invalid_argument("No attributes found");
|
|
||||||
}
|
|
||||||
|
|
||||||
void ArffFiles::load(const std::string& fileName, bool classLast)
|
|
||||||
{
|
|
||||||
int labelIndex;
|
|
||||||
loadCommon(fileName);
|
|
||||||
if (classLast) {
|
|
||||||
className = std::get<0>(attributes.back());
|
|
||||||
classType = std::get<1>(attributes.back());
|
|
||||||
attributes.pop_back();
|
|
||||||
labelIndex = static_cast<int>(attributes.size());
|
|
||||||
} else {
|
|
||||||
className = std::get<0>(attributes.front());
|
|
||||||
classType = std::get<1>(attributes.front());
|
|
||||||
attributes.erase(attributes.begin());
|
|
||||||
labelIndex = 0;
|
|
||||||
}
|
|
||||||
generateDataset(labelIndex);
|
|
||||||
}
|
|
||||||
void ArffFiles::load(const std::string& fileName, const std::string& name)
|
|
||||||
{
|
|
||||||
int labelIndex;
|
|
||||||
loadCommon(fileName);
|
|
||||||
bool found = false;
|
|
||||||
for (int i = 0; i < attributes.size(); ++i) {
|
|
||||||
if (attributes[i].first == name) {
|
|
||||||
className = std::get<0>(attributes[i]);
|
|
||||||
classType = std::get<1>(attributes[i]);
|
|
||||||
attributes.erase(attributes.begin() + i);
|
|
||||||
labelIndex = i;
|
|
||||||
found = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (!found) {
|
|
||||||
throw std::invalid_argument("Class name not found");
|
|
||||||
}
|
|
||||||
generateDataset(labelIndex);
|
|
||||||
}
|
|
||||||
|
|
||||||
void ArffFiles::generateDataset(int labelIndex)
|
|
||||||
{
|
|
||||||
X = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(lines.size()));
|
|
||||||
auto yy = std::vector<std::string>(lines.size(), "");
|
|
||||||
auto removeLines = std::vector<int>(); // Lines with missing values
|
|
||||||
for (size_t i = 0; i < lines.size(); i++) {
|
|
||||||
std::stringstream ss(lines[i]);
|
|
||||||
std::string value;
|
|
||||||
int pos = 0;
|
|
||||||
int xIndex = 0;
|
|
||||||
while (getline(ss, value, ',')) {
|
|
||||||
if (pos++ == labelIndex) {
|
|
||||||
yy[i] = value;
|
|
||||||
} else {
|
|
||||||
if (value == "?") {
|
|
||||||
X[xIndex++][i] = -1;
|
|
||||||
removeLines.push_back(i);
|
|
||||||
} else
|
|
||||||
X[xIndex++][i] = stof(value);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
for (auto i : removeLines) {
|
|
||||||
yy.erase(yy.begin() + i);
|
|
||||||
for (auto& x : X) {
|
|
||||||
x.erase(x.begin() + i);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
y = factorize(yy);
|
|
||||||
}
|
|
||||||
|
|
||||||
std::string ArffFiles::trim(const std::string& source)
|
|
||||||
{
|
|
||||||
std::string s(source);
|
|
||||||
s.erase(0, s.find_first_not_of(" '\n\r\t"));
|
|
||||||
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
|
|
||||||
return s;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<int> ArffFiles::factorize(const std::vector<std::string>& labels_t)
|
|
||||||
{
|
|
||||||
std::vector<int> yy;
|
|
||||||
yy.reserve(labels_t.size());
|
|
||||||
std::map<std::string, int> labelMap;
|
|
||||||
int i = 0;
|
|
||||||
for (const std::string& label : labels_t) {
|
|
||||||
if (labelMap.find(label) == labelMap.end()) {
|
|
||||||
labelMap[label] = i++;
|
|
||||||
}
|
|
||||||
yy.push_back(labelMap[label]);
|
|
||||||
}
|
|
||||||
return yy;
|
|
||||||
}
|
|
@ -1,32 +0,0 @@
|
|||||||
#ifndef ARFFFILES_H
|
|
||||||
#define ARFFFILES_H
|
|
||||||
|
|
||||||
#include <string>
|
|
||||||
#include <vector>
|
|
||||||
|
|
||||||
class ArffFiles {
|
|
||||||
private:
|
|
||||||
std::vector<std::string> lines;
|
|
||||||
std::vector<std::pair<std::string, std::string>> attributes;
|
|
||||||
std::string className;
|
|
||||||
std::string classType;
|
|
||||||
std::vector<std::vector<float>> X;
|
|
||||||
std::vector<int> y;
|
|
||||||
void generateDataset(int);
|
|
||||||
void loadCommon(std::string);
|
|
||||||
public:
|
|
||||||
ArffFiles();
|
|
||||||
void load(const std::string&, bool = true);
|
|
||||||
void load(const std::string&, const std::string&);
|
|
||||||
std::vector<std::string> getLines() const;
|
|
||||||
unsigned long int getSize() const;
|
|
||||||
std::string getClassName() const;
|
|
||||||
std::string getClassType() const;
|
|
||||||
static std::string trim(const std::string&);
|
|
||||||
std::vector<std::vector<float>>& getX();
|
|
||||||
std::vector<int>& getY();
|
|
||||||
std::vector<std::pair<std::string, std::string>> getAttributes() const;
|
|
||||||
static std::vector<int> factorize(const std::vector<std::string>& labels_t);
|
|
||||||
};
|
|
||||||
|
|
||||||
#endif
|
|
@ -1 +0,0 @@
|
|||||||
add_library(ArffFiles ArffFiles.cc)
|
|
@ -1 +0,0 @@
|
|||||||
Subproject commit 69dabd88a8e6680b1a1a18397eb3e165e4019ce6
|
|
@ -1 +0,0 @@
|
|||||||
Subproject commit 766541d12d64845f5232a1ce4e34a85e83506b09
|
|
@ -1 +1 @@
|
|||||||
