Merge pull request #1 from rmontanana/library
Remove other projects' sources
This commit is contained in:
commit
666782217e
31
.clang-uml
31
.clang-uml
@ -1,31 +0,0 @@
|
||||
compilation_database_dir: build
|
||||
output_directory: puml
|
||||
diagrams:
|
||||
BayesNet:
|
||||
type: class
|
||||
glob:
|
||||
- src/BayesNet/*.cc
|
||||
- src/Platform/*.cc
|
||||
using_namespace: bayesnet
|
||||
include:
|
||||
namespaces:
|
||||
- bayesnet
|
||||
- platform
|
||||
plantuml:
|
||||
after:
|
||||
- "note left of {{ alias(\"MyProjectMain\") }}: Main class of myproject library."
|
||||
sequence:
|
||||
type: sequence
|
||||
glob:
|
||||
- src/Platform/main.cc
|
||||
combine_free_functions_into_file_participants: true
|
||||
using_namespace:
|
||||
- std
|
||||
- bayesnet
|
||||
- platform
|
||||
include:
|
||||
paths:
|
||||
- src/BayesNet
|
||||
- src/Platform
|
||||
start_from:
|
||||
- function: main(int,const char **)
|
8
.gitmodules
vendored
8
.gitmodules
vendored
@ -18,8 +18,6 @@
|
||||
url = https://github.com/nlohmann/json.git
|
||||
master = master
|
||||
update = merge
|
||||
[submodule "lib/libxlsxwriter"]
|
||||
path = lib/libxlsxwriter
|
||||
url = https://github.com/jmcnamara/libxlsxwriter.git
|
||||
main = main
|
||||
update = merge
|
||||
[submodule "lib/folding"]
|
||||
path = lib/folding
|
||||
url = https://github.com/rmontanana/folding
|
||||
|
@ -1,7 +1,7 @@
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
|
||||
project(BayesNet
|
||||
VERSION 0.2.0
|
||||
VERSION 1.0.0
|
||||
DESCRIPTION "Bayesian Network and basic classifiers Library."
|
||||
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
|
||||
LANGUAGES CXX
|
||||
@ -30,27 +30,6 @@ SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
||||
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
|
||||
option(ENABLE_TESTING "Unit testing build" OFF)
|
||||
option(CODE_COVERAGE "Collect coverage from test library" OFF)
|
||||
option(MPI_ENABLED "Enable MPI options" ON)
|
||||
|
||||
if (MPI_ENABLED)
|
||||
find_package(MPI REQUIRED)
|
||||
message("MPI_CXX_LIBRARIES=${MPI_CXX_LIBRARIES}")
|
||||
message("MPI_CXX_INCLUDE_DIRS=${MPI_CXX_INCLUDE_DIRS}")
|
||||
endif (MPI_ENABLED)
|
||||
|
||||
# Boost Library
|
||||
set(Boost_USE_STATIC_LIBS OFF)
|
||||
set(Boost_USE_MULTITHREADED ON)
|
||||
set(Boost_USE_STATIC_RUNTIME OFF)
|
||||
find_package(Boost 1.66.0 REQUIRED COMPONENTS python3 numpy3)
|
||||
if(Boost_FOUND)
|
||||
message("Boost_INCLUDE_DIRS=${Boost_INCLUDE_DIRS}")
|
||||
include_directories(${Boost_INCLUDE_DIRS})
|
||||
endif()
|
||||
|
||||
# Python
|
||||
find_package(Python3 3.11...3.11.9 COMPONENTS Interpreter Development REQUIRED)
|
||||
message("Python3_LIBRARIES=${Python3_LIBRARIES}")
|
||||
|
||||
# CMakes modules
|
||||
# --------------
|
||||
@ -76,23 +55,14 @@ add_git_submodule("lib/mdlp")
|
||||
add_git_submodule("lib/argparse")
|
||||
add_git_submodule("lib/json")
|
||||
|
||||
|
||||
find_library(XLSXWRITER_LIB NAMES libxlsxwriter.dylib libxlsxwriter.so PATHS ${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/lib)
|
||||
message("XLSXWRITER_LIB=${XLSXWRITER_LIB}")
|
||||
|
||||
|
||||
# Subdirectories
|
||||
# --------------
|
||||
add_subdirectory(config)
|
||||
add_subdirectory(lib/Files)
|
||||
add_subdirectory(src/BayesNet)
|
||||
add_subdirectory(src/Platform)
|
||||
add_subdirectory(src/PyClassifiers)
|
||||
add_subdirectory(sample)
|
||||
|
||||
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.h)
|
||||
file(GLOB BayesNet_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cc ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cpp)
|
||||
file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/Platform/*.cc ${BayesNet_SOURCE_DIR}/src/Platform/*.cpp)
|
||||
|
||||
# Testing
|
||||
# -------
|
||||
|
46
Makefile
46
Makefile
@ -1,11 +1,11 @@
|
||||
SHELL := /bin/bash
|
||||
.DEFAULT_GOAL := help
|
||||
.PHONY: coverage setup help build test clean debug release
|
||||
.PHONY: coverage setup help buildr buildd test clean debug release
|
||||
|
||||
f_release = build_release
|
||||
f_debug = build_debug
|
||||
app_targets = b_best b_list b_main b_manage b_grid
|
||||
test_targets = unit_tests_bayesnet unit_tests_platform
|
||||
app_targets = BayesNet
|
||||
test_targets = unit_tests_bayesnet
|
||||
n_procs = -j 16
|
||||
|
||||
define ClearTests
|
||||
@ -31,37 +31,22 @@ setup: ## Install dependencies for tests and coverage
|
||||
pip install gcovr; \
|
||||
fi
|
||||
|
||||
dest ?= ${HOME}/bin
|
||||
install: ## Copy binary files to bin folder
|
||||
@echo "Destination folder: $(dest)"
|
||||
make buildr
|
||||
@echo "*******************************************"
|
||||
@echo ">>> Copying files to $(dest)"
|
||||
@echo "*******************************************"
|
||||
@for item in $(app_targets); do \
|
||||
echo ">>> Copying $$item" ; \
|
||||
cp $(f_release)/src/Platform/$$item $(dest) ; \
|
||||
done
|
||||
|
||||
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
|
||||
@echo ">>> Creating dependency graph diagram of the project...";
|
||||
$(MAKE) debug
|
||||
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
|
||||
|
||||
buildd: ## Build the debug targets
|
||||
cmake --build $(f_debug) -t $(app_targets) BayesNetSample $(n_procs)
|
||||
cmake --build $(f_debug) -t $(app_targets) $(n_procs)
|
||||
|
||||
buildr: ## Build the release targets
|
||||
cmake --build $(f_release) -t $(app_targets) BayesNetSample $(n_procs)
|
||||
cmake --build $(f_release) -t $(app_targets) $(n_procs)
|
||||
|
||||
clean: ## Clean the tests info
|
||||
@echo ">>> Cleaning Debug BayesNet tests...";
|
||||
$(call ClearTests)
|
||||
@echo ">>> Done";
|
||||
|
||||
clang-uml: ## Create uml class and sequence diagrams
|
||||
clang-uml -p --add-compile-flag -I /usr/lib/gcc/x86_64-redhat-linux/8/include/
|
||||
|
||||
debug: ## Build a debug version of the project
|
||||
@echo ">>> Building Debug BayesNet...";
|
||||
@if [ -d ./$(f_debug) ]; then rm -rf ./$(f_debug); fi
|
||||
@ -89,27 +74,10 @@ test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximu
|
||||
done
|
||||
@echo ">>> Done";
|
||||
|
||||
opt = ""
|
||||
testp: ## Run platform tests (opt="-s") to verbose output the tests, (opt="-c='Stratified Fold Test'") to run only that section
|
||||
@echo ">>> Running Platform tests...";
|
||||
@$(MAKE) clean
|
||||
@cmake --build $(f_debug) --target unit_tests_platform $(n_procs)
|
||||
@if [ -f $(f_debug)/tests/unit_tests_platform ]; then cd $(f_debug)/tests ; ./unit_tests_platform $(opt) ; fi ;
|
||||
@echo ">>> Done";
|
||||
|
||||
opt = ""
|
||||
testb: ## Run BayesNet tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
|
||||
@echo ">>> Running BayesNet tests...";
|
||||
@$(MAKE) clean
|
||||
@cmake --build $(f_debug) --target unit_tests_bayesnet $(n_procs)
|
||||
@if [ -f $(f_debug)/tests/unit_tests_bayesnet ]; then cd $(f_debug)/tests ; ./unit_tests_bayesnet $(opt) ; fi ;
|
||||
@echo ">>> Done";
|
||||
|
||||
coverage: ## Run tests and generate coverage report (build/index.html)
|
||||
@echo ">>> Building tests with coverage...";
|
||||
@echo ">>> Building tests with coverage..."
|
||||
@$(MAKE) test
|
||||
@cd $(f_debug) ; \
|
||||
gcovr --config ../gcovr.cfg tests ;
|
||||
@gcovr $(f_debug)/tests
|
||||
@echo ">>> Done";
|
||||
|
||||
|
||||
|
77
README.md
77
README.md
@ -2,90 +2,21 @@
|
||||
|
||||
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
|
||||
|
||||
Bayesian Network Classifier with libtorch from scratch
|
||||
|
||||
## 0. Setup
|
||||
|
||||
Before compiling BayesNet.
|
||||
|
||||
### Miniconda
|
||||
|
||||
To be able to run Python Classifiers such as STree, ODTE, SVC, etc. it is needed to install Miniconda. To do so, download the installer from [Miniconda](https://docs.conda.io/en/latest/miniconda.html) and run it. It is recommended to install it in the home folder.
|
||||
|
||||
In Linux sometimes the library libstdc++ is mistaken from the miniconda installation and produces the next message when running the b_xxxx executables:
|
||||
|
||||
```bash
|
||||
libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by b_xxxx)
|
||||
```
|
||||
|
||||
The solution is to erase the libstdc++ library from the miniconda installation:
|
||||
|
||||
### MPI
|
||||
|
||||
In Linux just install openmpi & openmpi-devel packages. Only if cmake can't find openmpi installation (like in Oracle Linux) set the following variable:
|
||||
|
||||
```bash
|
||||
export MPI_HOME="/usr/lib64/openmpi"
|
||||
```
|
||||
|
||||
In Mac OS X, install mpich with brew and if cmake doesn't find it, edit mpicxx wrapper to remove the ",-commons,use_dylibs" from final_ldflags
|
||||
|
||||
```bash
|
||||
vi /opt/homebrew/bin/mpicx
|
||||
```
|
||||
|
||||
### boost library
|
||||
|
||||
[Getting Started](<https://www.boost.org/doc/libs/1_83_0/more/getting_started/index.html>)
|
||||
|
||||
The best option is install the packages that the Linux distribution have in its repository. If this is the case:
|
||||
|
||||
```bash
|
||||
sudo dnf install boost-devel
|
||||
```
|
||||
|
||||
If this is not possible and the compressed packaged is installed, the following environment variable has to be set pointing to the folder where it was unzipped to:
|
||||
|
||||
```bash
|
||||
export BOOST_ROOT=/path/to/library/
|
||||
```
|
||||
|
||||
In some cases, it is needed to build the library, to do so:
|
||||
|
||||
```bash
|
||||
cd /path/to/library
|
||||
mkdir own
|
||||
./bootstrap.sh --prefix=/path/to/library/own
|
||||
./b2 install
|
||||
export BOOST_ROOT=/path/to/library/own/
|
||||
```
|
||||
|
||||
Don't forget to add the export BOOST_ROOT statement to .bashrc or wherever it is meant to be.
|
||||
|
||||
### libxlswriter
|
||||
|
||||
```bash
|
||||
cd lib/libxlsxwriter
|
||||
make
|
||||
make install DESTDIR=/home/rmontanana/Code PREFIX=
|
||||
```
|
||||
|
||||
Environment variable has to be set:
|
||||
|
||||
```bash
|
||||
export LD_LIBRARY_PATH=/usr/local/lib
|
||||
```
|
||||
Bayesian Network Classifiers using libtorch from scratch
|
||||
|
||||
### Release
|
||||
|
||||
```bash
|
||||
make release
|
||||
make buildr
|
||||
```
|
||||
|
||||
### Debug & Tests
|
||||
|
||||
```bash
|
||||
make debug
|
||||
make test
|
||||
make coverage
|
||||
```
|
||||
|
||||
## 1. Introduction
|
||||
|
@ -11,3 +11,4 @@ static constexpr std::string_view project_name = "@PROJECT_NAME@";
|
||||
static constexpr std::string_view project_version = "@PROJECT_VERSION@";
|
||||
static constexpr std::string_view project_description = "@PROJECT_DESCRIPTION@";
|
||||
static constexpr std::string_view git_sha = "@GIT_SHA@";
|
||||
static constexpr std::string_view data_path = "@BayesNet_SOURCE_DIR@/tests/data/";
|
@ -1,25 +0,0 @@
|
||||
Type Si
|
||||
Type Fe
|
||||
Type RI
|
||||
Type Na
|
||||
Type Ba
|
||||
Type Ca
|
||||
Type Al
|
||||
Type K
|
||||
Type Mg
|
||||
Fe RI
|
||||
Fe Ba
|
||||
Fe Ca
|
||||
RI Na
|
||||
RI Ba
|
||||
RI Ca
|
||||
RI Al
|
||||
RI K
|
||||
RI Mg
|
||||
Ba Ca
|
||||
Ba Al
|
||||
Ca Al
|
||||
Ca K
|
||||
Ca Mg
|
||||
Al K
|
||||
K Mg
|
@ -1,645 +0,0 @@
|
||||
class att215
|
||||
class att25
|
||||
class att131
|
||||
class att95
|
||||
class att122
|
||||
class att17
|
||||
class att28
|
||||
class att5
|
||||
class att121
|
||||
class att214
|
||||
class att197
|
||||
class att116
|
||||
class att182
|
||||
class att60
|
||||
class att168
|
||||
class att178
|
||||
class att206
|
||||
class att89
|
||||
class att77
|
||||
class att209
|
||||
class att73
|
||||
class att126
|
||||
class att16
|
||||
class att74
|
||||
class att27
|
||||
class att61
|
||||
class att20
|
||||
class att101
|
||||
class att85
|
||||
class att76
|
||||
class att137
|
||||
class att211
|
||||
class att143
|
||||
class att14
|
||||
class att40
|
||||
class att210
|
||||
class att155
|
||||
class att170
|
||||
class att160
|
||||
class att23
|
||||
class att162
|
||||
class att203
|
||||
class att164
|
||||
class att107
|
||||
class att62
|
||||
class att42
|
||||
class att71
|
||||
class att128
|
||||
class att138
|
||||
class att83
|
||||
class att171
|
||||
class att92
|
||||
class att163
|
||||
class att49
|
||||
class att161
|
||||
class att158
|
||||
class att176
|
||||
class att11
|
||||
class att145
|
||||
class att4
|
||||
class att172
|
||||
class att196
|
||||
class att58
|
||||
class att68
|
||||
class att169
|
||||
class att80
|
||||
class att32
|
||||
class att175
|
||||
class att87
|
||||
class att88
|
||||
class att159
|
||||
class att18
|
||||
class att52
|
||||
class att98
|
||||
class att136
|
||||
class att150
|
||||
class att156
|
||||
class att110
|
||||
class att100
|
||||
class att63
|
||||
class att148
|
||||
class att90
|
||||
class att167
|
||||
class att35
|
||||
class att205
|
||||
class att51
|
||||
class att21
|
||||
class att142
|
||||
class att46
|
||||
class att134
|
||||
class att39
|
||||
class att102
|
||||
class att208
|
||||
class att130
|
||||
class att149
|
||||
class att96
|
||||
class att75
|
||||
class att118
|
||||
class att78
|
||||
class att213
|
||||
class att112
|
||||
class att38
|
||||
class att174
|
||||
class att189
|
||||
class att70
|
||||
class att179
|
||||
class att59
|
||||
class att79
|
||||
class att15
|
||||
class att47
|
||||
class att124
|
||||
class att34
|
||||
class att54
|
||||
class att191
|
||||
class att86
|
||||
class att56
|
||||
class att151
|
||||
class att66
|
||||
class att173
|
||||
class att44
|
||||
class att198
|
||||
class att139
|
||||
class att216
|
||||
class att129
|
||||
class att152
|
||||
class att69
|
||||
class att81
|
||||
class att50
|
||||
class att153
|
||||
class att41
|
||||
class att204
|
||||
class att188
|
||||
class att26
|
||||
class att13
|
||||
class att117
|
||||
class att114
|
||||
class att10
|
||||
class att64
|
||||
class att200
|
||||
class att9
|
||||
class att3
|
||||
class att119
|
||||
class att45
|
||||
class att104
|
||||
class att140
|
||||
class att30
|
||||
class att183
|
||||
class att146
|
||||
class att141
|
||||
class att202
|
||||
class att194
|
||||
class att24
|
||||
class att147
|
||||
class att8
|
||||
class att212
|
||||
class att123
|
||||
class att166
|
||||
class att187
|
||||
class att127
|
||||
class att190
|
||||
class att105
|
||||
class att106
|
||||
class att184
|
||||
class att82
|
||||
class att2
|
||||
class att135
|
||||
class att154
|
||||
class att111
|
||||
class att115
|
||||
class att99
|
||||
class att22
|
||||
class att84
|
||||
class att207
|
||||
class att94
|
||||
class att177
|
||||
class att103
|
||||
class att93
|
||||
class att201
|
||||
class att43
|
||||
class att36
|
||||
class att12
|
||||
class att125
|
||||
class att165
|
||||
class att180
|
||||
class att195
|
||||
class att157
|
||||
class att48
|
||||
class att6
|
||||
class att113
|
||||
class att193
|
||||
class att91
|
||||
class att72
|
||||
class att31
|
||||
class att132
|
||||
class att33
|
||||
class att57
|
||||
class att144
|
||||
class att192
|
||||
class att185
|
||||
class att37
|
||||
class att53
|
||||
class att120
|
||||
class att186
|
||||
class att199
|
||||
class att65
|
||||
class att108
|
||||
class att133
|
||||
class att29
|
||||
class att19
|
||||
class att7
|
||||
class att97
|
||||
class att67
|
||||
class att55
|
||||
class att1
|
||||
class att109
|
||||
class att181
|
||||
att215 att25
|
||||
att215 att131
|
||||
att215 att95
|
||||
att25 att131
|
||||
att25 att121
|
||||
att25 att73
|
||||
att25 att61
|
||||
att25 att85
|
||||
att25 att169
|
||||
att25 att13
|
||||
att131 att95
|
||||
att131 att122
|
||||
att131 att17
|
||||
att131 att28
|
||||
att131 att121
|
||||
att131 att214
|
||||
att131 att116
|
||||
att131 att126
|
||||
att131 att143
|
||||
att95 att122
|
||||
att95 att17
|
||||
att95 att28
|
||||
att95 att5
|
||||
att95 att214
|
||||
att95 att116
|
||||
att95 att60
|
||||
att95 att143
|
||||
att95 att155
|
||||
att95 att71
|
||||
att122 att182
|
||||
att122 att170
|
||||
att17 att5
|
||||
att17 att197
|
||||
att17 att89
|
||||
att17 att77
|
||||
att17 att161
|
||||
att28 att206
|
||||
att28 att16
|
||||
att28 att76
|
||||
att28 att172
|
||||
att28 att124
|
||||
att28 att64
|
||||
att5 att197
|
||||
att5 att89
|
||||
att5 att209
|
||||
att121 att73
|
||||
att214 att178
|
||||
att214 att58
|
||||
att214 att142
|
||||
att197 att209
|
||||
att197 att101
|
||||
att116 att182
|
||||
att116 att60
|
||||
att116 att168
|
||||
att116 att178
|
||||
att116 att206
|
||||
att116 att126
|
||||
att116 att16
|
||||
att116 att27
|
||||
att116 att20
|
||||
att116 att211
|
||||
att116 att164
|
||||
att116 att128
|
||||
att182 att27
|
||||
att182 att14
|
||||
att60 att168
|
||||
att60 att156
|
||||
att168 att156
|
||||
att168 att96
|
||||
att178 att20
|
||||
att178 att58
|
||||
att178 att142
|
||||
att178 att130
|
||||
att206 att74
|
||||
att206 att170
|
||||
att206 att158
|
||||
att89 att77
|
||||
att89 att137
|
||||
att89 att149
|
||||
att89 att173
|
||||
att77 att137
|
||||
att77 att161
|
||||
att209 att101
|
||||
att209 att41
|
||||
att73 att61
|
||||
att73 att157
|
||||
att126 att162
|
||||
att126 att138
|
||||
att126 att150
|
||||
att16 att74
|
||||
att16 att76
|
||||
att16 att40
|
||||
att16 att4
|
||||
att74 att14
|
||||
att74 att62
|
||||
att27 att171
|
||||
att61 att85
|
||||
att61 att169
|
||||
att20 att211
|
||||
att20 att210
|
||||
att20 att164
|
||||
att20 att176
|
||||
att101 att41
|
||||
att85 att13
|
||||
att76 att40
|
||||
att76 att160
|
||||
att137 att149
|
||||
att211 att210
|
||||
att211 att162
|
||||
att211 att171
|
||||
att211 att163
|
||||
att211 att175
|
||||
att211 att79
|
||||
att143 att155
|
||||
att143 att23
|
||||
att143 att71
|
||||
att143 att83
|
||||
att143 att11
|
||||
att14 att98
|
||||
att40 att160
|
||||
att40 att4
|
||||
att40 att196
|
||||
att40 att52
|
||||
att210 att42
|
||||
att210 att114
|
||||
att155 att23
|
||||
att155 att203
|
||||
att155 att107
|
||||
att155 att11
|
||||
att170 att158
|
||||
att160 att52
|
||||
att23 att203
|
||||
att162 att138
|
||||
att162 att18
|
||||
att162 att150
|
||||
att162 att90
|
||||
att162 att174
|
||||
att203 att107
|
||||
att203 att49
|
||||
att203 att59
|
||||
att203 att191
|
||||
att203 att119
|
||||
att164 att62
|
||||
att164 att42
|
||||
att164 att128
|
||||
att164 att92
|
||||
att164 att163
|
||||
att164 att176
|
||||
att164 att145
|
||||
att164 att68
|
||||
att164 att80
|
||||
att164 att98
|
||||
att164 att110
|
||||
att164 att205
|
||||
att164 att21
|
||||
att164 att213
|
||||
att164 att112
|
||||
att164 att38
|
||||
att164 att56
|
||||
att164 att44
|
||||
att107 att59
|
||||
att107 att47
|
||||
att107 att191
|
||||
att71 att83
|
||||
att71 att167
|
||||
att71 att35
|
||||
att128 att92
|
||||
att138 att18
|
||||
att83 att167
|
||||
att171 att87
|
||||
att171 att159
|
||||
att171 att63
|
||||
att171 att51
|
||||
att171 att39
|
||||
att171 att75
|
||||
att163 att49
|
||||
att163 att175
|
||||
att163 att87
|
||||
att163 att79
|
||||
att163 att151
|
||||
att163 att139
|
||||
att163 att187
|
||||
att163 att91
|
||||
att161 att173
|
||||
att176 att145
|
||||
att176 att172
|
||||
att176 att68
|
||||
att176 att80
|
||||
att176 att32
|
||||
att176 att110
|
||||
att176 att205
|
||||
att176 att21
|
||||
att176 att134
|
||||
att176 att56
|
||||
att4 att196
|
||||
att4 att88
|
||||
att4 att136
|
||||
att4 att100
|
||||
att4 att148
|
||||
att4 att208
|
||||
att172 att112
|
||||
att172 att184
|
||||
att196 att88
|
||||
att196 att136
|
||||
att196 att100
|
||||
att196 att208
|
||||
att58 att46
|
||||
att68 att32
|
||||
att32 att200
|
||||
att87 att159
|
||||
att87 att63
|
||||
att87 att75
|
||||
att87 att15
|
||||
att87 att99
|
||||
att159 att195
|
||||
att18 att90
|
||||
att18 att102
|
||||
att18 att78
|
||||
att18 att198
|
||||
att52 att124
|
||||
att98 att86
|
||||
att150 att174
|
||||
att150 att66
|
||||
att156 att96
|
||||
att156 att216
|
||||
att156 att204
|
||||
att156 att24
|
||||
att156 att84
|
||||
att100 att148
|
||||
att63 att51
|
||||
att63 att3
|
||||
att63 att183
|
||||
att90 att102
|
||||
att90 att78
|
||||
att167 att35
|
||||
att167 att179
|
||||
att35 att179
|
||||
att51 att39
|
||||
att51 att3
|
||||
att21 att134
|
||||
att21 att213
|
||||
att21 att38
|
||||
att21 att189
|
||||
att21 att129
|
||||
att21 att81
|
||||
att21 att117
|
||||
att21 att9
|
||||
att142 att46
|
||||
att142 att130
|
||||
att142 att118
|
||||
att142 att10
|
||||
att142 att202
|
||||
att142 att190
|
||||
att142 att106
|
||||
att46 att70
|
||||
att46 att34
|
||||
att46 att166
|
||||
att134 att2
|
||||
att102 att54
|
||||
att130 att118
|
||||
att130 att10
|
||||
att130 att202
|
||||
att149 att125
|
||||
att96 att216
|
||||
att96 att24
|
||||
att75 att15
|
||||
att75 att99
|
||||
att118 att70
|
||||
att78 att198
|
||||
att213 att189
|
||||
att38 att50
|
||||
att38 att26
|
||||
att174 att54
|
||||
att174 att66
|
||||
att174 att30
|
||||
att189 att86
|
||||
att189 att129
|
||||
att189 att69
|
||||
att189 att81
|
||||
att189 att153
|
||||
att189 att117
|
||||
att189 att9
|
||||
att189 att45
|
||||
att189 att105
|
||||
att70 att34
|
||||
att59 att47
|
||||
att79 att151
|
||||
att79 att139
|
||||
att79 att187
|
||||
att79 att127
|
||||
att79 att103
|
||||
att79 att43
|
||||
att79 att91
|
||||
att79 att19
|
||||
att124 att64
|
||||
att54 att114
|
||||
att54 att30
|
||||
att191 att119
|
||||
att86 att194
|
||||
att56 att44
|
||||
att56 att152
|
||||
att56 att50
|
||||
att56 att188
|
||||
att56 att26
|
||||
att56 att104
|
||||
att56 att140
|
||||
att56 att146
|
||||
att56 att194
|
||||
att56 att8
|
||||
att56 att2
|
||||
att56 att133
|
||||
att56 att1
|
||||
att173 att125
|
||||
att173 att113
|
||||
att44 att152
|
||||
att44 att188
|
||||
att44 att200
|
||||
att44 att212
|
||||
att44 att1
|
||||
att139 att103
|
||||
att139 att43
|
||||
att139 att31
|
||||
att139 att199
|
||||
att139 att7
|
||||
att216 att204
|
||||
att216 att36
|
||||
att216 att12
|
||||
att216 att180
|
||||
att216 att108
|
||||
att129 att69
|
||||
att152 att140
|
||||
att69 att153
|
||||
att81 att45
|
||||
att153 att141
|
||||
att41 att53
|
||||
att204 att12
|
||||
att13 att157
|
||||
att114 att6
|
||||
att114 att186
|
||||
att10 att190
|
||||
att64 att184
|
||||
att200 att104
|
||||
att9 att146
|
||||
att9 att141
|
||||
att9 att177
|
||||
att9 att37
|
||||
att9 att133
|
||||
att9 att109
|
||||
att9 att181
|
||||
att3 att183
|
||||
att3 att147
|
||||
att3 att123
|
||||
att3 att135
|
||||
att3 att111
|
||||
att45 att105
|
||||
att45 att177
|
||||
att45 att93
|
||||
att45 att201
|
||||
att45 att193
|
||||
att45 att37
|
||||
att45 att97
|
||||
att140 att8
|
||||
att30 att6
|
||||
att183 att147
|
||||
att183 att123
|
||||
att202 att166
|
||||
att202 att106
|
||||
att202 att82
|
||||
att24 att84
|
||||
att24 att36
|
||||
att147 att135
|
||||
att8 att212
|
||||
att166 att82
|
||||
att187 att127
|
||||
att187 att115
|
||||
att127 att115
|
||||
att105 att93
|
||||
att106 att154
|
||||
att82 att154
|
||||
att82 att22
|
||||
att135 att111
|
||||
att135 att207
|
||||
att154 att22
|
||||
att154 att94
|
||||
att111 att207
|
||||
att22 att94
|
||||
att84 att48
|
||||
att177 att165
|
||||
att103 att195
|
||||
att103 att109
|
||||
att93 att201
|
||||
att93 att165
|
||||
att93 att193
|
||||
att93 att33
|
||||
att201 att33
|
||||
att201 att57
|
||||
att36 att180
|
||||
att36 att72
|
||||
att36 att132
|
||||
att36 att144
|
||||
att125 att113
|
||||
att125 att185
|
||||
att125 att65
|
||||
att125 att29
|
||||
att180 att48
|
||||
att180 att72
|
||||
att180 att192
|
||||
att180 att108
|
||||
att6 att186
|
||||
att113 att185
|
||||
att113 att53
|
||||
att193 att97
|
||||
att91 att31
|
||||
att91 att19
|
||||
att72 att132
|
||||
att72 att192
|
||||
att31 att199
|
||||
att31 att67
|
||||
att132 att144
|
||||
att132 att120
|
||||
att33 att57
|
||||
att144 att120
|
||||
att185 att65
|
||||
att199 att7
|
||||
att199 att67
|
||||
att199 att55
|
||||
att65 att29
|
||||
att67 att55
|
||||
att109 att181
|
@ -1,859 +0,0 @@
|
||||
class att215
|
||||
class att25
|
||||
class att131
|
||||
class att95
|
||||
class att122
|
||||
class att17
|
||||
class att28
|
||||
class att5
|
||||
class att121
|
||||
class att214
|
||||
class att197
|
||||
class att116
|
||||
class att182
|
||||
class att60
|
||||
class att168
|
||||
class att178
|
||||
class att206
|
||||
class att89
|
||||
class att77
|
||||
class att209
|
||||
class att73
|
||||
class att126
|
||||
class att16
|
||||
class att74
|
||||
class att27
|
||||
class att61
|
||||
class att20
|
||||
class att101
|
||||
class att85
|
||||
class att76
|
||||
class att137
|
||||
class att211
|
||||
class att143
|
||||
class att14
|
||||
class att40
|
||||
class att210
|
||||
class att155
|
||||
class att170
|
||||
class att160
|
||||
class att23
|
||||
class att162
|
||||
class att203
|
||||
class att164
|
||||
class att107
|
||||
class att62
|
||||
class att42
|
||||
class att71
|
||||
class att128
|
||||
class att138
|
||||
class att83
|
||||
class att171
|
||||
class att92
|
||||
class att163
|
||||
class att49
|
||||
class att161
|
||||
class att158
|
||||
class att176
|
||||
class att11
|
||||
class att145
|
||||
class att4
|
||||
class att172
|
||||
class att196
|
||||
class att58
|
||||
class att68
|
||||
class att169
|
||||
class att80
|
||||
class att32
|
||||
class att175
|
||||
class att87
|
||||
class att88
|
||||
class att159
|
||||
class att18
|
||||
class att52
|
||||
class att98
|
||||
class att136
|
||||
class att150
|
||||
class att156
|
||||
class att110
|
||||
class att100
|
||||
class att63
|
||||
class att148
|
||||
class att90
|
||||
class att167
|
||||
class att35
|
||||
class att205
|
||||
class att51
|
||||
class att21
|
||||
class att142
|
||||
class att46
|
||||
class att134
|
||||
class att39
|
||||
class att102
|
||||
class att208
|
||||
class att130
|
||||
class att149
|
||||
class att96
|
||||
class att75
|
||||
class att118
|
||||
class att78
|
||||
class att213
|
||||
class att112
|
||||
class att38
|
||||
class att174
|
||||
class att189
|
||||
class att70
|
||||
class att179
|
||||
class att59
|
||||
class att79
|
||||
class att15
|
||||
class att47
|
||||
class att124
|
||||
class att34
|
||||
class att54
|
||||
class att191
|
||||
class att86
|
||||
class att56
|
||||
class att151
|
||||
class att66
|
||||
class att173
|
||||
class att44
|
||||
class att198
|
||||
class att139
|
||||
class att216
|
||||
class att129
|
||||
class att152
|
||||
class att69
|
||||
class att81
|
||||
class att50
|
||||
class att153
|
||||
class att41
|
||||
class att204
|
||||
class att188
|
||||
class att26
|
||||
class att13
|
||||
class att117
|
||||
class att114
|
||||
class att10
|
||||
class att64
|
||||
class att200
|
||||
class att9
|
||||
class att3
|
||||
class att119
|
||||
class att45
|
||||
class att104
|
||||
class att140
|
||||
class att30
|
||||
class att183
|
||||
class att146
|
||||
class att141
|
||||
class att202
|
||||
class att194
|
||||
class att24
|
||||
class att147
|
||||
class att8
|
||||
class att212
|
||||
class att123
|
||||
class att166
|
||||
class att187
|
||||
class att127
|
||||
class att190
|
||||
class att105
|
||||
class att106
|
||||
class att184
|
||||
class att82
|
||||
class att2
|
||||
class att135
|
||||
class att154
|
||||
class att111
|
||||
class att115
|
||||
class att99
|
||||
class att22
|
||||
class att84
|
||||
class att207
|
||||
class att94
|
||||
class att177
|
||||
class att103
|
||||
class att93
|
||||
class att201
|
||||
class att43
|
||||
class att36
|
||||
class att12
|
||||
class att125
|
||||
class att165
|
||||
class att180
|
||||
class att195
|
||||
class att157
|
||||
class att48
|
||||
class att6
|
||||
class att113
|
||||
class att193
|
||||
class att91
|
||||
class att72
|
||||
class att31
|
||||
class att132
|
||||
class att33
|
||||
class att57
|
||||
class att144
|
||||
class att192
|
||||
class att185
|
||||
class att37
|
||||
class att53
|
||||
class att120
|
||||
class att186
|
||||
class att199
|
||||
class att65
|
||||
class att108
|
||||
class att133
|
||||
class att29
|
||||
class att19
|
||||
class att7
|
||||
class att97
|
||||
class att67
|
||||
class att55
|
||||
class att1
|
||||
class att109
|
||||
class att181
|
||||
att215 att25
|
||||
att215 att131
|
||||
att215 att95
|
||||
att215 att17
|
||||
att215 att214
|
||||
att215 att143
|
||||
att25 att131
|
||||
att25 att95
|
||||
att25 att122
|
||||
att25 att121
|
||||
att25 att73
|
||||
att25 att61
|
||||
att25 att85
|
||||
att25 att169
|
||||
att25 att13
|
||||
att25 att157
|
||||
att131 att95
|
||||
att131 att122
|
||||
att131 att17
|
||||
att131 att28
|
||||
att131 att5
|
||||
att131 att121
|
||||
att131 att214
|
||||
att131 att116
|
||||
att131 att182
|
||||
att131 att60
|
||||
att131 att126
|
||||
att131 att16
|
||||
att131 att27
|
||||
att131 att20
|
||||
att131 att143
|
||||
att131 att155
|
||||
att95 att122
|
||||
att95 att17
|
||||
att95 att28
|
||||
att95 att5
|
||||
att95 att121
|
||||
att95 att214
|
||||
att95 att197
|
||||
att95 att116
|
||||
att95 att60
|
||||
att95 att168
|
||||
att95 att178
|
||||
att95 att143
|
||||
att95 att155
|
||||
att95 att23
|
||||
att95 att71
|
||||
att95 att167
|
||||
att122 att28
|
||||
att122 att182
|
||||
att122 att170
|
||||
att17 att5
|
||||
att17 att197
|
||||
att17 att89
|
||||
att17 att77
|
||||
att17 att209
|
||||
att17 att137
|
||||
att17 att161
|
||||
att17 att41
|
||||
att28 att206
|
||||
att28 att16
|
||||
att28 att76
|
||||
att28 att40
|
||||
att28 att210
|
||||
att28 att160
|
||||
att28 att172
|
||||
att28 att124
|
||||
att28 att64
|
||||
att5 att197
|
||||
att5 att89
|
||||
att5 att77
|
||||
att5 att209
|
||||
att5 att101
|
||||
att121 att73
|
||||
att121 att61
|
||||
att214 att116
|
||||
att214 att178
|
||||
att214 att206
|
||||
att214 att58
|
||||
att214 att142
|
||||
att214 att46
|
||||
att197 att89
|
||||
att197 att209
|
||||
att197 att101
|
||||
att116 att182
|
||||
att116 att60
|
||||
att116 att168
|
||||
att116 att178
|
||||
att116 att206
|
||||
att116 att73
|
||||
att116 att126
|
||||
att116 att16
|
||||
att116 att74
|
||||
att116 att27
|
||||
att116 att20
|
||||
att116 att211
|
||||
att116 att164
|
||||
att116 att128
|
||||
att116 att92
|
||||
att116 att176
|
||||
att116 att68
|
||||
att182 att27
|
||||
att182 att14
|
||||
att60 att168
|
||||
att60 att156
|
||||
att60 att96
|
||||
att168 att126
|
||||
att168 att156
|
||||
att168 att96
|
||||
att168 att216
|
||||
att178 att20
|
||||
att178 att211
|
||||
att178 att58
|
||||
att178 att142
|
||||
att178 att130
|
||||
att178 att166
|
||||
att206 att74
|
||||
att206 att170
|
||||
att206 att158
|
||||
att89 att77
|
||||
att89 att137
|
||||
att89 att149
|
||||
att89 att173
|
||||
att77 att137
|
||||
att77 att161
|
||||
att77 att149
|
||||
att209 att101
|
||||
att209 att41
|
||||
att73 att61
|
||||
att73 att85
|
||||
att73 att13
|
||||
att73 att157
|
||||
att126 att162
|
||||
att126 att138
|
||||
att126 att18
|
||||
att126 att150
|
||||
att16 att74
|
||||
att16 att76
|
||||
att16 att40
|
||||
att16 att4
|
||||
att16 att196
|
||||
att16 att136
|
||||
att74 att14
|
||||
att74 att62
|
||||
att27 att171
|
||||
att27 att63
|
||||
att61 att85
|
||||
att61 att169
|
||||
att20 att76
|
||||
att20 att211
|
||||
att20 att210
|
||||
att20 att170
|
||||
att20 att164
|
||||
att20 att128
|
||||
att20 att176
|
||||
att20 att80
|
||||
att101 att41
|
||||
att85 att169
|
||||
att85 att13
|
||||
att76 att14
|
||||
att76 att40
|
||||
att76 att160
|
||||
att76 att4
|
||||
att76 att52
|
||||
att137 att161
|
||||
att137 att149
|
||||
att137 att173
|
||||
att137 att125
|
||||
att211 att210
|
||||
att211 att162
|
||||
att211 att164
|
||||
att211 att62
|
||||
att211 att42
|
||||
att211 att171
|
||||
att211 att163
|
||||
att211 att175
|
||||
att211 att79
|
||||
att211 att151
|
||||
att211 att43
|
||||
att143 att155
|
||||
att143 att23
|
||||
att143 att203
|
||||
att143 att71
|
||||
att143 att83
|
||||
att143 att11
|
||||
att14 att98
|
||||
att40 att160
|
||||
att40 att4
|
||||
att40 att196
|
||||
att40 att88
|
||||
att40 att52
|
||||
att210 att162
|
||||
att210 att42
|
||||
att210 att114
|
||||
att155 att23
|
||||
att155 att203
|
||||
att155 att107
|
||||
att155 att11
|
||||
att170 att158
|
||||
att160 att52
|
||||
att160 att124
|
||||
att23 att203
|
||||
att23 att107
|
||||
att23 att71
|
||||
att23 att11
|
||||
att162 att138
|
||||
att162 att18
|
||||
att162 att150
|
||||
att162 att90
|
||||
att162 att102
|
||||
att162 att174
|
||||
att162 att66
|
||||
att203 att107
|
||||
att203 att49
|
||||
att203 att59
|
||||
att203 att47
|
||||
att203 att191
|
||||
att203 att119
|
||||
att164 att62
|
||||
att164 att42
|
||||
att164 att128
|
||||
att164 att171
|
||||
att164 att92
|
||||
att164 att163
|
||||
att164 att158
|
||||
att164 att176
|
||||
att164 att145
|
||||
att164 att172
|
||||
att164 att58
|
||||
att164 att68
|
||||
att164 att80
|
||||
att164 att32
|
||||
att164 att98
|
||||
att164 att156
|
||||
att164 att110
|
||||
att164 att205
|
||||
att164 att21
|
||||
att164 att134
|
||||
att164 att213
|
||||
att164 att112
|
||||
att164 att38
|
||||
att164 att189
|
||||
att164 att56
|
||||
att164 att44
|
||||
att164 att152
|
||||
att164 att8
|
||||
att107 att83
|
||||
att107 att49
|
||||
att107 att59
|
||||
att107 att47
|
||||
att107 att191
|
||||
att42 att138
|
||||
att42 att54
|
||||
att42 att114
|
||||
att71 att83
|
||||
att71 att167
|
||||
att71 att35
|
||||
att71 att179
|
||||
att128 att92
|
||||
att128 att112
|
||||
att138 att18
|
||||
att138 att150
|
||||
att83 att167
|
||||
att83 att35
|
||||
att171 att87
|
||||
att171 att159
|
||||
att171 att63
|
||||
att171 att51
|
||||
att171 att39
|
||||
att171 att75
|
||||
att92 att163
|
||||
att92 att145
|
||||
att92 att56
|
||||
att163 att49
|
||||
att163 att175
|
||||
att163 att87
|
||||
att163 att79
|
||||
att163 att151
|
||||
att163 att139
|
||||
att163 att187
|
||||
att163 att127
|
||||
att163 att103
|
||||
att163 att91
|
||||
att49 att37
|
||||
att161 att173
|
||||
att161 att113
|
||||
att176 att145
|
||||
att176 att172
|
||||
att176 att68
|
||||
att176 att80
|
||||
att176 att32
|
||||
att176 att175
|
||||
att176 att98
|
||||
att176 att110
|
||||
att176 att205
|
||||
att176 att21
|
||||
att176 att134
|
||||
att176 att213
|
||||
att176 att56
|
||||
att4 att196
|
||||
att4 att88
|
||||
att4 att136
|
||||
att4 att100
|
||||
att4 att148
|
||||
att4 att208
|
||||
att172 att112
|
||||
att172 att184
|
||||
att196 att88
|
||||
att196 att136
|
||||
att196 att100
|
||||
att196 att148
|
||||
att196 att208
|
||||
att58 att142
|
||||
att58 att46
|
||||
att58 att34
|
||||
att68 att32
|
||||
att80 att38
|
||||
att32 att110
|
||||
att32 att21
|
||||
att32 att44
|
||||
att32 att200
|
||||
att175 att87
|
||||
att175 att159
|
||||
att175 att79
|
||||
att175 att187
|
||||
att175 att115
|
||||
att87 att159
|
||||
att87 att63
|
||||
att87 att51
|
||||
att87 att75
|
||||
att87 att15
|
||||
att87 att99
|
||||
att159 att75
|
||||
att159 att15
|
||||
att159 att195
|
||||
att18 att90
|
||||
att18 att102
|
||||
att18 att78
|
||||
att18 att198
|
||||
att52 att124
|
||||
att52 att64
|
||||
att98 att86
|
||||
att136 att100
|
||||
att136 att208
|
||||
att150 att90
|
||||
att150 att174
|
||||
att150 att66
|
||||
att156 att205
|
||||
att156 att96
|
||||
att156 att216
|
||||
att156 att204
|
||||
att156 att24
|
||||
att156 att84
|
||||
att156 att36
|
||||
att156 att12
|
||||
att156 att108
|
||||
att100 att148
|
||||
att63 att51
|
||||
att63 att39
|
||||
att63 att3
|
||||
att63 att183
|
||||
att63 att147
|
||||
att90 att102
|
||||
att90 att78
|
||||
att167 att35
|
||||
att167 att179
|
||||
att35 att179
|
||||
att51 att39
|
||||
att51 att3
|
||||
att51 att183
|
||||
att21 att134
|
||||
att21 att213
|
||||
att21 att38
|
||||
att21 att189
|
||||
att21 att129
|
||||
att21 att81
|
||||
att21 att153
|
||||
att21 att117
|
||||
att21 att9
|
||||
att142 att46
|
||||
att142 att130
|
||||
att142 att118
|
||||
att142 att70
|
||||
att142 att10
|
||||
att142 att202
|
||||
att142 att190
|
||||
att142 att106
|
||||
att46 att130
|
||||
att46 att118
|
||||
att46 att70
|
||||
att46 att34
|
||||
att46 att166
|
||||
att46 att82
|
||||
att134 att2
|
||||
att39 att3
|
||||
att102 att78
|
||||
att102 att174
|
||||
att102 att54
|
||||
att102 att198
|
||||
att130 att118
|
||||
att130 att10
|
||||
att130 att202
|
||||
att130 att190
|
||||
att130 att106
|
||||
att149 att125
|
||||
att96 att216
|
||||
att96 att204
|
||||
att96 att24
|
||||
att75 att15
|
||||
att75 att99
|
||||
att118 att70
|
||||
att118 att10
|
||||
att118 att202
|
||||
att78 att198
|
||||
att213 att189
|
||||
att213 att129
|
||||
att213 att69
|
||||
att213 att81
|
||||
att38 att50
|
||||
att38 att26
|
||||
att174 att54
|
||||
att174 att66
|
||||
att174 att30
|
||||
att189 att86
|
||||
att189 att129
|
||||
att189 att69
|
||||
att189 att81
|
||||
att189 att153
|
||||
att189 att117
|
||||
att189 att9
|
||||
att189 att45
|
||||
att189 att141
|
||||
att189 att105
|
||||
att70 att34
|
||||
att70 att154
|
||||
att179 att59
|
||||
att59 att47
|
||||
att59 att191
|
||||
att59 att119
|
||||
att79 att86
|
||||
att79 att151
|
||||
att79 att139
|
||||
att79 att187
|
||||
att79 att127
|
||||
att79 att103
|
||||
att79 att43
|
||||
att79 att193
|
||||
att79 att91
|
||||
att79 att19
|
||||
att124 att64
|
||||
att54 att114
|
||||
att54 att30
|
||||
att54 att6
|
||||
att191 att119
|
||||
att86 att194
|
||||
att56 att44
|
||||
att56 att152
|
||||
att56 att50
|
||||
att56 att188
|
||||
att56 att26
|
||||
att56 att200
|
||||
att56 att104
|
||||
att56 att140
|
||||
att56 att146
|
||||
att56 att194
|
||||
att56 att8
|
||||
att56 att2
|
||||
att56 att133
|
||||
att56 att1
|
||||
att151 att139
|
||||
att66 att30
|
||||
att173 att125
|
||||
att173 att113
|
||||
att173 att185
|
||||
att44 att152
|
||||
att44 att50
|
||||
att44 att188
|
||||
att44 att200
|
||||
att44 att104
|
||||
att44 att140
|
||||
att44 att194
|
||||
att44 att212
|
||||
att44 att1
|
||||
att139 att26
|
||||
att139 att99
|
||||
att139 att103
|
||||
att139 att43
|
||||
att139 att91
|
||||
att139 att31
|
||||
att139 att199
|
||||
att139 att7
|
||||
att216 att204
|
||||
att216 att24
|
||||
att216 att84
|
||||
att216 att36
|
||||
att216 att12
|
||||
att216 att180
|
||||
att216 att108
|
||||
att129 att69
|
||||
att152 att188
|
||||
att152 att140
|
||||
att69 att153
|
||||
att69 att9
