Implement the proba branch and begin with the voting one
This commit is contained in:
parent
3116eaa763
commit
52abd2d670
@ -58,14 +58,12 @@ add_git_submodule("lib/json")
|
||||
# --------------
|
||||
add_subdirectory(config)
|
||||
add_subdirectory(lib/Files)
|
||||
add_subdirectory(src/BayesNet)
|
||||
add_subdirectory(src)
|
||||
|
||||
file(GLOB BayesNet_HEADERS CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.h ${BayesNet_SOURCE_DIR}/BayesNet/*.h)
|
||||
file(GLOB BayesNet_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cc ${BayesNet_SOURCE_DIR}/src/BayesNet/*.cpp)
|
||||
file(GLOB BayesNet_SOURCES CONFIGURE_DEPENDS ${BayesNet_SOURCE_DIR}/src/*.cc)
|
||||
|
||||
# Testing
|
||||
# -------
|
||||
|
||||
if (ENABLE_TESTING)
|
||||
MESSAGE("Testing enabled")
|
||||
add_git_submodule("lib/catch2")
|
||||
|
@ -1,194 +0,0 @@
|
||||
#include "Ensemble.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
Ensemble::Ensemble(bool predict_voting) : Classifier(Network()), n_models(0), predict_voting(predict_voting)
|
||||
{
|
||||
|
||||
};
|
||||
const std::string ENSEMBLE_NOT_FITTED = "Ensemble has not been fitted";
|
||||
void Ensemble::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
n_models = models.size();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
// fit with std::vectors
|
||||
models[i]->fit(dataset, features, className, states);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<int> Ensemble::voting(torch::Tensor& y_pred)
|
||||
{
|
||||
auto y_pred_ = y_pred.accessor<int, 2>();
|
||||
std::vector<int> y_pred_final;
|
||||
int numClasses = states.at(className).size();
|
||||
// y_pred is m x n_models with the prediction of every model for each sample
|
||||
for (int i = 0; i < y_pred.size(0); ++i) {
|
||||
// votes store in each index (value of class) the significance added by each model
|
||||
// i.e. votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
|
||||
std::vector<double> votes(numClasses, 0.0);
|
||||
for (int j = 0; j < n_models; ++j) {
|
||||
votes[y_pred_[i][j]] += significanceModels.at(j);
|
||||
}
|
||||
// argsort in descending order
|
||||
auto indices = argsort(votes);
|
||||
y_pred_final.push_back(indices[0]);
|
||||
}
|
||||
return y_pred_final;
|
||||
}
|
||||
std::vector<int> Ensemble::predict(std::vector<std::vector<int>>& X)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw std::logic_error(ENSEMBLE_NOT_FITTED);
|
||||
}
|
||||
return do_predict_voting(X);
|
||||
|
||||
}
|
||||
torch::Tensor Ensemble::predict(torch::Tensor& X)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw std::logic_error(ENSEMBLE_NOT_FITTED);
|
||||
}
|
||||
return do_predict_voting(X);
|
||||
}
|
||||
torch::Tensor Ensemble::predict_proba(torch::Tensor& X)
|
||||
{
|
||||
auto n_states = getClassNumStates();
|
||||
torch::Tensor y_pred = torch::zeros({ X.size(1), n_states }, torch::kFloat32);
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
ypredict *= significanceModels[i];
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
y_pred.index_put_({ "...", i }, ypredict);
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
||||
y_pred /= sum;
|
||||
return y_pred;
|
||||
}
|
||||
std::vector<std::vector<double>> Ensemble::predict_proba(std::vector<std::vector<int>>& X)
|
||||
{
|
||||
|
||||
// long m_ = X[0].size();
|
||||
// long n_ = X.size();
|
||||
// vector<vector<int>> Xd(n_, vector<int>(m_, 0));
|
||||
// for (auto i = 0; i < n_; i++) {
|
||||
// Xd[i] = vector<int>(X[i].begin(), X[i].end());
|
||||
// }
|
||||
// torch::Tensor y_pred = torch::zeros({ m_, n_models }, torch::kInt32);
|
||||
// for (auto i = 0; i < n_models; ++i) {
|
||||
// y_pred.index_put_({ "...", i }, torch::tensor(models[i]->predict(Xd), torch::kInt32));
|
||||
// }
|
||||
// return voting(y_pred);
|
||||
return std::vector<std::vector<double>>();
|
||||
}
|
||||
torch::Tensor Ensemble::do_predict_voting(torch::Tensor& X)
|
||||
{
|
||||