Subproject commit a3a2977996223b709c0f9149772c01a5f771e391
|
Subproject commit 9652853d692ed3b8a38d89f70559209ffb988020
|
2
lib/json
2
lib/json
@ -1 +1 @@
|
|||||||
Subproject commit edffad036d5a93ab5a10f72a7d835eeb0d2948f9
|
Subproject commit 620034ececc93991c5c1183b73c3768d81ca84b3
|
2009
lib/log/loguru.cpp
Normal file
2009
lib/log/loguru.cpp
Normal file
File diff suppressed because it is too large
Load Diff
1475
lib/log/loguru.hpp
Normal file
1475
lib/log/loguru.hpp
Normal file
File diff suppressed because it is too large
Load Diff
2
lib/mdlp
2
lib/mdlp
@ -1 +1 @@
|
|||||||
Subproject commit 5708dc3de944fc22d61a2dd071b63aa338e04db3
|
Subproject commit 7d62d6af4a6ca944a3bbde0b61f651fd4b2d3f57
|
25
sample/CMakeLists.txt
Normal file
25
sample/CMakeLists.txt
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
cmake_minimum_required(VERSION 3.20)
|
||||||
|
|
||||||
|
project(bayesnet_sample)
|
||||||
|
|
||||||
|
set(CMAKE_CXX_STANDARD 17)
|
||||||
|
|
||||||
|
find_package(Torch REQUIRED)
|
||||||
|
find_library(BayesNet NAMES libBayesNet BayesNet libBayesNet.a REQUIRED)
|
||||||
|
find_path(Bayesnet_INCLUDE_DIRS REQUIRED NAMES bayesnet)
|
||||||
|
find_library(FImdlp NAMES libfimdlp.a PATHS REQUIRED)
|
||||||
|
|
||||||
|
message(STATUS "FImdlp=${FImdlp}")
|
||||||
|
message(STATUS "FImdlp_INCLUDE_DIRS=${FImdlp_INCLUDE_DIRS}")
|
||||||
|
message(STATUS "BayesNet=${BayesNet}")
|
||||||
|
message(STATUS "Bayesnet_INCLUDE_DIRS=${Bayesnet_INCLUDE_DIRS}")
|
||||||
|
|
||||||
|
include_directories(
|
||||||
|
../tests/lib/Files
|
||||||
|
lib/json/include
|
||||||
|
/usr/local/include
|
||||||
|
${FImdlp_INCLUDE_DIRS}
|
||||||
|
)
|
||||||
|
|
||||||
|
add_executable(bayesnet_sample sample.cc)
|
||||||
|
target_link_libraries(bayesnet_sample fimdlp "${TORCH_LIBRARIES}" "${BayesNet}")
|
55
sample/lib/json/include/nlohmann/adl_serializer.hpp
Normal file
55
sample/lib/json/include/nlohmann/adl_serializer.hpp
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
// __ _____ _____ _____
|
||||||
|
// __| | __| | | | JSON for Modern C++
|
||||||
|
// | | |__ | | | | | | version 3.11.3
|
||||||
|
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||||
|
//
|
||||||
|
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <utility>
|
||||||
|
|
||||||
|
#include <nlohmann/detail/abi_macros.hpp>
|
||||||
|
#include <nlohmann/detail/conversions/from_json.hpp>
|
||||||
|
#include <nlohmann/detail/conversions/to_json.hpp>
|
||||||
|
#include <nlohmann/detail/meta/identity_tag.hpp>
|
||||||
|
|
||||||
|
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||||
|
|
||||||
|
/// @sa https://json.nlohmann.me/api/adl_serializer/
|
||||||
|
template<typename ValueType, typename>
|
||||||
|
struct adl_serializer
|
||||||
|
{
|
||||||
|
/// @brief convert a JSON value to any value type
|
||||||
|
/// @sa https://json.nlohmann.me/api/adl_serializer/from_json/
|
||||||
|
template<typename BasicJsonType, typename TargetType = ValueType>
|
||||||
|
static auto from_json(BasicJsonType && j, TargetType& val) noexcept(
|
||||||
|
noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), val)))
|
||||||
|
-> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), val), void())
|
||||||
|
{
|
||||||
|
::nlohmann::from_json(std::forward<BasicJsonType>(j), val);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief convert a JSON value to any value type
|
||||||
|
/// @sa https://json.nlohmann.me/api/adl_serializer/from_json/
|
||||||
|
template<typename BasicJsonType, typename TargetType = ValueType>
|
||||||
|
static auto from_json(BasicJsonType && j) noexcept(
|
||||||
|
noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {})))
|
||||||
|
-> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {}))
|
||||||
|
{
|
||||||
|
return ::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {});
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief convert any value type to a JSON value
|
||||||
|
/// @sa https://json.nlohmann.me/api/adl_serializer/to_json/
|
||||||
|
template<typename BasicJsonType, typename TargetType = ValueType>
|
||||||
|
static auto to_json(BasicJsonType& j, TargetType && val) noexcept(
|
||||||
|
noexcept(::nlohmann::to_json(j, std::forward<TargetType>(val))))
|
||||||
|
-> decltype(::nlohmann::to_json(j, std::forward<TargetType>(val)), void())
|
||||||
|
{
|
||||||
|
::nlohmann::to_json(j, std::forward<TargetType>(val));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
NLOHMANN_JSON_NAMESPACE_END
|
103
sample/lib/json/include/nlohmann/byte_container_with_subtype.hpp
Normal file
103
sample/lib/json/include/nlohmann/byte_container_with_subtype.hpp
Normal file
@ -0,0 +1,103 @@
|
|||||||
|
// __ _____ _____ _____
|
||||||
|
// __| | __| | | | JSON for Modern C++
|
||||||
|