|
||||
att69 att177
|
||||
att81 att45
|
||||
att81 att105
|
||||
att153 att117
|
||||
att153 att141
|
||||
att41 att53
|
||||
att204 att12
|
||||
att204 att180
|
||||
att188 att146
|
||||
att188 att212
|
||||
att13 att157
|
||||
att114 att6
|
||||
att114 att186
|
||||
att10 att190
|
||||
att64 att184
|
||||
att200 att104
|
||||
att9 att45
|
||||
att9 att146
|
||||
att9 att141
|
||||
att9 att177
|
||||
att9 att37
|
||||
att9 att133
|
||||
att9 att109
|
||||
att9 att181
|
||||
att3 att183
|
||||
att3 att147
|
||||
att3 att123
|
||||
att3 att135
|
||||
att3 att111
|
||||
att45 att105
|
||||
att45 att177
|
||||
att45 att93
|
||||
att45 att201
|
||||
att45 att165
|
||||
att45 att193
|
||||
att45 att33
|
||||
att45 att37
|
||||
att45 att133
|
||||
att45 att97
|
||||
att140 att8
|
||||
att30 att6
|
||||
att30 att186
|
||||
att183 att147
|
||||
att183 att123
|
||||
att183 att135
|
||||
att146 att2
|
||||
att202 att166
|
||||
att202 att106
|
||||
att202 att82
|
||||
att24 att84
|
||||
att24 att36
|
||||
att24 att132
|
||||
att147 att123
|
||||
att147 att135
|
||||
att147 att111
|
||||
att147 att207
|
||||
att8 att212
|
||||
att166 att82
|
||||
att166 att22
|
||||
att166 att94
|
||||
att187 att127
|
||||
att187 att115
|
||||
att127 att115
|
||||
att105 att184
|
||||
att105 att93
|
||||
att105 att201
|
||||
att106 att154
|
||||
att82 att154
|
||||
att82 att22
|
||||
att135 att111
|
||||
att135 att207
|
||||
att154 att22
|
||||
att154 att94
|
||||
att111 att207
|
||||
att99 att195
|
||||
att22 att94
|
||||
att84 att48
|
||||
att177 att93
|
||||
att177 att165
|
||||
att177 att181
|
||||
att103 att195
|
||||
att103 att97
|
||||
att103 att109
|
||||
att93 att201
|
||||
att93 att165
|
||||
att93 att193
|
||||
att93 att33
|
||||
att93 att57
|
||||
att201 att33
|
||||
att201 att57
|
||||
att43 att31
|
||||
att36 att180
|
||||
att36 att48
|
||||
att36 att72
|
||||
att36 att132
|
||||
att36 att144
|
||||
att125 att113
|
||||
att125 att185
|
||||
att125 att65
|
||||
att125 att29
|
||||
att180 att48
|
||||
att180 att72
|
||||
att180 att192
|
||||
att180 att108
|
||||
att48 att72
|
||||
att6 att186
|
||||
att113 att185
|
||||
att113 att53
|
||||
att113 att65
|
||||
att193 att97
|
||||
att91 att31
|
||||
att91 att199
|
||||
att91 att19
|
||||
att72 att132
|
||||
att72 att144
|
||||
att72 att192
|
||||
att72 att120
|
||||
att31 att199
|
||||
att31 att7
|
||||
att31 att67
|
||||
att31 att55
|
||||
att31 att1
|
||||
att132 att144
|
||||
att132 att120
|
||||
att33 att57
|
||||
att144 att192
|
||||
att144 att120
|
||||
att185 att53
|
||||
att185 att65
|
||||
att185 att29
|
||||
att199 att19
|
||||
att199 att7
|
||||
att199 att67
|
||||
att199 att55
|
||||
att199 att109
|
||||
att65 att29
|
||||
att7 att67
|
||||
att67 att55
|
||||
att109 att181
|
||||
|
@ -1,859 +0,0 @@
|
||||
class att215
|
||||
class att25
|
||||
class att131
|
||||
class att95
|
||||
class att122
|
||||
class att17
|
||||
class att28
|
||||
class att5
|
||||
class att121
|
||||
class att214
|
||||
class att197
|
||||
class att116
|
||||
class att182
|
||||
class att60
|
||||
class att168
|
||||
class att178
|
||||
class att206
|
||||
class att89
|
||||
class att77
|
||||
class att209
|
||||
class att73
|
||||
class att126
|
||||
class att16
|
||||
class att74
|
||||
class att27
|
||||
class att61
|
||||
class att20
|
||||
class att101
|
||||
class att85
|
||||
class att76
|
||||
class att137
|
||||
class att211
|
||||
class att143
|
||||
class att14
|
||||
class att40
|
||||
class att210
|
||||
class att155
|
||||
class att170
|
||||
class att160
|
||||
class att23
|
||||
class att162
|
||||
class att203
|
||||
class att164
|
||||
class att107
|
||||
class att62
|
||||
class att42
|
||||
class att71
|
||||
class att128
|
||||
class att138
|
||||
class att83
|
||||
class att171
|
||||
class att92
|
||||
class att163
|
||||
class att49
|
||||
class att161
|
||||
class att158
|
||||
class att176
|
||||
class att11
|
||||
class att145
|
||||
class att4
|
||||
class att172
|
||||
class att196
|
||||
class att58
|
||||
class att68
|
||||
class att169
|
||||
class att80
|
||||
class att32
|
||||
class att175
|
||||
class att87
|
||||
class att88
|
||||
class att159
|
||||
class att18
|
||||
class att52
|
||||
class att98
|
||||
class att136
|
||||
class att150
|
||||
class att156
|
||||
class att110
|
||||
class att100
|
||||
class att63
|
||||
class att148
|
||||
class att90
|
||||
class att167
|
||||
class att35
|
||||
class att205
|
||||
class att51
|
||||
class att21
|
||||
class att142
|
||||
class att46
|
||||
class att134
|
||||
class att39
|
||||
class att102
|
||||
class att208
|
||||
class att130
|
||||
class att149
|
||||
class att96
|
||||
class att75
|
||||
class att118
|
||||
class att78
|
||||
class att213
|
||||
class att112
|
||||
class att38
|
||||
class att174
|
||||
class att189
|
||||
class att70
|
||||
class att179
|
||||
class att59
|
||||
class att79
|
||||
class att15
|
||||
class att47
|
||||
class att124
|
||||
class att34
|
||||
class att54
|
||||
class att191
|
||||
class att86
|
||||
class att56
|
||||
class att151
|
||||
class att66
|
||||
class att173
|
||||
class att44
|
||||
class att198
|
||||
class att139
|
||||
class att216
|
||||
class att129
|
||||
class att152
|
||||
class att69
|
||||
class att81
|
||||
class att50
|
||||
class att153
|
||||
class att41
|
||||
class att204
|
||||
class att188
|
||||
class att26
|
||||
class att13
|
||||
class att117
|
||||
class att114
|
||||
class att10
|
||||
class att64
|
||||
class att200
|
||||
class att9
|
||||
class att3
|
||||
class att119
|
||||
class att45
|
||||
class att104
|
||||
class att140
|
||||
class att30
|
||||
class att183
|
||||
class att146
|
||||
class att141
|
||||
class att202
|
||||
class att194
|
||||
class att24
|
||||
class att147
|
||||
class att8
|
||||
class att212
|
||||
class att123
|
||||
class att166
|
||||
class att187
|
||||
class att127
|
||||
class att190
|
||||
class att105
|
||||
class att106
|
||||
class att184
|
||||
class att82
|
||||
class att2
|
||||
class att135
|
||||
class att154
|
||||
class att111
|
||||
class att115
|
||||
class att99
|
||||
class att22
|
||||
class att84
|
||||
class att207
|
||||
class att94
|
||||
class att177
|
||||
class att103
|
||||
class att93
|
||||
class att201
|
||||
class att43
|
||||
class att36
|
||||
class att12
|
||||
class att125
|
||||
class att165
|
||||
class att180
|
||||
class att195
|
||||
class att157
|
||||
class att48
|
||||
class att6
|
||||
class att113
|
||||
class att193
|
||||
class att91
|
||||
class att72
|
||||
class att31
|
||||
class att132
|
||||
class att33
|
||||
class att57
|
||||
class att144
|
||||
class att192
|
||||
class att185
|
||||
class att37
|
||||
class att53
|
||||
class att120
|
||||
class att186
|
||||
class att199
|
||||
class att65
|
||||
class att108
|
||||
class att133
|
||||
class att29
|
||||
class att19
|
||||
class att7
|
||||
class att97
|
||||
class att67
|
||||
class att55
|
||||
class att1
|
||||
class att109
|
||||
class att181
|
||||
att215 att25
|
||||
att215 att131
|
||||
att215 att95
|
||||
att215 att17
|
||||
att215 att214
|
||||
att215 att143
|
||||
att25 att131
|
||||
att25 att95
|
||||
att25 att122
|
||||
att25 att121
|
||||
att25 att73
|
||||
att25 att61
|
||||
att25 att85
|
||||
att25 att169
|
||||
att25 att13
|
||||
att25 att157
|
||||
att131 att95
|
||||
att131 att122
|
||||
att131 att17
|
||||
att131 att28
|
||||
att131 att5
|
||||
att131 att121
|
||||
att131 att214
|
||||
att131 att116
|
||||
att131 att182
|
||||
att131 att60
|
||||
att131 att126
|
||||
att131 att16
|
||||
att131 att27
|
||||
att131 att20
|
||||
att131 att143
|
||||
att131 att155
|
||||
att95 att122
|
||||
att95 att17
|
||||
att95 att28
|
||||
att95 att5
|
||||
att95 att121
|
||||
att95 att214
|
||||
att95 att197
|
||||
att95 att116
|
||||
att95 att60
|
||||
att95 att168
|
||||
att95 att178
|
||||
att95 att143
|
||||
att95 att155
|
||||
att95 att23
|
||||
att95 att71
|
||||
att95 att167
|
||||
att122 att28
|
||||
att122 att182
|
||||
att122 att170
|
||||
att17 att5
|
||||
att17 att197
|
||||
att17 att89
|
||||
att17 att77
|
||||
att17 att209
|
||||
att17 att137
|
||||
att17 att161
|
||||
att17 att41
|
||||
att28 att206
|
||||
att28 att16
|
||||
att28 att76
|
||||
att28 att40
|
||||
att28 att210
|
||||
att28 att160
|
||||
att28 att172
|
||||
att28 att124
|
||||
att28 att64
|
||||
att5 att197
|
||||
att5 att89
|
||||
att5 att77
|
||||
att5 att209
|
||||
att5 att101
|
||||
att121 att73
|
||||
att121 att61
|
||||
att214 att116
|
||||
att214 att178
|
||||
att214 att206
|
||||
att214 att58
|
||||
att214 att142
|
||||
att214 att46
|
||||
att197 att89
|
||||
att197 att209
|
||||
att197 att101
|
||||
att116 att182
|
||||
att116 att60
|
||||
att116 att168
|
||||
att116 att178
|
||||
att116 att206
|
||||
att116 att73
|
||||
att116 att126
|
||||
att116 att16
|
||||
att116 att74
|
||||
att116 att27
|
||||
att116 att20
|
||||
att116 att211
|
||||
att116 att164
|
||||
att116 att128
|
||||
att116 att92
|
||||
att116 att176
|
||||
att116 att68
|
||||
att182 att27
|
||||
att182 att14
|
||||
att60 att168
|
||||
att60 att156
|
||||
att60 att96
|
||||
att168 att126
|
||||
att168 att156
|
||||
att168 att96
|
||||
att168 att216
|
||||
att178 att20
|
||||
att178 att211
|
||||
att178 att58
|
||||
att178 att142
|
||||
att178 att130
|
||||
att178 att166
|
||||
att206 att74
|
||||
att206 att170
|
||||
att206 att158
|
||||
att89 att77
|
||||
att89 att137
|
||||
att89 att149
|
||||
att89 att173
|
||||
att77 att137
|
||||
att77 att161
|
||||
att77 att149
|
||||
att209 att101
|
||||
att209 att41
|
||||
att73 att61
|
||||
att73 att85
|
||||
att73 att13
|
||||
att73 att157
|
||||
att126 att162
|
||||
att126 att138
|
||||
att126 att18
|
||||
att126 att150
|
||||
att16 att74
|
||||
att16 att76
|
||||
att16 att40
|
||||
att16 att4
|
||||
att16 att196
|
||||
att16 att136
|
||||
att74 att14
|
||||
att74 att62
|
||||
att27 att171
|
||||
att27 att63
|
||||
att61 att85
|
||||
att61 att169
|
||||
att20 att76
|
||||
att20 att211
|
||||
att20 att210
|
||||
att20 att170
|
||||
att20 att164
|
||||
att20 att128
|
||||
att20 att176
|
||||
att20 att80
|
||||
att101 att41
|
||||
att85 att169
|
||||
att85 att13
|
||||
att76 att14
|
||||
att76 att40
|
||||
att76 att160
|
||||
att76 att4
|
||||
att76 att52
|
||||
att137 att161
|
||||
att137 att149
|
||||
att137 att173
|
||||
att137 att125
|
||||
att211 att210
|
||||
att211 att162
|
||||
att211 att164
|
||||
att211 att62
|
||||
att211 att42
|
||||
att211 att171
|
||||
att211 att163
|
||||
att211 att175
|
||||
att211 att79
|
||||
att211 att151
|
||||
att211 att43
|
||||
att143 att155
|
||||
att143 att23
|
||||
att143 att203
|
||||
att143 att71
|
||||
att143 att83
|
||||
att143 att11
|
||||
att14 att98
|
||||
att40 att160
|
||||
att40 att4
|
||||
att40 att196
|
||||
att40 att88
|
||||
att40 att52
|
||||
att210 att162
|
||||
att210 att42
|
||||
att210 att114
|
||||
att155 att23
|
||||
att155 att203
|
||||
att155 att107
|
||||
att155 att11
|
||||
att170 att158
|
||||
att160 att52
|
||||
att160 att124
|
||||
att23 att203
|
||||
att23 att107
|
||||
att23 att71
|
||||
att23 att11
|
||||
att162 att138
|
||||
att162 att18
|
||||
att162 att150
|
||||
att162 att90
|
||||
att162 att102
|
||||
att162 att174
|
||||
att162 att66
|
||||
att203 att107
|
||||
att203 att49
|
||||
att203 att59
|
||||
att203 att47
|
||||
att203 att191
|
||||
att203 att119
|
||||
att164 att62
|
||||
att164 att42
|
||||
att164 att128
|
||||
att164 att171
|
||||
att164 att92
|
||||
att164 att163
|
||||
att164 att158
|
||||
att164 att176
|
||||
att164 att145
|
||||
att164 att172
|
||||
att164 att58
|
||||
att164 att68
|
||||
att164 att80
|
||||
att164 att32
|
||||
att164 att98
|
||||
att164 att156
|
||||
att164 att110
|
||||
att164 att205
|
||||
att164 att21
|
||||
att164 att134
|
||||
att164 att213
|
||||
att164 att112
|
||||
att164 att38
|
||||
att164 att189
|
||||
att164 att56
|
||||
att164 att44
|
||||
att164 att152
|
||||
att164 att8
|
||||
att107 att83
|
||||
att107 att49
|
||||
att107 att59
|
||||
att107 att47
|
||||
att107 att191
|
||||
att42 att138
|
||||
att42 att54
|
||||
att42 att114
|
||||
att71 att83
|
||||
att71 att167
|
||||
att71 att35
|
||||
att71 att179
|
||||
att128 att92
|
||||
att128 att112
|
||||
att138 att18
|
||||
att138 att150
|
||||
att83 att167
|
||||
att83 att35
|
||||
att171 att87
|
||||
att171 att159
|
||||
att171 att63
|
||||
att171 att51
|
||||
att171 att39
|
||||
att171 att75
|
||||
att92 att163
|
||||
att92 att145
|
||||
att92 att56
|
||||
att163 att49
|
||||
att163 att175
|
||||
att163 att87
|
||||
att163 att79
|
||||
att163 att151
|
||||
att163 att139
|
||||
att163 att187
|
||||
att163 att127
|
||||
att163 att103
|
||||
att163 att91
|
||||
att49 att37
|
||||
att161 att173
|
||||
att161 att113
|
||||
att176 att145
|
||||
att176 att172
|
||||
att176 att68
|
||||
att176 att80
|
||||
att176 att32
|
||||
att176 att175
|
||||
att176 att98
|
||||
att176 att110
|
||||
att176 att205
|
||||
att176 att21
|
||||
att176 att134
|
||||
att176 att213
|
||||
att176 att56
|
||||
att4 att196
|
||||
att4 att88
|
||||
att4 att136
|
||||
att4 att100
|
||||
att4 att148
|
||||
att4 att208
|
||||
att172 att112
|
||||
att172 att184
|
||||
att196 att88
|
||||
att196 att136
|
||||
att196 att100
|
||||
att196 att148
|
||||
att196 att208
|
||||
att58 att142
|
||||
att58 att46
|
||||
att58 att34
|
||||
att68 att32
|
||||
att80 att38
|
||||
att32 att110
|
||||
att32 att21
|
||||
att32 att44
|
||||
att32 att200
|
||||
att175 att87
|
||||
att175 att159
|
||||
att175 att79
|
||||
att175 att187
|
||||
att175 att115
|
||||
att87 att159
|
||||
att87 att63
|
||||
att87 att51
|
||||
att87 att75
|
||||
att87 att15
|
||||
att87 att99
|
||||
att159 att75
|
||||
att159 att15
|
||||
att159 att195
|
||||
att18 att90
|
||||
att18 att102
|
||||
att18 att78
|
||||
att18 att198
|
||||
att52 att124
|
||||
att52 att64
|
||||
att98 att86
|
||||
att136 att100
|
||||
att136 att208
|
||||
att150 att90
|
||||
att150 att174
|
||||
att150 att66
|
||||
att156 att205
|
||||
att156 att96
|
||||
att156 att216
|
||||
att156 att204
|
||||
att156 att24
|
||||
att156 att84
|
||||
att156 att36
|
||||
att156 att12
|
||||
att156 att108
|
||||
att100 att148
|
||||
att63 att51
|
||||
att63 att39
|
||||
att63 att3
|
||||
att63 att183
|
||||
att63 att147
|
||||
att90 att102
|
||||
att90 att78
|
||||
att167 att35
|
||||
att167 att179
|
||||
att35 att179
|
||||
att51 att39
|
||||
att51 att3
|
||||
att51 att183
|
||||
att21 att134
|
||||
att21 att213
|
||||
att21 att38
|
||||
att21 att189
|
||||
att21 att129
|
||||
att21 att81
|
||||
att21 att153
|
||||
att21 att117
|
||||
att21 att9
|
||||
att142 att46
|
||||
att142 att130
|
||||
att142 att118
|
||||
att142 att70
|
||||
att142 att10
|
||||
att142 att202
|
||||
att142 att190
|
||||
att142 att106
|
||||
att46 att130
|
||||
att46 att118
|
||||
att46 att70
|
||||
att46 att34
|
||||
att46 att166
|
||||
att46 att82
|
||||
att134 att2
|
||||
att39 att3
|
||||
att102 att78
|
||||
att102 att174
|
||||
att102 att54
|
||||
att102 att198
|
||||
att130 att118
|
||||
att130 att10
|
||||
att130 att202
|
||||
att130 att190
|
||||
att130 att106
|
||||
att149 att125
|
||||
att96 att216
|
||||
att96 att204
|
||||
att96 att24
|
||||
att75 att15
|
||||
att75 att99
|
||||
att118 att70
|
||||
att118 att10
|
||||
att118 att202
|
||||
att78 att198
|
||||
att213 att189
|
||||
att213 att129
|
||||
att213 att69
|
||||
att213 att81
|
||||
att38 att50
|
||||
att38 att26
|
||||
att174 att54
|
||||
att174 att66
|
||||
att174 att30
|
||||
att189 att86
|
||||
att189 att129
|
||||
att189 att69
|
||||
att189 att81
|
||||
att189 att153
|
||||
att189 att117
|
||||
att189 att9
|
||||
att189 att45
|
||||
att189 att141
|
||||
att189 att105
|
||||
att70 att34
|
||||
att70 att154
|
||||
att179 att59
|
||||
att59 att47
|
||||
att59 att191
|
||||
att59 att119
|
||||
att79 att86
|
||||
att79 att151
|
||||
att79 att139
|
||||
att79 att187
|
||||
att79 att127
|
||||
att79 att103
|
||||
att79 att43
|
||||
att79 att193
|
||||
att79 att91
|
||||
att79 att19
|
||||
att124 att64
|
||||
att54 att114
|
||||
att54 att30
|
||||
att54 att6
|
||||
att191 att119
|
||||
att86 att194
|
||||
att56 att44
|
||||
att56 att152
|
||||
att56 att50
|
||||
att56 att188
|
||||
att56 att26
|
||||
att56 att200
|
||||
att56 att104
|
||||
att56 att140
|
||||
att56 att146
|
||||
att56 att194
|
||||
att56 att8
|
||||
att56 att2
|
||||
att56 att133
|
||||
att56 att1
|
||||
att151 att139
|
||||
att66 att30
|
||||
att173 att125
|
||||
att173 att113
|
||||
att173 att185
|
||||
att44 att152
|
||||
att44 att50
|
||||
att44 att188
|
||||
att44 att200
|
||||
att44 att104
|
||||
att44 att140
|
||||
att44 att194
|
||||
att44 att212
|
||||
att44 att1
|
||||
att139 att26
|
||||
att139 att99
|
||||
att139 att103
|
||||
att139 att43
|
||||
att139 att91
|
||||
att139 att31
|
||||
att139 att199
|
||||
att139 att7
|
||||
att216 att204
|
||||
att216 att24
|
||||
att216 att84
|
||||
att216 att36
|
||||
att216 att12
|
||||
att216 att180
|
||||
att216 att108
|
||||
att129 att69
|
||||
att152 att188
|
||||
att152 att140
|
||||
att69 att153
|
||||
att69 att9
|
||||
att69 att177
|
||||
att81 att45
|
||||
att81 att105
|
||||
att153 att117
|
||||
att153 att141
|
||||
att41 att53
|
||||
att204 att12
|
||||
att204 att180
|
||||
att188 att146
|
||||
att188 att212
|
||||
att13 att157
|
||||
att114 att6
|
||||
att114 att186
|
||||
att10 att190
|
||||
att64 att184
|
||||
att200 att104
|
||||
att9 att45
|
||||
att9 att146
|
||||
att9 att141
|
||||
att9 att177
|
||||
att9 att37
|
||||
att9 att133
|
||||
att9 att109
|
||||
att9 att181
|
||||
att3 att183
|
||||
att3 att147
|
||||
att3 att123
|
||||
att3 att135
|
||||
att3 att111
|
||||
att45 att105
|
||||
att45 att177
|
||||
att45 att93
|
||||
att45 att201
|
||||
att45 att165
|
||||
att45 att193
|
||||
att45 att33
|
||||
att45 att37
|
||||
att45 att133
|
||||
att45 att97
|
||||
att140 att8
|
||||
att30 att6
|
||||
att30 att186
|
||||
att183 att147
|
||||
att183 att123
|
||||
att183 att135
|
||||
att146 att2
|
||||
att202 att166
|
||||
att202 att106
|
||||
att202 att82
|
||||
att24 att84
|
||||
att24 att36
|
||||
att24 att132
|
||||
att147 att123
|
||||
att147 att135
|
||||
att147 att111
|
||||
att147 att207
|
||||
att8 att212
|
||||
att166 att82
|
||||
att166 att22
|
||||
att166 att94
|
||||
att187 att127
|
||||
att187 att115
|
||||
att127 att115
|
||||
att105 att184
|
||||
att105 att93
|
||||
att105 att201
|
||||
att106 att154
|
||||
att82 att154
|
||||
att82 att22
|
||||
att135 att111
|
||||
att135 att207
|
||||
att154 att22
|
||||
att154 att94
|
||||
att111 att207
|
||||
att99 att195
|
||||
att22 att94
|
||||
att84 att48
|
||||
att177 att93
|
||||
att177 att165
|
||||
att177 att181
|
||||
att103 att195
|
||||
att103 att97
|
||||
att103 att109
|
||||
att93 att201
|
||||
att93 att165
|
||||
att93 att193
|
||||
att93 att33
|
||||
att93 att57
|
||||
att201 att33
|
||||
att201 att57
|
||||
att43 att31
|
||||
att36 att180
|
||||
att36 att48
|
||||
att36 att72
|
||||
att36 att132
|
||||
att36 att144
|
||||
att125 att113
|
||||
att125 att185
|
||||
att125 att65
|
||||
att125 att29
|
||||
att180 att48
|
||||
att180 att72
|
||||
att180 att192
|
||||
att180 att108
|
||||
att48 att72
|
||||
att6 att186
|
||||
att113 att185
|
||||
att113 att53
|
||||
att113 att65
|
||||
att193 att97
|
||||
att91 att31
|
||||
att91 att199
|
||||
att91 att19
|
||||
att72 att132
|
||||
att72 att144
|
||||
att72 att192
|
||||
att72 att120
|
||||
att31 att199
|
||||
att31 att7
|
||||
att31 att67
|
||||
att31 att55
|
||||
att31 att1
|
||||
att132 att144
|
||||
att132 att120
|
||||
att33 att57
|
||||
att144 att192
|
||||
att144 att120
|
||||
att185 att53
|
||||
att185 att65
|
||||
att185 att29
|
||||
att199 att19
|
||||
att199 att7
|
||||
att199 att67
|
||||
att199 att55
|
||||
att199 att109
|
||||
att65 att29
|
||||
att7 att67
|
||||
att67 att55
|
||||
att109 att181
|
||||
|
@ -1,4 +1,4 @@
|
||||
filter = src/
|
||||
exclude-directories = build/lib/
|
||||
exclude-directories = build_debug/lib/
|
||||
print-summary = yes
|
||||
sort-percentage = yes
|
||||
|
162
grid_stree.json
162
grid_stree.json
@ -1,162 +0,0 @@
|
||||
{
|
||||
"balance-scale": {
|
||||
"C": 10000.0,
|
||||
"gamma": 0.1,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"balloons": {
|
||||
"C": 7,
|
||||
"gamma": 0.1,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"breast-cancer-wisc-diag": {
|
||||
"C": 0.2,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"breast-cancer-wisc-prog": {
|
||||
"C": 0.2,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"breast-cancer-wisc": {},
|
||||
"breast-cancer": {},
|
||||
"cardiotocography-10clases": {},
|
||||
"cardiotocography-3clases": {},
|
||||
"conn-bench-sonar-mines-rocks": {},
|
||||
"cylinder-bands": {},
|
||||
"dermatology": {
|
||||
"C": 55,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"echocardiogram": {
|
||||
"C": 7,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly",
|
||||
"max_features": "auto",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"fertility": {
|
||||
"C": 0.05,
|
||||
"max_features": "auto",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"haberman-survival": {},
|
||||
"heart-hungarian": {
|
||||
"C": 0.05,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"hepatitis": {
|
||||
"C": 7,
|
||||
"gamma": 0.1,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"ilpd-indian-liver": {},
|
||||
"ionosphere": {
|
||||
"C": 7,
|
||||
"gamma": 0.1,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"iris": {},
|
||||
"led-display": {},
|
||||
"libras": {
|
||||
"C": 0.08,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"low-res-spect": {
|
||||
"C": 0.05,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"lymphography": {
|
||||
"C": 0.05,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"mammographic": {},
|
||||
"molec-biol-promoter": {
|
||||
"C": 0.05,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"musk-1": {
|
||||
"C": 0.05,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"oocytes_merluccius_nucleus_4d": {
|
||||
"C": 8.25,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly"
|
||||
},
|
||||
"oocytes_merluccius_states_2f": {},
|
||||
"oocytes_trisopterus_nucleus_2f": {},
|
||||
"oocytes_trisopterus_states_5b": {
|
||||
"C": 0.11,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"parkinsons": {},
|
||||
"pima": {},
|
||||
"pittsburg-bridges-MATERIAL": {
|
||||
"C": 7,
|
||||
"gamma": 0.1,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"pittsburg-bridges-REL-L": {},
|
||||
"pittsburg-bridges-SPAN": {
|
||||
"C": 0.05,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"pittsburg-bridges-T-OR-D": {},
|
||||
"planning": {
|
||||
"C": 7,
|
||||
"gamma": 10.0,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"post-operative": {
|
||||
"C": 55,
|
||||
"degree": 5,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"seeds": {
|
||||
"C": 10000.0,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"statlog-australian-credit": {
|
||||
"C": 0.05,
|
||||
"max_features": "auto",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"statlog-german-credit": {},
|
||||
"statlog-heart": {},
|
||||
"statlog-image": {
|
||||
"C": 7,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"statlog-vehicle": {},
|
||||
"synthetic-control": {
|
||||
"C": 0.55,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"tic-tac-toe": {
|
||||
"C": 0.2,
|
||||
"gamma": 0.1,
|
||||
"kernel": "poly",
|
||||
"max_iter": 10000
|
||||
},
|
||||
"vertebral-column-2clases": {},
|
||||
"wine": {
|
||||
"C": 0.55,
|
||||
"max_iter": 10000
|
||||
},
|
||||
"zoo": {
|
||||
"C": 0.1,
|
||||
"max_iter": 10000
|
||||
}
|
||||
}
|
1
lib/folding
Submodule
1
lib/folding
Submodule
@ -0,0 +1 @@
|
||||
Subproject commit a3a2977996223b709c0f9149772c01a5f771e391
|
@ -1 +0,0 @@
|
||||
Subproject commit 29355a0887475488c7cc470ad43cc867fcfa92e2
|
@ -1,10 +0,0 @@
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/PyClassifiers)
|
||||
include_directories(${Python3_INCLUDE_DIRS})
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
add_executable(BayesNetSample sample.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
target_link_libraries(BayesNetSample BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)
|
235
sample/sample.cc
235
sample/sample.cc
@ -1,235 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <torch/torch.h>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "ArffFiles.h"
|
||||
#include "BayesMetrics.h"
|
||||
#include "CPPFImdlp.h"
|
||||
#include "Folding.h"
|
||||
#include "Models.h"
|
||||
#include "modelRegister.h"
|
||||
#include <fstream>
|
||||
|
||||
const std::string PATH = "../../data/";
|
||||
|
||||
pair<std::vector<mdlp::labels_t>, map<std::string, int>> discretize(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y, std::vector<std::string> features)
|
||||
{
|
||||
std::vector<mdlp::labels_t>Xd;
|
||||
map<std::string, int> maxes;
|
||||
|
||||
auto fimdlp = mdlp::CPPFImdlp();
|
||||
for (int i = 0; i < X.size(); i++) {
|
||||
fimdlp.fit(X[i], y);
|
||||
mdlp::labels_t& xd = fimdlp.transform(X[i]);
|
||||
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
|
||||
Xd.push_back(xd);
|
||||
}
|
||||
return { Xd, maxes };
|
||||
}
|
||||
|
||||
bool file_exists(const std::string& name)
|
||||
{
|
||||
if (FILE* file = fopen(name.c_str(), "r")) {
|
||||
fclose(file);
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
pair<std::vector<std::vector<int>>, std::vector<int>> extract_indices(std::vector<int> indices, std::vector<std::vector<int>> X, std::vector<int> y)
|
||||
{
|
||||
std::vector<std::vector<int>> Xr; // nxm
|
||||
std::vector<int> yr;
|
||||
for (int col = 0; col < X.size(); ++col) {
|
||||
Xr.push_back(std::vector<int>());
|
||||
}
|
||||
for (auto index : indices) {
|
||||
for (int col = 0; col < X.size(); ++col) {
|
||||
Xr[col].push_back(X[col][index]);
|
||||
}
|
||||
yr.push_back(y[index]);
|
||||
}
|
||||
return { Xr, yr };
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
map<std::string, bool> datasets = {
|
||||
{"diabetes", true},
|
||||
{"ecoli", true},
|
||||
{"glass", true},
|
||||
{"iris", true},
|
||||
{"kdd_JapaneseVowels", false},
|
||||
{"letter", true},
|
||||
{"liver-disorders", true},
|
||||
{"mfeat-factors", true},
|
||||
};
|
||||
auto valid_datasets = std::vector<std::string>();
|
||||
transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
|
||||
[](const pair<std::string, bool>& pair) { return pair.first; });
|
||||
argparse::ArgumentParser program("BayesNetSample");
|
||||
program.add_argument("-d", "--dataset")
|
||||
.help("Dataset file name")
|
||||
.action([valid_datasets](const std::string& value) {
|
||||
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
|
||||
return value;
|
||||
}
|
||||
throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
|
||||
}
|
||||
);
|
||||
program.add_argument("-p", "--path")
|
||||
.help(" folder where the data files are located, default")
|
||||
.default_value(std::string{ PATH }
|
||||
);
|
||||
program.add_argument("-m", "--model")
|
||||
.help("Model to use " + platform::Models::instance()->tostring())
|
||||
.action([](const std::string& value) {
|
||||
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
|
||||
if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
||||
return value;
|
||||
}
|
||||
throw runtime_error("Model must be one of " + platform::Models::instance()->tostring());
|
||||
}
|
||||
);
|
||||
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
|
||||
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
|
||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
|
||||
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const std::string& value) {
|
||||
try {
|
||||
auto k = stoi(value);
|
||||
if (k < 2) {
|
||||
throw runtime_error("Number of folds must be greater than 1");
|
||||
}
|
||||
return k;
|
||||
}
|
||||
catch (const runtime_error& err) {
|
||||
throw runtime_error(err.what());
|
||||
}
|
||||
catch (...) {
|
||||
throw runtime_error("Number of folds must be an integer");
|
||||
}});
|
||||
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
|
||||
bool class_last, stratified, tensors, dump_cpt;
|
||||
std::string model_name, file_name, path, complete_file_name;
|
||||
int nFolds, seed;
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
file_name = program.get<std::string>("dataset");
|
||||
path = program.get<std::string>("path");
|
||||
model_name = program.get<std::string>("model");
|
||||
complete_file_name = path + file_name + ".arff";
|
||||
stratified = program.get<bool>("stratified");
|
||||
tensors = program.get<bool>("tensors");
|
||||
nFolds = program.get<int>("folds");
|
||||
seed = program.get<int>("seed");
|
||||
dump_cpt = program.get<bool>("dumpcpt");
|
||||
class_last = datasets[file_name];
|
||||
if (!file_exists(complete_file_name)) {
|
||||
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
|
||||
}
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << std::endl;
|
||||
cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
/*
|
||||
* Begin Processing
|
||||
*/
|
||||
auto handler = ArffFiles();
|
||||
handler.load(complete_file_name, class_last);
|
||||
// Get Dataset X, y
|
||||
std::vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t& y = handler.getY();
|
||||
// Get className & Features
|
||||
auto className = handler.getClassName();
|
||||
std::vector<std::string> features;
|
||||
auto attributes = handler.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features),
|
||||
[](const pair<std::string, std::string>& item) { return item.first; });
|
||||
// Discretize Dataset
|
||||
auto [Xd, maxes] = discretize(X, y, features);
|
||||
maxes[className] = *max_element(y.begin(), y.end()) + 1;
|
||||
map<std::string, std::vector<int>> states;
|
||||
for (auto feature : features) {
|
||||
states[feature] = std::vector<int>(maxes[feature]);
|
||||
}
|
||||
states[className] = std::vector<int>(maxes[className]);
|
||||
auto clf = platform::Models::instance()->create(model_name);
|
||||
clf->fit(Xd, y, features, className, states);
|
||||
if (dump_cpt) {
|
||||
std::cout << "--- CPT Tables ---" << std::endl;
|
||||
clf->dump_cpt();
|
||||
}
|
||||
auto lines = clf->show();
|
||||
for (auto line : lines) {
|
||||
std::cout << line << std::endl;
|
||||
}
|
||||
std::cout << "--- Topological Order ---" << std::endl;
|
||||
auto order = clf->topological_order();
|
||||
for (auto name : order) {
|
||||
std::cout << name << ", ";
|
||||
}
|
||||
std::cout << "end." << std::endl;
|
||||
auto score = clf->score(Xd, y);
|
||||
std::cout << "Score: " << score << std::endl;
|
||||
auto graph = clf->graph();
|
||||
auto dot_file = model_name + "_" + file_name;
|
||||
ofstream file(dot_file + ".dot");
|
||||
file << graph;
|
||||
file.close();
|
||||
std::cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << std::endl;
|
||||
std::cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << std::endl;
|
||||
std::string stratified_string = stratified ? " Stratified" : "";
|
||||
std::cout << nFolds << " Folds" << stratified_string << " Cross validation" << std::endl;
|
||||
std::cout << "==========================================" << std::endl;
|
||||
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
|
||||
torch::Tensor yt = torch::tensor(y, torch::kInt32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
||||
}
|
||||
float total_score = 0, total_score_train = 0, score_train, score_test;
|
||||
platform::Fold* fold;
|
||||
if (stratified)
|
||||
fold = new platform::StratifiedKFold(nFolds, y, seed);
|
||||
else
|
||||
fold = new platform::KFold(nFolds, y.size(), seed);
|
||||
for (auto i = 0; i < nFolds; ++i) {
|
||||
auto [train, test] = fold->getFold(i);
|
||||
std::cout << "Fold: " << i + 1 << std::endl;
|
||||
if (tensors) {
|
||||
auto ttrain = torch::tensor(train, torch::kInt64);
|
||||
auto ttest = torch::tensor(test, torch::kInt64);
|
||||
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
|
||||
torch::Tensor ytraint = yt.index({ ttrain });
|
||||
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
|
||||
torch::Tensor ytestt = yt.index({ ttest });
|
||||
clf->fit(Xtraint, ytraint, features, className, states);
|
||||
auto temp = clf->predict(Xtraint);
|
||||
score_train = clf->score(Xtraint, ytraint);
|
||||
score_test = clf->score(Xtestt, ytestt);
|
||||
} else {
|
||||
auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
|
||||
auto [Xtest, ytest] = extract_indices(test, Xd, y);
|
||||
clf->fit(Xtrain, ytrain, features, className, states);
|
||||
score_train = clf->score(Xtrain, ytrain);
|
||||
score_test = clf->score(Xtest, ytest);
|
||||
}
|
||||
if (dump_cpt) {
|
||||
std::cout << "--- CPT Tables ---" << std::endl;
|
||||
clf->dump_cpt();
|
||||
}
|
||||
total_score_train += score_train;
|
||||
total_score += score_test;
|
||||
std::cout << "Score Train: " << score_train << std::endl;
|
||||
std::cout << "Score Test : " << score_test << std::endl;
|
||||
std::cout << "-------------------------------------------------------------------------------" << std::endl;
|
||||
}
|
||||
std::cout << "**********************************************************************************" << std::endl;
|
||||
std::cout << "Average Score Train: " << total_score_train / nFolds << std::endl;
|
||||
std::cout << "Average Score Test : " << total_score / nFolds << std::endl;return 0;
|
||||
}
|
@ -2,12 +2,10 @@
|
||||
#include <functional>
|
||||
#include <limits.h>
|
||||
#include "BoostAODE.h"
|
||||
#include "Colors.h"
|
||||
#include "Folding.h"
|
||||
#include "Paths.h"
|
||||
#include "CFS.h"
|
||||
#include "FCBF.h"
|
||||
#include "IWSS.h"
|
||||
#include "folding.hpp"
|
||||
|
||||
namespace bayesnet {
|
||||
BoostAODE::BoostAODE() : Ensemble()
|
||||
@ -24,7 +22,7 @@ namespace bayesnet {
|
||||
auto y_ = dataset.index({ -1, "..." });
|
||||
if (convergence) {
|
||||
// Prepare train & validation sets from train data
|
||||
auto fold = platform::StratifiedKFold(5, y_, 271);
|
||||
auto fold = folding::StratifiedKFold(5, y_, 271);
|
||||
dataset_ = torch::clone(dataset);
|
||||
// save input dataset
|
||||
auto [train, test] = fold.getFold(0);
|
||||
|
@ -1,14 +1,13 @@
|
||||
include_directories(
|
||||
${BayesNet_SOURCE_DIR}/lib/mdlp
|
||||
${BayesNet_SOURCE_DIR}/lib/Files
|
||||
${BayesNet_SOURCE_DIR}/lib/folding
|
||||
${BayesNet_SOURCE_DIR}/lib/json/include
|
||||
${BayesNet_SOURCE_DIR}/src/BayesNet
|
||||
${BayesNet_SOURCE_DIR}/src/Platform
|
||||
${BayesNet_SOURCE_DIR}/src/PyClassifiers
|
||||
${Python3_INCLUDE_DIRS}
|
||||
${CMAKE_BINARY_DIR}/configured_files/include
|
||||
)
|
||||
|
||||
add_library(BayesNet bayesnetUtils.cc Network.cc Node.cc BayesMetrics.cc Classifier.cc
|
||||
KDB.cc TAN.cc SPODE.cc Ensemble.cc AODE.cc TANLd.cc KDBLd.cc SPODELd.cc AODELd.cc BoostAODE.cc
|
||||
Mst.cc Proposal.cc CFS.cc FCBF.cc IWSS.cc FeatureSelect.cc ${BayesNet_SOURCE_DIR}/src/Platform/Models.cc)
|
||||
Mst.cc Proposal.cc CFS.cc FCBF.cc IWSS.cc FeatureSelect.cc )
|
||||
target_link_libraries(BayesNet mdlp "${TORCH_LIBRARIES}")
|
@ -3,6 +3,7 @@
|
||||
#include "Node.h"
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include "config.h"
|
||||
|
||||
namespace bayesnet {
|
||||
class Network {
|
||||
@ -56,7 +57,7 @@ namespace bayesnet {
|
||||
std::vector<std::string> graph(const std::string& title) const; // Returns a std::vector of std::strings representing the graph in graphviz format
|
||||
void initialize();
|
||||
void dump_cpt() const;
|
||||
inline std::string version() { return "0.2.0"; }
|
||||
inline std::string version() { return { project_version.begin(), project_version.end() }; }
|
||||
};
|
||||
}
|
||||
#endif
|
@ -1,343 +0,0 @@
|
||||
#include <filesystem>
|
||||
#include <set>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <algorithm>
|
||||
#include "BestResults.h"
|
||||
#include "Result.h"
|
||||
#include "Colors.h"
|
||||
#include "Statistics.h"
|
||||
#include "BestResultsExcel.h"
|
||||
#include "CLocale.h"
|
||||
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
// function ftime_to_std::string, Code taken from
|
||||
// https://stackoverflow.com/a/58237530/1389271
|
||||
template <typename TP>
|
||||
std::string ftime_to_string(TP tp)
|
||||
{
|
||||
auto sctp = std::chrono::time_point_cast<std::chrono::system_clock::duration>(tp - TP::clock::now()
|
||||
+ std::chrono::system_clock::now());
|
||||
auto tt = std::chrono::system_clock::to_time_t(sctp);
|
||||
std::tm* gmt = std::gmtime(&tt);
|
||||
std::stringstream buffer;
|
||||
buffer << std::put_time(gmt, "%Y-%m-%d %H:%M");
|
||||
return buffer.str();
|
||||
}
|
||||
namespace platform {
|
||||
std::string BestResults::build()
|
||||
{
|
||||
auto files = loadResultFiles();
|
||||
if (files.size() == 0) {
|
||||
std::cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
json bests;
|
||||
for (const auto& file : files) {
|
||||
auto result = Result(path, file);
|
||||
auto data = result.load();
|
||||
for (auto const& item : data.at("results")) {
|
||||
bool update = false;
|
||||
// Check if results file contains only one dataset
|
||||
auto datasetName = item.at("dataset").get<std::string>();
|
||||
if (bests.contains(datasetName)) {
|
||||
if (item.at("score").get<double>() > bests[datasetName].at(0).get<double>()) {
|
||||
update = true;
|
||||
}
|
||||
} else {
|
||||
update = true;
|
||||
}
|
||||
if (update) {
|
||||
bests[datasetName] = { item.at("score").get<double>(), item.at("hyperparameters"), file };
|
||||
}
|
||||
}
|
||||
}
|
||||
std::string bestFileName = path + bestResultFile();
|
||||
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
|
||||
fclose(fileTest);
|
||||
std::cout << Colors::MAGENTA() << "File " << bestFileName << " already exists and it shall be overwritten." << Colors::RESET() << std::endl;
|
||||
}
|
||||
std::ofstream file(bestFileName);
|
||||
file << bests;
|
||||
file.close();
|
||||
return bestFileName;
|
||||
}
|
||||
std::string BestResults::bestResultFile()
|
||||
{
|
||||
return "best_results_" + score + "_" + model + ".json";
|
||||
}
|
||||
std::pair<std::string, std::string> getModelScore(std::string name)
|
||||
{
|
