Fix epsilont early stopping in BoostAODE
This commit is contained in:
parent
c7555dac3f
commit
a63a35df3f
6
.vscode/launch.json
vendored
6
.vscode/launch.json
vendored
@ -106,12 +106,12 @@
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "test",
|
||||
"program": "${workspaceFolder}/build_debug/tests/unit_tests",
|
||||
"program": "${workspaceFolder}/build_debug/tests/unit_tests_bayesnet",
|
||||
"args": [
|
||||
"-c=\"Metrics Test\"",
|
||||
//"-c=\"Metrics Test\"",
|
||||
// "-s",
|
||||
],
|
||||
"cwd": "${workspaceFolder}/build/tests",
|
||||
"cwd": "${workspaceFolder}/build_debug/tests",
|
||||
},
|
||||
{
|
||||
"name": "Build & debug active file",
|
||||
|
@ -5,6 +5,15 @@ All notable changes to this project will be documented in this file.
|
||||
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/),
|
||||
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||
|
||||
## [Unreleased]
|
||||
|
||||
## [1.0.2] - 2024-02-20
|
||||
|
||||
### Fixed
|
||||
|
||||
- Fix bug in BoostAODE: do not include the model if epsilon sub t is greater than 0.5
|
||||
- Fix bug in BoostAODE: compare accuracy with previous accuracy instead of the first of the ensemble if convergence true
|
||||
|
||||
## [1.0.1] - 2024-02-12
|
||||
|
||||
### Added
|
||||
|
@ -1,7 +1,7 @@
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
|
||||
project(BayesNet
|
||||
VERSION 1.0.1
|
||||
VERSION 1.0.2
|
||||
DESCRIPTION "Bayesian Network and basic classifiers Library."
|
||||
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
|
||||
LANGUAGES CXX
|
||||
|
@ -1 +1 @@
|
||||
Subproject commit 766541d12d64845f5232a1ce4e34a85e83506b09
|
||||
Subproject commit 863c662c0eff026300f4d729a7054e90d6d12cdd
|
@ -121,6 +121,7 @@ namespace bayesnet {
|
||||
}
|
||||
void BoostAODE::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
fitted = true;
|
||||
// Algorithm based on the adaboost algorithm for classification
|
||||
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||
std::unordered_set<int> featuresUsed;
|
||||
@ -161,7 +162,6 @@ namespace bayesnet {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
featuresUsed.insert(feature);
|
||||
model = std::make_unique<SPODE>(feature);
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
auto ypred = model->predict(X_train);
|
||||
@ -170,6 +170,12 @@ namespace bayesnet {
|
||||
auto mask_right = ypred == y_train;
|
||||
auto masked_weights = weights_ * mask_wrong.to(weights_.dtype());
|
||||
double epsilon_t = masked_weights.sum().item<double>();
|
||||
if (epsilon_t > 0.5) {
|
||||
// Inverse the weights policy (plot ln(wt))
|
||||
// "In each round of AdaBoost, there is a sanity check to ensure that the current base
|
||||
// learner is better than random guess" (Zhi-Hua Zhou, 2012)
|
||||
break;
|
||||
}
|
||||
double wt = (1 - epsilon_t) / epsilon_t;
|
||||
double alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
||||
// Step 3.2: Update weights for next classifier
|
||||
@ -181,6 +187,7 @@ namespace bayesnet {
|
||||
double totalWeights = torch::sum(weights_).item<double>();
|
||||
weights_ = weights_ / totalWeights;
|
||||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
featuresUsed.insert(feature);
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(alpha_t);
|
||||
n_models++;
|
||||
@ -197,15 +204,13 @@ namespace bayesnet {
|
||||
}
|
||||
priorAccuracy = accuracy;
|
||||
}
|
||||
// epsilon_t > 0.5 => inverse the weights policy (plot ln(wt))
|
||||
exitCondition = n_models >= maxModels && repeatSparent || epsilon_t > 0.5 || count > tolerance;
|
||||
exitCondition = n_models >= maxModels && repeatSparent || count > tolerance;
|
||||
}
|
||||
if (featuresUsed.size() != features.size()) {
|
||||
notes.push_back("Used features in train: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()));
|
||||
status = WARNING;
|
||||
}
|
||||
notes.push_back("Number of models: " + std::to_string(n_models));
|
||||
fitted = true;
|
||||
}
|
||||
std::vector<std::string> BoostAODE::graph(const std::string& title) const
|
||||
{
|
||||
|
@ -19,7 +19,7 @@
|
||||
TEST_CASE("Library check version", "[BayesNet]")
|
||||
{
|
||||
auto clf = bayesnet::KDB(2);
|
||||
REQUIRE(clf.getVersion() == "1.0.1");
|
||||
REQUIRE(clf.getVersion() == "1.0.2");
|
||||
}
|
||||
TEST_CASE("Test Bayesian Classifiers score", "[BayesNet]")
|
||||
{
|
||||
@ -164,7 +164,8 @@ TEST_CASE("BoostAODE test used features in train note", "[BayesNet]")
|
||||
{"ascending",true},
|
||||
{"convergence", true},
|
||||
{"repeatSparent",true},
|
||||
{"select_features","CFS"}
|
||||
{"select_features","CFS"},
|
||||
{"tolerance", 3}
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 72);
|
||||
|
Loading…
Reference in New Issue
Block a user