// | | |__ | | | | | | version 3.11.3
|
||||||
|
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||||
|
//
|
||||||
|
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <cstdint> // uint8_t, uint64_t
|
||||||
|
#include <tuple> // tie
|
||||||
|
#include <utility> // move
|
||||||
|
|
||||||
|
#include <nlohmann/detail/abi_macros.hpp>
|
||||||
|
|
||||||
|
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||||
|
|
||||||
|
/// @brief an internal type for a backed binary type
|
||||||
|
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/
|
||||||
|
template<typename BinaryType>
|
||||||
|
class byte_container_with_subtype : public BinaryType
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
using container_type = BinaryType;
|
||||||
|
using subtype_type = std::uint64_t;
|
||||||
|
|
||||||
|
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
|
||||||
|
byte_container_with_subtype() noexcept(noexcept(container_type()))
|
||||||
|
: container_type()
|
||||||
|
{}
|
||||||
|
|
||||||
|
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
|
||||||
|
byte_container_with_subtype(const container_type& b) noexcept(noexcept(container_type(b)))
|
||||||
|
: container_type(b)
|
||||||
|
{}
|
||||||
|
|
||||||
|
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
|
||||||
|
byte_container_with_subtype(container_type&& b) noexcept(noexcept(container_type(std::move(b))))
|
||||||
|
: container_type(std::move(b))
|
||||||
|
{}
|
||||||
|
|
||||||
|
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
|
||||||
|
byte_container_with_subtype(const container_type& b, subtype_type subtype_) noexcept(noexcept(container_type(b)))
|
||||||
|
: container_type(b)
|
||||||
|
, m_subtype(subtype_)
|
||||||
|
, m_has_subtype(true)
|
||||||
|
{}
|
||||||
|
|
||||||
|
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
|
||||||
|
byte_container_with_subtype(container_type&& b, subtype_type subtype_) noexcept(noexcept(container_type(std::move(b))))
|
||||||
|
: container_type(std::move(b))
|
||||||
|
, m_subtype(subtype_)
|
||||||
|
, m_has_subtype(true)
|
||||||
|
{}
|
||||||
|
|
||||||
|
bool operator==(const byte_container_with_subtype& rhs) const
|
||||||
|
{
|
||||||
|
return std::tie(static_cast<const BinaryType&>(*this), m_subtype, m_has_subtype) ==
|
||||||
|
std::tie(static_cast<const BinaryType&>(rhs), rhs.m_subtype, rhs.m_has_subtype);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool operator!=(const byte_container_with_subtype& rhs) const
|
||||||
|
{
|
||||||
|
return !(rhs == *this);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief sets the binary subtype
|
||||||
|
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/set_subtype/
|
||||||
|
void set_subtype(subtype_type subtype_) noexcept
|
||||||
|
{
|
||||||
|
m_subtype = subtype_;
|
||||||
|
m_has_subtype = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief return the binary subtype
|
||||||
|
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/subtype/
|
||||||
|
constexpr subtype_type subtype() const noexcept
|
||||||
|
{
|
||||||
|
return m_has_subtype ? m_subtype : static_cast<subtype_type>(-1);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief return whether the value has a subtype
|
||||||
|
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/has_subtype/
|
||||||
|
constexpr bool has_subtype() const noexcept
|
||||||
|
{
|
||||||
|
return m_has_subtype;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief clears the binary subtype
|
||||||
|
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/clear_subtype/
|
||||||
|
void clear_subtype() noexcept
|
||||||
|
{
|
||||||
|
m_subtype = 0;
|
||||||
|
m_has_subtype = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
subtype_type m_subtype = 0;
|
||||||
|
bool m_has_subtype = false;
|
||||||
|
};
|
||||||
|
|
||||||
|
NLOHMANN_JSON_NAMESPACE_END
|
100
sample/lib/json/include/nlohmann/detail/abi_macros.hpp
Normal file
100
sample/lib/json/include/nlohmann/detail/abi_macros.hpp
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
// __ _____ _____ _____
|
||||||
|
// __| | __| | | | JSON for Modern C++
|
||||||
|
// | | |__ | | | | | | version 3.11.3
|
||||||
|
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||||
|
//
|
||||||
|
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
// This file contains all macro definitions affecting or depending on the ABI
|
||||||
|
|
||||||
|
#ifndef JSON_SKIP_LIBRARY_VERSION_CHECK
|
||||||
|
#if defined(NLOHMANN_JSON_VERSION_MAJOR) && defined(NLOHMANN_JSON_VERSION_MINOR) && defined(NLOHMANN_JSON_VERSION_PATCH)
|
||||||
|
#if NLOHMANN_JSON_VERSION_MAJOR != 3 || NLOHMANN_JSON_VERSION_MINOR != 11 || NLOHMANN_JSON_VERSION_PATCH != 3
|
||||||
|
#warning "Already included a different version of the library!"