||||
// results_accuracy_BoostAODE_MacBookpro16_2023-09-06_12:27:00_1.json
|
||||
int i = 0;
|
||||
auto pos = name.find("_");
|
||||
auto pos2 = name.find("_", pos + 1);
|
||||
std::string score = name.substr(pos + 1, pos2 - pos - 1);
|
||||
pos = name.find("_", pos2 + 1);
|
||||
std::string model = name.substr(pos2 + 1, pos - pos2 - 1);
|
||||
return { model, score };
|
||||
}
|
||||
std::vector<std::string> BestResults::loadResultFiles()
|
||||
{
|
||||
std::vector<std::string> files;
|
||||
using std::filesystem::directory_iterator;
|
||||
std::string fileModel, fileScore;
|
||||
for (const auto& file : directory_iterator(path)) {
|
||||
auto fileName = file.path().filename().string();
|
||||
if (fileName.find(".json") != std::string::npos && fileName.find("results_") == 0) {
|
||||
tie(fileModel, fileScore) = getModelScore(fileName);
|
||||
if (score == fileScore && (model == fileModel || model == "any")) {
|
||||
files.push_back(fileName);
|
||||
}
|
||||
}
|
||||
}
|
||||
return files;
|
||||
}
|
||||
json BestResults::loadFile(const std::string& fileName)
|
||||
{
|
||||
std::ifstream resultData(fileName);
|
||||
if (resultData.is_open()) {
|
||||
json data = json::parse(resultData);
|
||||
return data;
|
||||
}
|
||||
throw std::invalid_argument("Unable to open result file. [" + fileName + "]");
|
||||
}
|
||||
std::vector<std::string> BestResults::getModels()
|
||||
{
|
||||
std::set<std::string> models;
|
||||
std::vector<std::string> result;
|
||||
auto files = loadResultFiles();
|
||||
if (files.size() == 0) {
|
||||
std::cerr << Colors::MAGENTA() << "No result files were found!" << Colors::RESET() << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
std::string fileModel, fileScore;
|
||||
for (const auto& file : files) {
|
||||
// extract the model from the file name
|
||||
tie(fileModel, fileScore) = getModelScore(file);
|
||||
// add the model to the std::vector of models
|
||||
models.insert(fileModel);
|
||||
}
|
||||
result = std::vector<std::string>(models.begin(), models.end());
|
||||
return result;
|
||||
}
|
||||
std::vector<std::string> BestResults::getDatasets(json table)
|
||||
{
|
||||
std::vector<std::string> datasets;
|
||||
for (const auto& dataset : table.items()) {
|
||||
datasets.push_back(dataset.key());
|
||||
}
|
||||
return datasets;
|
||||
}
|
||||
void BestResults::buildAll()
|
||||
{
|
||||
auto models = getModels();
|
||||
for (const auto& model : models) {
|
||||
std::cout << "Building best results for model: " << model << std::endl;
|
||||
this->model = model;
|
||||
build();
|
||||
}
|
||||
model = "any";
|
||||
}
|
||||
void BestResults::listFile()
|
||||
{
|
||||
std::string bestFileName = path + bestResultFile();
|
||||
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
|
||||
fclose(fileTest);
|
||||
} else {
|
||||
std::cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
auto temp = ConfigLocale();
|
||||
auto date = ftime_to_string(std::filesystem::last_write_time(bestFileName));
|
||||
auto data = loadFile(bestFileName);
|
||||
auto datasets = getDatasets(data);
|
||||
int maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
int maxFileName = 0;
|
||||
int maxHyper = 15;
|
||||
for (auto const& item : data.items()) {
|
||||
maxHyper = std::max(maxHyper, (int)item.value().at(1).dump().size());
|
||||
maxFileName = std::max(maxFileName, (int)item.value().at(2).get<std::string>().size());
|
||||
}
|
||||
std::stringstream oss;
|
||||
oss << Colors::GREEN() << "Best results for " << model << " as of " << date << std::endl;
|
||||
std::cout << oss.str();
|
||||
std::cout << std::string(oss.str().size() - 8, '-') << std::endl;
|
||||
std::cout << Colors::GREEN() << " # " << std::setw(maxDatasetName + 1) << std::left << "Dataset" << "Score " << std::setw(maxFileName) << "File" << " Hyperparameters" << std::endl;
|
||||
std::cout << "=== " << std::string(maxDatasetName, '=') << " =========== " << std::string(maxFileName, '=') << " " << std::string(maxHyper, '=') << std::endl;
|
||||
auto i = 0;
|
||||
bool odd = true;
|
||||
double total = 0;
|
||||
for (auto const& item : data.items()) {
|
||||
auto color = odd ? Colors::BLUE() : Colors::CYAN();
|
||||
double value = item.value().at(0).get<double>();
|
||||
std::cout << color << std::setw(3) << std::fixed << std::right << i++ << " ";
|
||||
std::cout << std::setw(maxDatasetName) << std::left << item.key() << " ";
|
||||
std::cout << std::setw(11) << std::setprecision(9) << std::fixed << value << " ";
|
||||
std::cout << std::setw(maxFileName) << item.value().at(2).get<std::string>() << " ";
|
||||
std::cout << item.value().at(1) << " ";
|
||||
std::cout << std::endl;
|
||||
total += value;
|
||||
odd = !odd;
|
||||
}
|
||||
std::cout << Colors::GREEN() << "=== " << std::string(maxDatasetName, '=') << " ===========" << std::endl;
|
||||
std::cout << std::setw(5 + maxDatasetName) << "Total.................. " << std::setw(11) << std::setprecision(8) << std::fixed << total << std::endl;
|
||||
}
|
||||
json BestResults::buildTableResults(std::vector<std::string> models)
|
||||
{
|
||||
json table;
|
||||
auto maxDate = std::filesystem::file_time_type::max();
|
||||
for (const auto& model : models) {
|
||||
this->model = model;
|
||||
std::string bestFileName = path + bestResultFile();
|
||||
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
|
||||
fclose(fileTest);
|
||||
} else {
|
||||
std::cerr << Colors::MAGENTA() << "File " << bestFileName << " doesn't exist." << Colors::RESET() << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
auto dateWrite = std::filesystem::last_write_time(bestFileName);
|
||||
if (dateWrite < maxDate) {
|
||||
maxDate = dateWrite;
|
||||
}
|
||||
auto data = loadFile(bestFileName);
|
||||
table[model] = data;
|
||||
}
|
||||
table["dateTable"] = ftime_to_string(maxDate);
|
||||
return table;
|
||||
}
|
||||
void BestResults::printTableResults(std::vector<std::string> models, json table)
|
||||
{
|
||||
std::stringstream oss;
|
||||
oss << Colors::GREEN() << "Best results for " << score << " as of " << table.at("dateTable").get<std::string>() << std::endl;
|
||||
std::cout << oss.str();
|
||||
std::cout << std::string(oss.str().size() - 8, '-') << std::endl;
|
||||
std::cout << Colors::GREEN() << " # " << std::setw(maxDatasetName + 1) << std::left << std::string("Dataset");
|
||||
for (const auto& model : models) {
|
||||
std::cout << std::setw(maxModelName) << std::left << model << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << "=== " << std::string(maxDatasetName, '=') << " ";
|
||||
for (const auto& model : models) {
|
||||
std::cout << std::string(maxModelName, '=') << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
auto i = 0;
|
||||
bool odd = true;
|
||||
std::map<std::string, double> totals;
|
||||
int nDatasets = table.begin().value().size();
|
||||
for (const auto& model : models) {
|
||||
totals[model] = 0.0;
|
||||
}
|
||||
auto datasets = getDatasets(table.begin().value());
|
||||
for (auto const& dataset : datasets) {
|
||||
auto color = odd ? Colors::BLUE() : Colors::CYAN();
|
||||
std::cout << color << std::setw(3) << std::fixed << std::right << i++ << " ";
|
||||
std::cout << std::setw(maxDatasetName) << std::left << dataset << " ";
|
||||
double maxValue = 0;
|
||||
// Find out the max value for this dataset
|
||||
for (const auto& model : models) {
|
||||
double value = table[model].at(dataset).at(0).get<double>();
|
||||
if (value > maxValue) {
|
||||
maxValue = value;
|
||||
}
|
||||
}
|
||||
// Print the row with red colors on max values
|
||||
for (const auto& model : models) {
|
||||
std::string efectiveColor = color;
|
||||
double value = table[model].at(dataset).at(0).get<double>();
|
||||
if (value == maxValue) {
|
||||
efectiveColor = Colors::RED();
|
||||
}
|
||||
totals[model] += value;
|
||||
std::cout << efectiveColor << std::setw(maxModelName) << std::setprecision(maxModelName - 2) << std::fixed << value << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
odd = !odd;
|
||||
}
|
||||
std::cout << Colors::GREEN() << "=== " << std::string(maxDatasetName, '=') << " ";
|
||||
for (const auto& model : models) {
|
||||
std::cout << std::string(maxModelName, '=') << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << Colors::GREEN() << std::setw(5 + maxDatasetName) << " Totals...................";
|
||||
double max = 0.0;
|
||||
for (const auto& total : totals) {
|
||||
if (total.second > max) {
|
||||
max = total.second;
|
||||
}
|
||||
}
|
||||
for (const auto& model : models) {
|
||||
std::string efectiveColor = Colors::GREEN();
|
||||
if (totals[model] == max) {
|
||||
efectiveColor = Colors::RED();
|
||||
}
|
||||
std::cout << efectiveColor << std::right << std::setw(maxModelName) << std::setprecision(maxModelName - 4) << std::fixed << totals[model] << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
void BestResults::reportSingle(bool excel)
|
||||
{
|
||||
listFile();
|
||||
if (excel) {
|
||||
auto models = getModels();
|
||||
// Build the table of results
|
||||
json table = buildTableResults(models);
|
||||
std::vector<std::string> datasets = getDatasets(table.begin().value());
|
||||
BestResultsExcel excel(score, datasets);
|
||||
excel.reportSingle(model, path + bestResultFile());
|
||||
messageExcelFile(excel.getFileName());
|
||||
}
|
||||
}
|
||||
void BestResults::reportAll(bool excel)
|
||||
{
|
||||
auto models = getModels();
|
||||
// Build the table of results
|
||||
json table = buildTableResults(models);
|
||||
std::vector<std::string> datasets = getDatasets(table.begin().value());
|
||||
maxModelName = (*max_element(models.begin(), models.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
maxModelName = std::max(12, maxModelName);
|
||||
maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
maxDatasetName = std::max(25, maxDatasetName);
|
||||
// Print the table of results
|
||||
printTableResults(models, table);
|
||||
// Compute the Friedman test
|
||||
std::map<std::string, std::map<std::string, float>> ranksModels;
|
||||
if (friedman) {
|
||||
Statistics stats(models, datasets, table, significance);
|
||||
auto result = stats.friedmanTest();
|
||||
stats.postHocHolmTest(result);
|
||||
ranksModels = stats.getRanks();
|
||||
}
|
||||
if (excel) {
|
||||
BestResultsExcel excel(score, datasets);
|
||||
excel.reportAll(models, table, ranksModels, friedman, significance);
|
||||
if (friedman) {
|
||||
int idx = -1;
|
||||
double min = 2000;
|
||||
// Find out the control model
|
||||
auto totals = std::vector<double>(models.size(), 0.0);
|
||||
for (const auto& dataset : datasets) {
|
||||
for (int i = 0; i < models.size(); ++i) {
|
||||
totals[i] += ranksModels[dataset][models[i]];
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < models.size(); ++i) {
|
||||
if (totals[i] < min) {
|
||||
min = totals[i];
|
||||
idx = i;
|
||||
}
|
||||
}
|
||||
model = models.at(idx);
|
||||
excel.reportSingle(model, path + bestResultFile());
|
||||
}
|
||||
messageExcelFile(excel.getFileName());
|
||||
}
|
||||
}
|
||||
void BestResults::messageExcelFile(const std::string& fileName)
|
||||
{
|
||||
std::cout << Colors::YELLOW() << "** Excel file generated: " << fileName << Colors::RESET() << std::endl;
|
||||
}
|
||||
}
|
@ -1,36 +0,0 @@
|
||||
#ifndef BESTRESULTS_H
|
||||
#define BESTRESULTS_H
|
||||
#include <string>
|
||||
#include <nlohmann/json.hpp>
|
||||
using json = nlohmann::json;
|
||||
namespace platform {
|
||||
class BestResults {
|
||||
public:
|
||||
explicit BestResults(const std::string& path, const std::string& score, const std::string& model, bool friedman, double significance = 0.05)
|
||||
: path(path), score(score), model(model), friedman(friedman), significance(significance)
|
||||
{
|
||||
}
|
||||
std::string build();
|
||||
void reportSingle(bool excel);
|
||||
void reportAll(bool excel);
|
||||
void buildAll();
|
||||
private:
|
||||
std::vector<std::string> getModels();
|
||||
std::vector<std::string> getDatasets(json table);
|
||||
std::vector<std::string> loadResultFiles();
|
||||
void messageExcelFile(const std::string& fileName);
|
||||
json buildTableResults(std::vector<std::string> models);
|
||||
void printTableResults(std::vector<std::string> models, json table);
|
||||
std::string bestResultFile();
|
||||
json loadFile(const std::string& fileName);
|
||||
void listFile();
|
||||
std::string path;
|
||||
std::string score;
|
||||
std::string model;
|
||||
bool friedman;
|
||||
double significance;
|
||||
int maxModelName = 0;
|
||||
int maxDatasetName = 0;
|
||||
};
|
||||
}
|
||||
#endif //BESTRESULTS_H
|
@ -1,300 +0,0 @@
|
||||
#include <sstream>
|
||||
#include "BestResultsExcel.h"
|
||||
#include "Paths.h"
|
||||
#include <map>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "Statistics.h"
|
||||
#include "ReportExcel.h"
|
||||
|
||||
namespace platform {
|
||||
json loadResultData(const std::string& fileName)
|
||||
{
|
||||
json data;
|
||||
std::ifstream resultData(fileName);
|
||||
if (resultData.is_open()) {
|
||||
data = json::parse(resultData);
|
||||
} else {
|
||||
throw std::invalid_argument("Unable to open result file. [" + fileName + "]");
|
||||
}
|
||||
return data;
|
||||
}
|
||||
std::string getColumnName(int colNum)
|
||||
{
|
||||
std::string columnName = "";
|
||||
if (colNum == 0)
|
||||
return "A";
|
||||
while (colNum > 0) {
|
||||
int modulo = colNum % 26;
|
||||
columnName = char(65 + modulo) + columnName;
|
||||
colNum = (int)((colNum - modulo) / 26);
|
||||
}
|
||||
return columnName;
|
||||
}
|
||||
BestResultsExcel::BestResultsExcel(const std::string& score, const std::vector<std::string>& datasets) : score(score), datasets(datasets)
|
||||
{
|
||||
workbook = workbook_new((Paths::excel() + fileName).c_str());
|
||||
setProperties("Best Results");
|
||||
int maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
datasetNameSize = std::max(datasetNameSize, maxDatasetName);
|
||||
createFormats();
|
||||
}
|
||||
void BestResultsExcel::reportAll(const std::vector<std::string>& models, const json& table, const std::map<std::string, std::map<std::string, float>>& ranks, bool friedman, double significance)
|
||||
{
|
||||
this->table = table;
|
||||
this->models = models;
|
||||
ranksModels = ranks;
|
||||
this->friedman = friedman;
|
||||
this->significance = significance;
|
||||
worksheet = workbook_add_worksheet(workbook, "Best Results");
|
||||
int maxModelName = (*std::max_element(models.begin(), models.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
modelNameSize = std::max(modelNameSize, maxModelName);
|
||||
formatColumns();
|
||||
build();
|
||||
}
|
||||
void BestResultsExcel::reportSingle(const std::string& model, const std::string& fileName)
|
||||
{
|
||||
worksheet = workbook_add_worksheet(workbook, "Report");
|
||||
if (FILE* fileTest = fopen(fileName.c_str(), "r")) {
|
||||
fclose(fileTest);
|
||||
} else {
|
||||
std::cerr << "File " << fileName << " doesn't exist." << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
json data = loadResultData(fileName);
|
||||
|
||||
std::string title = "Best results for " + model;
|
||||
worksheet_merge_range(worksheet, 0, 0, 0, 4, title.c_str(), styles["headerFirst"]);
|
||||
// Body header
|
||||
row = 3;
|
||||
int col = 1;
|
||||
writeString(row, 0, "Nº", "bodyHeader");
|
||||
writeString(row, 1, "Dataset", "bodyHeader");
|
||||
writeString(row, 2, "Score", "bodyHeader");
|
||||
writeString(row, 3, "File", "bodyHeader");
|
||||
writeString(row, 4, "Hyperparameters", "bodyHeader");
|
||||
auto i = 0;
|
||||
std::string hyperparameters;
|
||||
int hypSize = 22;
|
||||
std::map<std::string, std::string> files; // map of files imported and their tabs
|
||||
for (auto const& item : data.items()) {
|
||||
row++;
|
||||
writeInt(row, 0, i++, "ints");
|
||||
writeString(row, 1, item.key().c_str(), "text");
|
||||
writeDouble(row, 2, item.value().at(0).get<double>(), "result");
|
||||
auto fileName = item.value().at(2).get<std::string>();
|
||||
std::string hyperlink = "";
|
||||
try {
|
||||
hyperlink = files.at(fileName);
|
||||
}
|
||||
catch (const std::out_of_range& oor) {
|
||||
auto tabName = "table_" + std::to_string(i);
|
||||
auto worksheetNew = workbook_add_worksheet(workbook, tabName.c_str());
|
||||
json data = loadResultData(Paths::results() + fileName);
|
||||
auto report = ReportExcel(data, false, workbook, worksheetNew);
|
||||
report.show();
|
||||
hyperlink = "#table_" + std::to_string(i);
|
||||
files[fileName] = hyperlink;
|
||||
}
|
||||
hyperlink += "!H" + std::to_string(i + 6);
|
||||
std::string fileNameText = "=HYPERLINK(\"" + hyperlink + "\",\"" + fileName + "\")";
|
||||
worksheet_write_formula(worksheet, row, 3, fileNameText.c_str(), efectiveStyle("text"));
|
||||
hyperparameters = item.value().at(1).dump();
|
||||
if (hyperparameters.size() > hypSize) {
|
||||
hypSize = hyperparameters.size();
|
||||
}
|
||||
writeString(row, 4, hyperparameters, "text");
|
||||
}
|
||||
row++;
|
||||
// Set Totals
|
||||
writeString(row, 1, "Total", "bodyHeader");
|
||||
std::stringstream oss;
|
||||
auto colName = getColumnName(2);
|
||||
oss << "=sum(" << colName << "5:" << colName << row << ")";
|
||||
worksheet_write_formula(worksheet, row, 2, oss.str().c_str(), styles["bodyHeader_odd"]);
|
||||
// Set format
|
||||
worksheet_freeze_panes(worksheet, 4, 2);
|
||||
std::vector<int> columns_sizes = { 5, datasetNameSize, modelNameSize, 66, hypSize + 1 };
|
||||
for (int i = 0; i < columns_sizes.size(); ++i) {
|
||||
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
|
||||
}
|
||||
}
|
||||
BestResultsExcel::~BestResultsExcel()
|
||||
{
|
||||
workbook_close(workbook);
|
||||
}
|
||||
void BestResultsExcel::formatColumns()
|
||||
{
|
||||
worksheet_freeze_panes(worksheet, 4, 2);
|
||||
std::vector<int> columns_sizes = { 5, datasetNameSize };
|
||||
for (int i = 0; i < models.size(); ++i) {
|
||||
columns_sizes.push_back(modelNameSize);
|
||||
}
|
||||
for (int i = 0; i < columns_sizes.size(); ++i) {
|
||||
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
|
||||
}
|
||||
}
|
||||
void BestResultsExcel::addConditionalFormat(std::string formula)
|
||||
{
|
||||
// Add conditional format for max/min values in scores/ranks sheets
|
||||
lxw_format* custom_format = workbook_add_format(workbook);
|
||||
format_set_bg_color(custom_format, 0xFFC7CE);
|
||||
format_set_font_color(custom_format, 0x9C0006);
|
||||
// Create a conditional format object. A static object would also work.
|
||||
lxw_conditional_format* conditional_format = (lxw_conditional_format*)calloc(1, sizeof(lxw_conditional_format));
|
||||
conditional_format->type = LXW_CONDITIONAL_TYPE_FORMULA;
|
||||
std::string col = getColumnName(models.size() + 1);
|
||||
std::stringstream oss;
|
||||
oss << "=C5=" << formula << "($C5:$" << col << "5)";
|
||||
auto formulaValue = oss.str();
|
||||
conditional_format->value_string = formulaValue.c_str();
|
||||
conditional_format->format = custom_format;
|
||||
worksheet_conditional_format_range(worksheet, 4, 2, datasets.size() + 3, models.size() + 1, conditional_format);
|
||||
}
|
||||
void BestResultsExcel::build()
|
||||
{
|
||||
// Create Sheet with scores
|
||||
header(false);
|
||||
body(false);
|
||||
// Add conditional format for max values
|
||||
addConditionalFormat("max");
|
||||
footer(false);
|
||||
if (friedman) {
|
||||
// Create Sheet with ranks
|
||||
worksheet = workbook_add_worksheet(workbook, "Ranks");
|
||||
formatColumns();
|
||||
header(true);
|
||||
body(true);
|
||||
addConditionalFormat("min");
|
||||
footer(true);
|
||||
// Create Sheet with Friedman Test
|
||||
doFriedman();
|
||||
}
|
||||
}
|
||||
std::string BestResultsExcel::getFileName()
|
||||
{
|
||||
return Paths::excel() + fileName;
|
||||
}
|
||||
void BestResultsExcel::header(bool ranks)
|
||||
{
|
||||
row = 0;
|
||||
std::string message = ranks ? "Ranks for score " + score : "Best results for " + score;
|
||||
worksheet_merge_range(worksheet, 0, 0, 0, 1 + models.size(), message.c_str(), styles["headerFirst"]);
|
||||
// Body header
|
||||
row = 3;
|
||||
int col = 1;
|
||||
writeString(row, 0, "Nº", "bodyHeader");
|
||||
writeString(row, 1, "Dataset", "bodyHeader");
|
||||
for (const auto& model : models) {
|
||||
writeString(row, ++col, model.c_str(), "bodyHeader");
|
||||
}
|
||||
}
|
||||
void BestResultsExcel::body(bool ranks)
|
||||
{
|
||||
row = 4;
|
||||
int i = 0;
|
||||
json origin = table.begin().value();
|
||||
for (auto const& item : origin.items()) {
|
||||
writeInt(row, 0, i++, "ints");
|
||||
writeString(row, 1, item.key().c_str(), "text");
|
||||
int col = 1;
|
||||
for (const auto& model : models) {
|
||||
double value = ranks ? ranksModels[item.key()][model] : table[model].at(item.key()).at(0).get<double>();
|
||||
writeDouble(row, ++col, value, "result");
|
||||
}
|
||||
++row;
|
||||
}
|
||||
}
|
||||
void BestResultsExcel::footer(bool ranks)
|
||||
{
|
||||
// Set Totals
|
||||
writeString(row, 1, "Total", "bodyHeader");
|
||||
int col = 1;
|
||||
for (const auto& model : models) {
|
||||
std::stringstream oss;
|
||||
auto colName = getColumnName(col + 1);
|
||||
oss << "=SUM(" << colName << "5:" << colName << row << ")";
|
||||
worksheet_write_formula(worksheet, row, ++col, oss.str().c_str(), styles["bodyHeader_odd"]);
|
||||
}
|
||||
if (ranks) {
|
||||
row++;
|
||||
writeString(row, 1, "Average ranks", "bodyHeader");
|
||||
int col = 1;
|
||||
for (const auto& model : models) {
|
||||
auto colName = getColumnName(col + 1);
|
||||
std::stringstream oss;
|
||||
oss << "=SUM(" << colName << "5:" << colName << row - 1 << ")/" << datasets.size();
|
||||
worksheet_write_formula(worksheet, row, ++col, oss.str().c_str(), styles["bodyHeader_odd"]);
|
||||
}
|
||||
}
|
||||
}
|
||||
void BestResultsExcel::doFriedman()
|
||||
{
|
||||
worksheet = workbook_add_worksheet(workbook, "Friedman");
|
||||
std::vector<int> columns_sizes = { 5, datasetNameSize };
|
||||
for (int i = 0; i < models.size(); ++i) {
|
||||
columns_sizes.push_back(modelNameSize);
|
||||
}
|
||||
for (int i = 0; i < columns_sizes.size(); ++i) {
|
||||
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
|
||||
}
|
||||
worksheet_merge_range(worksheet, 0, 0, 0, 1 + models.size(), "Friedman Test", styles["headerFirst"]);
|
||||
row = 2;
|
||||
Statistics stats(models, datasets, table, significance, false);
|
||||
auto result = stats.friedmanTest();
|
||||
stats.postHocHolmTest(result);
|
||||
auto friedmanResult = stats.getFriedmanResult();
|
||||
auto holmResult = stats.getHolmResult();
|
||||
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Null hypothesis: H0 'There is no significant differences between all the classifiers.'", styles["headerSmall"]);
|
||||
row += 2;
|
||||
writeString(row, 1, "Friedman Q", "bodyHeader");
|
||||
writeDouble(row, 2, friedmanResult.statistic, "bodyHeader");
|
||||
row++;
|
||||
writeString(row, 1, "Critical χ2 value", "bodyHeader");
|
||||
writeDouble(row, 2, friedmanResult.criticalValue, "bodyHeader");
|
||||
row++;
|
||||
writeString(row, 1, "p-value", "bodyHeader");
|
||||
writeDouble(row, 2, friedmanResult.pvalue, "bodyHeader");
|
||||
writeString(row, 3, friedmanResult.reject ? "<" : ">", "bodyHeader");
|
||||
writeDouble(row, 4, significance, "bodyHeader");
|
||||
writeString(row, 5, friedmanResult.reject ? "Reject H0" : "Accept H0", "bodyHeader");
|
||||
row += 3;
|
||||
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Holm Test", styles["headerFirst"]);
|
||||
row += 2;
|
||||
worksheet_merge_range(worksheet, row, 0, row, 1 + models.size(), "Null hypothesis: H0 'There is no significant differences between the control model and the other models.'", styles["headerSmall"]);
|
||||
row += 2;
|
||||
std::string controlModel = "Control Model: " + holmResult.model;
|
||||
worksheet_merge_range(worksheet, row, 1, row, 7, controlModel.c_str(), styles["bodyHeader_odd"]);
|
||||
row++;
|
||||
writeString(row, 1, "Model", "bodyHeader");
|
||||
writeString(row, 2, "p-value", "bodyHeader");
|
||||
writeString(row, 3, "Rank", "bodyHeader");
|
||||
writeString(row, 4, "Win", "bodyHeader");
|
||||
writeString(row, 5, "Tie", "bodyHeader");
|
||||
writeString(row, 6, "Loss", "bodyHeader");
|
||||
writeString(row, 7, "Reject H0", "bodyHeader");
|
||||
row++;
|
||||
bool first = true;
|
||||
for (const auto& item : holmResult.holmLines) {
|
||||
writeString(row, 1, item.model, "text");
|
||||
if (first) {
|
||||
// Control model info
|
||||
first = false;
|
||||
writeString(row, 2, "", "text");
|
||||
writeDouble(row, 3, item.rank, "result");
|
||||
writeString(row, 4, "", "text");
|
||||
writeString(row, 5, "", "text");
|
||||
writeString(row, 6, "", "text");
|
||||
writeString(row, 7, "", "textCentered");
|
||||
} else {
|
||||
// Rest of the models info
|
||||
writeDouble(row, 2, item.pvalue, "result");
|
||||
writeDouble(row, 3, item.rank, "result");
|
||||
writeInt(row, 4, item.wtl.win, "ints");
|
||||
writeInt(row, 5, item.wtl.tie, "ints");
|
||||
writeInt(row, 6, item.wtl.loss, "ints");
|
||||
writeString(row, 7, item.reject ? "Yes" : "No", "textCentered");
|
||||
}
|
||||
row++;
|
||||
}
|
||||
}
|
||||
}
|
@ -1,39 +0,0 @@
|
||||
#ifndef BESTRESULTS_EXCEL_H
|
||||
#define BESTRESULTS_EXCEL_H
|
||||
#include "ExcelFile.h"
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
using json = nlohmann::json;
|
||||
|
||||
namespace platform {
|
||||
|
||||
class BestResultsExcel : ExcelFile {
|
||||
public:
|
||||
BestResultsExcel(const std::string& score, const std::vector<std::string>& datasets);
|
||||
~BestResultsExcel();
|
||||
void reportAll(const std::vector<std::string>& models, const json& table, const std::map<std::string, std::map<std::string, float>>& ranks, bool friedman, double significance);
|
||||
void reportSingle(const std::string& model, const std::string& fileName);
|
||||
std::string getFileName();
|
||||
private:
|
||||
void build();
|
||||
void header(bool ranks);
|
||||
void body(bool ranks);
|
||||
void footer(bool ranks);
|
||||
void formatColumns();
|
||||
void doFriedman();
|
||||
void addConditionalFormat(std::string formula);
|
||||
const std::string fileName = "BestResults.xlsx";
|
||||
std::string score;
|
||||
std::vector<std::string> models;
|
||||
std::vector<std::string> datasets;
|
||||
json table;
|
||||
std::map<std::string, std::map<std::string, float>> ranksModels;
|
||||
bool friedman;
|
||||
double significance;
|
||||
int modelNameSize = 12; // Min size of the column
|
||||
int datasetNameSize = 25; // Min size of the column
|
||||
};
|
||||
}
|
||||
#endif //BESTRESULTS_EXCEL_H
|
@ -1,28 +0,0 @@
|
||||
#ifndef BESTSCORE_H
|
||||
#define BESTSCORE_H
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <utility>
|
||||
#include "DotEnv.h"
|
||||
namespace platform {
|
||||
class BestScore {
|
||||
public:
|
||||
static std::pair<std::string, double> getScore(const std::string& metric)
|
||||
{
|
||||
static std::map<std::pair<std::string, std::string>, std::pair<std::string, double>> data = {
|
||||
{{"discretiz", "accuracy"}, {"STree_default (linear-ovo)", 22.109799}},
|
||||
{{"odte", "accuracy"}, {"STree_default (linear-ovo)", 22.109799}},
|
||||
};
|
||||
auto env = platform::DotEnv();
|
||||
std::string experiment = env.get("experiment");
|
||||
try {
|
||||
return data[{experiment, metric}];
|
||||
}
|
||||
catch (...) {
|
||||
return { "", 0.0 };
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
@ -1,22 +0,0 @@
|
||||
#ifndef LOCALE_H
|
||||
#define LOCALE_H
|
||||
#include <locale>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
namespace platform {
|
||||
struct separation : std::numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
std::string do_grouping() const { return "\03"; }
|
||||
};
|
||||
class ConfigLocale {
|
||||
public:
|
||||
explicit ConfigLocale()
|
||||
{
|
||||
std::locale mylocale(std::cout.getloc(), new separation);
|
||||
std::locale::global(mylocale);
|
||||
std::cout.imbue(mylocale);
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@ -1,25 +0,0 @@
|
||||
add_executable(b_best b_best.cc BestResults.cc Result.cc Statistics.cc BestResultsExcel.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
||||
add_executable(b_grid b_grid.cc GridSearch.cc GridData.cc HyperParameters.cc Folding.cc Datasets.cc Dataset.cc)
|
||||
add_executable(b_list b_list.cc Datasets.cc Dataset.cc)
|
||||
add_executable(b_main b_main.cc Folding.cc Experiment.cc Datasets.cc Dataset.cc Models.cc HyperParameters.cc ReportConsole.cc ReportBase.cc)
|
||||
add_executable(b_manage b_manage.cc Results.cc ManageResults.cc CommandParser.cc Result.cc ReportConsole.cc ReportExcel.cc ReportBase.cc Datasets.cc Dataset.cc ExcelFile.cc)
|
||||
|
||||
include_directories(
|
||||
${BayesNet_SOURCE_DIR}/src/BayesNet
|
||||
${BayesNet_SOURCE_DIR}/src/Platform
|
||||
${BayesNet_SOURCE_DIR}/src/PyClassifiers
|
||||
${BayesNet_SOURCE_DIR}/lib/Files
|
||||
${BayesNet_SOURCE_DIR}/lib/mdlp
|
||||
${BayesNet_SOURCE_DIR}/lib/argparse/include
|
||||
${BayesNet_SOURCE_DIR}/lib/json/include
|
||||
${BayesNet_SOURCE_DIR}/lib/libxlsxwriter/include
|
||||
${Python3_INCLUDE_DIRS}
|
||||
${MPI_CXX_INCLUDE_DIRS}
|
||||
${CMAKE_BINARY_DIR}/configured_files/include
|
||||
)
|
||||
|
||||
target_link_libraries(b_best Boost::boost "${XLSXWRITER_LIB}" "${TORCH_LIBRARIES}" ArffFiles mdlp)
|
||||
target_link_libraries(b_grid BayesNet PyWrap ${MPI_CXX_LIBRARIES})
|
||||
target_link_libraries(b_list ArffFiles mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(b_main BayesNet ArffFiles mdlp "${TORCH_LIBRARIES}" PyWrap)
|
||||
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
|
@ -1,15 +0,0 @@
|
||||
#ifndef COLORS_H
|
||||
#define COLORS_H
|
||||
class Colors {
|
||||
public:
|
||||
static std::string MAGENTA() { return "\033[1;35m"; }
|
||||
static std::string BLUE() { return "\033[1;34m"; }
|
||||
static std::string CYAN() { return "\033[1;36m"; }
|
||||
static std::string GREEN() { return "\033[1;32m"; }
|
||||
static std::string YELLOW() { return "\033[1;33m"; }
|
||||
static std::string RED() { return "\033[1;31m"; }
|
||||
static std::string WHITE() { return "\033[1;37m"; }
|
||||
static std::string IBLUE() { return "\033[0;94m"; }
|
||||
static std::string RESET() { return "\033[0m"; }
|
||||
};
|
||||
#endif // COLORS_H
|
@ -1,87 +0,0 @@
|
||||
#include "CommandParser.h"
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <algorithm>
|
||||
#include "Colors.h"
|
||||
#include "Utils.h"
|
||||
|
||||
namespace platform {
|
||||
void CommandParser::messageError(const std::string& message)
|
||||
{
|
||||
std::cout << Colors::RED() << message << Colors::RESET() << std::endl;
|
||||
}
|
||||
std::pair<char, int> CommandParser::parse(const std::string& color, const std::vector<std::tuple<std::string, char, bool>>& options, const char defaultCommand, const int maxIndex)
|
||||
{
|
||||
bool finished = false;
|
||||
while (!finished) {
|
||||
std::stringstream oss;
|
||||
std::string line;
|
||||
oss << color << "Choose option (";
|
||||
bool first = true;
|
||||
for (auto& option : options) {
|
||||
if (first) {
|
||||
first = false;
|
||||
} else {
|
||||
oss << ", ";
|
||||
}
|
||||
oss << std::get<char>(option) << "=" << std::get<std::string>(option);
|
||||
}
|
||||
oss << "): ";
|
||||
std::cout << oss.str();
|
||||
getline(std::cin, line);
|
||||
std::cout << Colors::RESET();
|
||||
line = trim(line);
|
||||
if (line.size() == 0)
|
||||
continue;
|
||||
if (all_of(line.begin(), line.end(), ::isdigit)) {
|
||||
command = defaultCommand;
|
||||
index = stoi(line);
|
||||
if (index > maxIndex || index < 0) {
|
||||
messageError("Index out of range");
|
||||
continue;
|
||||
}
|
||||
finished = true;
|
||||
break;
|
||||
}
|
||||
bool found = false;
|
||||
for (auto& option : options) {
|
||||
if (line[0] == std::get<char>(option)) {
|
||||
found = true;
|
||||
// it's a match
|
||||
line.erase(line.begin());
|
||||
line = trim(line);
|
||||
if (std::get<bool>(option)) {
|
||||
// The option requires a value
|
||||
if (line.size() == 0) {
|
||||
messageError("Option " + std::get<std::string>(option) + " requires a value");
|
||||
break;
|
||||
}
|
||||
try {
|
||||
index = stoi(line);
|
||||
if (index > maxIndex || index < 0) {
|
||||
messageError("Index out of range");
|
||||
break;
|
||||
}
|
||||
}
|
||||
catch (const std::invalid_argument& ia) {
|
||||
messageError("Invalid value: " + line);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
if (line.size() > 0) {
|
||||
messageError("option " + std::get<std::string>(option) + " doesn't accept values");
|
||||
break;
|
||||
}
|
||||
}
|
||||
command = std::get<char>(option);
|
||||
finished = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
messageError("I don't know " + line);
|
||||
}
|
||||
}
|
||||
return { command, index };
|
||||
}
|
||||
} /* namespace platform */
|
@ -1,20 +0,0 @@
|
||||
#ifndef COMMAND_PARSER_H
|
||||
#define COMMAND_PARSER_H
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <tuple>
|
||||
|
||||
namespace platform {
|
||||
class CommandParser {
|
||||
public:
|
||||
CommandParser() = default;
|
||||
std::pair<char, int> parse(const std::string& color, const std::vector<std::tuple<std::string, char, bool>>& options, const char defaultCommand, const int maxIndex);
|
||||
char getCommand() const { return command; };
|
||||
int getIndex() const { return index; };
|
||||
private:
|
||||
void messageError(const std::string& message);
|
||||
char command;
|
||||
int index;
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif /* COMMAND_PARSER_H */
|
@ -1,215 +0,0 @@
|
||||
#include "Dataset.h"
|
||||
#include "ArffFiles.h"
|
||||
#include <fstream>
|
||||
namespace platform {
|
||||
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
|
||||
{
|
||||
}
|
||||
std::string Dataset::getName() const
|
||||
{
|
||||
return name;
|
||||
}
|
||||
std::string Dataset::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
std::vector<std::string> Dataset::getFeatures() const
|
||||
{
|
||||
if (loaded) {
|
||||
return features;
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Dataset::getNFeatures() const
|
||||
{
|
||||
if (loaded) {
|
||||
return n_features;
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Dataset::getNSamples() const
|
||||
{
|
||||
if (loaded) {
|
||||
return n_samples;
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
std::map<std::string, std::vector<int>> Dataset::getStates() const
|
||||
{
|
||||
if (loaded) {
|
||||
return states;
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<std::vector<std::vector<float>>&, std::vector<int>&> Dataset::getVectors()
|
||||
{
|
||||
if (loaded) {
|
||||
return { Xv, yv };
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<std::vector<std::vector<int>>&, std::vector<int>&> Dataset::getVectorsDiscretized()
|
||||
{
|
||||
if (loaded) {
|
||||
return { Xd, yv };
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<torch::Tensor&, torch::Tensor&> Dataset::getTensors()
|
||||
{
|
||||
if (loaded) {
|
||||
buildTensors();
|
||||
return { X, y };
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
void Dataset::load_csv()
|
||||
{
|
||||
ifstream file(path + "/" + name + ".csv");
|
||||
if (file.is_open()) {
|
||||
std::string line;
|
||||
getline(file, line);
|
||||
std::vector<std::string> tokens = split(line, ',');
|
||||
features = std::vector<std::string>(tokens.begin(), tokens.end() - 1);
|
||||
if (className == "-1") {
|
||||
className = tokens.back();
|
||||
}
|
||||
for (auto i = 0; i < features.size(); ++i) {
|
||||
Xv.push_back(std::vector<float>());
|
||||
}
|
||||
while (getline(file, line)) {
|
||||
tokens = split(line, ',');
|
||||
for (auto i = 0; i < features.size(); ++i) {
|
||||
Xv[i].push_back(stof(tokens[i]));
|
||||
}
|
||||
yv.push_back(stoi(tokens.back()));
|
||||
}
|
||||
file.close();
|
||||
} else {
|
||||
throw std::invalid_argument("Unable to open dataset file.");
|
||||
}
|
||||
}
|
||||
void Dataset::computeStates()
|
||||
{
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
states[features[i]] = std::vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
|
||||
auto item = states.at(features[i]);
|
||||
iota(begin(item), end(item), 0);
|
||||
}
|
||||
states[className] = std::vector<int>(*max_element(yv.begin(), yv.end()) + 1);
|
||||
iota(begin(states.at(className)), end(states.at(className)), 0);
|
||||
}
|
||||
void Dataset::load_arff()
|
||||
{
|
||||
auto arff = ArffFiles();
|
||||
arff.load(path + "/" + name + ".arff", className);
|
||||
// Get Dataset X, y
|
||||
Xv = arff.getX();
|
||||
yv = arff.getY();
|
||||
// Get className & Features
|
||||
className = arff.getClassName();
|
||||
auto attributes = arff.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& attribute) { return attribute.first; });
|
||||
}
|
||||
std::vector<std::string> tokenize(std::string line)
|
||||
{
|
||||
std::vector<std::string> tokens;
|
||||
for (auto i = 0; i < line.size(); ++i) {
|
||||
if (line[i] == ' ' || line[i] == '\t' || line[i] == '\n') {
|
||||
std::string token = line.substr(0, i);
|
||||
tokens.push_back(token);
|
||||
line.erase(line.begin(), line.begin() + i + 1);
|
||||
i = 0;
|
||||
while (line[i] == ' ' || line[i] == '\t' || line[i] == '\n')
|
||||
line.erase(line.begin(), line.begin() + i + 1);
|
||||
}
|
||||
}
|
||||
if (line.size() > 0) {
|
||||
tokens.push_back(line);
|
||||
}
|
||||
return tokens;
|
||||
}
|
||||
void Dataset::load_rdata()
|
||||
{
|
||||
ifstream file(path + "/" + name + "_R.dat");
|
||||
if (file.is_open()) {
|
||||
std::string line;
|
||||
getline(file, line);
|
||||
line = ArffFiles::trim(line);
|
||||
std::vector<std::string> tokens = tokenize(line);
|
||||
transform(tokens.begin(), tokens.end() - 1, back_inserter(features), [](const auto& attribute) { return ArffFiles::trim(attribute); });
|
||||
if (className == "-1") {
|
||||
className = ArffFiles::trim(tokens.back());
|
||||
}
|
||||
for (auto i = 0; i < features.size(); ++i) {
|
||||
Xv.push_back(std::vector<float>());
|
||||
}
|
||||
while (getline(file, line)) {
|
||||
tokens = tokenize(line);
|
||||
// We have to skip the first token, which is the instance number.