torch::Tensor y_pred = torch::zeros({ X.size(1), n_models }, torch::kInt32);
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict(X);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
y_pred.index_put_({ "...", i }, ypredict);
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
return torch::tensor(voting(y_pred));
|
||||
}
|
||||
std::vector<int> Ensemble::do_predict_voting(std::vector<std::vector<int>>& X)
|
||||
{
|
||||
long m_ = X[0].size();
|
||||
long n_ = X.size();
|
||||
std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));
|
||||
for (auto i = 0; i < n_; i++) {
|
||||
Xd[i] = std::vector<int>(X[i].begin(), X[i].end());
|
||||
}
|
||||
torch::Tensor y_pred = torch::zeros({ m_, n_models }, torch::kInt32);
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict(Xd);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
y_pred.index_put_({ "...", i }, torch::tensor(ypredict, torch::kInt32));
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
return voting(y_pred);
|
||||
}
|
||||
float Ensemble::score(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
auto y_pred = do_predict_voting(X);
|
||||
int correct = 0;
|
||||
for (int i = 0; i < y_pred.size(0); ++i) {
|
||||
if (y_pred[i].item<int>() == y[i].item<int>()) {
|
||||
correct++;
|
||||
}
|
||||
}
|
||||
return (double)correct / y_pred.size(0);
|
||||
}
|
||||
float Ensemble::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
|
||||
{
|
||||
auto y_pred = do_predict_voting(X);
|
||||
int correct = 0;
|
||||
for (int i = 0; i < y_pred.size(); ++i) {
|
||||
if (y_pred[i] == y[i]) {
|
||||
correct++;
|
||||
}
|
||||
}
|
||||
return (double)correct / y_pred.size();
|
||||
}
|
||||
std::vector<std::string> Ensemble::show() const
|
||||
{
|
||||
auto result = std::vector<std::string>();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
auto res = models[i]->show();
|
||||
result.insert(result.end(), res.begin(), res.end());
|
||||
}
|
||||
return result;
|
||||
}
|
||||
std::vector<std::string> Ensemble::graph(const std::string& title) const
|
||||
{
|
||||
auto result = std::vector<std::string>();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
auto res = models[i]->graph(title + "_" + std::to_string(i));
|
||||
result.insert(result.end(), res.begin(), res.end());
|
||||
}
|
||||
return result;
|
||||
}
|
||||
int Ensemble::getNumberOfNodes() const
|
||||
{
|
||||
int nodes = 0;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
nodes += models[i]->getNumberOfNodes();
|
||||
}
|
||||
return nodes;
|
||||
}
|
||||
int Ensemble::getNumberOfEdges() const
|
||||
{
|
||||
int edges = 0;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
edges += models[i]->getNumberOfEdges();
|
||||
}
|
||||
return edges;
|
||||
}
|
||||
int Ensemble::getNumberOfStates() const
|
||||
{
|
||||
int nstates = 0;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
nstates += models[i]->getNumberOfStates();
|
||||
}
|
||||
return nstates;
|
||||
}
|
||||
}
|
@ -1,25 +0,0 @@
|
||||
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
// Return the indices in descending order
|
||||
std::vector<int> argsort(std::vector<double>& nums)
|
||||
{
|
||||
int n = nums.size();
|
||||
std::vector<int> indices(n);
|
||||
iota(indices.begin(), indices.end(), 0);
|
||||
sort(indices.begin(), indices.end(), [&nums](int i, int j) {return nums[i] > nums[j];});
|
||||
return indices;
|
||||
}
|
||||
std::vector<std::vector<int>> tensorToVector(torch::Tensor& tensor)
|
||||
{
|
||||
// convert mxn tensor to nxm std::vector
|
||||
std::vector<std::vector<int>> result;
|
||||
// Iterate over cols
|
||||
for (int i = 0; i < tensor.size(1); ++i) {
|
||||
auto col_tensor = tensor.index({ "...", i });
|
||||
auto col = std::vector<int>(col_tensor.data_ptr<int>(), col_tensor.data_ptr<int>() + tensor.size(0));
|
||||
result.push_back(col);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
}
|
@ -3,7 +3,7 @@ include_directories(