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define NLOHMANN_JSON_VERSION_MAJOR 3 // NOLINT(modernize-macro-to-enum)
|
||||||
|
#define NLOHMANN_JSON_VERSION_MINOR 11 // NOLINT(modernize-macro-to-enum)
|
||||||
|
#define NLOHMANN_JSON_VERSION_PATCH 3 // NOLINT(modernize-macro-to-enum)
|
||||||
|
|
||||||
|
#ifndef JSON_DIAGNOSTICS
|
||||||
|
#define JSON_DIAGNOSTICS 0
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifndef JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON
|
||||||
|
#define JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON 0
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if JSON_DIAGNOSTICS
|
||||||
|
#define NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS _diag
|
||||||
|
#else
|
||||||
|
#define NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON
|
||||||
|
#define NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON _ldvcmp
|
||||||
|
#else
|
||||||
|
#define NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifndef NLOHMANN_JSON_NAMESPACE_NO_VERSION
|
||||||
|
#define NLOHMANN_JSON_NAMESPACE_NO_VERSION 0
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// Construct the namespace ABI tags component
|
||||||
|
#define NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b) json_abi ## a ## b
|
||||||
|
#define NLOHMANN_JSON_ABI_TAGS_CONCAT(a, b) \
|
||||||
|
NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b)
|
||||||
|
|
||||||
|
#define NLOHMANN_JSON_ABI_TAGS \
|
||||||
|
NLOHMANN_JSON_ABI_TAGS_CONCAT( \
|
||||||
|
NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS, \
|
||||||
|
NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON)
|
||||||
|
|
||||||
|
// Construct the namespace version component
|
||||||
|
#define NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT_EX(major, minor, patch) \
|
||||||
|
_v ## major ## _ ## minor ## _ ## patch
|
||||||
|
#define NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT(major, minor, patch) \
|
||||||
|
NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT_EX(major, minor, patch)
|
||||||
|
|
||||||
|
#if NLOHMANN_JSON_NAMESPACE_NO_VERSION
|
||||||
|
#define NLOHMANN_JSON_NAMESPACE_VERSION
|
||||||
|
#else
|
||||||
|
#define NLOHMANN_JSON_NAMESPACE_VERSION \
|
||||||
|
NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT(NLOHMANN_JSON_VERSION_MAJOR, \
|
||||||
|
NLOHMANN_JSON_VERSION_MINOR, \
|
||||||
|
NLOHMANN_JSON_VERSION_PATCH)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// Combine namespace components
|
||||||
|
#define NLOHMANN_JSON_NAMESPACE_CONCAT_EX(a, b) a ## b
|
||||||
|
#define NLOHMANN_JSON_NAMESPACE_CONCAT(a, b) \
|
||||||
|
NLOHMANN_JSON_NAMESPACE_CONCAT_EX(a, b)
|
||||||
|
|
||||||
|
#ifndef NLOHMANN_JSON_NAMESPACE
|
||||||
|
#define NLOHMANN_JSON_NAMESPACE \
|
||||||
|
nlohmann::NLOHMANN_JSON_NAMESPACE_CONCAT( \
|
||||||
|
NLOHMANN_JSON_ABI_TAGS, \
|
||||||
|
NLOHMANN_JSON_NAMESPACE_VERSION)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifndef NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||||
|
#define NLOHMANN_JSON_NAMESPACE_BEGIN \
|
||||||
|
namespace nlohmann \
|
||||||
|
{ \
|
||||||
|
inline namespace NLOHMANN_JSON_NAMESPACE_CONCAT( \
|
||||||
|
NLOHMANN_JSON_ABI_TAGS, \
|
||||||
|
NLOHMANN_JSON_NAMESPACE_VERSION) \
|
||||||
|
{
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifndef NLOHMANN_JSON_NAMESPACE_END
|
||||||
|
#define NLOHMANN_JSON_NAMESPACE_END \
|
||||||
|
} /* namespace (inline namespace) NOLINT(readability/namespace) */ \
|
||||||
|
} // namespace nlohmann
|
||||||
|
#endif
|
@ -0,0 +1,497 @@
|
|||||||
|
// __ _____ _____ _____
|
||||||
|
// __| | __| | | | JSON for Modern C++
|
||||||
|
// | | |__ | | | | | | version 3.11.3
|
||||||
|
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||||
|
//
|
||||||
|
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||||
|
// SPDX-License-Identifier: MIT
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <algorithm> // transform
|
||||||
|
#include <array> // array
|
||||||
|
#include <forward_list> // forward_list
|
||||||
|
#include <iterator> // inserter, front_inserter, end
|
||||||
|
#include <map> // map
|
||||||
|
#include <string> // string
|
||||||
|
#include <tuple> // tuple, make_tuple
|
||||||
|
#include <type_traits> // is_arithmetic, is_same, is_enum, underlying_type, is_convertible
|
||||||
|
#include <unordered_map> // unordered_map
|
||||||
|
#include <utility> // pair, declval
|
||||||
|
#include <valarray> // valarray
|
||||||
|
|
||||||
|
#include <nlohmann/detail/exceptions.hpp>
|
||||||
|
#include <nlohmann/detail/macro_scope.hpp>
|
||||||
|
#include <nlohmann/detail/meta/cpp_future.hpp>
|
||||||
|
#include <nlohmann/detail/meta/identity_tag.hpp>
|
||||||
|
#include <nlohmann/detail/meta/std_fs.hpp>
|
||||||
|
#include <nlohmann/detail/meta/type_traits.hpp>
|
||||||
|
#include <nlohmann/detail/string_concat.hpp>