|
||||
for (auto i = 1; i < features.size() + 1; ++i) {
|
||||
const float value = stof(tokens[i]);
|
||||
Xv[i - 1].push_back(value);
|
||||
}
|
||||
yv.push_back(stoi(tokens.back()));
|
||||
}
|
||||
file.close();
|
||||
} else {
|
||||
throw std::invalid_argument("Unable to open dataset file.");
|
||||
}
|
||||
}
|
||||
void Dataset::load()
|
||||
{
|
||||
if (loaded) {
|
||||
return;
|
||||
}
|
||||
if (fileType == CSV) {
|
||||
load_csv();
|
||||
} else if (fileType == ARFF) {
|
||||
load_arff();
|
||||
} else if (fileType == RDATA) {
|
||||
load_rdata();
|
||||
}
|
||||
if (discretize) {
|
||||
Xd = discretizeDataset(Xv, yv);
|
||||
computeStates();
|
||||
}
|
||||
n_samples = Xv[0].size();
|
||||
n_features = Xv.size();
|
||||
loaded = true;
|
||||
}
|
||||
void Dataset::buildTensors()
|
||||
{
|
||||
if (discretize) {
|
||||
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kInt32);
|
||||
} else {
|
||||
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kFloat32);
|
||||
}
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
if (discretize) {
|
||||
X.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
||||
} else {
|
||||
X.index_put_({ i, "..." }, torch::tensor(Xv[i], torch::kFloat32));
|
||||
}
|
||||
}
|
||||
y = torch::tensor(yv, torch::kInt32);
|
||||
}
|
||||
std::vector<mdlp::labels_t> Dataset::discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y)
|
||||
{
|
||||
std::vector<mdlp::labels_t> Xd;
|
||||
auto fimdlp = mdlp::CPPFImdlp();
|
||||
for (int i = 0; i < X.size(); i++) {
|
||||
fimdlp.fit(X[i], y);
|
||||
mdlp::labels_t& xd = fimdlp.transform(X[i]);
|
||||
Xd.push_back(xd);
|
||||
}
|
||||
return Xd;
|
||||
}
|
||||
}
|
@ -1,78 +0,0 @@
|
||||
#ifndef DATASET_H
|
||||
#define DATASET_H
|
||||
#include <torch/torch.h>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "CPPFImdlp.h"
|
||||
#include "Utils.h"
|
||||
namespace platform {
|
||||
enum fileType_t { CSV, ARFF, RDATA };
|
||||
class SourceData {
|
||||
public:
|
||||
SourceData(std::string source)
|
||||
{
|
||||
if (source == "Surcov") {
|
||||
path = "datasets/";
|
||||
fileType = CSV;
|
||||
} else if (source == "Arff") {
|
||||
path = "datasets/";
|
||||
fileType = ARFF;
|
||||
} else if (source == "Tanveer") {
|
||||
path = "data/";
|
||||
fileType = RDATA;
|
||||
} else {
|
||||
throw std::invalid_argument("Unknown source.");
|
||||
}
|
||||
}
|
||||
std::string getPath()
|
||||
{
|
||||
return path;
|
||||
}
|
||||
fileType_t getFileType()
|
||||
{
|
||||
return fileType;
|
||||
}
|
||||
private:
|
||||
std::string path;
|
||||
fileType_t fileType;
|
||||
};
|
||||
class Dataset {
|
||||
private:
|
||||
std::string path;
|
||||
std::string name;
|
||||
fileType_t fileType;
|
||||
std::string className;
|
||||
int n_samples{ 0 }, n_features{ 0 };
|
||||
std::vector<std::string> features;
|
||||
std::map<std::string, std::vector<int>> states;
|
||||
bool loaded;
|
||||
bool discretize;
|
||||
torch::Tensor X, y;
|
||||
std::vector<std::vector<float>> Xv;
|
||||
std::vector<std::vector<int>> Xd;
|
||||
std::vector<int> yv;
|
||||
void buildTensors();
|
||||
void load_csv();
|
||||
void load_arff();
|
||||
void load_rdata();
|
||||
void computeStates();
|
||||
std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y);
|
||||
public:
|
||||
Dataset(const std::string& path, const std::string& name, const std::string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
|
||||
explicit Dataset(const Dataset&);
|
||||
std::string getName() const;
|
||||
std::string getClassName() const;
|
||||
std::vector<string> getFeatures() const;
|
||||
std::map<std::string, std::vector<int>> getStates() const;
|
||||
std::pair<vector<std::vector<float>>&, std::vector<int>&> getVectors();
|
||||
std::pair<vector<std::vector<int>>&, std::vector<int>&> getVectorsDiscretized();
|
||||
std::pair<torch::Tensor&, torch::Tensor&> getTensors();
|
||||
int getNFeatures() const;
|
||||
int getNSamples() const;
|
||||
void load();
|
||||
const bool inline isLoaded() const { return loaded; };
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
@ -1,129 +0,0 @@
|
||||
#include "Datasets.h"
|
||||
#include <fstream>
|
||||
namespace platform {
|
||||
void Datasets::load()
|
||||
{
|
||||
auto sd = SourceData(sfileType);
|
||||
fileType = sd.getFileType();
|
||||
path = sd.getPath();
|
||||
ifstream catalog(path + "all.txt");
|
||||
if (catalog.is_open()) {
|
||||
std::string line;
|
||||
while (getline(catalog, line)) {
|
||||
if (line.empty() || line[0] == '#') {
|
||||
continue;
|
||||
}
|
||||
std::vector<std::string> tokens = split(line, ',');
|
||||
std::string name = tokens[0];
|
||||
std::string className;
|
||||
if (tokens.size() == 1) {
|
||||
className = "-1";
|
||||
} else {
|
||||
className = tokens[1];
|
||||
}
|
||||
datasets[name] = make_unique<Dataset>(path, name, className, discretize, fileType);
|
||||
}
|
||||
catalog.close();
|
||||
} else {
|
||||
throw std::invalid_argument("Unable to open catalog file. [" + path + "all.txt" + "]");
|
||||
}
|
||||
}
|
||||
std::vector<std::string> Datasets::getNames()
|
||||
{
|
||||
std::vector<std::string> result;
|
||||
transform(datasets.begin(), datasets.end(), back_inserter(result), [](const auto& d) { return d.first; });
|
||||
return result;
|
||||
}
|
||||
std::vector<std::string> Datasets::getFeatures(const std::string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getFeatures();
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
map<std::string, std::vector<int>> Datasets::getStates(const std::string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getStates();
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
void Datasets::loadDataset(const std::string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return;
|
||||
} else {
|
||||
datasets.at(name)->load();
|
||||
}
|
||||
}
|
||||
std::string Datasets::getClassName(const std::string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getClassName();
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Datasets::getNSamples(const std::string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
return datasets.at(name)->getNSamples();
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
int Datasets::getNClasses(const std::string& name)
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
auto className = datasets.at(name)->getClassName();
|
||||
if (discretize) {
|
||||
auto states = getStates(name);
|
||||
return states.at(className).size();
|
||||
}
|
||||
auto [Xv, yv] = getVectors(name);
|
||||
return *std::max_element(yv.begin(), yv.end()) + 1;
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
std::vector<int> Datasets::getClassesCounts(const std::string& name) const
|
||||
{
|
||||
if (datasets.at(name)->isLoaded()) {
|
||||
auto [Xv, yv] = datasets.at(name)->getVectors();
|
||||
std::vector<int> counts(*std::max_element(yv.begin(), yv.end()) + 1);
|
||||
for (auto y : yv) {
|
||||
counts[y]++;
|
||||
}
|
||||
return counts;
|
||||
} else {
|
||||
throw std::invalid_argument("Dataset not loaded.");
|
||||
}
|
||||
}
|
||||
pair<std::vector<std::vector<float>>&, std::vector<int>&> Datasets::getVectors(const std::string& name)
|
||||
{
|
||||
if (!datasets[name]->isLoaded()) {
|
||||
datasets[name]->load();
|
||||
}
|
||||
return datasets[name]->getVectors();
|
||||
}
|
||||
pair<std::vector<std::vector<int>>&, std::vector<int>&> Datasets::getVectorsDiscretized(const std::string& name)
|
||||
{
|
||||
if (!datasets[name]->isLoaded()) {
|
||||
datasets[name]->load();
|
||||
}
|
||||
return datasets[name]->getVectorsDiscretized();
|
||||
}
|
||||
pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(const std::string& name)
|
||||
{
|
||||
if (!datasets[name]->isLoaded()) {
|
||||
datasets[name]->load();
|
||||
}
|
||||
return datasets[name]->getTensors();
|
||||
}
|
||||
bool Datasets::isDataset(const std::string& name) const
|
||||
{
|
||||
return datasets.find(name) != datasets.end();
|
||||
}
|
||||
}
|
@ -1,30 +0,0 @@
|
||||
#ifndef DATASETS_H
|
||||
#define DATASETS_H
|
||||
#include "Dataset.h"
|
||||
namespace platform {
|
||||
class Datasets {
|
||||
private:
|
||||
std::string path;
|
||||
fileType_t fileType;
|
||||
std::string sfileType;
|
||||
std::map<std::string, std::unique_ptr<Dataset>> datasets;
|
||||
bool discretize;
|
||||
void load(); // Loads the list of datasets
|
||||
public:
|
||||
explicit Datasets(bool discretize, std::string sfileType) : discretize(discretize), sfileType(sfileType) { load(); };
|
||||
std::vector<string> getNames();
|
||||
std::vector<string> getFeatures(const std::string& name) const;
|
||||
int getNSamples(const std::string& name) const;
|
||||
std::string getClassName(const std::string& name) const;
|
||||
int getNClasses(const std::string& name);
|
||||
std::vector<int> getClassesCounts(const std::string& name) const;
|
||||
std::map<std::string, std::vector<int>> getStates(const std::string& name) const;
|
||||
std::pair<std::vector<std::vector<float>>&, std::vector<int>&> getVectors(const std::string& name);
|
||||
std::pair<std::vector<std::vector<int>>&, std::vector<int>&> getVectorsDiscretized(const std::string& name);
|
||||
std::pair<torch::Tensor&, torch::Tensor&> getTensors(const std::string& name);
|
||||
bool isDataset(const std::string& name) const;
|
||||
void loadDataset(const std::string& name) const;
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
@ -1,55 +0,0 @@
|
||||
#ifndef DOTENV_H
|
||||
#define DOTENV_H
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include "Utils.h"
|
||||
|
||||
//#include "Dataset.h"
|
||||
namespace platform {
|
||||
class DotEnv {
|
||||
private:
|
||||
std::map<std::string, std::string> env;
|
||||
public:
|
||||
DotEnv()
|
||||
{
|
||||
std::ifstream file(".env");
|
||||
if (!file.is_open()) {
|
||||
std::cerr << "File .env not found" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
std::string line;
|
||||
while (std::getline(file, line)) {
|
||||
line = trim(line);
|
||||
if (line.empty() || line[0] == '#') {
|
||||
continue;
|
||||
}
|
||||
std::istringstream iss(line);
|
||||
std::string key, value;
|
||||
if (std::getline(iss, key, '=') && std::getline(iss, value)) {
|
||||
env[key] = value;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::string get(const std::string& key)
|
||||
{
|
||||
return env.at(key);
|
||||
}
|
||||
std::vector<int> getSeeds()
|
||||
{
|
||||
auto seeds = std::vector<int>();
|
||||
auto seeds_str = env["seeds"];
|
||||
seeds_str = trim(seeds_str);
|
||||
seeds_str = seeds_str.substr(1, seeds_str.size() - 2);
|
||||
auto seeds_str_split = split(seeds_str, ',');
|
||||
transform(seeds_str_split.begin(), seeds_str_split.end(), back_inserter(seeds), [](const std::string& str) {
|
||||
return stoi(str);
|
||||
});
|
||||
return seeds;
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@ -1,168 +0,0 @@
|
||||
#include "ExcelFile.h"
|
||||
|
||||
namespace platform {
|
||||
ExcelFile::ExcelFile()
|
||||
{
|
||||
setDefault();
|
||||
}
|
||||
ExcelFile::ExcelFile(lxw_workbook* workbook) : workbook(workbook)
|
||||
{
|
||||
setDefault();
|
||||
}
|
||||
ExcelFile::ExcelFile(lxw_workbook* workbook, lxw_worksheet* worksheet) : workbook(workbook), worksheet(worksheet)
|
||||
{
|
||||
setDefault();
|
||||
}
|
||||
void ExcelFile::setDefault()
|
||||
{
|
||||
normalSize = 14; //font size for report body
|
||||
row = 0;
|
||||
colorTitle = 0xB1A0C7;
|
||||
colorOdd = 0xDCE6F1;
|
||||
colorEven = 0xFDE9D9;
|
||||
}
|
||||
|
||||
lxw_workbook* ExcelFile::getWorkbook()
|
||||
{
|
||||
return workbook;
|
||||
}
|
||||
void ExcelFile::setProperties(std::string title)
|
||||
{
|
||||
char line[title.size() + 1];
|
||||
strcpy(line, title.c_str());
|
||||
lxw_doc_properties properties = {
|
||||
.title = line,
|
||||
.subject = (char*)"Machine learning results",
|
||||
.author = (char*)"Ricardo Montañana Gómez",
|
||||
.manager = (char*)"Dr. J. A. Gámez, Dr. J. M. Puerta",
|
||||
.company = (char*)"UCLM",
|
||||
.comments = (char*)"Created with libxlsxwriter and c++",
|
||||
};
|
||||
workbook_set_properties(workbook, &properties);
|
||||
}
|
||||
lxw_format* ExcelFile::efectiveStyle(const std::string& style)
|
||||
{
|
||||
lxw_format* efectiveStyle = NULL;
|
||||
if (style != "") {
|
||||
std::string suffix = row % 2 ? "_odd" : "_even";
|
||||
try {
|
||||
efectiveStyle = styles.at(style + suffix);
|
||||
}
|
||||
catch (const std::out_of_range& oor) {
|
||||
try {
|
||||
efectiveStyle = styles.at(style);
|
||||
}
|
||||
catch (const std::out_of_range& oor) {
|
||||
throw std::invalid_argument("Style " + style + " not found");
|
||||
}
|
||||
}
|
||||
}
|
||||
return efectiveStyle;
|
||||
}
|
||||
void ExcelFile::writeString(int row, int col, const std::string& text, const std::string& style)
|
||||
{
|
||||
worksheet_write_string(worksheet, row, col, text.c_str(), efectiveStyle(style));
|
||||
}
|
||||
void ExcelFile::writeInt(int row, int col, const int number, const std::string& style)
|
||||
{
|
||||
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
|
||||
}
|
||||
void ExcelFile::writeDouble(int row, int col, const double number, const std::string& style)
|
||||
{
|
||||
worksheet_write_number(worksheet, row, col, number, efectiveStyle(style));
|
||||
}
|
||||
void ExcelFile::addColor(lxw_format* style, bool odd)
|
||||
{
|
||||
uint32_t efectiveColor = odd ? colorEven : colorOdd;
|
||||
format_set_bg_color(style, lxw_color_t(efectiveColor));
|
||||
}
|
||||
void ExcelFile::createStyle(const std::string& name, lxw_format* style, bool odd)
|
||||
{
|
||||
addColor(style, odd);
|
||||
if (name == "textCentered") {
|
||||
format_set_align(style, LXW_ALIGN_CENTER);
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
} else if (name == "text") {
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
} else if (name == "bodyHeader") {
|
||||
format_set_bold(style);
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_align(style, LXW_ALIGN_CENTER);
|
||||
format_set_align(style, LXW_ALIGN_VERTICAL_CENTER);
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
format_set_bg_color(style, lxw_color_t(colorTitle));
|
||||
} else if (name == "result") {
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
format_set_num_format(style, "0.0000000");
|
||||
} else if (name == "time") {
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
format_set_num_format(style, "#,##0.000000");
|
||||
} else if (name == "ints") {
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_num_format(style, "###,##0");
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
} else if (name == "floats") {
|
||||
format_set_border(style, LXW_BORDER_THIN);
|
||||
format_set_font_size(style, normalSize);
|
||||
format_set_num_format(style, "#,##0.00");
|
||||
}
|
||||
}
|
||||
|
||||
void ExcelFile::createFormats()
|
||||
{
|
||||
auto styleNames = { "text", "textCentered", "bodyHeader", "result", "time", "ints", "floats" };
|
||||
lxw_format* style;
|
||||
for (std::string name : styleNames) {
|
||||
lxw_format* style = workbook_add_format(workbook);
|
||||
style = workbook_add_format(workbook);
|
||||
createStyle(name, style, true);
|
||||
styles[name + "_odd"] = style;
|
||||
style = workbook_add_format(workbook);
|
||||
createStyle(name, style, false);
|
||||
styles[name + "_even"] = style;
|
||||
}
|
||||
|
||||
// Header 1st line
|
||||
lxw_format* headerFirst = workbook_add_format(workbook);
|
||||
format_set_bold(headerFirst);
|
||||
format_set_font_size(headerFirst, 18);
|
||||
format_set_align(headerFirst, LXW_ALIGN_CENTER);
|
||||
format_set_align(headerFirst, LXW_ALIGN_VERTICAL_CENTER);
|
||||
format_set_border(headerFirst, LXW_BORDER_THIN);
|
||||
format_set_bg_color(headerFirst, lxw_color_t(colorTitle));
|
||||
|
||||
// Header rest
|
||||
lxw_format* headerRest = workbook_add_format(workbook);
|
||||
format_set_bold(headerRest);
|
||||
format_set_align(headerRest, LXW_ALIGN_CENTER);
|
||||
format_set_font_size(headerRest, 16);
|
||||
format_set_align(headerRest, LXW_ALIGN_VERTICAL_CENTER);
|
||||
format_set_border(headerRest, LXW_BORDER_THIN);
|
||||
format_set_bg_color(headerRest, lxw_color_t(colorOdd));
|
||||
|
||||
// Header small
|
||||
lxw_format* headerSmall = workbook_add_format(workbook);
|
||||
format_set_bold(headerSmall);
|
||||
format_set_align(headerSmall, LXW_ALIGN_LEFT);
|
||||
format_set_font_size(headerSmall, 12);
|
||||
format_set_border(headerSmall, LXW_BORDER_THIN);
|
||||
format_set_align(headerSmall, LXW_ALIGN_VERTICAL_CENTER);
|
||||
format_set_bg_color(headerSmall, lxw_color_t(colorOdd));
|
||||
|
||||
// Summary style
|
||||
lxw_format* summaryStyle = workbook_add_format(workbook);
|
||||
format_set_bold(summaryStyle);
|
||||
format_set_font_size(summaryStyle, 16);
|
||||
format_set_border(summaryStyle, LXW_BORDER_THIN);
|
||||
format_set_align(summaryStyle, LXW_ALIGN_VERTICAL_CENTER);
|
||||
|
||||
styles["headerFirst"] = headerFirst;
|
||||
styles["headerRest"] = headerRest;
|
||||
styles["headerSmall"] = headerSmall;
|
||||
styles["summaryStyle"] = summaryStyle;
|
||||
}
|
||||
}
|
@ -1,43 +0,0 @@
|
||||
#ifndef EXCELFILE_H
|
||||
#define EXCELFILE_H
|
||||
#include <locale>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include "xlsxwriter.h"
|
||||
|
||||
namespace platform {
|
||||
struct separated : std::numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
|
||||
std::string do_grouping() const { return "\03"; }
|
||||
};
|
||||
class ExcelFile {
|
||||
public:
|
||||
ExcelFile();
|
||||
ExcelFile(lxw_workbook* workbook);
|
||||
ExcelFile(lxw_workbook* workbook, lxw_worksheet* worksheet);
|
||||
lxw_workbook* getWorkbook();
|
||||
protected:
|
||||
void setProperties(std::string title);
|
||||
void writeString(int row, int col, const std::string& text, const std::string& style = "");
|
||||
void writeInt(int row, int col, const int number, const std::string& style = "");
|
||||
void writeDouble(int row, int col, const double number, const std::string& style = "");
|
||||
void createFormats();
|
||||
void createStyle(const std::string& name, lxw_format* style, bool odd);
|
||||
void addColor(lxw_format* style, bool odd);
|
||||
lxw_format* efectiveStyle(const std::string& name);
|
||||
lxw_workbook* workbook;
|
||||
lxw_worksheet* worksheet;
|
||||
std::map<std::string, lxw_format*> styles;
|
||||
int row;
|
||||
int normalSize; //font size for report body
|
||||
uint32_t colorTitle;
|
||||
uint32_t colorOdd;
|
||||
uint32_t colorEven;
|
||||
private:
|
||||
void setDefault();
|
||||
};
|
||||
}
|
||||
#endif // !EXCELFILE_H
|
@ -1,226 +0,0 @@
|
||||
#include <fstream>
|
||||
#include "Experiment.h"
|
||||
#include "Datasets.h"
|
||||
#include "Models.h"
|
||||
#include "ReportConsole.h"
|
||||
#include "Paths.h"
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
std::string get_date()
|
||||
{
|
||||
time_t rawtime;
|
||||
tm* timeinfo;
|
||||
time(&rawtime);
|
||||
timeinfo = std::localtime(&rawtime);
|
||||
std::ostringstream oss;
|
||||
oss << std::put_time(timeinfo, "%Y-%m-%d");
|
||||
return oss.str();
|
||||
}
|
||||
std::string get_time()
|
||||
{
|
||||
time_t rawtime;
|
||||
tm* timeinfo;
|
||||
time(&rawtime);
|
||||
timeinfo = std::localtime(&rawtime);
|
||||
std::ostringstream oss;
|
||||
oss << std::put_time(timeinfo, "%H:%M:%S");
|
||||
return oss.str();
|
||||
}
|
||||
std::string Experiment::get_file_name()
|
||||
{
|
||||
std::string result = "results_" + score_name + "_" + model + "_" + platform + "_" + get_date() + "_" + get_time() + "_" + (stratified ? "1" : "0") + ".json";
|
||||
return result;
|
||||
}
|
||||
|
||||
json Experiment::build_json()
|
||||
{
|
||||
json result;
|
||||
result["title"] = title;
|
||||
result["date"] = get_date();
|
||||
result["time"] = get_time();
|
||||
result["model"] = model;
|
||||
result["version"] = model_version;
|
||||
result["platform"] = platform;
|
||||
result["score_name"] = score_name;
|
||||
result["language"] = language;
|
||||
result["language_version"] = language_version;
|
||||
result["discretized"] = discretized;
|
||||
result["stratified"] = stratified;
|
||||
result["folds"] = nfolds;
|
||||
result["seeds"] = randomSeeds;
|
||||
result["duration"] = duration;
|
||||
result["results"] = json::array();
|
||||
for (const auto& r : results) {
|
||||
json j;
|
||||
j["dataset"] = r.getDataset();
|
||||
j["hyperparameters"] = r.getHyperparameters();
|
||||
j["samples"] = r.getSamples();
|
||||
j["features"] = r.getFeatures();
|
||||
j["classes"] = r.getClasses();
|
||||
j["score_train"] = r.getScoreTrain();
|
||||
j["score_test"] = r.getScoreTest();
|
||||
j["score"] = r.getScoreTest();
|
||||
j["score_std"] = r.getScoreTestStd();
|
||||
j["score_train_std"] = r.getScoreTrainStd();
|
||||
j["score_test_std"] = r.getScoreTestStd();
|
||||
j["train_time"] = r.getTrainTime();
|
||||
j["train_time_std"] = r.getTrainTimeStd();
|
||||
j["test_time"] = r.getTestTime();
|
||||
j["test_time_std"] = r.getTestTimeStd();
|
||||
j["time"] = r.getTestTime() + r.getTrainTime();
|
||||
j["time_std"] = r.getTestTimeStd() + r.getTrainTimeStd();
|
||||
j["scores_train"] = r.getScoresTrain();
|
||||
j["scores_test"] = r.getScoresTest();
|
||||
j["times_train"] = r.getTimesTrain();
|
||||
j["times_test"] = r.getTimesTest();
|
||||
j["nodes"] = r.getNodes();
|
||||
j["leaves"] = r.getLeaves();
|
||||
j["depth"] = r.getDepth();
|
||||
result["results"].push_back(j);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
void Experiment::save(const std::string& path)
|
||||
{
|
||||
json data = build_json();
|
||||
ofstream file(path + "/" + get_file_name());
|
||||
file << data;
|
||||
file.close();
|
||||
}
|
||||
|
||||
void Experiment::report()
|
||||
{
|
||||
json data = build_json();
|
||||
ReportConsole report(data);
|
||||
report.show();
|
||||
}
|
||||
|
||||
void Experiment::show()
|
||||
{
|
||||
json data = build_json();
|
||||
std::cout << data.dump(4) << std::endl;
|
||||
}
|
||||
|
||||
void Experiment::go(std::vector<std::string> filesToProcess, bool quiet)
|
||||
{
|
||||
std::cout << "*** Starting experiment: " << title << " ***" << std::endl;
|
||||
for (auto fileName : filesToProcess) {
|
||||
std::cout << "- " << setw(20) << left << fileName << " " << right << flush;
|
||||
cross_validation(fileName, quiet);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
std::string getColor(bayesnet::status_t status)
|
||||
{
|
||||
switch (status) {
|
||||
case bayesnet::NORMAL:
|
||||
return Colors::GREEN();
|
||||
case bayesnet::WARNING:
|
||||
return Colors::YELLOW();
|
||||
case bayesnet::ERROR:
|
||||
return Colors::RED();
|
||||
default:
|
||||
return Colors::RESET();
|
||||
}
|
||||
}
|
||||
|
||||
void showProgress(int fold, const std::string& color, const std::string& phase)
|
||||
{
|
||||
std::string prefix = phase == "a" ? "" : "\b\b\b\b";
|
||||
std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
|
||||
|
||||
}
|
||||
void Experiment::cross_validation(const std::string& fileName, bool quiet)
|
||||
{
|
||||
auto datasets = Datasets(discretized, Paths::datasets());
|
||||
// Get dataset
|
||||
auto [X, y] = datasets.getTensors(fileName);
|
||||
auto states = datasets.getStates(fileName);
|
||||
auto features = datasets.getFeatures(fileName);
|
||||
auto samples = datasets.getNSamples(fileName);
|
||||
auto className = datasets.getClassName(fileName);
|
||||
if (!quiet) {
|
||||
std::cout << " (" << setw(5) << samples << "," << setw(3) << features.size() << ") " << flush;
|
||||
}
|
||||
// Prepare Result
|
||||
auto result = Result();
|
||||
auto [values, counts] = at::_unique(y);
|
||||
result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
|
||||
result.setHyperparameters(hyperparameters.get(fileName));
|
||||
// Initialize results std::vectors
|
||||
int nResults = nfolds * static_cast<int>(randomSeeds.size());
|
||||
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto accuracy_train = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto train_time = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto test_time = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto nodes = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto edges = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto num_states = torch::zeros({ nResults }, torch::kFloat64);
|
||||
Timer train_timer, test_timer;
|
||||
int item = 0;
|
||||
for (auto seed : randomSeeds) {
|
||||
if (!quiet)
|
||||
std::cout << "(" << seed << ") doing Fold: " << flush;
|
||||
Fold* fold;
|
||||
if (stratified)
|
||||
fold = new StratifiedKFold(nfolds, y, seed);
|
||||
else
|
||||
fold = new KFold(nfolds, y.size(0), seed);
|
||||
for (int nfold = 0; nfold < nfolds; nfold++) {
|
||||
auto clf = Models::instance()->create(model);
|
||||
setModelVersion(clf->getVersion());
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, fileName);
|
||||
clf->setHyperparameters(hyperparameters.get(fileName));
|
||||
// Split train - test dataset
|
||||
train_timer.start();
|
||||
auto [train, test] = fold->getFold(nfold);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
auto X_train = X.index({ "...", train_t });
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
if (!quiet)
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "a");
|
||||
// Train model
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
if (!quiet)
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "b");
|
||||
nodes[item] = clf->getNumberOfNodes();
|
||||
edges[item] = clf->getNumberOfEdges();
|
||||
num_states[item] = clf->getNumberOfStates();
|
||||
train_time[item] = train_timer.getDuration();
|
||||
// Score train
|
||||
auto accuracy_train_value = clf->score(X_train, y_train);
|
||||
// Test model
|
||||
if (!quiet)
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "c");
|
||||
test_timer.start();
|
||||
auto accuracy_test_value = clf->score(X_test, y_test);
|
||||
test_time[item] = test_timer.getDuration();
|
||||
accuracy_train[item] = accuracy_train_value;
|
||||
accuracy_test[item] = accuracy_test_value;
|
||||
if (!quiet)
|
||||
std::cout << "\b\b\b, " << flush;
|
||||
// Store results and times in std::vector
|
||||
result.addScoreTrain(accuracy_train_value);
|
||||
result.addScoreTest(accuracy_test_value);
|
||||
result.addTimeTrain(train_time[item].item<double>());
|
||||
result.addTimeTest(test_time[item].item<double>());
|
||||
item++;
|
||||
}
|
||||
if (!quiet)
|
||||
std::cout << "end. " << flush;
|
||||
delete fold;
|
||||
}
|
||||
result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
|
||||
result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
|
||||
result.setTrainTime(torch::mean(train_time).item<double>()).setTestTime(torch::mean(test_time).item<double>());
|
||||
result.setTestTimeStd(torch::std(test_time).item<double>()).setTrainTimeStd(torch::std(train_time).item<double>());
|
||||
result.setNodes(torch::mean(nodes).item<double>()).setLeaves(torch::mean(edges).item<double>()).setDepth(torch::mean(num_states).item<double>());
|
||||
result.setDataset(fileName);
|
||||
addResult(result);
|
||||
}
|
||||
}
|
@ -1,103 +0,0 @@
|
||||
#ifndef EXPERIMENT_H
|
||||
#define EXPERIMENT_H
|
||||
#include <torch/torch.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <string>
|
||||
#include "Folding.h"
|
||||
#include "BaseClassifier.h"
|
||||
#include "HyperParameters.h"
|
||||
#include "TAN.h"
|
||||
#include "KDB.h"
|
||||
#include "AODE.h"
|
||||
#include "Timer.h"
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
class Result {
|
||||
private:
|
||||
std::string dataset, model_version;
|
||||
json hyperparameters;
|
||||
int samples{ 0 }, features{ 0 }, classes{ 0 };
|
||||
double score_train{ 0 }, score_test{ 0 }, score_train_std{ 0 }, score_test_std{ 0 }, train_time{ 0 }, train_time_std{ 0 }, test_time{ 0 }, test_time_std{ 0 };
|
||||
float nodes{ 0 }, leaves{ 0 }, depth{ 0 };
|
||||
std::vector<double> scores_train, scores_test, times_train, times_test;
|
||||
public:
|
||||
Result() = default;
|
||||
Result& setDataset(const std::string& dataset) { this->dataset = dataset; return *this; }
|
||||
Result& setHyperparameters(const json& hyperparameters) { this->hyperparameters = hyperparameters; return *this; }
|
||||
Result& setSamples(int samples) { this->samples = samples; return *this; }
|
||||
Result& setFeatures(int features) { this->features = features; return *this; }
|
||||
Result& setClasses(int classes) { this->classes = classes; return *this; }
|
||||
Result& setScoreTrain(double score) { this->score_train = score; return *this; }
|
||||
Result& setScoreTest(double score) { this->score_test = score; return *this; }
|
||||
Result& setScoreTrainStd(double score_std) { this->score_train_std = score_std; return *this; }
|
||||
Result& setScoreTestStd(double score_std) { this->score_test_std = score_std; return *this; }
|
||||
Result& setTrainTime(double train_time) { this->train_time = train_time; return *this; }
|
||||
Result& setTrainTimeStd(double train_time_std) { this->train_time_std = train_time_std; return *this; }
|
||||
Result& setTestTime(double test_time) { this->test_time = test_time; return *this; }
|
||||
Result& setTestTimeStd(double test_time_std) { this->test_time_std = test_time_std; return *this; }
|
||||
Result& setNodes(float nodes) { this->nodes = nodes; return *this; }
|
||||
Result& setLeaves(float leaves) { this->leaves = leaves; return *this; }
|
||||
Result& setDepth(float depth) { this->depth = depth; return *this; }
|
||||
Result& addScoreTrain(double score) { scores_train.push_back(score); return *this; }
|
||||
Result& addScoreTest(double score) { scores_test.push_back(score); return *this; }
|
||||
Result& addTimeTrain(double time) { times_train.push_back(time); return *this; }
|
||||
Result& addTimeTest(double time) { times_test.push_back(time); return *this; }
|
||||
const float get_score_train() const { return score_train; }
|
||||
float get_score_test() { return score_test; }
|
||||
const std::string& getDataset() const { return dataset; }
|
||||
const json& getHyperparameters() const { return hyperparameters; }
|
||||
const int getSamples() const { return samples; }
|
||||
const int getFeatures() const { return features; }
|
||||
const int getClasses() const { return classes; }
|
||||
const double getScoreTrain() const { return score_train; }
|
||||
const double getScoreTest() const { return score_test; }
|
||||
const double getScoreTrainStd() const { return score_train_std; }
|
||||
const double getScoreTestStd() const { return score_test_std; }
|
||||
const double getTrainTime() const { return train_time; }
|
||||
const double getTrainTimeStd() const { return train_time_std; }
|
||||
const double getTestTime() const { return test_time; }
|
||||
const double getTestTimeStd() const { return test_time_std; }
|
||||
const float getNodes() const { return nodes; }
|
||||
const float getLeaves() const { return leaves; }
|
||||
const float getDepth() const { return depth; }
|
||||
const std::vector<double>& getScoresTrain() const { return scores_train; }
|
||||
const std::vector<double>& getScoresTest() const { return scores_test; }
|
||||
const std::vector<double>& getTimesTrain() const { return times_train; }
|
||||
const std::vector<double>& getTimesTest() const { return times_test; }
|
||||
};
|
||||
class Experiment {
|
||||
public:
|
||||
Experiment() = default;
|
||||
Experiment& setTitle(const std::string& title) { this->title = title; return *this; }
|
||||
Experiment& setModel(const std::string& model) { this->model = model; return *this; }
|
||||
Experiment& setPlatform(const std::string& platform) { this->platform = platform; return *this; }
|
||||
Experiment& setScoreName(const std::string& score_name) { this->score_name = score_name; return *this; }
|
||||
Experiment& setModelVersion(const std::string& model_version) { this->model_version = model_version; return *this; }
|
||||
Experiment& setLanguage(const std::string& language) { this->language = language; return *this; }
|
||||
Experiment& setLanguageVersion(const std::string& language_version) { this->language_version = language_version; return *this; }
|
||||
Experiment& setDiscretized(bool discretized) { this->discretized = discretized; return *this; }
|
||||
Experiment& setStratified(bool stratified) { this->stratified = stratified; return *this; }
|
||||
Experiment& setNFolds(int nfolds) { this->nfolds = nfolds; return *this; }
|
||||
Experiment& addResult(Result result) { results.push_back(result); return *this; }
|
||||
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); return *this; }
|
||||
Experiment& setDuration(float duration) { this->duration = duration; return *this; }
|
||||
Experiment& setHyperparameters(const HyperParameters& hyperparameters_) { this->hyperparameters = hyperparameters_; return *this; }
|
||||
std::string get_file_name();
|
||||
void save(const std::string& path);
|
||||
void cross_validation(const std::string& fileName, bool quiet);
|
||||
void go(std::vector<std::string> filesToProcess, bool quiet);
|
||||
void show();
|
||||
void report();
|
||||
private:
|
||||
std::string title, model, platform, score_name, model_version, language_version, language;
|
||||
bool discretized{ false }, stratified{ false };
|
||||
std::vector<Result> results;
|
||||
std::vector<int> randomSeeds;
|
||||
HyperParameters hyperparameters;
|
||||
int nfolds{ 0 };
|
||||
float duration{ 0 };
|
||||
json build_json();
|
||||
};
|
||||
}
|
||||
#endif
|
@ -1,104 +0,0 @@
|
||||
#include "Folding.h"
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
namespace platform {
|
||||
Fold::Fold(int k, int n, int seed) : k(k), n(n), seed(seed)
|
||||
{
|
||||
std::random_device rd;
|
||||
random_seed = std::default_random_engine(seed == -1 ? rd() : seed);
|
||||
std::srand(seed == -1 ? time(0) : seed);
|
||||
}
|
||||
KFold::KFold(int k, int n, int seed) : Fold(k, n, seed), indices(std::vector<int>(n))
|
||||
{
|
||||
std::iota(begin(indices), end(indices), 0); // fill with 0, 1, ..., n - 1
|
||||
shuffle(indices.begin(), indices.end(), random_seed);
|
||||
}
|
||||
std::pair<std::vector<int>, std::vector<int>> KFold::getFold(int nFold)
|
||||
{
|
||||
if (nFold >= k || nFold < 0) {
|
||||
throw std::out_of_range("nFold (" + std::to_string(nFold) + ") must be less than k (" + std::to_string(k) + ")");
|
||||
}
|
||||
int nTest = n / k;
|
||||
auto train = std::vector<int>();
|
||||
auto test = std::vector<int>();
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (i >= nTest * nFold && i < nTest * (nFold + 1)) {
|
||||
test.push_back(indices[i]);
|
||||
} else {
|
||||
train.push_back(indices[i]);
|
||||
}
|
||||
}
|
||||
return { train, test };
|
||||
}
|
||||
StratifiedKFold::StratifiedKFold(int k, torch::Tensor& y, int seed) : Fold(k, y.numel(), seed)
|
||||
{
|
||||
n = y.numel();
|
||||
this->y = std::vector<int>(y.data_ptr<int>(), y.data_ptr<int>() + n);
|
||||
build();
|
||||
}
|
||||
StratifiedKFold::StratifiedKFold(int k, const std::vector<int>& y, int seed)
|
||||
: Fold(k, y.size(), seed)
|
||||
{
|
||||
this->y = y;
|
||||
n = y.size();
|
||||
build();
|
||||
}
|
||||
void StratifiedKFold::build()
|
||||
{
|
||||
stratified_indices = std::vector<std::vector<int>>(k);
|
||||
int fold_size = n / k;
|
||||
|
||||
// Compute class counts and indices
|
||||
auto class_indices = std::map<int, std::vector<int>>();
|
||||
std::vector<int> class_counts(*max_element(y.begin(), y.end()) + 1, 0);
|
||||
for (auto i = 0; i < n; ++i) {
|
||||
class_counts[y[i]]++;
|
||||
class_indices[y[i]].push_back(i);
|
||||
}
|
||||
// Shuffle class indices
|
||||
for (auto& [cls, indices] : class_indices) {
|
||||
shuffle(indices.begin(), indices.end(), random_seed);
|
||||
}
|
||||
// Assign indices to folds
|
||||
for (auto label = 0; label < class_counts.size(); ++label) {
|
||||
auto num_samples_to_take = class_counts.at(label) / k;
|
||||
if (num_samples_to_take == 0) {
|
||||
std::cerr << "Warning! The number of samples in class " << label << " (" << class_counts.at(label)
|
||||
<< ") is less than the number of folds (" << k << ")." << std::endl;
|
||||
faulty = true;
|
||||
continue;
|
||||
}
|
||||
auto remainder_samples_to_take = class_counts[label] % k;
|
||||
for (auto fold = 0; fold < k; ++fold) {
|
||||
auto it = next(class_indices[label].begin(), num_samples_to_take);
|
||||
move(class_indices[label].begin(), it, back_inserter(stratified_indices[fold])); // ##
|
||||
class_indices[label].erase(class_indices[label].begin(), it);
|
||||
}
|
||||
auto chosen = std::vector<bool>(k, false);
|
||||
while (remainder_samples_to_take > 0) {
|
||||
int fold = (rand() % static_cast<int>(k));
|
||||
if (chosen.at(fold)) {
|
||||
continue;
|
||||
}
|
||||
chosen[fold] = true;
|
||||
auto it = next(class_indices[label].begin(), 1);
|
||||
stratified_indices[fold].push_back(*class_indices[label].begin());
|
||||
class_indices[label].erase(class_indices[label].begin(), it);
|
||||
remainder_samples_to_take--;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::pair<std::vector<int>, std::vector<int>> StratifiedKFold::getFold(int nFold)
|
||||
{
|
||||
if (nFold >= k || nFold < 0) {
|
||||
throw std::out_of_range("nFold (" + std::to_string(nFold) + ") must be less than k (" + std::to_string(k) + ")");
|
||||
}
|
||||
std::vector<int> test_indices = stratified_indices[nFold];
|
||||
std::vector<int> train_indices;
|
||||
for (int i = 0; i < k; ++i) {
|
||||
if (i == nFold) continue;
|
||||
train_indices.insert(train_indices.end(), stratified_indices[i].begin(), stratified_indices[i].end());
|
||||
}
|
||||
return { train_indices, test_indices };
|
||||
}
|
||||
}
|
@ -1,39 +0,0 @@
|
||||
#ifndef FOLDING_H
|
||||
#define FOLDING_H
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
#include <random>
|
||||
namespace platform {
|
||||
class Fold {
|
||||
protected:
|
||||
int k;
|
||||
int n;
|
||||
int seed;
|
||||
std::default_random_engine random_seed;
|
||||
public:
|
||||
Fold(int k, int n, int seed = -1);
|
||||
virtual std::pair<std::vector<int>, std::vector<int>> getFold(int nFold) = 0;
|
||||
virtual ~Fold() = default;
|
||||
int getNumberOfFolds() { return k; }
|
||||
};
|
||||
class KFold : public Fold {
|
||||
private:
|
||||
std::vector<int> indices;
|
||||
public:
|
||||
KFold(int k, int n, int seed = -1);
|
||||
std::pair<std::vector<int>, std::vector<int>> getFold(int nFold) override;
|
||||
};
|
||||
class StratifiedKFold : public Fold {
|
||||
private:
|
||||
std::vector<int> y;
|
||||
std::vector<std::vector<int>> stratified_indices;
|
||||
void build();
|
||||
bool faulty = false; // Only true if the number of samples of any class is less than the number of folds.