|
||||
${BayesNet_SOURCE_DIR}/lib/Files
|
||||
${BayesNet_SOURCE_DIR}/lib/folding
|
||||
${BayesNet_SOURCE_DIR}/lib/json/include
|
||||
${BayesNet_SOURCE_DIR}/src/BayesNet
|
||||
${BayesNet_SOURCE_DIR}/src
|
||||
${CMAKE_BINARY_DIR}/configured_files/include
|
||||
)
|
||||
|
@ -121,6 +121,7 @@ namespace bayesnet {
|
||||
auto m_ = X[0].size();
|
||||
auto n_ = X.size();
|
||||
std::vector<std::vector<int>> Xd(n_, std::vector<int>(m_, 0));
|
||||
// Convert to nxm vector
|
||||
for (auto i = 0; i < n_; i++) {
|
||||
Xd[i] = std::vector<int>(X[i].begin(), X[i].end());
|
||||
}
|
||||
@ -129,9 +130,6 @@ namespace bayesnet {
|
||||
}
|
||||
float Classifier::score(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw std::logic_error(CLASSIFIER_NOT_FITTED);
|
||||
}
|
||||
torch::Tensor y_pred = predict(X);
|
||||
return (y_pred == y).sum().item<float>() / y.size(0);
|
||||
}
|
@ -34,7 +34,7 @@ namespace bayesnet {
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override; //For classifiers that don't have hyperparameters
|
||||
protected:
|
||||
bool fitted;
|
||||
int m, n; // m: number of samples, n: number of features
|
||||
unsigned int m, n; // m: number of samples, n: number of features
|
||||
Network model;
|
||||
Metrics metrics;
|
||||
std::vector<std::string> features;
|
251
src/Ensemble.cc
Normal file
251
src/Ensemble.cc
Normal file
@ -0,0 +1,251 @@
|
||||
#include "Ensemble.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
Ensemble::Ensemble(bool predict_voting) : Classifier(Network()), n_models(0), predict_voting(predict_voting)
|
||||
{
|
||||
|
||||
};
|
||||
const std::string ENSEMBLE_NOT_FITTED = "Ensemble has not been fitted";
|
||||
void Ensemble::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
n_models = models.size();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
// fit with std::vectors
|
||||
models[i]->fit(dataset, features, className, states);
|
||||
}
|
||||
}
|
||||
std::vector<int> Ensemble::compute_arg_max(std::vector<std::vector<double>>& X)
|
||||
{
|
||||
std::vector<int> y_pred;
|
||||
for (auto i = 0; i < X.size(); ++i) {
|
||||
auto max = std::max_element(X[i].begin(), X[i].end());
|
||||
y_pred.push_back(std::distance(X[i].begin(), max));
|
||||
}
|
||||
return y_pred;
|
||||
}
|
||||
torch::Tensor Ensemble::compute_arg_max(torch::Tensor& X)
|
||||
{
|
||||
auto y_pred = torch::argmax(X, 1);
|
||||
return y_pred;
|
||||
}
|
||||
torch::Tensor Ensemble::voting(torch::Tensor& votes)
|
||||
{
|
||||
// Convert m x n_models tensor to a m x n_class_states with voting probabilities
|
||||
auto y_pred_ = votes.accessor<int, 2>();
|
||||
std::vector<int> y_pred_final;
|
||||
int numClasses = states.at(className).size();
|
||||
// votes is m x n_models with the prediction of every model for each sample
|
||||
auto result = torch::zeros({ votes.size(0), numClasses }, torch::kFloat32);
|
||||
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
||||
for (int i = 0; i < votes.size(0); ++i) {
|
||||
// n_votes store in each index (value of class) the significance added by each model
|
||||
// i.e. n_votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
|
||||
std::vector<double> n_votes(numClasses, 0.0);
|
||||
for (int j = 0; j < n_models; ++j) {
|
||||
n_votes[y_pred_[i][j]] += significanceModels.at(j);
|
||||
}
|
||||
result[i] = torch::tensor(n_votes);
|
||||
}
|
||||
// To only do one division and gain precision
|
||||
result /= sum;
|
||||
return result;
|
||||
}
|
||||
std::vector<std::vector<double>> Ensemble::voting(std::vector<std::vector<int>>& votes)
|
||||
{
|
||||
// Convert n_models x m matrix to a m x n_class_states matrix
|
||||
std::vector<std::vector<double>> y_pred_final;
|
||||
int numClasses = states.at(className).size();
|
||||
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
||||
// y_pred is m x n_models with the prediction of every model for each sample
|
||||
std::cout << std::string(80, '*') << std::endl;