|
||||||
|
#include <nlohmann/detail/value_t.hpp>
|
||||||
|
|
||||||
|
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||||
|
namespace detail
|
||||||
|
{
|
||||||
|
|
||||||
|
template<typename BasicJsonType>
|
||||||
|
inline void from_json(const BasicJsonType& j, typename std::nullptr_t& n)
|
||||||
|
{
|
||||||
|
if (JSON_HEDLEY_UNLIKELY(!j.is_null()))
|
||||||
|
{
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be null, but is ", j.type_name()), &j));
|
||||||
|
}
|
||||||
|
n = nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
// overloads for basic_json template parameters
|
||||||
|
template < typename BasicJsonType, typename ArithmeticType,
|
||||||
|
enable_if_t < std::is_arithmetic<ArithmeticType>::value&&
|
||||||
|
!std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
|
||||||
|
int > = 0 >
|
||||||
|
void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val)
|
||||||
|
{
|
||||||
|
switch (static_cast<value_t>(j))
|
||||||
|
{
|
||||||
|
case value_t::number_unsigned:
|
||||||
|
{
|
||||||
|
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
case value_t::number_integer:
|
||||||
|
{
|
||||||
|
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
case value_t::number_float:
|
||||||
|
{
|
||||||
|
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
case value_t::null:
|
||||||
|
case value_t::object:
|
||||||
|
case value_t::array:
|
||||||
|
case value_t::string:
|
||||||
|
case value_t::boolean:
|
||||||
|
case value_t::binary:
|
||||||
|
case value_t::discarded:
|
||||||
|
default:
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be number, but is ", j.type_name()), &j));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename BasicJsonType>
|
||||||
|
inline void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b)
|
||||||
|
{
|
||||||
|
if (JSON_HEDLEY_UNLIKELY(!j.is_boolean()))
|
||||||
|
{
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be boolean, but is ", j.type_name()), &j));
|
||||||
|
}
|
||||||
|
b = *j.template get_ptr<const typename BasicJsonType::boolean_t*>();
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename BasicJsonType>
|
||||||
|
inline void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s)
|
||||||
|
{
|
||||||
|
if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
|
||||||
|
{
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
|
||||||
|
}
|
||||||
|
s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
|
||||||
|
}
|
||||||
|
|
||||||
|
template <
|
||||||
|
typename BasicJsonType, typename StringType,
|
||||||
|
enable_if_t <
|
||||||
|
std::is_assignable<StringType&, const typename BasicJsonType::string_t>::value
|
||||||
|
&& is_detected_exact<typename BasicJsonType::string_t::value_type, value_type_t, StringType>::value
|
||||||
|
&& !std::is_same<typename BasicJsonType::string_t, StringType>::value
|
||||||
|
&& !is_json_ref<StringType>::value, int > = 0 >
|
||||||
|
inline void from_json(const BasicJsonType& j, StringType& s)
|
||||||
|
{
|
||||||
|
if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
|
||||||
|
{
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
|
||||||
|
}
|
||||||
|
|
||||||
|
s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename BasicJsonType>
|
||||||
|
inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val)
|
||||||
|
{
|
||||||
|
get_arithmetic_value(j, val);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename BasicJsonType>
|
||||||
|
inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val)
|
||||||
|
{
|
||||||
|
get_arithmetic_value(j, val);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename BasicJsonType>
|
||||||
|
inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val)
|
||||||
|
{
|
||||||
|
get_arithmetic_value(j, val);
|
||||||
|
}
|
||||||
|
|
||||||
|
#if !JSON_DISABLE_ENUM_SERIALIZATION
|
||||||
|
template<typename BasicJsonType, typename EnumType,
|
||||||
|
enable_if_t<std::is_enum<EnumType>::value, int> = 0>
|
||||||
|
inline void from_json(const BasicJsonType& j, EnumType& e)
|
||||||
|
{
|
||||||
|
typename std::underlying_type<EnumType>::type val;
|
||||||
|
get_arithmetic_value(j, val);
|
||||||
|
e = static_cast<EnumType>(val);
|
||||||
|
}
|
||||||
|
#endif // JSON_DISABLE_ENUM_SERIALIZATION
|
||||||
|
|
||||||
|
// forward_list doesn't have an insert method
|
||||||
|
template<typename BasicJsonType, typename T, typename Allocator,
|
||||||
|
enable_if_t<is_getable<BasicJsonType, T>::value, int> = 0>
|
||||||
|
inline void from_json(const BasicJsonType& j, std::forward_list<T, Allocator>& l)
|
||||||
|
{
|
||||||
|
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||||
|
{
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||||
|
}
|
||||||
|
l.clear();
|
||||||
|
std::transform(j.rbegin(), j.rend(),
|
||||||
|
std::front_inserter(l), [](const BasicJsonType & i)
|
||||||