|
||||
public:
|
||||
StratifiedKFold(int k, const std::vector<int>& y, int seed = -1);
|
||||
StratifiedKFold(int k, torch::Tensor& y, int seed = -1);
|
||||
std::pair<std::vector<int>, std::vector<int>> getFold(int nFold) override;
|
||||
bool isFaulty() { return faulty; }
|
||||
};
|
||||
}
|
||||
#endif
|
@ -1,75 +0,0 @@
|
||||
#include "GridData.h"
|
||||
#include <fstream>
|
||||
|
||||
namespace platform {
|
||||
GridData::GridData(const std::string& fileName)
|
||||
{
|
||||
json grid_file;
|
||||
std::ifstream resultData(fileName);
|
||||
if (resultData.is_open()) {
|
||||
grid_file = json::parse(resultData);
|
||||
} else {
|
||||
throw std::invalid_argument("Unable to open input file. [" + fileName + "]");
|
||||
}
|
||||
for (const auto& item : grid_file.items()) {
|
||||
auto key = item.key();
|
||||
auto value = item.value();
|
||||
grid[key] = value;
|
||||
}
|
||||
|
||||
}
|
||||
int GridData::computeNumCombinations(const json& line)
|
||||
{
|
||||
int numCombinations = 1;
|
||||
for (const auto& item : line.items()) {
|
||||
numCombinations *= item.value().size();
|
||||
}
|
||||
return numCombinations;
|
||||
}
|
||||
int GridData::getNumCombinations(const std::string& dataset)
|
||||
{
|
||||
int numCombinations = 0;
|
||||
auto selected = decide_dataset(dataset);
|
||||
for (const auto& line : grid.at(selected)) {
|
||||
numCombinations += computeNumCombinations(line);
|
||||
}
|
||||
return numCombinations;
|
||||
}
|
||||
json GridData::generateCombinations(json::iterator index, const json::iterator last, std::vector<json>& output, json currentCombination)
|
||||
{
|
||||
if (index == last) {
|
||||
// If we reached the end of input, store the current combination
|
||||
output.push_back(currentCombination);
|
||||
return currentCombination;
|
||||
}
|
||||
const auto& key = index.key();
|
||||
const auto& values = index.value();
|
||||
for (const auto& value : values) {
|
||||
auto combination = currentCombination;
|
||||
combination[key] = value;
|
||||
json::iterator nextIndex = index;
|
||||
generateCombinations(++nextIndex, last, output, combination);
|
||||
}
|
||||
return currentCombination;
|
||||
}
|
||||
std::vector<json> GridData::getGrid(const std::string& dataset)
|
||||
{
|
||||
auto selected = decide_dataset(dataset);
|
||||
auto result = std::vector<json>();
|
||||
for (json line : grid.at(selected)) {
|
||||
generateCombinations(line.begin(), line.end(), result, json({}));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
json& GridData::getInputGrid(const std::string& dataset)
|
||||
{
|
||||
auto selected = decide_dataset(dataset);
|
||||
return grid.at(selected);
|
||||
}
|
||||
std::string GridData::decide_dataset(const std::string& dataset)
|
||||
{
|
||||
if (grid.find(dataset) != grid.end())
|
||||
return dataset;
|
||||
return ALL_DATASETS;
|
||||
}
|
||||
} /* namespace platform */
|
@ -1,26 +0,0 @@
|
||||
#ifndef GRIDDATA_H
|
||||
#define GRIDDATA_H
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
const std::string ALL_DATASETS = "all";
|
||||
class GridData {
|
||||
public:
|
||||
explicit GridData(const std::string& fileName);
|
||||
~GridData() = default;
|
||||
std::vector<json> getGrid(const std::string& dataset = ALL_DATASETS);
|
||||
int getNumCombinations(const std::string& dataset = ALL_DATASETS);
|
||||
json& getInputGrid(const std::string& dataset = ALL_DATASETS);
|
||||
std::map<std::string, json>& getGridFile() { return grid; }
|
||||
private:
|
||||
std::string decide_dataset(const std::string& dataset);
|
||||
json generateCombinations(json::iterator index, const json::iterator last, std::vector<json>& output, json currentCombination);
|
||||
int computeNumCombinations(const json& line);
|
||||
std::map<std::string, json> grid;
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif /* GRIDDATA_H */
|
@ -1,441 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <cstddef>
|
||||
#include <torch/torch.h>
|
||||
#include "GridSearch.h"
|
||||
#include "Models.h"
|
||||
#include "Paths.h"
|
||||
#include "Folding.h"
|
||||
#include "Colors.h"
|
||||
|
||||
namespace platform {
|
||||
std::string get_date()
|
||||
{
|
||||
time_t rawtime;
|
||||
tm* timeinfo;
|
||||
time(&rawtime);
|
||||
timeinfo = std::localtime(&rawtime);
|
||||
std::ostringstream oss;
|
||||
oss << std::put_time(timeinfo, "%Y-%m-%d");
|
||||
return oss.str();
|
||||
}
|
||||
std::string get_time()
|
||||
{
|
||||
time_t rawtime;
|
||||
tm* timeinfo;
|
||||
time(&rawtime);
|
||||
timeinfo = std::localtime(&rawtime);
|
||||
std::ostringstream oss;
|
||||
oss << std::put_time(timeinfo, "%H:%M:%S");
|
||||
return oss.str();
|
||||
}
|
||||
std::string get_color_rank(int rank)
|
||||
{
|
||||
auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN() };
|
||||
return *(colors.begin() + rank % colors.size());
|
||||
}
|
||||
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
|
||||
{
|
||||
}
|
||||
json GridSearch::loadResults()
|
||||
{
|
||||
std::ifstream file(Paths::grid_output(config.model));
|
||||
if (file.is_open()) {
|
||||
return json::parse(file);
|
||||
}
|
||||
return json();
|
||||
}
|
||||
std::vector<std::string> GridSearch::filterDatasets(Datasets& datasets) const
|
||||
{
|
||||
// Load datasets
|
||||
auto datasets_names = datasets.getNames();
|
||||
if (config.continue_from != NO_CONTINUE()) {
|
||||
// Continue previous execution:
|
||||
if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) {
|
||||
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
|
||||
}
|
||||
// Remove datasets already processed
|
||||
std::vector<string>::iterator it = datasets_names.begin();
|
||||
while (it != datasets_names.end()) {
|
||||
if (*it != config.continue_from) {
|
||||
it = datasets_names.erase(it);
|
||||
} else {
|
||||
if (config.only)
|
||||
++it;
|
||||
else
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Exclude datasets
|
||||
for (const auto& name : config.excluded) {
|
||||
auto dataset = name.get<std::string>();
|
||||
auto it = std::find(datasets_names.begin(), datasets_names.end(), dataset);
|
||||
if (it == datasets_names.end()) {
|
||||
throw std::invalid_argument("Dataset " + dataset + " already excluded or doesn't exist!");
|
||||
}
|
||||
datasets_names.erase(it);
|
||||
}
|
||||
return datasets_names;
|
||||
}
|
||||
json GridSearch::build_tasks_mpi(int rank)
|
||||
{
|
||||
auto tasks = json::array();
|
||||
auto grid = GridData(Paths::grid_input(config.model));
|
||||
auto datasets = Datasets(false, Paths::datasets());
|
||||
auto all_datasets = datasets.getNames();
|
||||
auto datasets_names = filterDatasets(datasets);
|
||||
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
|
||||
auto dataset = datasets_names[idx_dataset];
|
||||
for (const auto& seed : config.seeds) {
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
||||
json task = {
|
||||
{ "dataset", dataset },
|
||||
{ "idx_dataset", idx_dataset},
|
||||
{ "seed", seed },
|
||||
{ "fold", n_fold},
|
||||
};
|
||||
tasks.push_back(task);
|
||||
}
|
||||
}
|
||||
}
|
||||
// Shuffle the array so heavy datasets are spread across the workers
|
||||
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
|
||||
std::shuffle(tasks.begin(), tasks.end(), g);
|
||||
std::cout << get_color_rank(rank) << "* Number of tasks: " << tasks.size() << std::endl;
|
||||
std::cout << "|";
|
||||
for (int i = 0; i < tasks.size(); ++i) {
|
||||
std::cout << (i + 1) % 10;
|
||||
}
|
||||
std::cout << "|" << std::endl << "|" << std::flush;
|
||||
return tasks;
|
||||
}
|
||||
void process_task_mpi_consumer(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
|
||||
{
|
||||
// initialize
|
||||
Timer timer;
|
||||
timer.start();
|
||||
json task = tasks[n_task];
|
||||
auto model = config.model;
|
||||
auto grid = GridData(Paths::grid_input(model));
|
||||
auto dataset = task["dataset"].get<std::string>();
|
||||
auto idx_dataset = task["idx_dataset"].get<int>();
|
||||
auto seed = task["seed"].get<int>();
|
||||
auto n_fold = task["fold"].get<int>();
|
||||
bool stratified = config.stratified;
|
||||
// Generate the hyperparamters combinations
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
auto [X, y] = datasets.getTensors(dataset);
|
||||
auto states = datasets.getStates(dataset);
|
||||
auto features = datasets.getFeatures(dataset);
|
||||
auto className = datasets.getClassName(dataset);
|
||||
//
|
||||
// Start working on task
|
||||
//
|
||||
Fold* fold;
|
||||
if (stratified)
|
||||
fold = new StratifiedKFold(config.n_folds, y, seed);
|
||||
else
|
||||
fold = new KFold(config.n_folds, y.size(0), seed);
|
||||
auto [train, test] = fold->getFold(n_fold);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
auto X_train = X.index({ "...", train_t });
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
double best_fold_score = 0.0;
|
||||
int best_idx_combination = -1;
|
||||
json best_fold_hyper;
|
||||
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
|
||||
auto hyperparam_line = combinations[idx_combination];
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
Fold* nested_fold;
|
||||
if (config.stratified)
|
||||
nested_fold = new StratifiedKFold(config.nested, y_train, seed);
|
||||
else
|
||||
nested_fold = new KFold(config.nested, y_train.size(0), seed);
|
||||
double score = 0.0;
|
||||
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||
// Nested level fold
|
||||
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||
auto train_nested_t = torch::tensor(train_nested);
|
||||
auto test_nested_t = torch::tensor(test_nested);
|
||||
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
||||
auto y_nested_train = y_train.index({ train_nested_t });
|
||||
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||
auto y_nested_test = y_train.index({ test_nested_t });
|
||||
// Build Classifier with selected hyperparameters
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset);
|
||||
clf->setHyperparameters(hyperparameters.get(dataset));
|
||||
// Train model
|
||||
clf->fit(X_nested_train, y_nested_train, features, className, states);
|
||||
// Test model
|
||||
score += clf->score(X_nested_test, y_nested_test);
|
||||
}
|
||||
delete nested_fold;
|
||||
score /= config.nested;
|
||||
if (score > best_fold_score) {
|
||||
best_fold_score = score;
|
||||
best_idx_combination = idx_combination;
|
||||
best_fold_hyper = hyperparam_line;
|
||||
}
|
||||
}
|
||||
delete fold;
|
||||
// Build Classifier with the best hyperparameters to obtain the best score
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset);
|
||||
clf->setHyperparameters(best_fold_hyper);
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
best_fold_score = clf->score(X_test, y_test);
|
||||
// Return the result
|
||||
result->idx_dataset = task["idx_dataset"].get<int>();
|
||||
result->idx_combination = best_idx_combination;
|
||||
result->score = best_fold_score;
|
||||
result->n_fold = n_fold;
|
||||
result->time = timer.getDuration();
|
||||
// Update progress bar
|
||||
std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
|
||||
}
|
||||
json store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
||||
{
|
||||
json json_result = {
|
||||
{ "score", result.score },
|
||||
{ "combination", result.idx_combination },
|
||||
{ "fold", result.n_fold },
|
||||
{ "time", result.time },
|
||||
{ "dataset", result.idx_dataset }
|
||||
};
|
||||
auto name = names[result.idx_dataset];
|
||||
if (!results.contains(name)) {
|
||||
results[name] = json::array();
|
||||
}
|
||||
results[name].push_back(json_result);
|
||||
return results;
|
||||
}
|
||||
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
json results;
|
||||
int num_tasks = tasks.size();
|
||||
|
||||
//
|
||||
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||
//
|
||||
for (int i = 0; i < num_tasks; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
||||
}
|
||||
//
|
||||
// 2a.2 Producer will send the end message to all the consumers
|
||||
//
|
||||
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
||||
}
|
||||
return results;
|
||||
}
|
||||
void select_best_results_folds(json& results, json& all_results, std::string& model)
|
||||
{
|
||||
Timer timer;
|
||||
auto grid = GridData(Paths::grid_input(model));
|
||||
//
|
||||
// Select the best result of the computed outer folds
|
||||
//
|
||||
for (const auto& result : all_results.items()) {
|
||||
// each result has the results of all the outer folds as each one were a different task
|
||||
double best_score = 0.0;
|
||||
json best;
|
||||
for (const auto& result_fold : result.value()) {
|
||||
double score = result_fold["score"].get<double>();
|
||||
if (score > best_score) {
|
||||
best_score = score;
|
||||
best = result_fold;
|
||||
}
|
||||
}
|
||||
auto dataset = result.key();
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
json json_best = {
|
||||
{ "score", best_score },
|
||||
{ "hyperparameters", combinations[best["combination"].get<int>()] },
|
||||
{ "date", get_date() + " " + get_time() },
|
||||
{ "grid", grid.getInputGrid(dataset) },
|
||||
{ "duration", timer.translate2String(best["time"].get<double>()) }
|
||||
};
|
||||
results[dataset] = json_best;
|
||||
}
|
||||
}
|
||||
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
//
|
||||
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
||||
int task;
|
||||
while (true) {
|
||||
MPI_Status status;
|
||||
//
|
||||
// 2b.2 Consumers receive the task from the producer and process it
|
||||
//
|
||||
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_END) {
|
||||
break;
|
||||
}
|
||||
process_task_mpi_consumer(config, config_mpi, tasks, task, datasets, &result);
|
||||
//
|
||||
// 2b.3 Consumers send the result to the producer
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
||||
}
|
||||
}
|
||||
void GridSearch::go(struct ConfigMPI& config_mpi)
|
||||
{
|
||||
/*
|
||||
* Each task is a json object with the following structure:
|
||||
* {
|
||||
* "dataset": "dataset_name",
|
||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
||||
* // this index is relative to the used datasets in the actual run not to the whole datasets
|
||||
* "seed": # of seed to use,
|
||||
* "Fold": # of fold to process
|
||||
* }
|
||||
*
|
||||
* The overall process consists in these steps:
|
||||
* 0. Create the MPI result type & tasks
|
||||
* 0.1 Create the MPI result type
|
||||
* 0.2 Manager creates the tasks
|
||||
* 1. Manager will broadcast the tasks to all the processes
|
||||
* 1.1 Broadcast the number of tasks
|
||||
* 1.2 Broadcast the length of the following string
|
||||
* 1.2 Broadcast the tasks as a char* string
|
||||
* 2a. Producer delivers the tasks to the consumers
|
||||
* 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||
* 2a.2 Producer will send the end message to all the consumers
|
||||
* 2b. Consumers process the tasks and send the results to the producer
|
||||
* 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||
* 2b.2 Consumers receive the task from the producer and process it
|
||||
* 2b.3 Consumers send the result to the producer
|
||||
* 3. Manager select the bests sccores for each dataset
|
||||
* 3.1 Loop thru all the results obtained from each outer fold (task) and select the best
|
||||
* 3.2 Save the results
|
||||
*/
|
||||
//
|
||||
// 0.1 Create the MPI result type
|
||||
//
|
||||
Task_Result result;
|
||||
int tasks_size;
|
||||
MPI_Datatype MPI_Result;
|
||||
MPI_Datatype type[5] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_INT, MPI_DOUBLE, MPI_DOUBLE };
|
||||
int blocklen[5] = { 1, 1, 1, 1, 1 };
|
||||
MPI_Aint disp[5];
|
||||
disp[0] = offsetof(Task_Result, idx_dataset);
|
||||
disp[1] = offsetof(Task_Result, idx_combination);
|
||||
disp[2] = offsetof(Task_Result, n_fold);
|
||||
disp[3] = offsetof(Task_Result, score);
|
||||
disp[4] = offsetof(Task_Result, time);
|
||||
MPI_Type_create_struct(5, blocklen, disp, type, &MPI_Result);
|
||||
MPI_Type_commit(&MPI_Result);
|
||||
//
|
||||
// 0.2 Manager creates the tasks
|
||||
//
|
||||
char* msg;
|
||||
json tasks;
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
timer.start();
|
||||
tasks = build_tasks_mpi(config_mpi.rank);
|
||||
auto tasks_str = tasks.dump();
|
||||
tasks_size = tasks_str.size();
|
||||
msg = new char[tasks_size + 1];
|
||||
strcpy(msg, tasks_str.c_str());
|
||||
}
|
||||
//
|
||||
// 1. Manager will broadcast the tasks to all the processes
|
||||
//
|
||||
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
|
||||
if (config_mpi.rank != config_mpi.manager) {
|
||||
msg = new char[tasks_size + 1];
|
||||
}
|
||||
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
||||
tasks = json::parse(msg);
|
||||
delete[] msg;
|
||||
auto datasets = Datasets(config.discretize, Paths::datasets());
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
//
|
||||
// 2a. Producer delivers the tasks to the consumers
|
||||
//
|
||||
auto datasets_names = filterDatasets(datasets);
|
||||
json all_results = producer(datasets_names, tasks, config_mpi, MPI_Result);
|
||||
std::cout << get_color_rank(config_mpi.rank) << "|" << std::endl;
|
||||
//
|
||||
// 3. Manager select the bests sccores for each dataset
|
||||
//
|
||||
auto results = initializeResults();
|
||||
select_best_results_folds(results, all_results, config.model);
|
||||
//
|
||||
// 3.2 Save the results
|
||||
//
|
||||
save(results);
|
||||
} else {
|
||||
//
|
||||
// 2b. Consumers process the tasks and send the results to the producer
|
||||
//
|
||||
consumer(datasets, tasks, config, config_mpi, MPI_Result);
|
||||
}
|
||||
}
|
||||
json GridSearch::initializeResults()
|
||||
{
|
||||
// Load previous results if continue is set
|
||||
json results;
|
||||
if (config.continue_from != NO_CONTINUE()) {
|
||||
if (!config.quiet)
|
||||
std::cout << "* Loading previous results" << std::endl;
|
||||
try {
|
||||
std::ifstream file(Paths::grid_output(config.model));
|
||||
if (file.is_open()) {
|
||||
results = json::parse(file);
|
||||
results = results["results"];
|
||||
}
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
std::cerr << "* There were no previous results" << std::endl;
|
||||
std::cerr << "* Initizalizing new results" << std::endl;
|
||||
results = json();
|
||||
}
|
||||
}
|
||||
return results;
|
||||
}
|
||||
void GridSearch::save(json& results)
|
||||
{
|
||||
std::ofstream file(Paths::grid_output(config.model));
|
||||
json output = {
|
||||
{ "model", config.model },
|
||||
{ "score", config.score },
|
||||
{ "discretize", config.discretize },
|
||||
{ "stratified", config.stratified },
|
||||
{ "n_folds", config.n_folds },
|
||||
{ "seeds", config.seeds },
|
||||
{ "date", get_date() + " " + get_time()},
|
||||
{ "nested", config.nested},
|
||||
{ "platform", config.platform },
|
||||
{ "duration", timer.getDurationString(true)},
|
||||
{ "results", results }
|
||||
|
||||
};
|
||||
file << output.dump(4);
|
||||
}
|
||||
} /* namespace platform */
|
@ -1,60 +0,0 @@
|
||||
#ifndef GRIDSEARCH_H
|
||||
#define GRIDSEARCH_H
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <mpi.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "Datasets.h"
|
||||
#include "HyperParameters.h"
|
||||
#include "GridData.h"
|
||||
#include "Timer.h"
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
struct ConfigGrid {
|
||||
std::string model;
|
||||
std::string score;
|
||||
std::string continue_from;
|
||||
std::string platform;
|
||||
bool quiet;
|
||||
bool only; // used with continue_from to only compute that dataset
|
||||
bool discretize;
|
||||
bool stratified;
|
||||
int nested;
|
||||
int n_folds;
|
||||
json excluded;
|
||||
std::vector<int> seeds;
|
||||
};
|
||||
struct ConfigMPI {
|
||||
int rank;
|
||||
int n_procs;
|
||||
int manager;
|
||||
};
|
||||
typedef struct {
|
||||
uint idx_dataset;
|
||||
uint idx_combination;
|
||||
int n_fold;
|
||||
double score;
|
||||
double time;
|
||||
} Task_Result;
|
||||
const int TAG_QUERY = 1;
|
||||
const int TAG_RESULT = 2;
|
||||
const int TAG_TASK = 3;
|
||||
const int TAG_END = 4;
|
||||
class GridSearch {
|
||||
public:
|
||||
explicit GridSearch(struct ConfigGrid& config);
|
||||
void go(struct ConfigMPI& config_mpi);
|
||||
~GridSearch() = default;
|
||||
json loadResults();
|
||||
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
|
||||
private:
|
||||
void save(json& results);
|
||||
json initializeResults();
|
||||
std::vector<std::string> filterDatasets(Datasets& datasets) const;
|
||||
struct ConfigGrid config;
|
||||
json build_tasks_mpi(int rank);
|
||||
Timer timer; // used to measure the time of the whole process
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif /* GRIDSEARCH_H */
|
@ -1,55 +0,0 @@
|
||||
#include "HyperParameters.h"
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
|
||||
namespace platform {
|
||||
HyperParameters::HyperParameters(const std::vector<std::string>& datasets, const json& hyperparameters_)
|
||||
{
|
||||
// Initialize all datasets with the given hyperparameters
|
||||
for (const auto& item : datasets) {
|
||||
hyperparameters[item] = hyperparameters_;
|
||||
}
|
||||
}
|
||||
// https://www.techiedelight.com/implode-a-vector-of-strings-into-a-comma-separated-string-in-cpp/
|
||||
std::string join(std::vector<std::string> const& strings, std::string delim)
|
||||
{
|
||||
std::stringstream ss;
|
||||
std::copy(strings.begin(), strings.end(),
|
||||
std::ostream_iterator<std::string>(ss, delim.c_str()));
|
||||
return ss.str();
|
||||
}
|
||||
HyperParameters::HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file)
|
||||
{
|
||||
// Check if file exists
|
||||
std::ifstream file(hyperparameters_file);
|
||||
if (!file.is_open()) {
|
||||
throw std::runtime_error("File " + hyperparameters_file + " not found");
|
||||
}
|
||||
// Check if file is a json
|
||||
json input_hyperparameters = json::parse(file);
|
||||
// Check if hyperparameters are valid
|
||||
for (const auto& dataset : datasets) {
|
||||
if (!input_hyperparameters.contains(dataset)) {
|
||||
std::cerr << "*Warning: Dataset " << dataset << " not found in hyperparameters file" << " assuming default hyperparameters" << std::endl;
|
||||
hyperparameters[dataset] = json({});
|
||||
continue;
|
||||
}
|
||||
hyperparameters[dataset] = input_hyperparameters[dataset]["hyperparameters"].get<json>();
|
||||
}
|
||||
}
|
||||
void HyperParameters::check(const std::vector<std::string>& valid, const std::string& fileName)
|
||||
{
|
||||
json result = hyperparameters.at(fileName);
|
||||
for (const auto& item : result.items()) {
|
||||
if (find(valid.begin(), valid.end(), item.key()) == valid.end()) {
|
||||
throw std::invalid_argument("Hyperparameter " + item.key() + " is not valid. Passed Hyperparameters are: "
|
||||
+ result.dump(4) + "\n Valid hyperparameters are: {" + join(valid, ",") + "}");
|
||||
}
|
||||
}
|
||||
}
|
||||
json HyperParameters::get(const std::string& fileName)
|
||||
{
|
||||
return hyperparameters.at(fileName);
|
||||
}
|
||||
} /* namespace platform */
|
@ -1,23 +0,0 @@
|
||||
#ifndef HYPERPARAMETERS_H
|
||||
#define HYPERPARAMETERS_H
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
class HyperParameters {
|
||||
public:
|
||||
HyperParameters() = default;
|
||||
explicit HyperParameters(const std::vector<std::string>& datasets, const json& hyperparameters_);
|
||||
explicit HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file);
|
||||
~HyperParameters() = default;
|
||||
bool notEmpty(const std::string& key) const { return !hyperparameters.at(key).empty(); }
|
||||
void check(const std::vector<std::string>& valid, const std::string& fileName);
|
||||
json get(const std::string& fileName);
|
||||
private:
|
||||
std::map<std::string, json> hyperparameters;
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif /* HYPERPARAMETERS_H */
|
@ -1,213 +0,0 @@
|
||||
#include "ManageResults.h"
|
||||
#include "CommandParser.h"
|
||||
#include <filesystem>
|
||||
#include <tuple>
|
||||
#include "Colors.h"
|
||||
#include "CLocale.h"
|
||||
#include "Paths.h"
|
||||
#include "ReportConsole.h"
|
||||
#include "ReportExcel.h"
|
||||
|
||||
namespace platform {
|
||||
|
||||
ManageResults::ManageResults(int numFiles, const std::string& model, const std::string& score, bool complete, bool partial, bool compare) :
|
||||
numFiles{ numFiles }, complete{ complete }, partial{ partial }, compare{ compare }, results(Results(Paths::results(), model, score, complete, partial))
|
||||
{
|
||||
indexList = true;
|
||||
openExcel = false;
|
||||
workbook = NULL;
|
||||
if (numFiles == 0) {
|
||||
this->numFiles = results.size();
|
||||
}
|
||||
}
|
||||
void ManageResults::doMenu()
|
||||
{
|
||||
if (results.empty()) {
|
||||
std::cout << Colors::MAGENTA() << "No results found!" << Colors::RESET() << std::endl;
|
||||
return;
|
||||
}
|
||||
results.sortDate();
|
||||
list();
|
||||
menu();
|
||||
if (openExcel) {
|
||||
workbook_close(workbook);
|
||||
}
|
||||
std::cout << Colors::RESET() << "Done!" << std::endl;
|
||||
}
|
||||
void ManageResults::list()
|
||||
{
|
||||
auto temp = ConfigLocale();
|
||||
std::string suffix = numFiles != results.size() ? " of " + std::to_string(results.size()) : "";
|
||||
std::stringstream oss;
|
||||
oss << "Results on screen: " << numFiles << suffix;
|
||||
std::cout << Colors::GREEN() << oss.str() << std::endl;
|
||||
std::cout << std::string(oss.str().size(), '-') << std::endl;
|
||||
if (complete) {
|
||||
std::cout << Colors::MAGENTA() << "Only listing complete results" << std::endl;
|
||||
}
|
||||
if (partial) {
|
||||
std::cout << Colors::MAGENTA() << "Only listing partial results" << std::endl;
|
||||
}
|
||||
auto i = 0;
|
||||
int maxModel = results.maxModelSize();
|
||||
std::cout << Colors::GREEN() << " # Date " << std::setw(maxModel) << std::left << "Model" << " Score Name Score C/P Duration Title" << std::endl;
|
||||
std::cout << "=== ========== " << std::string(maxModel, '=') << " =========== =========== === ========= =============================================================" << std::endl;
|
||||
bool odd = true;
|
||||
for (auto& result : results) {
|
||||
auto color = odd ? Colors::BLUE() : Colors::CYAN();
|
||||
std::cout << color << std::setw(3) << std::fixed << std::right << i++ << " ";
|
||||
std::cout << result.to_string(maxModel) << std::endl;
|
||||
if (i == numFiles) {
|
||||
break;
|
||||
}
|
||||
odd = !odd;
|
||||
}
|
||||
}
|
||||
bool ManageResults::confirmAction(const std::string& intent, const std::string& fileName) const
|
||||
{
|
||||
std::string color;
|
||||
if (intent == "delete") {
|
||||
color = Colors::RED();
|
||||
} else {
|
||||
color = Colors::YELLOW();
|
||||
}
|
||||
std::string line;
|
||||
bool finished = false;
|
||||
while (!finished) {
|
||||
std::cout << color << "Really want to " << intent << " " << fileName << "? (y/n): ";
|
||||
getline(std::cin, line);
|
||||
finished = line.size() == 1 && (tolower(line[0]) == 'y' || tolower(line[0] == 'n'));
|
||||
}
|
||||
if (tolower(line[0]) == 'y') {
|
||||
return true;
|
||||
}
|
||||
std::cout << "Not done!" << std::endl;
|
||||
return false;
|
||||
}
|
||||
void ManageResults::report(const int index, const bool excelReport)
|
||||
{
|
||||
std::cout << Colors::YELLOW() << "Reporting " << results.at(index).getFilename() << std::endl;
|
||||
auto data = results.at(index).load();
|
||||
if (excelReport) {
|
||||
ReportExcel reporter(data, compare, workbook);
|
||||
reporter.show();
|
||||
openExcel = true;
|
||||
workbook = reporter.getWorkbook();
|
||||
std::cout << "Adding sheet to " << Paths::excel() + Paths::excelResults() << std::endl;
|
||||
} else {
|
||||
ReportConsole reporter(data, compare);
|
||||
reporter.show();
|
||||
}
|
||||
}
|
||||
void ManageResults::showIndex(const int index, const int idx)
|
||||
{
|
||||
// Show a dataset result inside a report
|
||||
auto data = results.at(index).load();
|
||||
std::cout << Colors::YELLOW() << "Showing " << results.at(index).getFilename() << std::endl;
|
||||
ReportConsole reporter(data, compare, idx);
|
||||
reporter.show();
|
||||
}
|
||||
void ManageResults::sortList()
|
||||
{
|
||||
std::cout << Colors::YELLOW() << "Choose sorting field (date='d', score='s', duration='u', model='m'): ";
|
||||
std::string line;
|
||||
char option;
|
||||
getline(std::cin, line);
|
||||
if (line.size() == 0)
|
||||
return;
|
||||
if (line.size() > 1) {
|
||||
std::cout << "Invalid option" << std::endl;
|
||||
return;
|
||||
}
|
||||
option = line[0];
|
||||
switch (option) {
|
||||
case 'd':
|
||||
results.sortDate();
|
||||
break;
|
||||
case 's':
|
||||
results.sortScore();
|
||||
break;
|
||||
case 'u':
|
||||
results.sortDuration();
|
||||
break;
|
||||
case 'm':
|
||||
results.sortModel();
|
||||
break;
|
||||
default:
|
||||
std::cout << "Invalid option" << std::endl;
|
||||
}
|
||||
}
|
||||
void ManageResults::menu()
|
||||
{
|
||||
char option;
|
||||
int index, subIndex;
|
||||
bool finished = false;
|
||||
std::string filename;
|
||||
// tuple<Option, digit, requires value>
|
||||
std::vector<std::tuple<std::string, char, bool>> mainOptions = {
|
||||
{"quit", 'q', false},
|
||||
{"list", 'l', false},
|
||||
{"delete", 'd', true},
|
||||
{"hide", 'h', true},
|
||||
{"sort", 's', false},
|
||||
{"report", 'r', true},
|
||||
{"excel", 'e', true}
|
||||
};
|
||||
std::vector<std::tuple<std::string, char, bool>> listOptions = {
|
||||
{"report", 'r', true},
|
||||
{"list", 'l', false},
|
||||
{"quit", 'q', false}
|
||||
};
|
||||
auto parser = CommandParser();
|
||||
while (!finished) {
|
||||
if (indexList) {
|
||||
std::tie(option, index) = parser.parse(Colors::GREEN(), mainOptions, 'r', numFiles - 1);
|
||||
} else {
|
||||
std::tie(option, subIndex) = parser.parse(Colors::MAGENTA(), listOptions, 'r', results.at(index).load()["results"].size() - 1);
|
||||
}
|
||||
switch (option) {
|
||||
case 'q':
|
||||
finished = true;
|
||||
break;
|
||||
case 'l':
|
||||
list();
|
||||
indexList = true;
|
||||
break;
|
||||
case 'd':
|
||||
filename = results.at(index).getFilename();
|
||||
if (!confirmAction("delete", filename))
|
||||
break;
|
||||
std::cout << "Deleting " << filename << std::endl;
|
||||
results.deleteResult(index);
|
||||
std::cout << "File: " + filename + " deleted!" << std::endl;
|
||||
list();
|
||||
break;
|
||||
case 'h':
|
||||
filename = results.at(index).getFilename();
|
||||
if (!confirmAction("hide", filename))
|
||||
break;
|
||||
filename = results.at(index).getFilename();
|
||||
std::cout << "Hiding " << filename << std::endl;
|
||||
results.hideResult(index, Paths::hiddenResults());
|
||||
std::cout << "File: " + filename + " hidden! (moved to " << Paths::hiddenResults() << ")" << std::endl;
|
||||
list();
|
||||
break;
|
||||
case 's':
|
||||
sortList();
|
||||
list();
|
||||
break;
|
||||
case 'r':
|
||||
if (indexList) {
|
||||
report(index, false);
|
||||
indexList = false;
|
||||
} else {
|
||||
showIndex(index, subIndex);
|
||||
}
|
||||
break;
|
||||
case 'e':
|
||||
report(index, true);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
} /* namespace platform */
|
@ -1,31 +0,0 @@
|
||||
#ifndef MANAGE_RESULTS_H
|
||||
#define MANAGE_RESULTS_H
|
||||
#include "Results.h"
|
||||
#include "xlsxwriter.h"
|
||||
|
||||
namespace platform {
|
||||
class ManageResults {
|
||||
public:
|
||||
ManageResults(int numFiles, const std::string& model, const std::string& score, bool complete, bool partial, bool compare);
|
||||
~ManageResults() = default;
|
||||
void doMenu();
|
||||
private:
|
||||
void list();
|
||||
bool confirmAction(const std::string& intent, const std::string& fileName) const;
|
||||
void report(const int index, const bool excelReport);
|
||||
void showIndex(const int index, const int idx);
|
||||
void sortList();
|
||||
void menu();
|
||||
int numFiles;
|
||||
bool indexList;
|
||||
bool openExcel;
|
||||
bool complete;
|
||||
bool partial;
|
||||
bool compare;
|
||||
Results results;
|
||||
lxw_workbook* workbook;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif /* MANAGE_RESULTS_H */
|
@ -1,52 +0,0 @@
|
||||
#include "Models.h"
|
||||
namespace platform {
|
||||
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
|
||||
Models* Models::factory = nullptr;;
|
||||
Models* Models::instance()
|
||||
{
|
||||
//manages singleton
|
||||
if (factory == nullptr)
|
||||
factory = new Models();
|
||||
return factory;
|
||||
}
|
||||
void Models::registerFactoryFunction(const std::string& name,
|
||||
function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
|
||||
{
|
||||
// register the class factory function
|
||||
functionRegistry[name] = classFactoryFunction;
|
||||
}
|
||||
shared_ptr<bayesnet::BaseClassifier> Models::create(const std::string& name)
|
||||
{
|
||||
bayesnet::BaseClassifier* instance = nullptr;
|
||||
|
||||
// find name in the registry and call factory method.
