Refactor CountingSemaphore as singleton
This commit is contained in:
parent
716748e18c
commit
02bcab01be
@ -3,14 +3,13 @@
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "Ensemble.h"
|
||||
#include "bayesnet/utils/CountingSemaphore.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
Ensemble::Ensemble(bool predict_voting) : Classifier(Network()), n_models(0), predict_voting(predict_voting)
|
||||
{
|
||||
|
||||
};
|
||||
const std::string ENSEMBLE_NOT_FITTED = "Ensemble has not been fitted";
|
||||
void Ensemble::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
@ -85,17 +84,9 @@ namespace bayesnet {
|
||||
{
|
||||
auto n_states = models[0]->getClassNumStates();
|
||||
torch::Tensor y_pred = torch::zeros({ X.size(1), n_states }, torch::kFloat32);
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
y_pred += ypredict * significanceModels[i];
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
y_pred += ypredict * significanceModels[i];
|
||||
}
|
||||
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
||||
y_pred /= sum;
|
||||
@ -105,23 +96,15 @@ namespace bayesnet {
|
||||
{
|
||||
auto n_states = models[0]->getClassNumStates();
|
||||
std::vector<std::vector<double>> y_pred(X[0].size(), std::vector<double>(n_states, 0.0));
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
assert(ypredict.size() == y_pred.size());
|
||||
assert(ypredict[0].size() == y_pred[0].size());
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
// Multiply each prediction by the significance of the model and then add it to the final prediction
|
||||
for (auto j = 0; j < ypredict.size(); ++j) {
|
||||
std::transform(y_pred[j].begin(), y_pred[j].end(), ypredict[j].begin(), y_pred[j].begin(),
|
||||
[significanceModels = significanceModels[i]](double x, double y) { return x + y * significanceModels; });
|
||||
}
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
assert(ypredict.size() == y_pred.size());
|
||||
assert(ypredict[0].size() == y_pred[0].size());
|
||||
// Multiply each prediction by the significance of the model and then add it to the final prediction
|
||||
for (auto j = 0; j < ypredict.size(); ++j) {
|
||||
std::transform(y_pred[j].begin(), y_pred[j].end(), ypredict[j].begin(), y_pred[j].begin(),
|
||||
[significanceModels = significanceModels[i]](double x, double y) { return x + y * significanceModels; });
|
||||
}
|
||||
}
|
||||
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
||||
//Divide each element of the prediction by the sum of the significances
|
||||
@ -141,17 +124,9 @@ namespace bayesnet {
|
||||
{
|
||||
// Build a m x n_models tensor with the predictions of each model
|
||||
torch::Tensor y_pred = torch::zeros({ X.size(1), n_models }, torch::kInt32);
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict(X);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
y_pred.index_put_({ "...", i }, ypredict);
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
auto ypredict = models[i]->predict(X);
|
||||
y_pred.index_put_({ "...", i }, ypredict);
|
||||
}
|
||||
return voting(y_pred);
|
||||
}
|
||||
|
@ -1,33 +0,0 @@
|
||||
#ifndef COUNTING_SEMAPHORE_H
|
||||
#define COUNTING_SEMAPHORE_H
|
||||
#include <mutex>
|
||||
#include <condition_variable>
|
||||
class CountingSemaphore {
|
||||
public:
|
||||
explicit CountingSemaphore(size_t max_count) : max_count_(max_count), count_(max_count) {}
|
||||
|
||||
// Acquires a permit, blocking if necessary until one becomes available
|
||||
void acquire()
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mtx_);
|
||||
cv_.wait(lock, [this]() { return count_ > 0; });
|
||||
--count_;
|
||||
}
|
||||
|
||||
// Releases a permit, potentially waking up a blocked acquirer
|
||||
void release()
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mtx_);
|
||||
++count_;
|
||||
if (count_ <= max_count_) {
|
||||
cv_.notify_one();
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
std::mutex mtx_;
|
||||
std::condition_variable cv_;
|
||||
size_t max_count_;
|
||||
size_t count_;
|
||||
};
|
||||
#endif
|
@ -8,22 +8,16 @@
|
||||
#include <sstream>
|
||||
#include <numeric>
|
||||
#include <algorithm>
|
||||
#include "CountingSemaphore.h"
|
||||
#include "Network.h"
|
||||
#include "bayesnet/utils/bayesnetUtils.h"
|
||||
#include "bayesnet/utils/CountingSemaphore.h"
|
||||
#include <pthread.h>
|
||||
namespace bayesnet {
|
||||
Network::Network() : fitted{ false }, maxThreads{ 0.95 }, classNumStates{ 0 }
|
||||
Network::Network() : fitted{ false }, classNumStates{ 0 }
|
||||
{
|
||||
maxThreadsRunning = std::max(1, static_cast<int>(std::thread::hardware_concurrency() * maxThreads));
|
||||
maxThreadsRunning = std::min(maxThreadsRunning, static_cast<int>(std::thread::hardware_concurrency()));
|
||||
}
|
||||
Network::Network(float maxT) : fitted{ false }, maxThreads{ maxT }, classNumStates{ 0 }
|