|
{
|
||||||
|
return i.template get<T>();
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
// valarray doesn't have an insert method
|
||||||
|
template<typename BasicJsonType, typename T,
|
||||||
|
enable_if_t<is_getable<BasicJsonType, T>::value, int> = 0>
|
||||||
|
inline void from_json(const BasicJsonType& j, std::valarray<T>& l)
|
||||||
|
{
|
||||||
|
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||||
|
{
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||||
|
}
|
||||||
|
l.resize(j.size());
|
||||||
|
std::transform(j.begin(), j.end(), std::begin(l),
|
||||||
|
[](const BasicJsonType & elem)
|
||||||
|
{
|
||||||
|
return elem.template get<T>();
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename BasicJsonType, typename T, std::size_t N>
|
||||||
|
auto from_json(const BasicJsonType& j, T (&arr)[N]) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
|
||||||
|
-> decltype(j.template get<T>(), void())
|
||||||
|
{
|
||||||
|
for (std::size_t i = 0; i < N; ++i)
|
||||||
|
{
|
||||||
|
arr[i] = j.at(i).template get<T>();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename BasicJsonType>
|
||||||
|
inline void from_json_array_impl(const BasicJsonType& j, typename BasicJsonType::array_t& arr, priority_tag<3> /*unused*/)
|
||||||
|
{
|
||||||
|
arr = *j.template get_ptr<const typename BasicJsonType::array_t*>();
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename BasicJsonType, typename T, std::size_t N>
|
||||||
|
auto from_json_array_impl(const BasicJsonType& j, std::array<T, N>& arr,
|
||||||
|
priority_tag<2> /*unused*/)
|
||||||
|
-> decltype(j.template get<T>(), void())
|
||||||
|
{
|
||||||
|
for (std::size_t i = 0; i < N; ++i)
|
||||||
|
{
|
||||||
|
arr[i] = j.at(i).template get<T>();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename BasicJsonType, typename ConstructibleArrayType,
|
||||||
|
enable_if_t<
|
||||||
|
std::is_assignable<ConstructibleArrayType&, ConstructibleArrayType>::value,
|
||||||
|
int> = 0>
|
||||||
|
auto from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr, priority_tag<1> /*unused*/)
|
||||||
|
-> decltype(
|
||||||
|
arr.reserve(std::declval<typename ConstructibleArrayType::size_type>()),
|
||||||
|
j.template get<typename ConstructibleArrayType::value_type>(),
|
||||||
|
void())
|
||||||
|
{
|
||||||
|
using std::end;
|
||||||
|
|
||||||
|
ConstructibleArrayType ret;
|
||||||
|
ret.reserve(j.size());
|
||||||
|
std::transform(j.begin(), j.end(),
|
||||||
|
std::inserter(ret, end(ret)), [](const BasicJsonType & i)
|
||||||
|
{
|
||||||
|
// get<BasicJsonType>() returns *this, this won't call a from_json
|
||||||
|
// method when value_type is BasicJsonType
|
||||||
|
return i.template get<typename ConstructibleArrayType::value_type>();
|
||||||
|
});
|
||||||
|
arr = std::move(ret);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename BasicJsonType, typename ConstructibleArrayType,
|
||||||
|
enable_if_t<
|
||||||
|
std::is_assignable<ConstructibleArrayType&, ConstructibleArrayType>::value,
|
||||||
|
int> = 0>
|
||||||
|
inline void from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr,
|
||||||
|
priority_tag<0> /*unused*/)
|
||||||
|
{
|
||||||
|
using std::end;
|
||||||
|
|
||||||
|
ConstructibleArrayType ret;
|
||||||
|
std::transform(
|
||||||
|
j.begin(), j.end(), std::inserter(ret, end(ret)),
|
||||||
|
[](const BasicJsonType & i)
|
||||||
|
{
|
||||||
|
// get<BasicJsonType>() returns *this, this won't call a from_json
|
||||||
|
// method when value_type is BasicJsonType
|
||||||
|
return i.template get<typename ConstructibleArrayType::value_type>();
|
||||||
|
});
|
||||||
|
arr = std::move(ret);
|
||||||
|
}
|
||||||
|
|
||||||
|
template < typename BasicJsonType, typename ConstructibleArrayType,
|
||||||
|
enable_if_t <
|
||||||
|
is_constructible_array_type<BasicJsonType, ConstructibleArrayType>::value&&
|
||||||
|
!is_constructible_object_type<BasicJsonType, ConstructibleArrayType>::value&&
|
||||||
|
!is_constructible_string_type<BasicJsonType, ConstructibleArrayType>::value&&
|
||||||
|
!std::is_same<ConstructibleArrayType, typename BasicJsonType::binary_t>::value&&
|
||||||
|
!is_basic_json<ConstructibleArrayType>::value,
|
||||||
|
int > = 0 >
|
||||||
|
auto from_json(const BasicJsonType& j, ConstructibleArrayType& arr)
|
||||||
|
-> decltype(from_json_array_impl(j, arr, priority_tag<3> {}),
|
||||||
|
j.template get<typename ConstructibleArrayType::value_type>(),
|
||||||
|
void())
|
||||||
|
{
|
||||||
|
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||||
|
{
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||||
|
}
|
||||||
|
|
||||||
|
from_json_array_impl(j, arr, priority_tag<3> {});
|
||||||
|
}
|
||||||
|
|
||||||
|
template < typename BasicJsonType, typename T, std::size_t... Idx >
|
||||||
|
std::array<T, sizeof...(Idx)> from_json_inplace_array_impl(BasicJsonType&& j,