|
||||
auto it = functionRegistry.find(name);
|
||||
if (it != functionRegistry.end())
|
||||
instance = it->second();
|
||||
// wrap instance in a shared ptr and return
|
||||
if (instance != nullptr)
|
||||
return unique_ptr<bayesnet::BaseClassifier>(instance);
|
||||
else
|
||||
return nullptr;
|
||||
}
|
||||
std::vector<std::string> Models::getNames()
|
||||
{
|
||||
std::vector<std::string> names;
|
||||
transform(functionRegistry.begin(), functionRegistry.end(), back_inserter(names),
|
||||
[](const pair<std::string, function<bayesnet::BaseClassifier* (void)>>& pair) { return pair.first; });
|
||||
return names;
|
||||
}
|
||||
std::string Models::tostring()
|
||||
{
|
||||
std::string result = "";
|
||||
for (const auto& pair : functionRegistry) {
|
||||
result += pair.first + ", ";
|
||||
}
|
||||
return "{" + result.substr(0, result.size() - 2) + "}";
|
||||
}
|
||||
Registrar::Registrar(const std::string& name, function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
|
||||
{
|
||||
// register the class factory function
|
||||
Models::instance()->registerFactoryFunction(name, classFactoryFunction);
|
||||
}
|
||||
}
|
@ -1,41 +0,0 @@
|
||||
#ifndef MODELS_H
|
||||
#define MODELS_H
|
||||
#include <map>
|
||||
#include "BaseClassifier.h"
|
||||
#include "AODE.h"
|
||||
#include "TAN.h"
|
||||
#include "KDB.h"
|
||||
#include "SPODE.h"
|
||||
#include "TANLd.h"
|
||||
#include "KDBLd.h"
|
||||
#include "SPODELd.h"
|
||||
#include "AODELd.h"
|
||||
#include "BoostAODE.h"
|
||||
#include "STree.h"
|
||||
#include "ODTE.h"
|
||||
#include "SVC.h"
|
||||
#include "RandomForest.h"
|
||||
namespace platform {
|
||||
class Models {
|
||||
private:
|
||||
map<std::string, function<bayesnet::BaseClassifier* (void)>> functionRegistry;
|
||||
static Models* factory; //singleton
|
||||
Models() {};
|
||||
public:
|
||||
Models(Models&) = delete;
|
||||
void operator=(const Models&) = delete;
|
||||
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
|
||||
static Models* instance();
|
||||
shared_ptr<bayesnet::BaseClassifier> create(const std::string& name);
|
||||
void registerFactoryFunction(const std::string& name,
|
||||
function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
|
||||
std::vector<string> getNames();
|
||||
std::string tostring();
|
||||
|
||||
};
|
||||
class Registrar {
|
||||
public:
|
||||
Registrar(const std::string& className, function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
|
||||
};
|
||||
}
|
||||
#endif
|
@ -1,39 +0,0 @@
|
||||
#ifndef PATHS_H
|
||||
#define PATHS_H
|
||||
#include <string>
|
||||
#include <filesystem>
|
||||
#include "DotEnv.h"
|
||||
namespace platform {
|
||||
class Paths {
|
||||
public:
|
||||
static std::string results() { return "results/"; }
|
||||
static std::string hiddenResults() { return "hidden_results/"; }
|
||||
static std::string excel() { return "excel/"; }
|
||||
static std::string grid() { return "grid/"; }
|
||||
static std::string datasets()
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
return env.get("source_data");
|
||||
}
|
||||
static void createPath(const std::string& path)
|
||||
{
|
||||
// Create directory if it does not exist
|
||||
try {
|
||||
std::filesystem::create_directory(path);
|
||||
}
|
||||
catch (std::exception& e) {
|
||||
throw std::runtime_error("Could not create directory " + path);
|
||||
}
|
||||
}
|
||||
static std::string excelResults() { return "some_results.xlsx"; }
|
||||
static std::string grid_input(const std::string& model)
|
||||
{
|
||||
return grid() + "grid_" + model + "_input.json";
|
||||
}
|
||||
static std::string grid_output(const std::string& model)
|
||||
{
|
||||
return grid() + "grid_" + model + "_output.json";
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
@ -1,113 +0,0 @@
|
||||
#include <sstream>
|
||||
#include <locale>
|
||||
#include "Datasets.h"
|
||||
#include "ReportBase.h"
|
||||
#include "DotEnv.h"
|
||||
|
||||
namespace platform {
|
||||
ReportBase::ReportBase(json data_, bool compare) : data(data_), compare(compare), margin(0.1)
|
||||
{
|
||||
std::stringstream oss;
|
||||
oss << "Better than ZeroR + " << std::setprecision(1) << fixed << margin * 100 << "%";
|
||||
meaning = {
|
||||
{Symbols::equal_best, "Equal to best"},
|
||||
{Symbols::better_best, "Better than best"},
|
||||
{Symbols::cross, "Less than or equal to ZeroR"},
|
||||
{Symbols::upward_arrow, oss.str()}
|
||||
};
|
||||
}
|
||||
std::string ReportBase::fromVector(const std::string& key)
|
||||
{
|
||||
std::stringstream oss;
|
||||
std::string sep = "";
|
||||
oss << "[";
|
||||
for (auto& item : data[key]) {
|
||||
oss << sep << item.get<double>();
|
||||
sep = ", ";
|
||||
}
|
||||
oss << "]";
|
||||
return oss.str();
|
||||
}
|
||||
std::string ReportBase::fVector(const std::string& title, const json& data, const int width, const int precision)
|
||||
{
|
||||
std::stringstream oss;
|
||||
std::string sep = "";
|
||||
oss << title << "[";
|
||||
for (const auto& item : data) {
|
||||
oss << sep << fixed << setw(width) << std::setprecision(precision) << item.get<double>();
|
||||
sep = ", ";
|
||||
}
|
||||
oss << "]";
|
||||
return oss.str();
|
||||
}
|
||||
void ReportBase::show()
|
||||
{
|
||||
header();
|
||||
body();
|
||||
}
|
||||
std::string ReportBase::compareResult(const std::string& dataset, double result)
|
||||
{
|
||||
std::string status = " ";
|
||||
if (compare) {
|
||||
double best = bestResult(dataset, data["model"].get<std::string>());
|
||||
if (result == best) {
|
||||
status = Symbols::equal_best;
|
||||
} else if (result > best) {
|
||||
status = Symbols::better_best;
|
||||
}
|
||||
} else {
|
||||
if (data["score_name"].get<std::string>() == "accuracy") {
|
||||
auto dt = Datasets(false, Paths::datasets());
|
||||
dt.loadDataset(dataset);
|
||||
auto numClasses = dt.getNClasses(dataset);
|
||||
if (numClasses == 2) {
|
||||
std::vector<int> distribution = dt.getClassesCounts(dataset);
|
||||
double nSamples = dt.getNSamples(dataset);
|
||||
std::vector<int>::iterator maxValue = max_element(distribution.begin(), distribution.end());
|
||||
double mark = *maxValue / nSamples * (1 + margin);
|
||||
if (mark > 1) {
|
||||
mark = 0.9995;
|
||||
}
|
||||
status = result < mark ? Symbols::cross : result > mark ? Symbols::upward_arrow : "=";
|
||||
}
|
||||
}
|
||||
}
|
||||
if (status != " ") {
|
||||
auto item = summary.find(status);
|
||||
if (item != summary.end()) {
|
||||
summary[status]++;
|
||||
} else {
|
||||
summary[status] = 1;
|
||||
}
|
||||
}
|
||||
return status;
|
||||
}
|
||||
double ReportBase::bestResult(const std::string& dataset, const std::string& model)
|
||||
{
|
||||
double value = 0.0;
|
||||
if (bestResults.size() == 0) {
|
||||
// try to load the best results
|
||||
std::string score = data["score_name"];
|
||||
replace(score.begin(), score.end(), '_', '-');
|
||||
std::string fileName = "best_results_" + score + "_" + model + ".json";
|
||||
ifstream resultData(Paths::results() + "/" + fileName);
|
||||
if (resultData.is_open()) {
|
||||
bestResults = json::parse(resultData);
|
||||
} else {
|
||||
existBestFile = false;
|
||||
}
|
||||
}
|
||||
try {
|
||||
value = bestResults.at(dataset).at(0);
|
||||
}
|
||||
catch (exception) {
|
||||
value = 1.0;
|
||||
|
||||
}
|
||||
return value;
|
||||
}
|
||||
bool ReportBase::getExistBestFile()
|
||||
{
|
||||
return existBestFile;
|
||||
}
|
||||
}
|
@ -1,36 +0,0 @@
|
||||
#ifndef REPORTBASE_H
|
||||
#define REPORTBASE_H
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include "Paths.h"
|
||||
#include "Symbols.h"
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
using json = nlohmann::json;
|
||||
namespace platform {
|
||||
|
||||
class ReportBase {
|
||||
public:
|
||||
explicit ReportBase(json data_, bool compare);
|
||||
virtual ~ReportBase() = default;
|
||||
void show();
|
||||
protected:
|
||||
json data;
|
||||
std::string fromVector(const std::string& key);
|
||||
std::string fVector(const std::string& title, const json& data, const int width, const int precision);
|
||||
bool getExistBestFile();
|
||||
virtual void header() = 0;
|
||||
virtual void body() = 0;
|
||||
virtual void showSummary() = 0;
|
||||
std::string compareResult(const std::string& dataset, double result);
|
||||
std::map<std::string, int> summary;
|
||||
double margin;
|
||||
std::map<std::string, std::string> meaning;
|
||||
bool compare;
|
||||
private:
|
||||
double bestResult(const std::string& dataset, const std::string& model);
|
||||
json bestResults;
|
||||
bool existBestFile = true;
|
||||
};
|
||||
};
|
||||
#endif
|
@ -1,114 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <locale>
|
||||
#include "ReportConsole.h"
|
||||
#include "BestScore.h"
|
||||
#include "CLocale.h"
|
||||
|
||||
namespace platform {
|
||||
std::string ReportConsole::headerLine(const std::string& text, int utf = 0)
|
||||
{
|
||||
int n = MAXL - text.length() - 3;
|
||||
n = n < 0 ? 0 : n;
|
||||
return "* " + text + std::string(n + utf, ' ') + "*\n";
|
||||
}
|
||||
|
||||
void ReportConsole::header()
|
||||
{
|
||||
std::stringstream oss;
|
||||
std::cout << Colors::MAGENTA() << std::string(MAXL, '*') << std::endl;
|
||||
std::cout << headerLine(
|
||||
"Report " + data["model"].get<std::string>() + " ver. " + data["version"].get<std::string>()
|
||||
+ " with " + std::to_string(data["folds"].get<int>()) + " Folds cross validation and " + std::to_string(data["seeds"].size())
|
||||
+ " random seeds. " + data["date"].get<std::string>() + " " + data["time"].get<std::string>()
|
||||
);
|
||||
std::cout << headerLine(data["title"].get<std::string>());
|
||||
std::cout << headerLine("Random seeds: " + fromVector("seeds") + " Stratified: " + (data["stratified"].get<bool>() ? "True" : "False"));
|
||||
oss << "Execution took " << std::setprecision(2) << std::fixed << data["duration"].get<float>()
|
||||
<< " seconds, " << data["duration"].get<float>() / 3600 << " hours, on " << data["platform"].get<std::string>();
|
||||
std::cout << headerLine(oss.str());
|
||||
std::cout << headerLine("Score is " + data["score_name"].get<std::string>());
|
||||
std::cout << std::string(MAXL, '*') << std::endl;
|
||||
std::cout << std::endl;
|
||||
}
|
||||
void ReportConsole::body()
|
||||
{
|
||||
auto tmp = ConfigLocale();
|
||||
int maxHyper = 15;
|
||||
int maxDataset = 7;
|
||||
for (const auto& r : data["results"]) {
|
||||
maxHyper = std::max(maxHyper, (int)r["hyperparameters"].dump().size());
|
||||
maxDataset = std::max(maxDataset, (int)r["dataset"].get<std::string>().size());
|
||||
|
||||
}
|
||||
std::cout << Colors::GREEN() << " # " << std::setw(maxDataset) << std::left << "Dataset" << " Sampl. Feat. Cls Nodes Edges States Score Time Hyperparameters" << std::endl;
|
||||
std::cout << "=== " << std::string(maxDataset, '=') << " ====== ===== === ========= ========= ========= =============== =================== " << std::string(maxHyper, '=') << std::endl;
|
||||
json lastResult;
|
||||
double totalScore = 0.0;
|
||||
bool odd = true;
|
||||
int index = 0;
|
||||
for (const auto& r : data["results"]) {
|
||||
if (selectedIndex != -1 && index != selectedIndex) {
|
||||
index++;
|
||||
continue;
|
||||
}
|
||||
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||
std::cout << color;
|
||||
std::cout << std::setw(3) << std::right << index++ << " ";
|
||||
std::cout << std::setw(maxDataset) << std::left << r["dataset"].get<std::string>() << " ";
|
||||
std::cout << std::setw(6) << std::right << r["samples"].get<int>() << " ";
|
||||
std::cout << std::setw(5) << std::right << r["features"].get<int>() << " ";
|
||||
std::cout << std::setw(3) << std::right << r["classes"].get<int>() << " ";
|
||||
std::cout << std::setw(9) << std::setprecision(2) << std::fixed << r["nodes"].get<float>() << " ";
|
||||
std::cout << std::setw(9) << std::setprecision(2) << std::fixed << r["leaves"].get<float>() << " ";
|
||||
std::cout << std::setw(9) << std::setprecision(2) << std::fixed << r["depth"].get<float>() << " ";
|
||||
std::cout << std::setw(8) << std::right << std::setprecision(6) << std::fixed << r["score"].get<double>() << "±" << std::setw(6) << std::setprecision(4) << std::fixed << r["score_std"].get<double>();
|
||||
const std::string status = compareResult(r["dataset"].get<std::string>(), r["score"].get<double>());
|
||||
std::cout << status;
|
||||
std::cout << std::setw(12) << std::right << std::setprecision(6) << std::fixed << r["time"].get<double>() << "±" << std::setw(6) << std::setprecision(4) << std::fixed << r["time_std"].get<double>() << " ";
|
||||
std::cout << r["hyperparameters"].dump();
|
||||
std::cout << std::endl;
|
||||
std::cout << std::flush;
|
||||
lastResult = r;
|
||||
totalScore += r["score"].get<double>();
|
||||
odd = !odd;
|
||||
}
|
||||
if (data["results"].size() == 1 || selectedIndex != -1) {
|
||||
std::cout << std::string(MAXL, '*') << std::endl;
|
||||
std::cout << headerLine(fVector("Train scores: ", lastResult["scores_train"], 14, 12));
|
||||
std::cout << headerLine(fVector("Test scores: ", lastResult["scores_test"], 14, 12));
|
||||
std::cout << headerLine(fVector("Train times: ", lastResult["times_train"], 10, 3));
|
||||
std::cout << headerLine(fVector("Test times: ", lastResult["times_test"], 10, 3));
|
||||
std::cout << std::string(MAXL, '*') << std::endl;
|
||||
} else {
|
||||
footer(totalScore);
|
||||
}
|
||||
}
|
||||
void ReportConsole::showSummary()
|
||||
{
|
||||
for (const auto& item : summary) {
|
||||
std::stringstream oss;
|
||||
oss << std::setw(3) << std::left << item.first;
|
||||
oss << std::setw(3) << std::right << item.second << " ";
|
||||
oss << std::left << meaning.at(item.first);
|
||||
std::cout << headerLine(oss.str(), 2);
|
||||
}
|
||||
}
|
||||
|
||||
void ReportConsole::footer(double totalScore)
|
||||
{
|
||||
std::cout << Colors::MAGENTA() << std::string(MAXL, '*') << std::endl;
|
||||
showSummary();
|
||||
auto score = data["score_name"].get<std::string>();
|
||||
auto best = BestScore::getScore(score);
|
||||
if (best.first != "") {
|
||||
std::stringstream oss;
|
||||
oss << score << " compared to " << best.first << " .: " << totalScore / best.second;
|
||||
std::cout << headerLine(oss.str());
|
||||
}
|
||||
if (!getExistBestFile() && compare) {
|
||||
std::cout << headerLine("*** Best Results File not found. Couldn't compare any result!");
|
||||
}
|
||||
std::cout << std::string(MAXL, '*') << std::endl << Colors::RESET();
|
||||
}
|
||||
}
|
@ -1,22 +0,0 @@
|
||||
#ifndef REPORTCONSOLE_H
|
||||
#define REPORTCONSOLE_H
|
||||
#include <string>
|
||||
#include "ReportBase.h"
|
||||
#include "Colors.h"
|
||||
|
||||
namespace platform {
|
||||
const int MAXL = 133;
|
||||
class ReportConsole : public ReportBase {
|
||||
public:
|
||||
explicit ReportConsole(json data_, bool compare = false, int index = -1) : ReportBase(data_, compare), selectedIndex(index) {};
|
||||
virtual ~ReportConsole() = default;
|
||||
private:
|
||||
int selectedIndex;
|
||||
std::string headerLine(const std::string& text, int utf);
|
||||
void header() override;
|
||||
void body() override;
|
||||
void footer(double totalScore);
|
||||
void showSummary() override;
|
||||
};
|
||||
};
|
||||
#endif
|
@ -1,180 +0,0 @@
|
||||
#include <sstream>
|
||||
#include <locale>
|
||||
#include "ReportExcel.h"
|
||||
#include "BestScore.h"
|
||||
|
||||
|
||||
namespace platform {
|
||||
|
||||
ReportExcel::ReportExcel(json data_, bool compare, lxw_workbook* workbook, lxw_worksheet* worksheet) : ReportBase(data_, compare), ExcelFile(workbook, worksheet)
|
||||
{
|
||||
createFile();
|
||||
}
|
||||
|
||||
void ReportExcel::formatColumns()
|
||||
{
|
||||
worksheet_freeze_panes(worksheet, 6, 1);
|
||||
std::vector<int> columns_sizes = { 22, 10, 9, 7, 12, 12, 12, 12, 12, 3, 15, 12, 23 };
|
||||
for (int i = 0; i < columns_sizes.size(); ++i) {
|
||||
worksheet_set_column(worksheet, i, i, columns_sizes.at(i), NULL);
|
||||
}
|
||||
}
|
||||
void ReportExcel::createWorksheet()
|
||||
{
|
||||
const std::string name = data["model"].get<std::string>();
|
||||
std::string suffix = "";
|
||||
std::string efectiveName;
|
||||
int num = 1;
|
||||
// Create a sheet with the name of the model
|
||||
while (true) {
|
||||
efectiveName = name + suffix;
|
||||
if (workbook_get_worksheet_by_name(workbook, efectiveName.c_str())) {
|
||||
suffix = std::to_string(++num);
|
||||
} else {
|
||||
worksheet = workbook_add_worksheet(workbook, efectiveName.c_str());
|
||||
break;
|
||||
}
|
||||
if (num > 100) {
|
||||
throw std::invalid_argument("Couldn't create sheet " + efectiveName);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ReportExcel::createFile()
|
||||
{
|
||||
if (workbook == NULL) {
|
||||
workbook = workbook_new((Paths::excel() + Paths::excelResults()).c_str());
|
||||
}
|
||||
if (worksheet == NULL) {
|
||||
createWorksheet();
|
||||
}
|
||||
setProperties(data["title"].get<std::string>());
|
||||
createFormats();
|
||||
formatColumns();
|
||||
}
|
||||
|
||||
void ReportExcel::closeFile()
|
||||
{
|
||||
workbook_close(workbook);
|
||||
}
|
||||
|
||||
void ReportExcel::header()
|
||||
{
|
||||
std::locale mylocale(std::cout.getloc(), new separated);
|
||||
std::locale::global(mylocale);
|
||||
std::cout.imbue(mylocale);
|
||||
std::stringstream oss;
|
||||
std::string message = data["model"].get<std::string>() + " ver. " + data["version"].get<std::string>() + " " +
|
||||
data["language"].get<std::string>() + " ver. " + data["language_version"].get<std::string>() +
|
||||
" with " + std::to_string(data["folds"].get<int>()) + " Folds cross validation and " + std::to_string(data["seeds"].size()) +
|
||||
" random seeds. " + data["date"].get<std::string>() + " " + data["time"].get<std::string>();
|
||||
worksheet_merge_range(worksheet, 0, 0, 0, 12, message.c_str(), styles["headerFirst"]);
|
||||
worksheet_merge_range(worksheet, 1, 0, 1, 12, data["title"].get<std::string>().c_str(), styles["headerRest"]);
|
||||
worksheet_merge_range(worksheet, 2, 0, 3, 0, ("Score is " + data["score_name"].get<std::string>()).c_str(), styles["headerRest"]);
|
||||
worksheet_merge_range(worksheet, 2, 1, 3, 3, "Execution time", styles["headerRest"]);
|
||||
oss << std::setprecision(2) << std::fixed << data["duration"].get<float>() << " s";
|
||||
worksheet_merge_range(worksheet, 2, 4, 2, 5, oss.str().c_str(), styles["headerRest"]);
|
||||
oss.str("");
|
||||
oss.clear();
|
||||
oss << std::setprecision(2) << std::fixed << data["duration"].get<float>() / 3600 << " h";
|
||||
worksheet_merge_range(worksheet, 3, 4, 3, 5, oss.str().c_str(), styles["headerRest"]);
|
||||
worksheet_merge_range(worksheet, 2, 6, 3, 7, "Platform", styles["headerRest"]);
|
||||
worksheet_merge_range(worksheet, 2, 8, 3, 9, data["platform"].get<std::string>().c_str(), styles["headerRest"]);
|
||||
worksheet_merge_range(worksheet, 2, 10, 2, 12, ("Random seeds: " + fromVector("seeds")).c_str(), styles["headerSmall"]);
|
||||
oss.str("");
|
||||
oss.clear();
|
||||
oss << "Stratified: " << (data["stratified"].get<bool>() ? "True" : "False");
|
||||
worksheet_merge_range(worksheet, 3, 10, 3, 11, oss.str().c_str(), styles["headerSmall"]);
|
||||
oss.str("");
|
||||
oss.clear();
|
||||
oss << "Discretized: " << (data["discretized"].get<bool>() ? "True" : "False");
|
||||
worksheet_write_string(worksheet, 3, 12, oss.str().c_str(), styles["headerSmall"]);
|
||||
}
|
||||
|
||||
void ReportExcel::body()
|
||||
{
|
||||
auto head = std::vector<std::string>(
|
||||
{ "Dataset", "Samples", "Features", "Classes", "Nodes", "Edges", "States", "Score", "Score Std.", "St.", "Time",
|
||||
"Time Std.", "Hyperparameters" });
|
||||
int col = 0;
|
||||
for (const auto& item : head) {
|
||||
writeString(5, col++, item, "bodyHeader");
|
||||
}
|
||||
row = 6;
|
||||
col = 0;
|
||||
int hypSize = 22;
|
||||
json lastResult;
|
||||
double totalScore = 0.0;
|
||||
std::string hyperparameters;
|
||||
for (const auto& r : data["results"]) {
|
||||
writeString(row, col, r["dataset"].get<std::string>(), "text");
|
||||
writeInt(row, col + 1, r["samples"].get<int>(), "ints");
|
||||
writeInt(row, col + 2, r["features"].get<int>(), "ints");
|
||||
writeInt(row, col + 3, r["classes"].get<int>(), "ints");
|
||||
writeDouble(row, col + 4, r["nodes"].get<float>(), "floats");
|
||||
writeDouble(row, col + 5, r["leaves"].get<float>(), "floats");
|
||||
writeDouble(row, col + 6, r["depth"].get<double>(), "floats");
|
||||
writeDouble(row, col + 7, r["score"].get<double>(), "result");
|
||||
writeDouble(row, col + 8, r["score_std"].get<double>(), "result");
|
||||
const std::string status = compareResult(r["dataset"].get<std::string>(), r["score"].get<double>());
|
||||
writeString(row, col + 9, status, "textCentered");
|
||||
writeDouble(row, col + 10, r["time"].get<double>(), "time");
|
||||
writeDouble(row, col + 11, r["time_std"].get<double>(), "time");
|
||||
hyperparameters = r["hyperparameters"].dump();
|
||||
if (hyperparameters.size() > hypSize) {
|
||||
hypSize = hyperparameters.size();
|
||||
}
|
||||
writeString(row, col + 12, hyperparameters, "text");
|
||||
lastResult = r;
|
||||
totalScore += r["score"].get<double>();
|
||||
row++;
|
||||
}
|
||||
// Set the right column width of hyperparameters with the maximum length
|
||||
worksheet_set_column(worksheet, 12, 12, hypSize + 5, NULL);
|
||||
// Show totals if only one dataset is present in the result
|
||||
if (data["results"].size() == 1) {
|
||||
for (const std::string& group : { "scores_train", "scores_test", "times_train", "times_test" }) {
|
||||
row++;
|
||||
col = 1;
|
||||
writeString(row, col, group, "text");
|
||||
for (double item : lastResult[group]) {
|
||||
std::string style = group.find("scores") != std::string::npos ? "result" : "time";
|
||||
writeDouble(row, ++col, item, style);
|
||||
}
|
||||
}
|
||||
// Set with of columns to show those totals completely
|
||||
worksheet_set_column(worksheet, 1, 1, 12, NULL);
|
||||
for (int i = 2; i < 7; ++i) {
|
||||
// doesn't work with from col to col, so...
|
||||
worksheet_set_column(worksheet, i, i, 15, NULL);
|
||||
}
|
||||
} else {
|
||||
footer(totalScore, row);
|
||||
}
|
||||
}
|
||||
|
||||
void ReportExcel::showSummary()
|
||||
{
|
||||
for (const auto& item : summary) {
|
||||
worksheet_write_string(worksheet, row + 2, 1, item.first.c_str(), styles["summaryStyle"]);
|
||||
worksheet_write_number(worksheet, row + 2, 2, item.second, styles["summaryStyle"]);
|
||||
worksheet_merge_range(worksheet, row + 2, 3, row + 2, 5, meaning.at(item.first).c_str(), styles["summaryStyle"]);
|
||||
row += 1;
|
||||
}
|
||||
}
|
||||
|
||||
void ReportExcel::footer(double totalScore, int row)
|
||||
{
|
||||
showSummary();
|
||||
row += 4 + summary.size();
|
||||
auto score = data["score_name"].get<std::string>();
|
||||
auto best = BestScore::getScore(score);
|
||||
if (best.first != "") {
|
||||
worksheet_merge_range(worksheet, row, 1, row, 5, (score + " compared to " + best.first + " .:").c_str(), efectiveStyle("text"));
|
||||
writeDouble(row, 6, totalScore / best.second, "result");
|
||||
}
|
||||
if (!getExistBestFile() && compare) {
|
||||
worksheet_write_string(worksheet, row + 1, 0, "*** Best Results File not found. Couldn't compare any result!", styles["summaryStyle"]);
|
||||
}
|
||||
}
|
||||
}
|
@ -1,24 +0,0 @@
|
||||
#ifndef REPORTEXCEL_H
|
||||
#define REPORTEXCEL_H
|
||||
#include<map>
|
||||
#include "xlsxwriter.h"
|
||||
#include "ReportBase.h"
|
||||
#include "ExcelFile.h"
|
||||
#include "Colors.h"
|
||||
namespace platform {
|
||||
class ReportExcel : public ReportBase, public ExcelFile {
|
||||
public:
|
||||
explicit ReportExcel(json data_, bool compare, lxw_workbook* workbook, lxw_worksheet* worksheet = NULL);
|
||||
private:
|
||||
void formatColumns();
|
||||
void createFile();
|
||||
void createWorksheet();
|
||||
void closeFile();
|
||||
void header() override;
|
||||
void body() override;
|
||||
void showSummary() override;
|
||||
void footer(double totalScore, int row);
|
||||
|
||||
};
|
||||
};
|
||||
#endif // !REPORTEXCEL_H
|
@ -1,58 +0,0 @@
|
||||
#include "Result.h"
|
||||
#include "BestScore.h"
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include "Colors.h"
|
||||
#include "DotEnv.h"
|
||||
#include "CLocale.h"
|
||||
|
||||
namespace platform {
|
||||
Result::Result(const std::string& path, const std::string& filename)
|
||||
: path(path)
|
||||
, filename(filename)
|
||||
{
|
||||
auto data = load();
|
||||
date = data["date"];
|
||||
score = 0;
|
||||
for (const auto& result : data["results"]) {
|
||||
score += result["score"].get<double>();
|
||||
}
|
||||
scoreName = data["score_name"];
|
||||
auto best = BestScore::getScore(scoreName);
|
||||
if (best.first != "") {
|
||||
score /= best.second;
|
||||
}
|
||||
title = data["title"];
|
||||
duration = data["duration"];
|
||||
model = data["model"];
|
||||
complete = data["results"].size() > 1;
|
||||
}
|
||||
|
||||
json Result::load() const
|
||||
{
|
||||
std::ifstream resultData(path + "/" + filename);
|
||||
if (resultData.is_open()) {
|
||||
json data = json::parse(resultData);
|
||||
return data;
|
||||
}
|
||||
throw std::invalid_argument("Unable to open result file. [" + path + "/" + filename + "]");
|
||||
}
|
||||
|
||||
std::string Result::to_string(int maxModel) const
|
||||
{
|
||||
auto tmp = ConfigLocale();
|
||||
std::stringstream oss;
|
||||
double durationShow = duration > 3600 ? duration / 3600 : duration > 60 ? duration / 60 : duration;
|
||||
std::string durationUnit = duration > 3600 ? "h" : duration > 60 ? "m" : "s";
|
||||
oss << date << " ";
|
||||
oss << std::setw(maxModel) << std::left << model << " ";
|
||||
oss << std::setw(11) << std::left << scoreName << " ";
|
||||
oss << std::right << std::setw(11) << std::setprecision(7) << std::fixed << score << " ";
|
||||
auto completeString = isComplete() ? "C" : "P";
|
||||
oss << std::setw(1) << " " << completeString << " ";
|
||||
oss << std::setw(7) << std::setprecision(2) << std::fixed << durationShow << " " << durationUnit << " ";
|
||||
oss << std::setw(50) << std::left << title << " ";
|
||||
return oss.str();
|
||||
}
|
||||
}
|
@ -1,35 +0,0 @@
|
||||
#ifndef RESULT_H
|
||||
#define RESULT_H
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <nlohmann/json.hpp>
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
|
||||
class Result {
|
||||
public:
|
||||
Result(const std::string& path, const std::string& filename);
|
||||
json load() const;
|
||||
std::string to_string(int maxModel) const;
|
||||
std::string getFilename() const { return filename; };
|
||||
std::string getDate() const { return date; };
|
||||
double getScore() const { return score; };
|
||||
std::string getTitle() const { return title; };
|
||||
double getDuration() const { return duration; };
|
||||
std::string getModel() const { return model; };
|
||||
std::string getScoreName() const { return scoreName; };
|
||||
bool isComplete() const { return complete; };
|
||||
private:
|
||||
std::string path;
|
||||
std::string filename;
|
||||
std::string date;
|
||||
double score;
|
||||
std::string title;
|
||||
double duration;
|
||||
std::string model;
|
||||
std::string scoreName;
|
||||
bool complete;
|
||||
};
|
||||
};
|
||||
#endif
|
@ -1,74 +0,0 @@
|
||||
#include "Results.h"
|
||||
#include <algorithm>
|
||||
|
||||
namespace platform {
|
||||
Results::Results(const std::string& path, const std::string& model, const std::string& score, bool complete, bool partial) :
|
||||
path(path), model(model), scoreName(score), complete(complete), partial(partial)
|
||||
{
|
||||
load();
|
||||
if (!files.empty()) {
|
||||
maxModel = (*max_element(files.begin(), files.end(), [](const Result& a, const Result& b) { return a.getModel().size() < b.getModel().size(); })).getModel().size();
|
||||
} else {
|
||||
maxModel = 0;
|
||||
}
|
||||
};
|
||||
void Results::load()
|
||||
{
|
||||
using std::filesystem::directory_iterator;
|
||||
for (const auto& file : directory_iterator(path)) {
|
||||
auto filename = file.path().filename().string();
|
||||
if (filename.find(".json") != std::string::npos && filename.find("results_") == 0) {
|
||||
auto result = Result(path, filename);
|
||||
bool addResult = true;
|
||||
if (model != "any" && result.getModel() != model || scoreName != "any" && scoreName != result.getScoreName() || complete && !result.isComplete() || partial && result.isComplete())
|
||||
addResult = false;
|
||||
if (addResult)
|
||||
files.push_back(result);
|
||||
}
|
||||
}
|
||||
}
|
||||
void Results::hideResult(int index, const std::string& pathHidden)
|
||||
{
|
||||
auto filename = files.at(index).getFilename();
|
||||
rename((path + "/" + filename).c_str(), (pathHidden + "/" + filename).c_str());
|
||||
files.erase(files.begin() + index);
|
||||
}
|
||||
void Results::deleteResult(int index)
|
||||
{
|
||||
auto filename = files.at(index).getFilename();
|
||||
remove((path + "/" + filename).c_str());
|
||||
files.erase(files.begin() + index);
|
||||
}
|
||||
int Results::size() const
|
||||
{
|
||||
return files.size();
|
||||
}
|
||||
void Results::sortDate()
|
||||
{
|
||||
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
|
||||
return a.getDate() > b.getDate();
|
||||
});
|
||||
}
|
||||
void Results::sortModel()
|
||||
{
|
||||
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
|
||||
return a.getModel() > b.getModel();
|
||||
});
|
||||
}
|
||||
void Results::sortDuration()
|
||||
{
|
||||
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
|
||||
return a.getDuration() > b.getDuration();
|
||||
});
|
||||
}
|
||||
void Results::sortScore()
|
||||
{
|
||||
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
|
||||
return a.getScore() > b.getScore();
|
||||
});
|
||||
}
|
||||
bool Results::empty() const
|
||||
{
|
||||
return files.empty();
|
||||
}
|
||||
}
|
@ -1,36 +0,0 @@
|
||||
#ifndef RESULTS_H
|
||||
#define RESULTS_H
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "Result.h"
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
class Results {
|
||||
public:
|
||||
Results(const std::string& path, const std::string& model, const std::string& score, bool complete, bool partial);
|
||||
void sortDate();
|
||||
void sortScore();
|
||||
void sortModel();
|
||||
void sortDuration();
|
||||
int maxModelSize() const { return maxModel; };
|
||||
void hideResult(int index, const std::string& pathHidden);
|
||||
void deleteResult(int index);
|
||||
int size() const;
|
||||
bool empty() const;
|
||||
std::vector<Result>::iterator begin() { return files.begin(); };
|
||||
std::vector<Result>::iterator end() { return files.end(); };
|
||||
Result& at(int index) { return files.at(index); };
|
||||
private:
|
||||
std::string path;
|
||||
std::string model;
|
||||
std::string scoreName;
|
||||
bool complete;
|
||||
bool partial;
|
||||
int maxModel;
|
||||
std::vector<Result> files;
|
||||
void load(); // Loads the list of results
|
||||
};
|
||||
};
|
||||
#endif
|
@ -1,252 +0,0 @@
|
||||
#include <sstream>
|
||||
#include "Statistics.h"
|
||||
#include "Colors.h"
|
||||
#include "Symbols.h"
|
||||
#include <boost/math/distributions/chi_squared.hpp>
|
||||
#include <boost/math/distributions/normal.hpp>
|
||||
#include "CLocale.h"
|
||||
|
||||
|
||||
namespace platform {
|
||||
|
||||
Statistics::Statistics(const std::vector<std::string>& models, const std::vector<std::string>& datasets, const json& data, double significance, bool output) :
|
||||
models(models), datasets(datasets), data(data), significance(significance), output(output)
|
||||
{
|
||||
nModels = models.size();
|
||||
nDatasets = datasets.size();
|
||||
auto temp = ConfigLocale();
|
||||
};
|
||||
|
||||
void Statistics::fit()
|
||||
{
|
||||
if (nModels < 3 || nDatasets < 3) {
|
||||
std::cerr << "nModels: " << nModels << std::endl;
|
||||
std::cerr << "nDatasets: " << nDatasets << std::endl;
|
||||
throw std::runtime_error("Can't make the Friedman test with less than 3 models and/or less than 3 datasets.");
|
||||
}
|
||||
ranksModels.clear();
|
||||
computeRanks();
|
||||
// Set the control model as the one with the lowest average rank
|
||||
controlIdx = distance(ranks.begin(), min_element(ranks.begin(), ranks.end(), [](const auto& l, const auto& r) { return l.second < r.second; }));
|
||||
computeWTL();
|
||||
maxModelName = (*std::max_element(models.begin(), models.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
maxDatasetName = (*std::max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
|
||||
fitted = true;
|
||||
}
|
||||
std::map<std::string, float> assignRanks(std::vector<std::pair<std::string, double>>& ranksOrder)
|
||||
{
|
||||
// sort the ranksOrder std::vector by value
|
||||
std::sort(ranksOrder.begin(), ranksOrder.end(), [](const std::pair<std::string, double>& a, const std::pair<std::string, double>& b) {
|
||||
return a.second > b.second;
|
||||
});
|
||||
//Assign ranks to values and if they are the same they share the same averaged rank
|
||||
std::map<std::string, float> ranks;
|
||||
for (int i = 0; i < ranksOrder.size(); i++) {
|
||||
ranks[ranksOrder[i].first] = i + 1.0;
|
||||
}
|
||||
int i = 0;
|
||||
while (i < static_cast<int>(ranksOrder.size())) {
|
||||
int j = i + 1;
|
||||
int sumRanks = ranks[ranksOrder[i].first];
|
||||
while (j < static_cast<int>(ranksOrder.size()) && ranksOrder[i].second == ranksOrder[j].second) {
|
||||
sumRanks += ranks[ranksOrder[j++].first];
|
||||
}
|
||||
if (j > i + 1) {
|
||||
float averageRank = (float)sumRanks / (j - i);
|
||||
for (int k = i; k < j; k++) {
|
||||
ranks[ranksOrder[k].first] = averageRank;
|
||||
}
|
||||
}
|
||||
i = j;
|
||||
}
|
||||
return ranks;
|
||||
}
|
||||
void Statistics::computeRanks()
|
||||
{
|
||||
std::map<std::string, float> ranksLine;
|
||||
for (const auto& dataset : datasets) {
|
||||
std::vector<std::pair<std::string, double>> ranksOrder;
|
||||
for (const auto& model : models) {
|
||||
double value = data[model].at(dataset).at(0).get<double>();
|
||||
ranksOrder.push_back({ model, value });
|
||||
}
|
||||
// Assign the ranks
|
||||
ranksLine = assignRanks(ranksOrder);
|
||||
// Store the ranks of the dataset
|
||||
ranksModels[dataset] = ranksLine;
|
||||
if (ranks.size() == 0) {
|
||||
ranks = ranksLine;
|
||||
} else {
|
||||
for (const auto& rank : ranksLine) {
|
||||
ranks[rank.first] += rank.second;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Average the ranks
|
||||
for (const auto& rank : ranks) {
|
||||
ranks[rank.first] /= nDatasets;
|
||||
}
|
||||
}
|
||||
void Statistics::computeWTL()
|
||||
{
|
||||
// Compute the WTL matrix
|
||||
for (int i = 0; i < nModels; ++i) {
|
||||
wtl[i] = { 0, 0, 0 };
|
||||
}
|
||||
json origin = data.begin().value();
|
||||
for (auto const& item : origin.items()) {
|
||||
auto controlModel = models.at(controlIdx);
|
||||
double controlValue = data[controlModel].at(item.key()).at(0).get<double>();
|
||||
for (int i = 0; i < nModels; ++i) {
|
||||
if (i == controlIdx) {
|
||||
continue;
|
||||
}
|
||||
double value = data[models[i]].at(item.key()).at(0).get<double>();
|
||||
if (value < controlValue) {
|
||||
wtl[i].win++;
|
||||
} else if (value == controlValue) {
|
||||
wtl[i].tie++;
|
||||
} else {
|
||||
wtl[i].loss++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Statistics::postHocHolmTest(bool friedmanResult)
|
||||
{
|
||||
if (!fitted) {
|
||||
fit();
|
||||
}
|
||||
std::stringstream oss;
|
||||
// Reference https://link.springer.com/article/10.1007/s44196-022-00083-8
|
||||
// Post-hoc Holm test
|
||||
// Calculate the p-value for the models paired with the control model
|
||||
std::map<int, double> stats; // p-value of each model paired with the control model
|
||||
boost::math::normal dist(0.0, 1.0);
|
||||
double diff = sqrt(nModels * (nModels + 1) / (6.0 * nDatasets));
|
||||
for (int i = 0; i < nModels; i++) {
|
||||
if (i == controlIdx) {
|
||||
stats[i] = 0.0;
|
||||
continue;
|
||||
}
|
||||
double z = abs(ranks.at(models[controlIdx]) - ranks.at(models[i])) / diff;
|
||||
double p_value = (long double)2 * (1 - cdf(dist, z));
|
||||
stats[i] = p_value;
|
||||
}
|
||||
// Sort the models by p-value
|
||||
std::vector<std::pair<int, double>> statsOrder;
|
||||
for (const auto& stat : stats) {
|
||||
statsOrder.push_back({ stat.first, stat.second });
|
||||
}
|
||||
std::sort(statsOrder.begin(), statsOrder.end(), [](const std::pair<int, double>& a, const std::pair<int, double>& b) {
|
||||
return a.second < b.second;
|
||||
});
|
||||
|
||||
// Holm adjustment
|
||||
for (int i = 0; i < statsOrder.size(); ++i) {
|
||||
auto item = statsOrder.at(i);
|
||||
double before = i == 0 ? 0.0 : statsOrder.at(i - 1).second;
|
||||
double p_value = std::min((double)1.0, item.second * (nModels - i));
|
||||
p_value = std::max(before, p_value);
|
||||
statsOrder[i] = { item.first, p_value };
|
||||
}
|
||||
holmResult.model = models.at(controlIdx);
|
||||
auto color = friedmanResult ? Colors::CYAN() : Colors::YELLOW();
|
||||
oss << color;
|
||||
oss << " *************************************************************************************************************" << std::endl;
|
||||
oss << " Post-hoc Holm test: H0: 'There is no significant differences between the control model and the other models.'" << std::endl;
|
||||
oss << " Control model: " << models.at(controlIdx) << std::endl;
|
||||
oss << " " << std::left << std::setw(maxModelName) << std::string("Model") << " p-value rank win tie loss Status" << std::endl;
|
||||
oss << " " << std::string(maxModelName, '=') << " ============ ========= === === ==== =============" << std::endl;
|
||||
// sort ranks from lowest to highest
|
||||
std::vector<std::pair<std::string, float>> ranksOrder;
|
||||
for (const auto& rank : ranks) {
|
||||
ranksOrder.push_back({ rank.first, rank.second });
|
||||
}
|
||||
std::sort(ranksOrder.begin(), ranksOrder.end(), [](const std::pair<std::string, float>& a, const std::pair<std::string, float>& b) {
|
||||
return a.second < b.second;
|
||||
});
|
||||
// Show the control model info.