||||
{
|
||||
maxThreadsRunning = std::max(1, static_cast<int>(std::thread::hardware_concurrency() * maxThreads));
|
||||
maxThreadsRunning = std::min(maxThreadsRunning, static_cast<int>(std::thread::hardware_concurrency()));
|
||||
}
|
||||
Network::Network(const Network& other) : features(other.features), className(other.className), classNumStates(other.getClassNumStates()),
|
||||
maxThreads(other.getMaxThreads()), fitted(other.fitted), samples(other.samples), maxThreadsRunning(other.maxThreadsRunning)
|
||||
fitted(other.fitted), samples(other.samples)
|
||||
{
|
||||
if (samples.defined())
|
||||
samples = samples.clone();
|
||||
@ -40,10 +34,6 @@ namespace bayesnet {
|
||||
nodes.clear();
|
||||
samples = torch::Tensor();
|
||||
}
|
||||
float Network::getMaxThreads() const
|
||||
{
|
||||
return maxThreads;
|
||||
}
|
||||
torch::Tensor& Network::getSamples()
|
||||
{
|
||||
return samples;
|
||||
@ -196,9 +186,11 @@ namespace bayesnet {
|
||||
{
|
||||
setStates(states);
|
||||
std::vector<std::thread> threads;
|
||||
CountingSemaphore semaphore(maxThreadsRunning);
|
||||
auto& semaphore = CountingSemaphore::getInstance();
|
||||
const double n_samples = static_cast<double>(samples.size(1));
|
||||
auto worker = [&](std::pair<const std::string, std::unique_ptr<Node>>& node) {
|
||||
auto worker = [&](std::pair<const std::string, std::unique_ptr<Node>>& node, int i) {
|
||||
std::string threadName = "FitWorker-" + std::to_string(i);
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
semaphore.acquire();
|
||||
double numStates = static_cast<double>(node.second->getNumStates());
|
||||
double smoothing_factor = 0.0;
|
||||
@ -218,8 +210,9 @@ namespace bayesnet {
|
||||
node.second->computeCPT(samples, features, smoothing_factor, weights);
|
||||
semaphore.release();
|
||||
};
|
||||
int i = 0;
|
||||
for (auto& node : nodes) {
|
||||
threads.emplace_back(worker, std::ref(node));
|
||||
threads.emplace_back(worker, std::ref(node), i++);
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
@ -345,12 +338,21 @@ namespace bayesnet {
|
||||
}
|
||||
std::vector<double> Network::exactInference(std::map<std::string, int>& evidence)
|
||||
{
|
||||
|
||||
|
||||
//Implementar una cache para acelerar la inferencia.
|
||||
// Cambiar la estrategia de crear hilos en la inferencia (por nodos como en fit?)
|
||||
|
||||
|
||||
|
||||
std::vector<double> result(classNumStates, 0.0);
|
||||
std::vector<std::thread> threads;
|
||||
std::mutex mtx;
|
||||
CountingSemaphore semaphore(maxThreadsRunning);
|
||||
auto& semaphore = CountingSemaphore::getInstance();
|
||||
auto worker = [&](int i) {
|
||||
semaphore.acquire();
|
||||
std::string threadName = "InferenceWorker-" + std::to_string(i);
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
auto completeEvidence = std::map<std::string, int>(evidence);
|
||||
completeEvidence[getClassName()] = i;
|
||||
double factor = computeFactor(completeEvidence);
|
||||
|
@ -56,8 +56,6 @@ namespace bayesnet {
|
||||
private:
|
||||
std::map<std::string, std::unique_ptr<Node>> nodes;
|
||||
bool fitted;
|
||||
float maxThreads = 0.95; // Coefficient to multiply by the number of threads available
|
||||
int maxThreadsRunning; // Effective max number of threads running
|
||||
int classNumStates;
|
||||
std::vector<std::string> features; // Including classname
|
||||
std::string className;
|
||||
|
46
bayesnet/utils/CountingSemaphore.h
Normal file
46
bayesnet/utils/CountingSemaphore.h
Normal file
@ -0,0 +1,46 @@
|
||||
#ifndef COUNTING_SEMAPHORE_H
|
||||
#define COUNTING_SEMAPHORE_H
|
||||
#include <mutex>
|
||||
#include <condition_variable>
|
||||
#include <algorithm>
|
||||
#include <thread>
|
||||
#include <mutex>
|
||||
#include <condition_variable>
|
||||
#include <thread>
|
||||
|
||||
class CountingSemaphore {
|
||||
public:
|
||||
static CountingSemaphore& getInstance()
|
||||
{
|
||||
static CountingSemaphore instance;
|
||||
return instance;
|
||||
}
|
||||
// Delete copy constructor and assignment operator
|
||||
CountingSemaphore(const CountingSemaphore&) = delete;
|
||||
CountingSemaphore& operator=(const CountingSemaphore&) = delete;
|
||||
void acquire()
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mtx_);
|
||||
cv_.wait(lock, [this]() { return count_ > 0; });
|
||||
--count_;
|
||||
}
|
||||
void release()
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mtx_);
|
||||
++count_;
|
||||
if (count_ <= max_count_) {
|
||||
cv_.notify_one();
|
||||
}
|
||||
}
|
||||
private:
|
||||
CountingSemaphore()
|
||||
: max_count_(std::max(1u, static_cast<uint>(0.95 * std::thread::hardware_concurrency()))),
|
||||
count_(max_count_)
|
||||
{
|
||||
}
|
||||
std::mutex mtx_;
|
||||
std::condition_variable cv_;
|
||||
const uint max_count_;
|
||||
uint count_;
|
||||
};
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user