|
||||||
|
identity_tag<std::array<T, sizeof...(Idx)>> /*unused*/, index_sequence<Idx...> /*unused*/)
|
||||||
|
{
|
||||||
|
return { { std::forward<BasicJsonType>(j).at(Idx).template get<T>()... } };
|
||||||
|
}
|
||||||
|
|
||||||
|
template < typename BasicJsonType, typename T, std::size_t N >
|
||||||
|
auto from_json(BasicJsonType&& j, identity_tag<std::array<T, N>> tag)
|
||||||
|
-> decltype(from_json_inplace_array_impl(std::forward<BasicJsonType>(j), tag, make_index_sequence<N> {}))
|
||||||
|
{
|
||||||
|
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||||
|
{
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||||
|
}
|
||||||
|
|
||||||
|
return from_json_inplace_array_impl(std::forward<BasicJsonType>(j), tag, make_index_sequence<N> {});
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename BasicJsonType>
|
||||||
|
inline void from_json(const BasicJsonType& j, typename BasicJsonType::binary_t& bin)
|
||||||
|
{
|
||||||
|
if (JSON_HEDLEY_UNLIKELY(!j.is_binary()))
|
||||||
|
{
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be binary, but is ", j.type_name()), &j));
|
||||||
|
}
|
||||||
|
|
||||||
|
bin = *j.template get_ptr<const typename BasicJsonType::binary_t*>();
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename BasicJsonType, typename ConstructibleObjectType,
|
||||||
|
enable_if_t<is_constructible_object_type<BasicJsonType, ConstructibleObjectType>::value, int> = 0>
|
||||||
|
inline void from_json(const BasicJsonType& j, ConstructibleObjectType& obj)
|
||||||
|
{
|
||||||
|
if (JSON_HEDLEY_UNLIKELY(!j.is_object()))
|
||||||
|
{
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be object, but is ", j.type_name()), &j));
|
||||||
|
}
|
||||||
|
|
||||||
|
ConstructibleObjectType ret;
|
||||||
|
const auto* inner_object = j.template get_ptr<const typename BasicJsonType::object_t*>();
|
||||||
|
using value_type = typename ConstructibleObjectType::value_type;
|
||||||
|
std::transform(
|
||||||
|
inner_object->begin(), inner_object->end(),
|
||||||
|
std::inserter(ret, ret.begin()),
|
||||||
|
[](typename BasicJsonType::object_t::value_type const & p)
|
||||||
|
{
|
||||||
|
return value_type(p.first, p.second.template get<typename ConstructibleObjectType::mapped_type>());
|
||||||
|
});
|
||||||
|
obj = std::move(ret);
|
||||||
|
}
|
||||||
|
|
||||||
|
// overload for arithmetic types, not chosen for basic_json template arguments
|
||||||
|
// (BooleanType, etc..); note: Is it really necessary to provide explicit
|
||||||
|
// overloads for boolean_t etc. in case of a custom BooleanType which is not
|
||||||
|
// an arithmetic type?
|
||||||
|
template < typename BasicJsonType, typename ArithmeticType,
|
||||||
|
enable_if_t <
|
||||||
|
std::is_arithmetic<ArithmeticType>::value&&
|
||||||
|
!std::is_same<ArithmeticType, typename BasicJsonType::number_unsigned_t>::value&&
|
||||||
|
!std::is_same<ArithmeticType, typename BasicJsonType::number_integer_t>::value&&
|
||||||
|
!std::is_same<ArithmeticType, typename BasicJsonType::number_float_t>::value&&
|
||||||
|
!std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
|
||||||
|
int > = 0 >
|
||||||
|
inline void from_json(const BasicJsonType& j, ArithmeticType& val)
|
||||||
|
{
|
||||||
|
switch (static_cast<value_t>(j))
|
||||||
|
{
|
||||||
|
case value_t::number_unsigned:
|
||||||
|
{
|
||||||
|
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
case value_t::number_integer:
|
||||||
|
{
|
||||||
|
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
case value_t::number_float:
|
||||||
|
{
|
||||||
|
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
case value_t::boolean:
|
||||||
|
{
|
||||||
|
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::boolean_t*>());
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
case value_t::null:
|
||||||
|
case value_t::object:
|
||||||
|
case value_t::array:
|
||||||
|
case value_t::string:
|
||||||
|
case value_t::binary:
|
||||||
|
case value_t::discarded:
|
||||||
|
default:
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be number, but is ", j.type_name()), &j));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename BasicJsonType, typename... Args, std::size_t... Idx>
|
||||||
|
std::tuple<Args...> from_json_tuple_impl_base(BasicJsonType&& j, index_sequence<Idx...> /*unused*/)
|
||||||
|
{
|
||||||
|
return std::make_tuple(std::forward<BasicJsonType>(j).at(Idx).template get<Args>()...);
|
||||||
|
}
|
||||||
|
|
||||||
|
template < typename BasicJsonType, class A1, class A2 >
|
||||||
|
std::pair<A1, A2> from_json_tuple_impl(BasicJsonType&& j, identity_tag<std::pair<A1, A2>> /*unused*/, priority_tag<0> /*unused*/)
|
||||||
|
{
|
||||||
|
return {std::forward<BasicJsonType>(j).at(0).template get<A1>(),
|
||||||
|
std::forward<BasicJsonType>(j).at(1).template get<A2>()};