|
||||
oss << " " << Colors::BLUE() << std::left << std::setw(maxModelName) << ranksOrder.at(0).first << " ";
|
||||
oss << std::setw(12) << " " << std::setprecision(7) << std::fixed << " " << ranksOrder.at(0).second << std::endl;
|
||||
for (const auto& item : ranksOrder) {
|
||||
auto idx = distance(models.begin(), find(models.begin(), models.end(), item.first));
|
||||
double pvalue = 0.0;
|
||||
for (const auto& stat : statsOrder) {
|
||||
if (stat.first == idx) {
|
||||
pvalue = stat.second;
|
||||
}
|
||||
}
|
||||
holmResult.holmLines.push_back({ item.first, pvalue, item.second, wtl.at(idx), pvalue < significance });
|
||||
if (item.first == models.at(controlIdx)) {
|
||||
continue;
|
||||
}
|
||||
auto colorStatus = pvalue > significance ? Colors::GREEN() : Colors::MAGENTA();
|
||||
auto status = pvalue > significance ? Symbols::check_mark : Symbols::cross;
|
||||
auto textStatus = pvalue > significance ? " accepted H0" : " rejected H0";
|
||||
oss << " " << colorStatus << std::left << std::setw(maxModelName) << item.first << " ";
|
||||
oss << std::setprecision(6) << std::scientific << pvalue << std::setprecision(7) << std::fixed << " " << item.second;
|
||||
oss << " " << std::right << std::setw(3) << wtl.at(idx).win << " " << std::setw(3) << wtl.at(idx).tie << " " << std::setw(4) << wtl.at(idx).loss;
|
||||
oss << " " << status << textStatus << std::endl;
|
||||
}
|
||||
oss << color << " *************************************************************************************************************" << std::endl;
|
||||
oss << Colors::RESET();
|
||||
if (output) {
|
||||
std::cout << oss.str();
|
||||
}
|
||||
}
|
||||
bool Statistics::friedmanTest()
|
||||
{
|
||||
if (!fitted) {
|
||||
fit();
|
||||
}
|
||||
std::stringstream oss;
|
||||
// Friedman test
|
||||
// Calculate the Friedman statistic
|
||||
oss << Colors::BLUE() << std::endl;
|
||||
oss << "***************************************************************************************************************" << std::endl;
|
||||
oss << Colors::GREEN() << "Friedman test: H0: 'There is no significant differences between all the classifiers.'" << Colors::BLUE() << std::endl;
|
||||
double degreesOfFreedom = nModels - 1.0;
|
||||
double sumSquared = 0;
|
||||
for (const auto& rank : ranks) {
|
||||
sumSquared += pow(rank.second, 2);
|
||||
}
|
||||
// Compute the Friedman statistic as in https://link.springer.com/article/10.1007/s44196-022-00083-8
|
||||
double friedmanQ = 12.0 * nDatasets / (nModels * (nModels + 1)) * (sumSquared - (nModels * pow(nModels + 1, 2)) / 4);
|
||||
// Calculate the critical value
|
||||
boost::math::chi_squared chiSquared(degreesOfFreedom);
|
||||
long double p_value = (long double)1.0 - cdf(chiSquared, friedmanQ);
|
||||
double criticalValue = quantile(chiSquared, 1 - significance);
|
||||
oss << "Friedman statistic: " << friedmanQ << std::endl;
|
||||
oss << "Critical χ2 Value for df=" << std::fixed << (int)degreesOfFreedom
|
||||
<< " and alpha=" << std::setprecision(2) << std::fixed << significance << ": " << std::setprecision(7) << std::scientific << criticalValue << std::endl;
|
||||
oss << "p-value: " << std::scientific << p_value << " is " << (p_value < significance ? "less" : "greater") << " than " << std::setprecision(2) << std::fixed << significance << std::endl;
|
||||
bool result;
|
||||
if (p_value < significance) {
|
||||
oss << Colors::GREEN() << "The null hypothesis H0 is rejected." << std::endl;
|
||||
result = true;
|
||||
} else {
|
||||
oss << Colors::YELLOW() << "The null hypothesis H0 is accepted. Computed p-values will not be significant." << std::endl;
|
||||
result = false;
|
||||
}
|
||||
oss << Colors::BLUE() << "***************************************************************************************************************" << Colors::RESET() << std::endl;
|
||||
if (output) {
|
||||
std::cout << oss.str();
|
||||
}
|
||||
friedmanResult = { friedmanQ, criticalValue, p_value, result };
|
||||
return result;
|
||||
}
|
||||
FriedmanResult& Statistics::getFriedmanResult()
|
||||
{
|
||||
return friedmanResult;
|
||||
}
|
||||
HolmResult& Statistics::getHolmResult()
|
||||
{
|
||||
return holmResult;
|
||||
}
|
||||
std::map<std::string, std::map<std::string, float>>& Statistics::getRanks()
|
||||
{
|
||||
return ranksModels;
|
||||
}
|
||||
} // namespace platform
|
@ -1,63 +0,0 @@
|
||||
#ifndef STATISTICS_H
|
||||
#define STATISTICS_H
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
using json = nlohmann::json;
|
||||
|
||||
namespace platform {
|
||||
struct WTL {
|
||||
int win;
|
||||
int tie;
|
||||
int loss;
|
||||
};
|
||||
struct FriedmanResult {
|
||||
double statistic;
|
||||
double criticalValue;
|
||||
long double pvalue;
|
||||
bool reject;
|
||||
};
|
||||
struct HolmLine {
|
||||
std::string model;
|
||||
long double pvalue;
|
||||
double rank;
|
||||
WTL wtl;
|
||||
bool reject;
|
||||
};
|
||||
struct HolmResult {
|
||||
std::string model;
|
||||
std::vector<HolmLine> holmLines;
|
||||
};
|
||||
class Statistics {
|
||||
public:
|
||||
Statistics(const std::vector<std::string>& models, const std::vector<std::string>& datasets, const json& data, double significance = 0.05, bool output = true);
|
||||
bool friedmanTest();
|
||||
void postHocHolmTest(bool friedmanResult);
|
||||
FriedmanResult& getFriedmanResult();
|
||||
HolmResult& getHolmResult();
|
||||
std::map<std::string, std::map<std::string, float>>& getRanks();
|
||||
private:
|
||||
void fit();
|
||||
void computeRanks();
|
||||
void computeWTL();
|
||||
const std::vector<std::string>& models;
|
||||
const std::vector<std::string>& datasets;
|
||||
const json& data;
|
||||
double significance;
|
||||
bool output;
|
||||
bool fitted = false;
|
||||
int nModels = 0;
|
||||
int nDatasets = 0;
|
||||
int controlIdx = 0;
|
||||
std::map<int, WTL> wtl;
|
||||
std::map<std::string, float> ranks;
|
||||
int maxModelName = 0;
|
||||
int maxDatasetName = 0;
|
||||
FriedmanResult friedmanResult;
|
||||
HolmResult holmResult;
|
||||
std::map<std::string, std::map<std::string, float>> ranksModels;
|
||||
};
|
||||
}
|
||||
#endif // !STATISTICS_H
|
@ -1,17 +0,0 @@
|
||||
#ifndef SYMBOLS_H
|
||||
#define SYMBOLS_H
|
||||
#include <string>
|
||||
namespace platform {
|
||||
class Symbols {
|
||||
public:
|
||||
inline static const std::string check_mark{ "\u2714" };
|
||||
inline static const std::string exclamation{ "\u2757" };
|
||||
inline static const std::string black_star{ "\u2605" };
|
||||
inline static const std::string cross{ "\u2717" };
|
||||
inline static const std::string upward_arrow{ "\u27B6" };
|
||||
inline static const std::string down_arrow{ "\u27B4" };
|
||||
inline static const std::string equal_best{ check_mark };
|
||||
inline static const std::string better_best{ black_star };
|
||||
};
|
||||
}
|
||||
#endif // !SYMBOLS_H
|
@ -1,43 +0,0 @@
|
||||
#ifndef TIMER_H
|
||||
#define TIMER_H
|
||||
#include <chrono>
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
|
||||
namespace platform {
|
||||
class Timer {
|
||||
private:
|
||||
std::chrono::high_resolution_clock::time_point begin;
|
||||
std::chrono::high_resolution_clock::time_point end;
|
||||
public:
|
||||
Timer() = default;
|
||||
~Timer() = default;
|
||||
void start() { begin = std::chrono::high_resolution_clock::now(); }
|
||||
void stop() { end = std::chrono::high_resolution_clock::now(); }
|
||||
double getDuration()
|
||||
{
|
||||
stop();
|
||||
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (end - begin);
|
||||
return time_span.count();
|
||||
}
|
||||
double getLapse()
|
||||
{
|
||||
std::chrono::duration<double> time_span = std::chrono::duration_cast<std::chrono::duration<double >> (std::chrono::high_resolution_clock::now() - begin);
|
||||
return time_span.count();
|
||||
}
|
||||
std::string getDurationString(bool lapse = false)
|
||||
{
|
||||
double duration = lapse ? getLapse() : getDuration();
|
||||
return translate2String(duration);
|
||||
}
|
||||
std::string translate2String(double duration)
|
||||
{
|
||||
double durationShow = duration > 3600 ? duration / 3600 : duration > 60 ? duration / 60 : duration;
|
||||
std::string durationUnit = duration > 3600 ? "h" : duration > 60 ? "m" : "s";
|
||||
std::stringstream ss;
|
||||
ss << std::setprecision(2) << std::fixed << durationShow << " " << durationUnit;
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif /* TIMER_H */
|
@ -1,30 +0,0 @@
|
||||
#ifndef UTILS_H
|
||||
#define UTILS_H
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
namespace platform {
|
||||
//static std::vector<std::string> split(const std::string& text, char delimiter);
|
||||
static std::vector<std::string> split(const std::string& text, char delimiter)
|
||||
{
|
||||
std::vector<std::string> result;
|
||||
std::stringstream ss(text);
|
||||
std::string token;
|
||||
while (std::getline(ss, token, delimiter)) {
|
||||
result.push_back(token);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
static std::string trim(const std::string& str)
|
||||
{
|
||||
std::string result = str;
|
||||
result.erase(result.begin(), std::find_if(result.begin(), result.end(), [](int ch) {
|
||||
return !std::isspace(ch);
|
||||
}));
|
||||
result.erase(std::find_if(result.rbegin(), result.rend(), [](int ch) {
|
||||
return !std::isspace(ch);
|
||||
}).base(), result.end());
|
||||
return result;
|
||||
}
|
||||
}
|
||||
#endif
|
@ -1,85 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include "Paths.h"
|
||||
#include "BestResults.h"
|
||||
#include "Colors.h"
|
||||
#include "config.h"
|
||||
|
||||
void manageArguments(argparse::ArgumentParser& program, int argc, char** argv)
|
||||
{
|
||||
program.add_argument("-m", "--model").default_value("").help("Filter results of the selected model) (any for all models)");
|
||||
program.add_argument("-s", "--score").default_value("").help("Filter results of the score name supplied");
|
||||
program.add_argument("--build").help("build best score results file").default_value(false).implicit_value(true);
|
||||
program.add_argument("--report").help("report of best score results file").default_value(false).implicit_value(true);
|
||||
program.add_argument("--friedman").help("Friedman test").default_value(false).implicit_value(true);
|
||||
program.add_argument("--excel").help("Output to excel").default_value(false).implicit_value(true);
|
||||
program.add_argument("--level").help("significance level").default_value(0.05).scan<'g', double>().action([](const std::string& value) {
|
||||
try {
|
||||
auto k = std::stod(value);
|
||||
if (k < 0.01 || k > 0.15) {
|
||||
throw std::runtime_error("Significance level hast to be a number in [0.01, 0.15]");
|
||||
}
|
||||
return k;
|
||||
}
|
||||
catch (const std::runtime_error& err) {
|
||||
throw std::runtime_error(err.what());
|
||||
}
|
||||
catch (...) {
|
||||
throw std::runtime_error("Number of folds must be an decimal number");
|
||||
}});
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
argparse::ArgumentParser program("b_best", { project_version.begin(), project_version.end() });
|
||||
manageArguments(program, argc, argv);
|
||||
std::string model, score;
|
||||
bool build, report, friedman, excel;
|
||||
double level;
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
model = program.get<std::string>("model");
|
||||
score = program.get<std::string>("score");
|
||||
build = program.get<bool>("build");
|
||||
report = program.get<bool>("report");
|
||||
friedman = program.get<bool>("friedman");
|
||||
excel = program.get<bool>("excel");
|
||||
level = program.get<double>("level");
|
||||
if (model == "" || score == "") {
|
||||
throw std::runtime_error("Model and score name must be supplied");
|
||||
}
|
||||
if (friedman && model != "any") {
|
||||
std::cerr << "Friedman test can only be used with all models" << std::endl;
|
||||
std::cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
if (!report && !build) {
|
||||
std::cerr << "Either build, report or both, have to be selected to do anything!" << std::endl;
|
||||
std::cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
catch (const std::exception& err) {
|
||||
std::cerr << err.what() << std::endl;
|
||||
std::cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
// Generate report
|
||||
auto results = platform::BestResults(platform::Paths::results(), score, model, friedman, level);
|
||||
if (build) {
|
||||
if (model == "any") {
|
||||
results.buildAll();
|
||||
} else {
|
||||
std::string fileName = results.build();
|
||||
std::cout << Colors::GREEN() << fileName << " created!" << Colors::RESET() << std::endl;
|
||||
}
|
||||
}
|
||||
if (report) {
|
||||
if (model == "any") {
|
||||
results.reportAll(excel);
|
||||
} else {
|
||||
results.reportSingle(excel);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
@ -1,232 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include <map>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <mpi.h>
|
||||
#include "DotEnv.h"
|
||||
#include "Models.h"
|
||||
#include "modelRegister.h"
|
||||
#include "GridSearch.h"
|
||||
#include "Paths.h"
|
||||
#include "Timer.h"
|
||||
#include "Colors.h"
|
||||
#include "config.h"
|
||||
|
||||
using json = nlohmann::json;
|
||||
const int MAXL = 133;
|
||||
|
||||
void manageArguments(argparse::ArgumentParser& program)
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
auto& group = program.add_mutually_exclusive_group(true);
|
||||
program.add_argument("-m", "--model")
|
||||
.help("Model to use " + platform::Models::instance()->tostring())
|
||||
.action([](const std::string& value) {
|
||||
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
|
||||
if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
||||
return value;
|
||||
}
|
||||
throw std::runtime_error("Model must be one of " + platform::Models::instance()->tostring());
|
||||
}
|
||||
);
|
||||
group.add_argument("--dump").help("Show the grid combinations").default_value(false).implicit_value(true);
|
||||
group.add_argument("--report").help("Report the computed hyperparameters").default_value(false).implicit_value(true);
|
||||
group.add_argument("--compute").help("Perform computation of the grid output hyperparameters").default_value(false).implicit_value(true);
|
||||
program.add_argument("--discretize").help("Discretize input datasets").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
|
||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
|
||||
program.add_argument("--quiet").help("Don't display detailed progress").default_value(false).implicit_value(true);
|
||||
program.add_argument("--continue").help("Continue computing from that dataset").default_value(platform::GridSearch::NO_CONTINUE());
|
||||
program.add_argument("--only").help("Used with continue to compute that dataset only").default_value(false).implicit_value(true);
|
||||
program.add_argument("--exclude").default_value("[]").help("Datasets to exclude in json format, e.g. [\"dataset1\", \"dataset2\"]");
|
||||
program.add_argument("--nested").help("Set the double/nested cross validation number of folds").default_value(5).scan<'i', int>().action([](const std::string& value) {
|
||||
try {
|
||||
auto k = stoi(value);
|
||||
if (k < 2) {
|
||||
throw std::runtime_error("Number of nested folds must be greater than 1");
|
||||
}
|
||||
return k;
|
||||
}
|
||||
catch (const runtime_error& err) {
|
||||
throw std::runtime_error(err.what());
|
||||
}
|
||||
catch (...) {
|
||||
throw std::runtime_error("Number of nested folds must be an integer");
|
||||
}});
|
||||
program.add_argument("--score").help("Score used in gridsearch").default_value("accuracy");
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const std::string& value) {
|
||||
try {
|
||||
auto k = stoi(value);
|
||||
if (k < 2) {
|
||||
throw std::runtime_error("Number of folds must be greater than 1");
|
||||
}
|
||||
return k;
|
||||
}
|
||||
catch (const runtime_error& err) {
|
||||
throw std::runtime_error(err.what());
|
||||
}
|
||||
catch (...) {
|
||||
throw std::runtime_error("Number of folds must be an integer");
|
||||
}});
|
||||
auto seed_values = env.getSeeds();
|
||||
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
|
||||
}
|
||||
|
||||
void list_dump(std::string& model)
|
||||
{
|
||||
auto data = platform::GridData(platform::Paths::grid_input(model));
|
||||
std::cout << Colors::MAGENTA() << "Listing configuration input file (Grid)" << std::endl << std::endl;
|
||||
int index = 0;
|
||||
int max_hyper = 15;
|
||||
int max_dataset = 7;
|
||||
auto combinations = data.getGridFile();
|
||||
for (auto const& item : combinations) {
|
||||
if (item.first.size() > max_dataset) {
|
||||
max_dataset = item.first.size();
|
||||
}
|
||||
if (item.second.dump().size() > max_hyper) {
|
||||
max_hyper = item.second.dump().size();
|
||||
}
|
||||
}
|
||||
std::cout << Colors::GREEN() << left << " # " << left << setw(max_dataset) << "Dataset" << " #Com. "
|
||||
<< setw(max_hyper) << "Hyperparameters" << std::endl;
|
||||
std::cout << "=== " << string(max_dataset, '=') << " ===== " << string(max_hyper, '=') << std::endl;
|
||||
bool odd = true;
|
||||
for (auto const& item : combinations) {
|
||||
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||
std::cout << color;
|
||||
auto num_combinations = data.getNumCombinations(item.first);
|
||||
std::cout << setw(3) << fixed << right << ++index << left << " " << setw(max_dataset) << item.first
|
||||
<< " " << setw(5) << right << num_combinations << " " << setw(max_hyper) << item.second.dump() << std::endl;
|
||||
odd = !odd;
|
||||
}
|
||||
std::cout << Colors::RESET() << std::endl;
|
||||
}
|
||||
std::string headerLine(const std::string& text, int utf = 0)
|
||||
{
|
||||
int n = MAXL - text.length() - 3;
|
||||
n = n < 0 ? 0 : n;
|
||||
return "* " + text + std::string(n + utf, ' ') + "*\n";
|
||||
}
|
||||
void list_results(json& results, std::string& model)
|
||||
{
|
||||
std::cout << Colors::MAGENTA() << std::string(MAXL, '*') << std::endl;
|
||||
std::cout << headerLine("Listing computed hyperparameters for model " + model);
|
||||
std::cout << headerLine("Date & time: " + results["date"].get<std::string>() + " Duration: " + results["duration"].get<std::string>());
|
||||
std::cout << headerLine("Score: " + results["score"].get<std::string>());
|
||||
std::cout << headerLine(
|
||||
"Random seeds: " + results["seeds"].dump()
|
||||
+ " Discretized: " + (results["discretize"].get<bool>() ? "True" : "False")
|
||||
+ " Stratified: " + (results["stratified"].get<bool>() ? "True" : "False")
|
||||
+ " #Folds: " + std::to_string(results["n_folds"].get<int>())
|
||||
+ " Nested: " + (results["nested"].get<int>() == 0 ? "False" : to_string(results["nested"].get<int>()))
|
||||
);
|
||||
std::cout << std::string(MAXL, '*') << std::endl;
|
||||
int spaces = 7;
|
||||
int hyperparameters_spaces = 15;
|
||||
for (const auto& item : results["results"].items()) {
|
||||
auto key = item.key();
|
||||
auto value = item.value();
|
||||
if (key.size() > spaces) {
|
||||
spaces = key.size();
|
||||
}
|
||||
if (value["hyperparameters"].dump().size() > hyperparameters_spaces) {
|
||||
hyperparameters_spaces = value["hyperparameters"].dump().size();
|
||||
}
|
||||
}
|
||||
std::cout << Colors::GREEN() << " # " << left << setw(spaces) << "Dataset" << " " << setw(19) << "Date" << " "
|
||||
<< "Duration " << setw(8) << "Score" << " " << "Hyperparameters" << std::endl;
|
||||
std::cout << "=== " << string(spaces, '=') << " " << string(19, '=') << " " << string(8, '=') << " "
|
||||
<< string(8, '=') << " " << string(hyperparameters_spaces, '=') << std::endl;
|
||||
bool odd = true;
|
||||
int index = 0;
|
||||
for (const auto& item : results["results"].items()) {
|
||||
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||
auto value = item.value();
|
||||
std::cout << color;
|
||||
std::cout << std::setw(3) << std::right << index++ << " ";
|
||||
std::cout << left << setw(spaces) << item.key() << " " << value["date"].get<string>()
|
||||
<< " " << setw(8) << right << value["duration"].get<string>() << " " << setw(8) << setprecision(6)
|
||||
<< fixed << right << value["score"].get<double>() << " " << value["hyperparameters"].dump() << std::endl;
|
||||
odd = !odd;
|
||||
}
|
||||
std::cout << Colors::RESET() << std::endl;
|
||||
}
|
||||
|
||||
/*
|
||||
* Main
|
||||
*/
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
argparse::ArgumentParser program("b_grid", { project_version.begin(), project_version.end() });
|
||||
manageArguments(program);
|
||||
struct platform::ConfigGrid config;
|
||||
bool dump, compute;
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
config.model = program.get<std::string>("model");
|
||||
config.score = program.get<std::string>("score");
|
||||
config.discretize = program.get<bool>("discretize");
|
||||
config.stratified = program.get<bool>("stratified");
|
||||
config.n_folds = program.get<int>("folds");
|
||||
config.quiet = program.get<bool>("quiet");
|
||||
config.only = program.get<bool>("only");
|
||||
config.seeds = program.get<std::vector<int>>("seeds");
|
||||
config.nested = program.get<int>("nested");
|
||||
config.continue_from = program.get<std::string>("continue");
|
||||
if (config.continue_from == platform::GridSearch::NO_CONTINUE() && config.only) {
|
||||
throw std::runtime_error("Cannot use --only without --continue");
|
||||
}
|
||||
dump = program.get<bool>("dump");
|
||||
compute = program.get<bool>("compute");
|
||||
if (dump && (config.continue_from != platform::GridSearch::NO_CONTINUE() || config.only)) {
|
||||
throw std::runtime_error("Cannot use --dump with --continue or --only");
|
||||
}
|
||||
auto excluded = program.get<std::string>("exclude");
|
||||
config.excluded = json::parse(excluded);
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << std::endl;
|
||||
cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
/*
|
||||
* Begin Processing
|
||||
*/
|
||||
auto env = platform::DotEnv();
|
||||
config.platform = env.get("platform");
|
||||
platform::Paths::createPath(platform::Paths::grid());
|
||||
auto grid_search = platform::GridSearch(config);
|
||||
platform::Timer timer;
|
||||
timer.start();
|
||||
if (dump) {
|
||||
list_dump(config.model);
|
||||
} else {
|
||||
if (compute) {
|
||||
struct platform::ConfigMPI mpi_config;
|
||||
mpi_config.manager = 0; // which process is the manager
|
||||
MPI_Init(&argc, &argv);
|
||||
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_config.rank);
|
||||
MPI_Comm_size(MPI_COMM_WORLD, &mpi_config.n_procs);
|
||||
if (mpi_config.n_procs < 2) {
|
||||
throw std::runtime_error("Cannot use --compute with less than 2 mpi processes, try mpirun -np 2 ...");
|
||||
}
|
||||
grid_search.go(mpi_config);
|
||||
if (mpi_config.rank == mpi_config.manager) {
|
||||
auto results = grid_search.loadResults();
|
||||
list_results(results, config.model);
|
||||
std::cout << "Process took " << timer.getDurationString() << std::endl;
|
||||
}
|
||||
MPI_Finalize();
|
||||
} else {
|
||||
// List results
|
||||
auto results = grid_search.loadResults();
|
||||
if (results.empty()) {
|
||||
std::cout << "** No results found" << std::endl;
|
||||
} else {
|
||||
list_results(results, config.model);
|
||||
}
|
||||
}
|
||||
}
|
||||
std::cout << "Done!" << std::endl;
|
||||
return 0;
|
||||
}
|
@ -1,56 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <locale>
|
||||
#include "Paths.h"
|
||||
#include "Colors.h"
|
||||
#include "Datasets.h"
|
||||
|
||||
const int BALANCE_LENGTH = 75;
|
||||
|
||||
struct separated : numpunct<char> {
|
||||
char do_decimal_point() const { return ','; }
|
||||
char do_thousands_sep() const { return '.'; }
|
||||
std::string do_grouping() const { return "\03"; }
|
||||
};
|
||||
|
||||
void outputBalance(const std::string& balance)
|
||||
{
|
||||
auto temp = std::string(balance);
|
||||
while (temp.size() > BALANCE_LENGTH - 1) {
|
||||
auto part = temp.substr(0, BALANCE_LENGTH);
|
||||
std::cout << part << std::endl;
|
||||
std::cout << setw(48) << " ";
|
||||
temp = temp.substr(BALANCE_LENGTH);
|
||||
}
|
||||
std::cout << temp << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto data = platform::Datasets(false, platform::Paths::datasets());
|
||||
locale mylocale(std::cout.getloc(), new separated);
|
||||
locale::global(mylocale);
|
||||
std::cout.imbue(mylocale);
|
||||
std::cout << Colors::GREEN() << "Dataset Sampl. Feat. Cls. Balance" << std::endl;
|
||||
std::string balanceBars = std::string(BALANCE_LENGTH, '=');
|
||||
std::cout << "============================== ====== ===== === " << balanceBars << std::endl;
|
||||
bool odd = true;
|
||||
for (const auto& dataset : data.getNames()) {
|
||||
auto color = odd ? Colors::CYAN() : Colors::BLUE();
|
||||
std::cout << color << setw(30) << left << dataset << " ";
|
||||
data.loadDataset(dataset);
|
||||
auto nSamples = data.getNSamples(dataset);
|
||||
std::cout << setw(6) << right << nSamples << " ";
|
||||
std::cout << setw(5) << right << data.getFeatures(dataset).size() << " ";
|
||||
std::cout << setw(3) << right << data.getNClasses(dataset) << " ";
|
||||
std::stringstream oss;
|
||||
std::string sep = "";
|
||||
for (auto number : data.getClassesCounts(dataset)) {
|
||||
oss << sep << std::setprecision(2) << fixed << (float)number / nSamples * 100.0 << "% (" << number << ")";
|
||||
sep = " / ";
|
||||
}
|
||||
outputBalance(oss.str());
|
||||
odd = !odd;
|
||||
}
|
||||
std::cout << Colors::RESET() << std::endl;
|
||||
return 0;
|
||||
}
|
@ -1,135 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "Experiment.h"
|
||||
#include "Datasets.h"
|
||||
#include "DotEnv.h"
|
||||
#include "Models.h"
|
||||
#include "modelRegister.h"
|
||||
#include "Paths.h"
|
||||
#include "config.h"
|
||||
|
||||
|
||||
using json = nlohmann::json;
|
||||
|
||||
void manageArguments(argparse::ArgumentParser& program)
|
||||
{
|
||||
auto env = platform::DotEnv();
|
||||
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
|
||||
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparameters passed to the model in Experiment");
|
||||
program.add_argument("--hyper-file").default_value("").help("Hyperparameters file name." \
|
||||
"Mutually exclusive with hyperparameters. This file should contain hyperparameters for each dataset in json format.");
|
||||
program.add_argument("-m", "--model")
|
||||
.help("Model to use " + platform::Models::instance()->tostring())
|
||||
.action([](const std::string& value) {
|
||||
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
|
||||
if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
||||
return value;
|
||||
}
|
||||
throw std::runtime_error("Model must be one of " + platform::Models::instance()->tostring());
|
||||
}
|
||||
);
|
||||
program.add_argument("--title").default_value("").help("Experiment title");
|
||||
program.add_argument("--discretize").help("Discretize input dataset").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
|
||||
program.add_argument("--quiet").help("Don't display detailed progress").default_value(false).implicit_value(true);
|
||||
program.add_argument("--save").help("Save result (always save if no dataset is supplied)").default_value(false).implicit_value(true);
|
||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const std::string& value) {
|
||||
try {
|
||||
auto k = stoi(value);
|
||||
if (k < 2) {
|
||||
throw std::runtime_error("Number of folds must be greater than 1");
|
||||
}
|
||||
return k;
|
||||
}
|
||||
catch (const runtime_error& err) {
|
||||
throw std::runtime_error(err.what());
|
||||
}
|
||||
catch (...) {
|
||||
throw std::runtime_error("Number of folds must be an integer");
|
||||
}});
|
||||
auto seed_values = env.getSeeds();
|
||||
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
argparse::ArgumentParser program("b_main", { project_version.begin(), project_version.end() });
|
||||
manageArguments(program);
|
||||
std::string file_name, model_name, title, hyperparameters_file;
|
||||
json hyperparameters_json;
|
||||
bool discretize_dataset, stratified, saveResults, quiet;
|
||||
std::vector<int> seeds;
|
||||
std::vector<std::string> filesToTest;
|
||||
int n_folds;
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
file_name = program.get<std::string>("dataset");
|
||||
model_name = program.get<std::string>("model");
|
||||
discretize_dataset = program.get<bool>("discretize");
|
||||
stratified = program.get<bool>("stratified");
|
||||
quiet = program.get<bool>("quiet");
|
||||
n_folds = program.get<int>("folds");
|
||||
seeds = program.get<std::vector<int>>("seeds");
|
||||
auto hyperparameters = program.get<std::string>("hyperparameters");
|
||||
hyperparameters_json = json::parse(hyperparameters);
|
||||
hyperparameters_file = program.get<std::string>("hyper-file");
|
||||
if (hyperparameters_file != "" && hyperparameters != "{}") {
|
||||
throw runtime_error("hyperparameters and hyper_file are mutually exclusive");
|
||||
}
|
||||
title = program.get<std::string>("title");
|
||||
if (title == "" && file_name == "") {
|
||||
throw runtime_error("title is mandatory if dataset is not provided");
|
||||
}
|
||||
saveResults = program.get<bool>("save");
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << std::endl;
|
||||
cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
auto datasets = platform::Datasets(discretize_dataset, platform::Paths::datasets());
|
||||
if (file_name != "") {
|
||||
if (!datasets.isDataset(file_name)) {
|
||||
cerr << "Dataset " << file_name << " not found" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
if (title == "") {
|
||||
title = "Test " + file_name + " " + model_name + " " + to_string(n_folds) + " folds";
|
||||
}
|
||||
filesToTest.push_back(file_name);
|
||||
} else {
|
||||
filesToTest = datasets.getNames();
|
||||
saveResults = true;
|
||||
}
|
||||
platform::HyperParameters test_hyperparams;
|
||||
if (hyperparameters_file != "") {
|
||||
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_file);
|
||||
} else {
|
||||
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_json);
|
||||
}
|
||||
|
||||
/*
|
||||
* Begin Processing
|
||||
*/
|
||||
auto env = platform::DotEnv();
|
||||
auto experiment = platform::Experiment();
|
||||
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("14.0.3");
|
||||
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
|
||||
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
|
||||
experiment.setHyperparameters(test_hyperparams);
|
||||
for (auto seed : seeds) {
|
||||
experiment.addRandomSeed(seed);
|
||||
}
|
||||
platform::Timer timer;
|
||||
timer.start();
|
||||
experiment.go(filesToTest, quiet);
|
||||
experiment.setDuration(timer.getDuration());
|
||||
if (saveResults) {
|
||||
experiment.save(platform::Paths::results());
|
||||
}
|
||||
if (!quiet)
|
||||
experiment.report();
|
||||
std::cout << "Done!" << std::endl;
|
||||
return 0;
|
||||
}
|
@ -1,49 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <argparse/argparse.hpp>
|
||||
#include "ManageResults.h"
|
||||
#include "config.h"
|
||||
|
||||
|
||||
void manageArguments(argparse::ArgumentParser& program, int argc, char** argv)
|
||||
{
|
||||
program.add_argument("-n", "--number").default_value(0).help("Number of results to show (0 = all)").scan<'i', int>();
|
||||
program.add_argument("-m", "--model").default_value("any").help("Filter results of the selected model)");
|
||||
program.add_argument("-s", "--score").default_value("any").help("Filter results of the score name supplied");
|
||||
program.add_argument("--complete").help("Show only results with all datasets").default_value(false).implicit_value(true);
|
||||
program.add_argument("--partial").help("Show only partial results").default_value(false).implicit_value(true);
|
||||
program.add_argument("--compare").help("Compare with best results").default_value(false).implicit_value(true);
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
auto number = program.get<int>("number");
|
||||
if (number < 0) {
|
||||
throw std::runtime_error("Number of results must be greater than or equal to 0");
|
||||
}
|
||||
auto model = program.get<std::string>("model");
|
||||
auto score = program.get<std::string>("score");
|
||||
auto complete = program.get<bool>("complete");
|
||||
auto partial = program.get<bool>("partial");
|
||||
auto compare = program.get<bool>("compare");
|
||||
}
|
||||
catch (const std::exception& err) {
|
||||
std::cerr << err.what() << std::endl;
|
||||
std::cerr << program;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
auto program = argparse::ArgumentParser("b_manage", { project_version.begin(), project_version.end() });
|
||||
manageArguments(program, argc, argv);
|
||||
int number = program.get<int>("number");
|
||||
std::string model = program.get<std::string>("model");
|
||||
std::string score = program.get<std::string>("score");
|
||||
auto complete = program.get<bool>("complete");
|
||||
auto partial = program.get<bool>("partial");
|
||||
auto compare = program.get<bool>("compare");
|
||||
if (complete)
|
||||
partial = false;
|
||||
auto manager = platform::ManageResults(number, model, score, complete, partial, compare);
|
||||
manager.doMenu();
|
||||
return 0;
|
||||
}
|
@ -1,29 +0,0 @@
|
||||
#ifndef MODEL_REGISTER_H
|
||||
#define MODEL_REGISTER_H
|
||||
static platform::Registrar registrarT("TAN",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
|
||||
static platform::Registrar registrarTLD("TANLd",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TANLd();});
|
||||
static platform::Registrar registrarS("SPODE",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);});
|
||||
static platform::Registrar registrarSLD("SPODELd",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODELd(2);});
|
||||
static platform::Registrar registrarK("KDB",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDB(2);});
|
||||
static platform::Registrar registrarKLD("KDBLd",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDBLd(2);});
|
||||
static platform::Registrar registrarA("AODE",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
|
||||
static platform::Registrar registrarALD("AODELd",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
|
||||
static platform::Registrar registrarBA("BoostAODE",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::BoostAODE();});
|
||||
static platform::Registrar registrarSt("STree",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new pywrap::STree();});
|
||||
static platform::Registrar registrarOdte("Odte",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new pywrap::ODTE();});
|
||||
static platform::Registrar registrarSvc("SVC",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new pywrap::SVC();});
|
||||
static platform::Registrar registrarRaF("RandomForest",
|
||||
[](void) -> bayesnet::BaseClassifier* { return new pywrap::RandomForest();});
|
||||
#endif
|
@ -1,10 +0,0 @@
|
||||
include_directories(
|
||||
${BayesNet_SOURCE_DIR}/lib/Files
|
||||
${BayesNet_SOURCE_DIR}/lib/json/include
|
||||
${BayesNet_SOURCE_DIR}/src/BayesNet
|
||||
${Python3_INCLUDE_DIRS}
|
||||
${TORCH_INCLUDE_DIRS}
|
||||
)
|
||||
add_library(PyWrap SHARED PyWrap.cc STree.cc ODTE.cc SVC.cc RandomForest.cc PyClassifier.cc)
|
||||
#target_link_libraries(PyWrap ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy xgboost::xgboost ArffFiles)
|
||||
target_link_libraries(PyWrap ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::boost Boost::python Boost::numpy ArffFiles)
|
@ -1,24 +0,0 @@
|
||||
#include "ODTE.h"
|
||||
|
||||
namespace pywrap {
|
||||
ODTE::ODTE() : PyClassifier("odte", "Odte")
|
||||
{
|
||||
validHyperparameters = { "n_jobs", "n_estimators", "random_state" };
|
||||
}
|
||||
int ODTE::getNumberOfNodes() const
|
||||
{
|
||||
return callMethodInt("get_nodes");
|
||||
}
|
||||
int ODTE::getNumberOfEdges() const
|
||||
{
|
||||
return callMethodInt("get_leaves");
|
||||
}
|
||||
int ODTE::getNumberOfStates() const
|
||||
{
|
||||
return callMethodInt("get_depth");
|
||||
}
|
||||
std::string ODTE::graph()
|
||||
{
|
||||
return callMethodString("graph");
|
||||
}
|
||||
} /* namespace pywrap */
|
@ -1,17 +0,0 @@
|
||||
#ifndef ODTE_H
|
||||
#define ODTE_H
|
||||
#include "nlohmann/json.hpp"
|
||||
#include "PyClassifier.h"
|
||||
|
||||
namespace pywrap {
|
||||
class ODTE : public PyClassifier {
|
||||
public:
|
||||
ODTE();
|
||||
~ODTE() = default;
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
std::string graph();
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* ODTE_H */
|
@ -1,96 +0,0 @@
|
||||
#include "PyClassifier.h"
|
||||
namespace pywrap {
|
||||
namespace bp = boost::python;
|
||||
namespace np = boost::python::numpy;
|
||||
PyClassifier::PyClassifier(const std::string& module, const std::string& className, bool sklearn) : module(module), className(className), sklearn(sklearn), fitted(false)
|
||||
{
|
||||
// This id allows to have more than one instance of the same module/class
|
||||
id = reinterpret_cast<clfId_t>(this);
|
||||
pyWrap = PyWrap::GetInstance();
|
||||
pyWrap->importClass(id, module, className);
|
||||
}
|
||||
PyClassifier::~PyClassifier()
|
||||
{
|
||||
pyWrap->clean(id);
|
||||
}
|
||||
np::ndarray tensor2numpy(torch::Tensor& X)
|
||||
{
|
||||
int m = X.size(0);
|
||||
int n = X.size(1);
|
||||
auto Xn = np::from_data(X.data_ptr(), np::dtype::get_builtin<float>(), bp::make_tuple(m, n), bp::make_tuple(sizeof(X.dtype()) * 2 * n, sizeof(X.dtype()) * 2), bp::object());
|
||||
Xn = Xn.transpose();
|
||||
return Xn;
|
||||
}
|
||||
std::pair<np::ndarray, np::ndarray> tensors2numpy(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
int n = X.size(1);
|
||||
auto yn = np::from_data(y.data_ptr(), np::dtype::get_builtin<int32_t>(), bp::make_tuple(n), bp::make_tuple(sizeof(y.dtype()) * 2), bp::object());
|
||||
return { tensor2numpy(X), yn };
|
||||
}
|
||||
std::string PyClassifier::version()
|
||||
{
|
||||
if (sklearn) {
|
||||
return pyWrap->sklearnVersion();
|
||||
}
|
||||
return pyWrap->version(id);
|
||||
}
|
||||
std::string PyClassifier::callMethodString(const std::string& method)
|
||||
{
|
||||
return pyWrap->callMethodString(id, method);
|
||||
}
|
||||
int PyClassifier::callMethodSumOfItems(const std::string& method) const
|
||||
{
|
||||
return pyWrap->callMethodSumOfItems(id, method);
|
||||
}
|
||||
int PyClassifier::callMethodInt(const std::string& method) const
|
||||
{
|
||||
return pyWrap->callMethodInt(id, method);
|
||||
}
|
||||
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
if (!fitted && hyperparameters.size() > 0) {
|
||||
pyWrap->setHyperparameters(id, hyperparameters);
|
||||
}
|
||||
auto [Xn, yn] = tensors2numpy(X, y);
|
||||
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
|
||||
CPyObject yp = bp::incref(bp::object(yn).ptr());
|
||||
pyWrap->fit(id, Xp, yp);
|
||||
fitted = true;
|
||||
return *this;
|
||||
}
|
||||
PyClassifier& PyClassifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
{
|
||||
return fit(X, y);
|
||||
}
|
||||
torch::Tensor PyClassifier::predict(torch::Tensor& X)
|
||||
{
|
||||
int dimension = X.size(1);
|
||||
auto Xn = tensor2numpy(X);
|
||||
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
|
||||
PyObject* incoming = pyWrap->predict(id, Xp);
|
||||
bp::handle<> handle(incoming);
|
||||
bp::object object(handle);
|
||||
np::ndarray prediction = np::from_object(object);
|
||||
if (PyErr_Occurred()) {
|
||||
PyErr_Print();
|
||||
throw std::runtime_error("Error creating object for predict in " + module + " and class " + className);
|
||||
}
|
||||
int* data = reinterpret_cast<int*>(prediction.get_data());
|
||||
std::vector<int> vPrediction(data, data + prediction.shape(0));
|
||||
auto resultTensor = torch::tensor(vPrediction, torch::kInt32);
|
||||
Py_XDECREF(incoming);
|
||||
return resultTensor;
|
||||
}
|
||||
float PyClassifier::score(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
auto [Xn, yn] = tensors2numpy(X, y);
|
||||
CPyObject Xp = bp::incref(bp::object(Xn).ptr());
|
||||
CPyObject yp = bp::incref(bp::object(yn).ptr());
|
||||
float result = pyWrap->score(id, Xp, yp);
|
||||
return result;
|
||||
}
|
||||
void PyClassifier::setHyperparameters(const nlohmann::json& hyperparameters)
|
||||
{
|
||||
this->hyperparameters = hyperparameters;
|
||||
}
|
||||
} /* namespace pywrap */
|
@ -1,56 +0,0 @@
|
||||
#ifndef PYCLASSIFIER_H
|
||||
#define PYCLASSIFIER_H
|
||||
#include "boost/python/detail/wrap_python.hpp"
|
||||
#include <boost/python/numpy.hpp>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <utility>
|
||||
#include <torch/torch.h>
|
||||
#include "PyWrap.h"
|
||||
#include "Classifier.h"
|
||||
#include "TypeId.h"
|
||||
|
||||
namespace pywrap {
|
||||
class PyClassifier : public bayesnet::BaseClassifier {
|
||||
public:
|
||||
PyClassifier(const std::string& module, const std::string& className, const bool sklearn = false);
|
||||
virtual ~PyClassifier();
|
||||
PyClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override { return *this; };
|
||||
// X is nxm tensor, y is nx1 tensor
|
||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
PyClassifier& fit(torch::Tensor& X, torch::Tensor& y);
|
||||
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override { return *this; };
|
||||
PyClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) override { return *this; };
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
std::vector<int> predict(std::vector<std::vector<int >>& X) override { return std::vector<int>(); };
|
||||
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override { return 0.0; };
|
||||
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||
std::string version();
|
||||
std::string callMethodString(const std::string& method);
|
||||
int callMethodSumOfItems(const std::string& method) const;
|
||||
int callMethodInt(const std::string& method) const;
|
||||
std::string getVersion() override { return this->version(); };
|
||||
int getNumberOfNodes() const override { return 0; };
|
||||
int getNumberOfEdges() const override { return 0; };
|
||||
int getNumberOfStates() const override { return 0; };
|
||||
std::vector<std::string> show() const override { return std::vector<std::string>(); }
|
||||
std::vector<std::string> graph(const std::string& title = "") const override { return std::vector<std::string>(); }
|
||||
bayesnet::status_t getStatus() const override { return bayesnet::NORMAL; };
|
||||
std::vector<std::string> topological_order() override { return std::vector<std::string>(); }
|
||||
void dump_cpt() const override {};
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
protected:
|
||||
nlohmann::json hyperparameters;
|
||||
void trainModel(const torch::Tensor& weights) override {};
|
||||
private:
|
||||
PyWrap* pyWrap;
|
||||
std::string module;
|
||||
std::string className;
|
||||
bool sklearn;
|
||||
clfId_t id;
|
||||
bool fitted;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* PYCLASSIFIER_H */
|
@ -1,15 +0,0 @@
|
||||
#ifndef PYCLF_H
|
||||
#define PYCLF_H
|
||||
#include <string>
|
||||
#include "DotEnv.h"
|
||||
namespace PyClassifiers {
|
||||
class PyClf {
|
||||
public:
|
||||
PyClf(const std::string& name);
|
||||
virtual ~PyClf();
|
||||
private:
|
||||
std::string name;
|
||||
|
||||
};
|
||||
} /* namespace PyClassifiers */
|
||||
#endif /* PYCLF_H */
|
@ -1,87 +0,0 @@
|
||||
#ifndef PYHELPER_HPP
|
||||
#define PYHELPER_HPP
|
||||
#pragma once
|
||||
// Code taken and adapted from
|
||||
// https ://www.codeproject.com/Articles/820116/Embedding-Python-program-in-a-C-Cplusplus-code
|
||||
#include "boost/python/detail/wrap_python.hpp"
|
||||
#include <boost/python/numpy.hpp>
|
||||
#include <iostream>
|
||||
|
||||
namespace pywrap {
|
||||
namespace p = boost::python;
|
||||
namespace np = boost::python::numpy;
|
||||
class CPyInstance {
|
||||
public:
|
||||
CPyInstance()
|
||||
{
|
||||
Py_Initialize();
|
||||
np::initialize();
|
||||
}
|
||||
|
||||
~CPyInstance()
|
||||
{
|
||||
Py_Finalize();
|
||||
}
|
||||
};
|
||||
class CPyObject {
|
||||
private:
|
||||
PyObject* p;
|
||||
public:
|
||||
CPyObject() : p(NULL)
|
||||
{
|
||||
}
|
||||
|
||||
CPyObject(PyObject* _p) : p(_p)
|
||||
{
|
||||
}
|
||||
~CPyObject()
|
||||
{
|
||||
Release();
|
||||
}
|
||||
PyObject* getObject()
|
||||
{
|
||||
return p;
|
||||
}
|
||||
PyObject* setObject(PyObject* _p)
|
||||
{
|
||||
return (p = _p);
|
||||
}
|
||||
PyObject* AddRef()
|
||||
{
|
||||
if (p) {
|
||||
Py_INCREF(p);
|
||||
}
|
||||
return p;
|
||||
}
|
||||
void Release()
|
||||
{
|
||||
if (p) {
|
||||
Py_XDECREF(p);
|
||||
}
|
||||
|
||||
p = NULL;
|
||||
}
|
||||
PyObject* operator ->()
|
||||
{
|
||||
return p;
|
||||
}
|
||||
bool is()
|
||||
{
|
||||
return p ? true : false;
|
||||
}
|
||||
operator PyObject* ()
|
||||
{
|
||||
return p;
|
||||
}
|
||||
PyObject* operator = (PyObject* pp)
|
||||
{
|
||||
p = pp;
|
||||
return p;
|
||||
}
|
||||
operator bool()
|
||||
{
|
||||
return p ? true : false;
|
||||
}
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif
|
@ -1,255 +0,0 @@
|
||||
#define PY_SSIZE_T_CLEAN
|
||||
#include <stdexcept>
|
||||
#include "PyWrap.h"
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <sstream>
|
||||
#include <boost/python/numpy.hpp>
|
||||
#include <iostream>
|
||||
|
||||
namespace pywrap {
|
||||
namespace np = boost::python::numpy;
|
||||
PyWrap* PyWrap::wrapper = nullptr;
|
||||
std::mutex PyWrap::mutex;
|
||||
CPyInstance* PyWrap::pyInstance = nullptr;
|
||||
auto moduleClassMap = std::map<std::pair<std::string, std::string>, std::tuple<PyObject*, PyObject*, PyObject*>>();
|
||||
|
||||
PyWrap* PyWrap::GetInstance()
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
if (wrapper == nullptr) {
|
||||
wrapper = new PyWrap();
|
||||
pyInstance = new CPyInstance();
|
||||
PyRun_SimpleString("import warnings;warnings.filterwarnings('ignore')");
|
||||
}
|
||||
return wrapper;
|
||||
}
|
||||
void PyWrap::RemoveInstance()
|
||||
{
|
||||
if (wrapper != nullptr) {
|
||||
if (pyInstance != nullptr) {
|
||||
delete pyInstance;
|
||||
}
|
||||
pyInstance = nullptr;
|
||||
if (wrapper != nullptr) {
|
||||
delete wrapper;
|
||||
}
|
||||
wrapper = nullptr;
|
||||
}
|
||||
}
|
||||
void PyWrap::importClass(const clfId_t id, const std::string& moduleName, const std::string& className)
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
auto result = moduleClassMap.find(id);
|
||||
if (result != moduleClassMap.end()) {
|
||||
return;
|
||||
}
|
||||
PyObject* module = PyImport_ImportModule(moduleName.c_str());
|
||||
if (PyErr_Occurred()) {
|
||||
errorAbort("Couldn't import module " + moduleName);
|
||||
}
|
||||
PyObject* classObject = PyObject_GetAttrString(module, className.c_str());
|
||||
if (PyErr_Occurred()) {
|
||||
errorAbort("Couldn't find class " + className);
|
||||
}
|
||||
PyObject* instance = PyObject_CallObject(classObject, NULL);
|
||||
if (PyErr_Occurred()) {
|
||||
errorAbort("Couldn't create instance of class " + className);
|
||||
}
|
||||
moduleClassMap.insert({ id, { module, classObject, instance } });
|
||||
}
|
||||
void PyWrap::clean(const clfId_t id)
|
||||
{
|
||||
// Remove Python interpreter if no more modules imported left
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
auto result = moduleClassMap.find(id);
|
||||
if (result == moduleClassMap.end()) {
|
||||
return;
|
||||
}
|
||||
Py_DECREF(std::get<0>(result->second));
|
||||
Py_DECREF(std::get<1>(result->second));
|
||||
Py_DECREF(std::get<2>(result->second));
|
||||
moduleClassMap.erase(result);
|
||||
if (PyErr_Occurred()) {
|
||||
PyErr_Print();
|
||||
errorAbort("Error cleaning module ");
|
||||
}
|
||||
// With boost you can't remove the interpreter
|
||||
// https://www.boost.org/doc/libs/1_83_0/libs/python/doc/html/tutorial/tutorial/embedding.html#tutorial.embedding.getting_started
|
||||
// if (moduleClassMap.empty()) {
|
||||
// RemoveInstance();
|
||||
// }
|
||||
}
|
||||
void PyWrap::errorAbort(const std::string& message)
|
||||
{
|
||||
std::cerr << message << std::endl;
|
||||
PyErr_Print();
|
||||
RemoveInstance();
|
||||
exit(1);
|
||||
}
|
||||
PyObject* PyWrap::getClass(const clfId_t id)
|
||||
{
|
||||
auto item = moduleClassMap.find(id);
|
||||
if (item == moduleClassMap.end()) {
|
||||
errorAbort("Module not found");
|
||||
}
|
||||
return std::get<2>(item->second);
|
||||
}
|
||||
std::string PyWrap::callMethodString(const clfId_t id, const std::string& method)
|
||||
{
|
||||
PyObject* instance = getClass(id);
|
||||
PyObject* result;
|
||||
try {
|
||||
if (!(result = PyObject_CallMethod(instance, method.c_str(), NULL)))
|
||||
errorAbort("Couldn't call method " + method);
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
errorAbort(e.what());
|
||||
}
|
||||
std::string value = PyUnicode_AsUTF8(result);
|
||||
Py_XDECREF(result);
|
||||
return value;
|
||||
}
|
||||
int PyWrap::callMethodInt(const clfId_t id, const std::string& method)
|
||||
{
|
||||
PyObject* instance = getClass(id);
|
||||
PyObject* result;
|
||||
try {
|
||||
if (!(result = PyObject_CallMethod(instance, method.c_str(), NULL)))
|
||||
errorAbort("Couldn't call method " + method);
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
errorAbort(e.what());
|
||||
}
|
||||
int value = PyLong_AsLong(result);
|
||||
Py_XDECREF(result);
|
||||
return value;
|
||||
}
|
||||
std::string PyWrap::sklearnVersion()
|
||||
{
|
||||
PyObject* sklearnModule = PyImport_ImportModule("sklearn");
|
||||
if (sklearnModule == nullptr) {
|
||||
errorAbort("Couldn't import sklearn");
|
||||
}
|
||||
PyObject* versionAttr = PyObject_GetAttrString(sklearnModule, "__version__");
|
||||
if (versionAttr == nullptr || !PyUnicode_Check(versionAttr)) {
|
||||
Py_XDECREF(sklearnModule);
|
||||
errorAbort("Couldn't get sklearn version");
|
||||
}
|
||||
std::string result = PyUnicode_AsUTF8(versionAttr);
|
||||
Py_XDECREF(versionAttr);
|
||||
Py_XDECREF(sklearnModule);
|
||||
return result;
|
||||
}
|
||||
std::string PyWrap::version(const clfId_t id)
|
||||
{
|
||||
return callMethodString(id, "version");
|
||||
}
|
||||
int PyWrap::callMethodSumOfItems(const clfId_t id, const std::string& method)
|
||||
{
|
||||
// Call method on each estimator and sum the results (made for RandomForest)
|
||||
PyObject* instance = getClass(id);
|
||||
PyObject* estimators = PyObject_GetAttrString(instance, "estimators_");
|
||||
if (estimators == nullptr) {
|
||||
errorAbort("Failed to get attribute: " + method);
|
||||
}
|
||||
int sumOfItems = 0;
|
||||
Py_ssize_t len = PyList_Size(estimators);
|
||||
for (Py_ssize_t i = 0; i < len; i++) {
|
||||
PyObject* estimator = PyList_GetItem(estimators, i);
|
||||
PyObject* result;
|
||||
if (method == "node_count") {
|
||||
PyObject* owner = PyObject_GetAttrString(estimator, "tree_");
|
||||
if (owner == nullptr) {
|
||||
Py_XDECREF(estimators);
|
||||
errorAbort("Failed to get attribute tree_ for: " + method);
|
||||
}
|
||||
result = PyObject_GetAttrString(owner, method.c_str());
|
||||
if (result == nullptr) {
|
||||
Py_XDECREF(estimators);
|
||||
Py_XDECREF(owner);
|
||||
errorAbort("Failed to get attribute node_count: " + method);
|
||||
}
|
||||
Py_DECREF(owner);
|
||||
} else {
|
||||
result = PyObject_CallMethod(estimator, method.c_str(), nullptr);
|
||||
if (result == nullptr) {
|
||||
Py_XDECREF(estimators);
|
||||
errorAbort("Failed to call method: " + method);
|
||||
}
|
||||
}
|
||||
sumOfItems += PyLong_AsLong(result);
|
||||
Py_DECREF(result);
|
||||
}
|
||||
Py_DECREF(estimators);
|
||||
return sumOfItems;
|
||||
}
|
||||
void PyWrap::setHyperparameters(const clfId_t id, const json& hyperparameters)
|
||||
{
|
||||
// Set hyperparameters as attributes of the class
|
||||
PyObject* pValue;
|
||||
PyObject* instance = getClass(id);
|
||||
for (const auto& [key, value] : hyperparameters.items()) {
|
||||
std::stringstream oss;
|
||||
oss << value.type_name();
|
||||
if (oss.str() == "string") {
|
||||
pValue = Py_BuildValue("s", value.get<std::string>().c_str());
|
||||
} else {
|
||||
if (value.is_number_integer()) {
|
||||
pValue = Py_BuildValue("i", value.get<int>());
|
||||
} else {
|
||||
pValue = Py_BuildValue("f", value.get<double>());
|
||||
}
|
||||
}
|
||||
int res = PyObject_SetAttrString(instance, key.c_str(), pValue);
|
||||
if (res == -1 && PyErr_Occurred()) {
|
||||
Py_XDECREF(pValue);
|
||||
errorAbort("Couldn't set attribute " + key + "=" + value.dump());
|
||||
}
|
||||
Py_XDECREF(pValue);
|
||||
}
|
||||
}
|
||||
void PyWrap::fit(const clfId_t id, CPyObject& X, CPyObject& y)
|
||||
{
|
||||
PyObject* instance = getClass(id);
|
||||
CPyObject result;
|
||||
CPyObject method = PyUnicode_FromString("fit");
|
||||
try {
|
||||
if (!(result = PyObject_CallMethodObjArgs(instance, method.getObject(), X.getObject(), y.getObject(), NULL)))
|
||||
errorAbort("Couldn't call method fit");
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
errorAbort(e.what());
|
||||
}
|
||||
}
|
||||
PyObject* PyWrap::predict(const clfId_t id, CPyObject& X)
|
||||
{
|
||||
PyObject* instance = getClass(id);
|
||||
PyObject* result;
|
||||
CPyObject method = PyUnicode_FromString("predict");
|
||||
try {
|
||||
if (!(result = PyObject_CallMethodObjArgs(instance, method.getObject(), X.getObject(), NULL)))
|
||||
errorAbort("Couldn't call method predict");
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
errorAbort(e.what());
|
||||
}
|
||||
Py_INCREF(result);
|
||||
return result; // Caller must free this object
|
||||
}
|
||||
double PyWrap::score(const clfId_t id, CPyObject& X, CPyObject& y)
|
||||
{
|
||||
PyObject* instance = getClass(id);
|
||||
CPyObject result;
|
||||
CPyObject method = PyUnicode_FromString("score");
|
||||
try {
|
||||
if (!(result = PyObject_CallMethodObjArgs(instance, method.getObject(), X.getObject(), y.getObject(), NULL)))
|
||||
errorAbort("Couldn't call method score");
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
errorAbort(e.what());
|
||||
}
|
||||
double resultValue = PyFloat_AsDouble(result);
|
||||
return resultValue;
|
||||
}
|
||||
}
|
@ -1,49 +0,0 @@
|
||||
#ifndef PYWRAP_H
|
||||
#define PYWRAP_H
|
||||
#include "boost/python/detail/wrap_python.hpp"
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <tuple>
|
||||
#include <mutex>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "PyHelper.hpp"
|
||||
#include "TypeId.h"
|
||||
#pragma once
|
||||
|
||||
|
||||
namespace pywrap {
|
||||
/*
|
||||
Singleton class to handle Python/numpy interpreter.