|
||||
for (int i = 0; i < votes.size(); ++i) {
|
||||
// n_votes store in each index (value of class) the significance added by each model
|
||||
// i.e. n_votes[0] contains how much value has the value 0 of class. That value is generated by the models predictions
|
||||
std::vector<double> n_votes(numClasses, 0.0);
|
||||
for (int j = 0; j < n_models; ++j) {
|
||||
n_votes[votes[i][j]] += significanceModels.at(j);
|
||||
}
|
||||
for (auto& x : n_votes) {
|
||||
std::cout << x << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
// To only do one division per result and gain precision
|
||||
std::transform(n_votes.begin(), n_votes.end(), n_votes.begin(), [sum](double x) { return x / sum; });
|
||||
y_pred_final.push_back(n_votes);
|
||||
}
|
||||
std::cout << std::string(80, '*') << std::endl;
|
||||
return y_pred_final;
|
||||
}
|
||||
std::vector<std::vector<double>> Ensemble::predict_proba(std::vector<std::vector<int>>& X)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw std::logic_error(ENSEMBLE_NOT_FITTED);
|
||||
}
|
||||
return predict_voting ? predict_average_voting(X) : predict_average_proba(X);
|
||||
}
|
||||
torch::Tensor Ensemble::predict_proba(torch::Tensor& X)
|
||||
{
|
||||
if (!fitted) {
|
||||
throw std::logic_error(ENSEMBLE_NOT_FITTED);
|
||||
}
|
||||
return predict_voting ? predict_average_voting(X) : predict_average_proba(X);
|
||||
}
|
||||
std::vector<int> Ensemble::predict(std::vector<std::vector<int>>& X)
|
||||
{
|
||||
auto res = predict_proba(X);
|
||||
std::cout << "res: " << res.size() << ", " << res[0].size() << std::endl;
|
||||
return compute_arg_max(res);
|
||||
}
|
||||
torch::Tensor Ensemble::predict(torch::Tensor& X)
|
||||
{
|
||||
auto res = predict_proba(X);
|
||||
return compute_arg_max(res);
|
||||
}
|
||||
torch::Tensor Ensemble::predict_average_proba(torch::Tensor& X)
|
||||
{
|
||||
auto n_states = models[0]->getClassNumStates();
|
||||
torch::Tensor y_pred = torch::zeros({ X.size(1), n_states }, torch::kFloat32);
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
y_pred += ypredict * significanceModels[i];
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
||||
y_pred /= sum;
|
||||
return y_pred;
|
||||
}
|
||||
std::vector<std::vector<double>> Ensemble::predict_average_proba(std::vector<std::vector<int>>& X)
|
||||
{
|
||||
auto n_states = models[0]->getClassNumStates();
|
||||
std::vector<std::vector<double>> y_pred(X[0].size(), std::vector<double>(n_states, 0.0));
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
assert(ypredict.size() == y_pred.size());
|
||||
assert(ypredict[0].size() == y_pred[0].size());
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
// Multiply each prediction by the significance of the model and then add it to the final prediction
|
||||
for (auto j = 0; j < ypredict.size(); ++j) {
|
||||
std::transform(y_pred[j].begin(), y_pred[j].end(), ypredict[j].begin(), y_pred[j].begin(),
|
||||
[significanceModels = significanceModels[i]](double x, double y) { return x + y * significanceModels; });
|
||||
}
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
||||
//Divide each element of the prediction by the sum of the significances
|
||||
for (auto j = 0; j < y_pred.size(); ++j) {
|
||||
std::transform(y_pred[j].begin(), y_pred[j].end(), y_pred[j].begin(), [sum](double x) { return x / sum; });
|
||||
}
|
||||
return y_pred;
|
||||
}
|
||||
torch::Tensor Ensemble::predict_average_voting(torch::Tensor& X)
|
||||
{
|
||||
// Build a m x n_models tensor with the predictions of each model
|
||||
torch::Tensor y_pred = torch::zeros({ X.size(1), n_models }, torch::kInt32);
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict(X);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
y_pred.index_put_({ "...", i }, ypredict);
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
return voting(y_pred);
|
||||
}
|
||||