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename BasicJsonType, typename A1, typename A2>
|
||||||
|
inline void from_json_tuple_impl(BasicJsonType&& j, std::pair<A1, A2>& p, priority_tag<1> /*unused*/)
|
||||||
|
{
|
||||||
|
p = from_json_tuple_impl(std::forward<BasicJsonType>(j), identity_tag<std::pair<A1, A2>> {}, priority_tag<0> {});
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename BasicJsonType, typename... Args>
|
||||||
|
std::tuple<Args...> from_json_tuple_impl(BasicJsonType&& j, identity_tag<std::tuple<Args...>> /*unused*/, priority_tag<2> /*unused*/)
|
||||||
|
{
|
||||||
|
return from_json_tuple_impl_base<BasicJsonType, Args...>(std::forward<BasicJsonType>(j), index_sequence_for<Args...> {});
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename BasicJsonType, typename... Args>
|
||||||
|
inline void from_json_tuple_impl(BasicJsonType&& j, std::tuple<Args...>& t, priority_tag<3> /*unused*/)
|
||||||
|
{
|
||||||
|
t = from_json_tuple_impl_base<BasicJsonType, Args...>(std::forward<BasicJsonType>(j), index_sequence_for<Args...> {});
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename BasicJsonType, typename TupleRelated>
|
||||||
|
auto from_json(BasicJsonType&& j, TupleRelated&& t)
|
||||||
|
-> decltype(from_json_tuple_impl(std::forward<BasicJsonType>(j), std::forward<TupleRelated>(t), priority_tag<3> {}))
|
||||||
|
{
|
||||||
|
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||||
|
{
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||||
|
}
|
||||||
|
|
||||||
|
return from_json_tuple_impl(std::forward<BasicJsonType>(j), std::forward<TupleRelated>(t), priority_tag<3> {});
|
||||||
|
}
|
||||||
|
|
||||||
|
template < typename BasicJsonType, typename Key, typename Value, typename Compare, typename Allocator,
|
||||||
|
typename = enable_if_t < !std::is_constructible <
|
||||||
|
typename BasicJsonType::string_t, Key >::value >>
|
||||||
|
inline void from_json(const BasicJsonType& j, std::map<Key, Value, Compare, Allocator>& m)
|
||||||
|
{
|
||||||
|
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||||
|
{
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||||
|
}
|
||||||
|
m.clear();
|
||||||
|
for (const auto& p : j)
|
||||||
|
{
|
||||||
|
if (JSON_HEDLEY_UNLIKELY(!p.is_array()))
|
||||||
|
{
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be array, but is ", p.type_name()), &j));
|
||||||
|
}
|
||||||
|
m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template < typename BasicJsonType, typename Key, typename Value, typename Hash, typename KeyEqual, typename Allocator,
|
||||||
|
typename = enable_if_t < !std::is_constructible <
|
||||||
|
typename BasicJsonType::string_t, Key >::value >>
|
||||||
|
inline void from_json(const BasicJsonType& j, std::unordered_map<Key, Value, Hash, KeyEqual, Allocator>& m)
|
||||||
|
{
|
||||||
|
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||||
|
{
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||||
|
}
|
||||||
|
m.clear();
|
||||||
|
for (const auto& p : j)
|
||||||
|
{
|
||||||
|
if (JSON_HEDLEY_UNLIKELY(!p.is_array()))
|
||||||
|
{
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be array, but is ", p.type_name()), &j));
|
||||||
|
}
|
||||||
|
m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#if JSON_HAS_FILESYSTEM || JSON_HAS_EXPERIMENTAL_FILESYSTEM
|
||||||
|
template<typename BasicJsonType>
|
||||||
|
inline void from_json(const BasicJsonType& j, std_fs::path& p)
|
||||||
|
{
|
||||||
|
if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
|
||||||
|
{
|
||||||
|
JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
|
||||||
|
}
|
||||||
|
p = *j.template get_ptr<const typename BasicJsonType::string_t*>();
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
struct from_json_fn
|
||||||
|
{
|
||||||
|
template<typename BasicJsonType, typename T>
|
||||||
|
auto operator()(const BasicJsonType& j, T&& val) const
|
||||||
|
noexcept(noexcept(from_json(j, std::forward<T>(val))))
|
||||||
|
-> decltype(from_json(j, std::forward<T>(val)))
|
||||||
|
{
|
||||||
|
return from_json(j, std::forward<T>(val));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace detail
|
||||||
|
|
||||||
|
#ifndef JSON_HAS_CPP_17
|
||||||
|
/// namespace to hold default `from_json` function
|
||||||
|
/// to see why this is required:
|
||||||
|
/// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
|
||||||
|
namespace // NOLINT(cert-dcl59-cpp,fuchsia-header-anon-namespaces,google-build-namespaces)
|
||||||
|
{
|
||||||
|
#endif
|
||||||
|
JSON_INLINE_VARIABLE constexpr const auto& from_json = // NOLINT(misc-definitions-in-headers)
|
||||||
|
detail::static_const<detail::from_json_fn>::value;
|
||||||
|
#ifndef JSON_HAS_CPP_17
|
||||||
|
} // namespace
|
||||||
|
#endif
|
||||||
|
|
||||||
|
NLOHMANN_JSON_NAMESPACE_END
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user