|
||||
*/
|
||||
using json = nlohmann::json;
|
||||
class PyWrap {
|
||||
public:
|
||||
PyWrap() = default;
|
||||
PyWrap(PyWrap& other) = delete;
|
||||
static PyWrap* GetInstance();
|
||||
void operator=(const PyWrap&) = delete;
|
||||
~PyWrap() = default;
|
||||
std::string callMethodString(const clfId_t id, const std::string& method);
|
||||
int callMethodInt(const clfId_t id, const std::string& method);
|
||||
std::string sklearnVersion();
|
||||
std::string version(const clfId_t id);
|
||||
int callMethodSumOfItems(const clfId_t id, const std::string& method);
|
||||
void setHyperparameters(const clfId_t id, const json& hyperparameters);
|
||||
void fit(const clfId_t id, CPyObject& X, CPyObject& y);
|
||||
PyObject* predict(const clfId_t id, CPyObject& X);
|
||||
double score(const clfId_t id, CPyObject& X, CPyObject& y);
|
||||
void clean(const clfId_t id);
|
||||
void importClass(const clfId_t id, const std::string& moduleName, const std::string& className);
|
||||
PyObject* getClass(const clfId_t id);
|
||||
private:
|
||||
// Only call RemoveInstance from clean method
|
||||
static void RemoveInstance();
|
||||
void errorAbort(const std::string& message);
|
||||
// No need to use static map here, since this class is a singleton
|
||||
std::map<clfId_t, std::tuple<PyObject*, PyObject*, PyObject*>> moduleClassMap;
|
||||
static CPyInstance* pyInstance;
|
||||
static PyWrap* wrapper;
|
||||
static std::mutex mutex;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* PYWRAP_H */
|
@ -1,18 +0,0 @@
|
||||
#include "PyClf.h"
|
||||
|
||||
namespace PyClassifiers {
|
||||
|
||||
PyClf::PyClf(const std::std::string& name) : name(name)
|
||||
{
|
||||
env = platform::DotEnv();
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
PyClf::~PyClf()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
} /* namespace PyClassifiers */
|
@ -1,20 +0,0 @@
|
||||
#include "RandomForest.h"
|
||||
|
||||
namespace pywrap {
|
||||
RandomForest::RandomForest() : PyClassifier("sklearn.ensemble", "RandomForestClassifier", true)
|
||||
{
|
||||
validHyperparameters = { "n_estimators", "n_jobs", "random_state" };
|
||||
}
|
||||
int RandomForest::getNumberOfEdges() const
|
||||
{
|
||||
return callMethodSumOfItems("get_n_leaves");
|
||||
}
|
||||
int RandomForest::getNumberOfStates() const
|
||||
{
|
||||
return callMethodSumOfItems("get_depth");
|
||||
}
|
||||
int RandomForest::getNumberOfNodes() const
|
||||
{
|
||||
return callMethodSumOfItems("node_count");
|
||||
}
|
||||
} /* namespace pywrap */
|
@ -1,15 +0,0 @@
|
||||
#ifndef RANDOMFOREST_H
|
||||
#define RANDOMFOREST_H
|
||||
#include "PyClassifier.h"
|
||||
|
||||
namespace pywrap {
|
||||
class RandomForest : public PyClassifier {
|
||||
public:
|
||||
RandomForest();
|
||||
~RandomForest() = default;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
int getNumberOfNodes() const override;
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* RANDOMFOREST_H */
|
@ -1,24 +0,0 @@
|
||||
#include "STree.h"
|
||||
|
||||
namespace pywrap {
|
||||
STree::STree() : PyClassifier("stree", "Stree")
|
||||
{
|
||||
validHyperparameters = { "C", "kernel", "max_iter", "max_depth", "random_state", "multiclass_strategy", "gamma", "max_features", "degree" };
|
||||
};
|
||||
int STree::getNumberOfNodes() const
|
||||
{
|
||||
return callMethodInt("get_nodes");
|
||||
}
|
||||
int STree::getNumberOfEdges() const
|
||||
{
|
||||
return callMethodInt("get_leaves");
|
||||
}
|
||||
int STree::getNumberOfStates() const
|
||||
{
|
||||
return callMethodInt("get_depth");
|
||||
}
|
||||
std::string STree::graph()
|
||||
{
|
||||
return callMethodString("graph");
|
||||
}
|
||||
} /* namespace pywrap */
|
@ -1,17 +0,0 @@
|
||||
#ifndef STREE_H
|
||||
#define STREE_H
|
||||
#include "nlohmann/json.hpp"
|
||||
#include "PyClassifier.h"
|
||||
|
||||
namespace pywrap {
|
||||
class STree : public PyClassifier {
|
||||
public:
|
||||
STree();
|
||||
~STree() = default;
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
std::string graph();
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* STREE_H */
|
@ -1,8 +0,0 @@
|
||||
#include "SVC.h"
|
||||
|
||||
namespace pywrap {
|
||||
SVC::SVC() : PyClassifier("sklearn.svm", "SVC", true)
|
||||
{
|
||||
validHyperparameters = { "C", "gamma", "kernel", "random_state" };
|
||||
}
|
||||
} /* namespace pywrap */
|
@ -1,13 +0,0 @@
|
||||
#ifndef SVC_H
|
||||
#define SVC_H
|
||||
#include "PyClassifier.h"
|
||||
|
||||
namespace pywrap {
|
||||
class SVC : public PyClassifier {
|
||||
public:
|
||||
SVC();
|
||||
~SVC() = default;
|
||||
};
|
||||
|
||||
} /* namespace pywrap */
|
||||
#endif /* SVC_H */
|
@ -1,6 +0,0 @@
|
||||
#ifndef TYPEDEF_H
|
||||
#define TYPEDEF_H
|
||||
namespace pywrap {
|
||||
typedef uint64_t clfId_t;
|
||||
}
|
||||
#endif /* TYPEDEF_H */
|
@ -1,18 +0,0 @@
|
||||
#include "XGBoost.h"
|
||||
|
||||
|
||||
|
||||
|
||||
See https ://stackoverflow.com/questions/36071672/using-xgboost-in-c
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
namespace pywrap {
|
||||
std::string XGBoost::version()
|
||||
{
|
||||
return callMethodString("1.0");
|
||||
}
|
||||
} /* namespace pywrap */
|
@ -1,13 +0,0 @@
|
||||
#ifndef XGBOOST_H
|
||||
#define XGBOOST_H
|
||||
#include "PyClassifier.h"
|
||||
|
||||
namespace pywrap {
|
||||
class XGBoost : public PyClassifier {
|
||||
public:
|
||||
XGBoost() : PyClassifier("xgboost", "XGBClassifier") {};
|
||||
~XGBoost() = default;
|
||||
std::string version();
|
||||
};
|
||||
} /* namespace pywrap */
|
||||
#endif /* XGBOOST_H */
|
@ -1,835 +0,0 @@
|
||||
[
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:46:29",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "balance-scale",
|
||||
"accuracy": "0.97056",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 10000.0, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0135214",
|
||||
"time_spent_std": "0.00111213",
|
||||
"accuracy_std": "0.0150468",
|
||||
"nodes": "7.0",
|
||||
"leaves": "4.0",
|
||||
"depth": "3.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:46:29",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "balloons",
|
||||
"accuracy": "0.86",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.000804768",
|
||||
"time_spent_std": "7.74797e-05",
|
||||
"accuracy_std": "0.285015",
|
||||
"nodes": "3.0",
|
||||
"leaves": "2.0",
|
||||
"depth": "2.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:46:29",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "breast-cancer-wisc-diag",
|
||||
"accuracy": "0.972764",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.2, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00380772",
|
||||
"time_spent_std": "0.000638676",
|
||||
"accuracy_std": "0.0173132",
|
||||
"nodes": "3.24",
|
||||
"leaves": "2.12",
|
||||
"depth": "2.12"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:46:30",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "breast-cancer-wisc-prog",
|
||||
"accuracy": "0.811128",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.2, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00767535",
|
||||
"time_spent_std": "0.00148114",
|
||||
"accuracy_std": "0.0584601",
|
||||
"nodes": "5.84",
|
||||
"leaves": "3.42",
|
||||
"depth": "3.24"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:46:31",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "breast-cancer-wisc",
|
||||
"accuracy": "0.966661",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.00652217",
|
||||
"time_spent_std": "0.000726579",
|
||||
"accuracy_std": "0.0139421",
|
||||
"nodes": "8.88",
|
||||
"leaves": "4.94",
|
||||
"depth": "4.08"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:46:32",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "breast-cancer",
|
||||
"accuracy": "0.734211",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.023475",
|
||||
"time_spent_std": "0.00584447",
|
||||
"accuracy_std": "0.0479774",
|
||||
"nodes": "21.72",
|
||||
"leaves": "11.36",
|
||||
"depth": "5.86"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:49:08",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "cardiotocography-10clases",
|
||||
"accuracy": "0.791487",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "3.10582",
|
||||
"time_spent_std": "0.339218",
|
||||
"accuracy_std": "0.0192082",
|
||||
"nodes": "160.76",
|
||||
"leaves": "80.88",
|
||||
"depth": "22.86"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:01",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "cardiotocography-3clases",
|
||||
"accuracy": "0.900613",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "1.05228",
|
||||
"time_spent_std": "0.138768",
|
||||
"accuracy_std": "0.0154004",
|
||||
"nodes": "47.68",
|
||||
"leaves": "24.34",
|
||||
"depth": "8.84"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:01",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "conn-bench-sonar-mines-rocks",
|
||||
"accuracy": "0.755528",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.011577",
|
||||
"time_spent_std": "0.00341148",
|
||||
"accuracy_std": "0.0678424",
|
||||
"nodes": "6.08",
|
||||
"leaves": "3.54",
|
||||
"depth": "2.86"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:17",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "cylinder-bands",
|
||||
"accuracy": "0.715049",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.301143",
|
||||
"time_spent_std": "0.109773",
|
||||
"accuracy_std": "0.0367646",
|
||||
"nodes": "26.2",
|
||||
"leaves": "13.6",
|
||||
"depth": "6.82"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:19",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "dermatology",
|
||||
"accuracy": "0.971833",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 55, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0377538",
|
||||
"time_spent_std": "0.010726",
|
||||
"accuracy_std": "0.0206883",
|
||||
"nodes": "11.0",
|
||||
"leaves": "6.0",
|
||||
"depth": "6.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:19",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "echocardiogram",
|
||||
"accuracy": "0.814758",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_features\": \"auto\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00333449",
|
||||
"time_spent_std": "0.000964686",
|
||||
"accuracy_std": "0.0998078",
|
||||
"nodes": "7.0",
|
||||
"leaves": "4.0",
|
||||
"depth": "3.54"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:20",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "fertility",
|
||||
"accuracy": "0.88",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.05, \"max_features\": \"auto\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00090271",
|
||||
"time_spent_std": "8.96446e-05",
|
||||
"accuracy_std": "0.0547723",
|
||||
"nodes": "1.0",
|
||||
"leaves": "1.0",
|
||||
"depth": "1.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:21",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "haberman-survival",
|
||||
"accuracy": "0.735637",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.0171611",
|
||||
"time_spent_std": "0.00334945",
|
||||
"accuracy_std": "0.0434614",
|
||||
"nodes": "23.4",
|
||||
"leaves": "12.2",
|
||||
"depth": "5.98"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:21",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "heart-hungarian",
|
||||
"accuracy": "0.827522",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00493946",
|
||||
"time_spent_std": "0.000738198",
|
||||
"accuracy_std": "0.0505283",
|
||||
"nodes": "10.16",
|
||||
"leaves": "5.58",
|
||||
"depth": "4.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:21",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "hepatitis",
|
||||
"accuracy": "0.824516",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0021534",
|
||||
"time_spent_std": "0.000133715",
|
||||
"accuracy_std": "0.0738872",
|
||||
"nodes": "3.0",
|
||||
"leaves": "2.0",
|
||||
"depth": "2.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:23",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "ilpd-indian-liver",
|
||||
"accuracy": "0.723498",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.0345243",
|
||||
"time_spent_std": "0.015789",
|
||||
"accuracy_std": "0.0384886",
|
||||
"nodes": "16.04",
|
||||
"leaves": "8.52",
|
||||
"depth": "5.28"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:24",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "ionosphere",
|
||||
"accuracy": "0.953276",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00881722",
|
||||
"time_spent_std": "0.000843108",
|
||||
"accuracy_std": "0.0238537",
|
||||
"nodes": "3.16",
|
||||
"leaves": "2.08",
|
||||
"depth": "2.08"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:24",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "iris",
|
||||
"accuracy": "0.965333",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.00357342",
|
||||
"time_spent_std": "0.000400509",
|
||||
"accuracy_std": "0.0319444",
|
||||
"nodes": "5.0",
|
||||
"leaves": "3.0",
|
||||
"depth": "3.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:50:36",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "led-display",
|
||||
"accuracy": "0.703",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.222106",
|
||||
"time_spent_std": "0.0116922",
|
||||
"accuracy_std": "0.0291204",
|
||||
"nodes": "47.16",
|
||||
"leaves": "24.08",
|
||||
"depth": "17.76"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:51:18",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "libras",
|
||||
"accuracy": "0.788611",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.08, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.841714",
|
||||
"time_spent_std": "0.0830966",
|
||||
"accuracy_std": "0.0516913",
|
||||
"nodes": "82.28",
|
||||
"leaves": "41.64",
|
||||
"depth": "28.84"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:51:41",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "low-res-spect",
|
||||
"accuracy": "0.883782",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.446301",
|
||||
"time_spent_std": "0.0411822",
|
||||
"accuracy_std": "0.0324593",
|
||||
"nodes": "27.4",
|
||||
"leaves": "14.2",
|
||||
"depth": "10.74"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:51:41",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "lymphography",
|
||||
"accuracy": "0.835034",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00539465",
|
||||
"time_spent_std": "0.000754365",
|
||||
"accuracy_std": "0.0590649",
|
||||
"nodes": "9.04",
|
||||
"leaves": "5.02",
|
||||
"depth": "4.48"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:51:43",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "mammographic",
|
||||
"accuracy": "0.81915",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.0227931",
|
||||
"time_spent_std": "0.00328533",
|
||||
"accuracy_std": "0.0222517",
|
||||
"nodes": "7.4",
|
||||
"leaves": "4.2",
|
||||
"depth": "4.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:51:43",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "molec-biol-promoter",
|
||||
"accuracy": "0.767056",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.05, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00130273",
|
||||
"time_spent_std": "0.000105772",
|
||||
"accuracy_std": "0.0910923",
|
||||
"nodes": "3.0",
|
||||
"leaves": "2.0",
|
||||
"depth": "2.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:51:44",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "musk-1",
|
||||
"accuracy": "0.916388",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.05, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0116367",
|
||||
"time_spent_std": "0.000331845",
|
||||
"accuracy_std": "0.0275208",
|
||||
"nodes": "3.0",
|
||||
"leaves": "2.0",
|
||||
"depth": "2.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:51:55",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "oocytes_merluccius_nucleus_4d",
|
||||
"accuracy": "0.835125",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 8.25, \"gamma\": 0.1, \"kernel\": \"poly\"}",
|
||||
"time_spent": "0.208895",
|
||||
"time_spent_std": "0.0270573",
|
||||
"accuracy_std": "0.0220961",
|
||||
"nodes": "10.52",
|
||||
"leaves": "5.76",
|
||||
"depth": "4.42"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:04",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "oocytes_merluccius_states_2f",
|
||||
"accuracy": "0.915365",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.182198",
|
||||
"time_spent_std": "0.0294267",
|
||||
"accuracy_std": "0.020396",
|
||||
"nodes": "18.04",
|
||||
"leaves": "9.52",
|
||||
"depth": "5.3"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:41",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "oocytes_trisopterus_nucleus_2f",
|
||||
"accuracy": "0.800986",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.717113",
|
||||
"time_spent_std": "0.209608",
|
||||
"accuracy_std": "0.0218449",
|
||||
"nodes": "29.88",
|
||||
"leaves": "15.44",
|
||||
"depth": "7.38"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:44",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "oocytes_trisopterus_states_5b",
|
||||
"accuracy": "0.922249",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.11, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0545047",
|
||||
"time_spent_std": "0.00853014",
|
||||
"accuracy_std": "0.0179203",
|
||||
"nodes": "7.44",
|
||||
"leaves": "4.22",
|
||||
"depth": "3.6"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:44",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "parkinsons",
|
||||
"accuracy": "0.882051",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.00795048",
|
||||
"time_spent_std": "0.00176761",
|
||||
"accuracy_std": "0.0478327",
|
||||
"nodes": "8.48",
|
||||
"leaves": "4.74",
|
||||
"depth": "3.76"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:48",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "pima",
|
||||
"accuracy": "0.766651",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.0750048",
|
||||
"time_spent_std": "0.0213995",
|
||||
"accuracy_std": "0.0297203",
|
||||
"nodes": "17.4",
|
||||
"leaves": "9.2",
|
||||
"depth": "5.66"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:48",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "pittsburg-bridges-MATERIAL",
|
||||
"accuracy": "0.867749",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00293318",
|
||||
"time_spent_std": "0.000331469",
|
||||
"accuracy_std": "0.0712226",
|
||||
"nodes": "5.16",
|
||||
"leaves": "3.08",
|
||||
"depth": "3.02"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:49",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "pittsburg-bridges-REL-L",
|
||||
"accuracy": "0.632238",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.0136311",
|
||||
"time_spent_std": "0.00322964",
|
||||
"accuracy_std": "0.101211",
|
||||
"nodes": "16.32",
|
||||
"leaves": "8.66",
|
||||
"depth": "5.96"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:50",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "pittsburg-bridges-SPAN",
|
||||
"accuracy": "0.659766",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.05, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00524256",
|
||||
"time_spent_std": "0.00158822",
|
||||
"accuracy_std": "0.1165",
|
||||
"nodes": "9.84",
|
||||
"leaves": "5.42",
|
||||
"depth": "4.58"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:50",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "pittsburg-bridges-T-OR-D",
|
||||
"accuracy": "0.861619",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.00295627",
|
||||
"time_spent_std": "0.000578594",
|
||||
"accuracy_std": "0.0693747",
|
||||
"nodes": "4.56",
|
||||
"leaves": "2.78",
|
||||
"depth": "2.68"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:50",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "planning",
|
||||
"accuracy": "0.73527",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 7, \"gamma\": 10.0, \"kernel\": \"rbf\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0030475",
|
||||
"time_spent_std": "0.000172266",
|
||||
"accuracy_std": "0.0669776",
|
||||
"nodes": "3.0",
|
||||
"leaves": "2.0",
|
||||
"depth": "2.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:51",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "post-operative",
|
||||
"accuracy": "0.711111",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 55, \"degree\": 5, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0018727",
|
||||
"time_spent_std": "0.000481977",
|
||||
"accuracy_std": "0.0753592",
|
||||
"nodes": "2.64",
|
||||
"leaves": "1.82",
|
||||
"depth": "1.82"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:52",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "seeds",
|
||||
"accuracy": "0.952857",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 10000.0, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0203492",
|
||||
"time_spent_std": "0.00518065",
|
||||
"accuracy_std": "0.0279658",
|
||||
"nodes": "9.88",
|
||||
"leaves": "5.44",
|
||||
"depth": "4.44"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:52:52",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "statlog-australian-credit",
|
||||
"accuracy": "0.678261",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.05, \"max_features\": \"auto\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00205337",
|
||||
"time_spent_std": "0.00083162",
|
||||
"accuracy_std": "0.0390498",
|
||||
"nodes": "1.32",
|
||||
"leaves": "1.16",
|
||||
"depth": "1.16"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:53:07",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "statlog-german-credit",
|
||||
"accuracy": "0.7625",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.290754",
|
||||
"time_spent_std": "0.0653152",
|
||||
"accuracy_std": "0.0271892",
|
||||
"nodes": "21.24",
|
||||
"leaves": "11.12",
|
||||
"depth": "6.18"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:53:09",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "statlog-heart",
|
||||
"accuracy": "0.822963",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.0138923",
|
||||
"time_spent_std": "0.00323664",
|
||||
"accuracy_std": "0.044004",
|
||||
"nodes": "14.56",
|
||||
"leaves": "7.78",
|
||||
"depth": "5.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:56:43",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "statlog-image",
|
||||
"accuracy": "0.955931",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 7, \"max_iter\": 10000.0}",
|
||||
"time_spent": "4.27584",
|
||||
"time_spent_std": "0.200362",
|
||||
"accuracy_std": "0.00956073",
|
||||
"nodes": "36.92",
|
||||
"leaves": "18.96",
|
||||
"depth": "10.8"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:56:57",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "statlog-vehicle",
|
||||
"accuracy": "0.793028",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.278833",
|
||||
"time_spent_std": "0.0392173",
|
||||
"accuracy_std": "0.030104",
|
||||
"nodes": "23.88",
|
||||
"leaves": "12.44",
|
||||
"depth": "7.06"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:57:07",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "synthetic-control",
|
||||
"accuracy": "0.95",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.55, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.205184",
|
||||
"time_spent_std": "0.040793",
|
||||
"accuracy_std": "0.0253859",
|
||||
"nodes": "12.48",
|
||||
"leaves": "6.74",
|
||||
"depth": "6.5"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:57:08",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "tic-tac-toe",
|
||||
"accuracy": "0.984444",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.2, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0123015",
|
||||
"time_spent_std": "0.000423728",
|
||||
"accuracy_std": "0.00838747",
|
||||
"nodes": "3.0",
|
||||
"leaves": "2.0",
|
||||
"depth": "2.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:57:09",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "vertebral-column-2clases",
|
||||
"accuracy": "0.852903",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{}",
|
||||
"time_spent": "0.00576833",
|
||||
"time_spent_std": "0.000910332",
|
||||
"accuracy_std": "0.0408851",
|
||||
"nodes": "6.04",
|
||||
"leaves": "3.52",
|
||||
"depth": "3.34"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:57:09",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "wine",
|
||||
"accuracy": "0.979159",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.55, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.0019741",
|
||||
"time_spent_std": "0.000137745",
|
||||
"accuracy_std": "0.022427",
|
||||
"nodes": "5.0",
|
||||
"leaves": "3.0",
|
||||
"depth": "3.0"
|
||||
},
|
||||
{
|
||||
"date": "2021-04-11",
|
||||
"time": "18:57:10",
|
||||
"type": "crossval",
|
||||
"classifier": "stree",
|
||||
"dataset": "zoo",
|
||||
"accuracy": "0.957524",
|
||||
"norm": 1,
|
||||
"stand": 0,
|
||||
"parameters": "{\"C\": 0.1, \"max_iter\": 10000.0}",
|
||||
"time_spent": "0.00556221",
|
||||
"time_spent_std": "0.000230106",
|
||||
"accuracy_std": "0.0454615",
|
||||
"nodes": "13.04",
|
||||
"leaves": "7.02",
|
||||
"depth": "7.02"
|
||||
}
|
||||
]
|
@ -1,18 +1,17 @@
|
||||
if(ENABLE_TESTING)
|
||||
set(TEST_BAYESNET "unit_tests_bayesnet")
|
||||
set(TEST_PLATFORM "unit_tests_platform")
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/BayesNet)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/src/Platform)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/Files)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/mdlp)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/json/include)
|
||||
include_directories(${BayesNet_SOURCE_DIR}/lib/argparse/include)
|
||||
set(TEST_SOURCES_BAYESNET TestBayesModels.cc TestBayesNetwork.cc TestBayesMetrics.cc TestUtils.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc ${BayesNet_SOURCES})
|
||||
set(TEST_SOURCES_PLATFORM TestFolding.cc TestUtils.cc ${BayesNet_SOURCE_DIR}/src/Platform/Folding.cc)
|
||||
include_directories(
|
||||
${BayesNet_SOURCE_DIR}/src/BayesNet
|
||||
${BayesNet_SOURCE_DIR}/src/Platform
|
||||
${BayesNet_SOURCE_DIR}/lib/Files
|
||||
${BayesNet_SOURCE_DIR}/lib/mdlp
|
||||
${BayesNet_SOURCE_DIR}/lib/folding
|
||||
${BayesNet_SOURCE_DIR}/lib/json/include
|
||||
${BayesNet_SOURCE_DIR}/lib/argparse/include
|
||||
${CMAKE_BINARY_DIR}/configured_files/include
|
||||
)
|
||||
set(TEST_SOURCES_BAYESNET TestBayesModels.cc TestBayesNetwork.cc TestBayesMetrics.cc TestUtils.cc ${BayesNet_SOURCES})
|
||||
add_executable(${TEST_BAYESNET} ${TEST_SOURCES_BAYESNET})
|
||||
add_executable(${TEST_PLATFORM} ${TEST_SOURCES_PLATFORM})
|
||||
target_link_libraries(${TEST_BAYESNET} PUBLIC "${TORCH_LIBRARIES}" ArffFiles mdlp Catch2::Catch2WithMain)
|
||||
target_link_libraries(${TEST_PLATFORM} PUBLIC "${TORCH_LIBRARIES}" ArffFiles mdlp Catch2::Catch2WithMain)
|
||||
add_test(NAME ${TEST_BAYESNET} COMMAND ${TEST_BAYESNET})
|
||||
add_test(NAME ${TEST_PLATFORM} COMMAND ${TEST_PLATFORM})
|
||||
endif(ENABLE_TESTING)
|
||||
|
@ -2,9 +2,9 @@
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <std::vector>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <std::string>
|
||||
#include <string>
|
||||
#include "KDB.h"
|
||||
#include "TAN.h"
|
||||
#include "SPODE.h"
|
||||
@ -126,7 +126,7 @@ TEST_CASE("Models features", "[BayesNet]")
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::TAN();
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 6);
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
REQUIRE(clf.getNumberOfEdges() == 7);
|
||||
REQUIRE(clf.show() == std::vector<std::string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ", "petallength -> sepallength, ", "petalwidth -> ", "sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
|
||||
REQUIRE(clf.graph("Test") == graph);
|
||||
@ -136,6 +136,6 @@ TEST_CASE("Get num features & num edges", "[BayesNet]")
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 6);
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
REQUIRE(clf.getNumberOfEdges() == 8);
|
||||
}
|
@ -1,11 +1,11 @@
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <std::string>
|
||||
#include <string>
|
||||
#include "TestUtils.h"
|
||||
#include "Network.h"
|
||||
|
||||
void buildModel(bayesnet::Network& net, const std::vector<std::string>& features, const std::std::string& className)
|
||||
void buildModel(bayesnet::Network& net, const std::vector<std::string>& features, const std::string& className)
|
||||
{
|
||||
std::vector<pair<int, int>> network = { {0, 1}, {0, 2}, {1, 3} };
|
||||
for (const auto& feature : features) {
|
||||
|
@ -1,95 +0,0 @@
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include "TestUtils.h"
|
||||
#include "Folding.h"
|
||||
|
||||
TEST_CASE("KFold Test", "[Platform][KFold]")
|
||||
{
|
||||
// Initialize a KFold object with k=5 and a seed of 19.
|
||||
std::string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
||||
auto raw = RawDatasets(file_name, true);
|
||||
int nFolds = 5;
|
||||
platform::KFold kfold(nFolds, raw.nSamples, 19);
|
||||
int number = raw.nSamples * (kfold.getNumberOfFolds() - 1) / kfold.getNumberOfFolds();
|
||||
|
||||
SECTION("Number of Folds")
|
||||
{
|
||||
REQUIRE(kfold.getNumberOfFolds() == nFolds);
|
||||
}
|
||||
SECTION("Fold Test")
|
||||
{
|
||||
// Test each fold's size and contents.
|
||||
for (int i = 0; i < nFolds; ++i) {
|
||||
auto [train_indices, test_indices] = kfold.getFold(i);
|
||||
bool result = train_indices.size() == number || train_indices.size() == number + 1;
|
||||
REQUIRE(result);
|
||||
REQUIRE(train_indices.size() + test_indices.size() == raw.nSamples);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
map<int, int> counts(std::vector<int> y, std::vector<int> indices)
|
||||
{
|
||||
map<int, int> result;
|
||||
for (auto i = 0; i < indices.size(); ++i) {
|
||||
result[y[indices[i]]]++;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
TEST_CASE("StratifiedKFold Test", "[Platform][StratifiedKFold]")
|
||||
{
|
||||
// Initialize a StratifiedKFold object with k=3, using the y std::vector, and a seed of 17.
|
||||
std::string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
||||
int nFolds = GENERATE(3, 5, 10);
|
||||
auto raw = RawDatasets(file_name, true);
|
||||
platform::StratifiedKFold stratified_kfoldt(nFolds, raw.yt, 17);
|
||||
platform::StratifiedKFold stratified_kfoldv(nFolds, raw.yv, 17);
|
||||
int number = raw.nSamples * (stratified_kfoldt.getNumberOfFolds() - 1) / stratified_kfoldt.getNumberOfFolds();
|
||||
|
||||
SECTION("Stratified Number of Folds")
|
||||
{
|
||||
REQUIRE(stratified_kfoldt.getNumberOfFolds() == nFolds);
|
||||
}
|
||||
SECTION("Stratified Fold Test")
|
||||
{
|
||||
// Test each fold's size and contents.
|
||||
auto counts = map<int, std::vector<int>>();
|
||||
// Initialize the counts per Fold
|
||||
for (int i = 0; i < nFolds; ++i) {
|
||||
counts[i] = std::vector<int>(raw.classNumStates, 0);
|
||||
}
|
||||
// Check fold and compute counts of each fold
|
||||
for (int fold = 0; fold < nFolds; ++fold) {
|
||||
auto [train_indicest, test_indicest] = stratified_kfoldt.getFold(fold);
|
||||
auto [train_indicesv, test_indicesv] = stratified_kfoldv.getFold(fold);
|
||||
REQUIRE(train_indicest == train_indicesv);
|
||||
REQUIRE(test_indicest == test_indicesv);
|
||||
// In the worst case scenario, the number of samples in the training set is number + raw.classNumStates
|
||||
// because in that fold can come one remainder sample from each class.
|
||||
REQUIRE(train_indicest.size() <= number + raw.classNumStates);
|
||||
// If the number of samples in any class is less than the number of folds, then the fold is faulty.
|
||||
// and the number of samples in the training set + test set will be less than nSamples
|
||||
if (!stratified_kfoldt.isFaulty()) {
|
||||
REQUIRE(train_indicest.size() + test_indicest.size() == raw.nSamples);
|
||||
} else {
|
||||
REQUIRE(train_indicest.size() + test_indicest.size() <= raw.nSamples);
|
||||
}
|
||||
auto train_t = torch::tensor(train_indicest);
|
||||
auto ytrain = raw.yt.index({ train_t });
|
||||
// Check that the class labels have been equally assign to each fold
|
||||
for (const auto& idx : train_indicest) {
|
||||
counts[fold][raw.yt[idx].item<int>()]++;
|
||||
}
|
||||
}
|
||||
// Test the fold counting of every class
|
||||
for (int fold = 0; fold < nFolds; ++fold) {
|
||||
for (int j = 1; j < nFolds - 1; ++j) {
|
||||
for (int k = 0; k < raw.classNumStates; ++k) {
|
||||
REQUIRE(abs(counts.at(fold).at(k) - counts.at(j).at(k)) <= 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -1,10 +1,11 @@
|
||||
#include "TestUtils.h"
|
||||
#include "config.h"
|
||||
|
||||
class Paths {
|
||||
public:
|
||||
static std::string datasets()
|
||||
{
|
||||
return "../../data/";
|
||||
return { data_path.begin(), data_path.end() };
|
||||
}
|
||||
};
|
||||
|
||||
@ -34,7 +35,7 @@ std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, m
|
||||
return Xd;
|
||||
}
|
||||
|
||||
bool file_exists(const std::std::string& name)
|
||||
bool file_exists(const std::string& name)
|
||||
{
|
||||
if (FILE* file = fopen(name.c_str(), "r")) {
|
||||
fclose(file);
|
||||
@ -44,7 +45,7 @@ bool file_exists(const std::std::string& name)
|
||||
}
|
||||
}
|
||||
|
||||
tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadDataset(const std::std::string& name, bool class_last, bool discretize_dataset)
|
||||
tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadDataset(const std::string& name, bool class_last, bool discretize_dataset)
|
||||
{
|
||||
auto handler = ArffFiles();
|
||||
handler.load(Paths::datasets() + static_cast<std::string>(name) + ".arff", class_last);
|
||||
@ -78,7 +79,7 @@ tuple<torch::Tensor, torch::Tensor, std::vector<std::string>, std::string, map<s
|
||||
return { Xd, torch::tensor(y, torch::kInt32), features, className, states };
|
||||
}
|
||||
|
||||
tuple<std::vector<std::vector<int>>, std::vector<int>, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadFile(const std::std::string& name)
|
||||
tuple<std::vector<std::vector<int>>, std::vector<int>, std::vector<std::string>, std::string, map<std::string, std::vector<int>>> loadFile(const std::string& name)
|
||||
{
|
||||
auto handler = ArffFiles();
|
||||
handler.load(Paths::datasets() + static_cast<std::string>(name) + ".arff");
|
||||
|
@ -4,11 +4,11 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <std::tuple>
|
||||
#include <tuple>
|
||||
#include "ArffFiles.h"
|
||||
#include "CPPFImdlp.h"
|
||||
|
||||
bool file_exists(const std::std::string& name);
|
||||
bool file_exists(const std::string& name);
|
||||
std::pair<vector<mdlp::labels_t>, map<std::string, int>> discretize(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y, std::vector<string> features);
|
||||
std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y);
|
||||
std::tuple<vector<vector<int>>, std::vector<int>, std::vector<string>, std::string, map<std::string, std::vector<int>>> loadFile(const std::string& name);
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user