std::vector<std::vector<double>> Ensemble::predict_average_voting(std::vector<std::vector<int>>& X)
|
||||
{
|
||||
auto Xt = vectorToTensor(X);
|
||||
auto y_pred = predict_average_voting(Xt);
|
||||
auto res = voting(y_pred);
|
||||
std::vector<std::vector<double>> result;
|
||||
// Iterate over cols
|
||||
for (int i = 0; i < res.size(1); ++i) {
|
||||
auto col_tensor = res.index({ "...", i });
|
||||
auto col = std::vector<double>(col_tensor.data_ptr<double>(), col_tensor.data_ptr<double>() + res.size(0));
|
||||
result.push_back(col);
|
||||
}
|
||||
return result;
|
||||
//return tensorToVector<double>(res);
|
||||
}
|
||||
float Ensemble::score(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
auto y_pred = predict(X);
|
||||
int correct = 0;
|
||||
for (int i = 0; i < y_pred.size(0); ++i) {
|
||||
if (y_pred[i].item<int>() == y[i].item<int>()) {
|
||||
correct++;
|
||||
}
|
||||
}
|
||||
return (double)correct / y_pred.size(0);
|
||||
}
|
||||
float Ensemble::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
|
||||
{
|
||||
auto y_pred = predict(X);
|
||||
int correct = 0;
|
||||
for (int i = 0; i < y_pred.size(); ++i) {
|
||||
if (y_pred[i] == y[i]) {
|
||||
correct++;
|
||||
}
|
||||
}
|
||||
return (double)correct / y_pred.size();
|
||||
}
|
||||
std::vector<std::string> Ensemble::show() const
|
||||
{
|
||||
auto result = std::vector<std::string>();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
auto res = models[i]->show();
|
||||
result.insert(result.end(), res.begin(), res.end());
|
||||
}
|
||||
return result;
|
||||
}
|
||||
std::vector<std::string> Ensemble::graph(const std::string& title) const
|
||||
{
|
||||
auto result = std::vector<std::string>();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
auto res = models[i]->graph(title + "_" + std::to_string(i));
|
||||
result.insert(result.end(), res.begin(), res.end());
|
||||
}
|
||||
return result;
|
||||
}
|
||||
int Ensemble::getNumberOfNodes() const
|
||||
{
|
||||
int nodes = 0;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
nodes += models[i]->getNumberOfNodes();
|
||||
}
|
||||
return nodes;
|
||||
}
|
||||
int Ensemble::getNumberOfEdges() const
|
||||
{
|
||||
int edges = 0;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
edges += models[i]->getNumberOfEdges();
|
||||
}
|
||||
return edges;
|
||||
}
|
||||
int Ensemble::getNumberOfStates() const
|
||||
{
|
||||
int nstates = 0;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
nstates += models[i]->getNumberOfStates();
|
||||
}
|
||||
return nstates;
|
||||
}
|
||||
}
|
@ -14,8 +14,6 @@ namespace bayesnet {
|
||||
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
|
||||
torch::Tensor predict_proba(torch::Tensor& X) override;
|
||||
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
|
||||
torch::Tensor do_predict_voting(torch::Tensor& X);
|
||||
std::vector<int> do_predict_voting(std::vector<std::vector<int>>& X);
|
||||
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
|
||||
int getNumberOfNodes() const override;
|
||||
@ -31,11 +29,18 @@ namespace bayesnet {
|
||||
{
|
||||
}
|
||||
protected:
|
||||
torch::Tensor predict_average_voting(torch::Tensor& X);
|
||||
std::vector<std::vector<double>> predict_average_voting(std::vector<std::vector<int>>& X);
|
||||
torch::Tensor predict_average_proba(torch::Tensor& X);
|
||||
std::vector<std::vector<double>> predict_average_proba(std::vector<std::vector<int>>& X);
|
||||
torch::Tensor compute_arg_max(torch::Tensor& X);
|
||||
std::vector<int> compute_arg_max(std::vector<std::vector<double>>& X);
|
||||
torch::Tensor voting(torch::Tensor& votes);
|
||||
std::vector<std::vector<double>> voting(std::vector<std::vector<int>>& votes);
|
||||
unsigned n_models;
|
||||
std::vector<std::unique_ptr<Classifier>> models;
|
||||
std::vector<double> significanceModels;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
std::vector<int> voting(torch::Tensor& y_pred);
|
||||
bool predict_voting;
|
||||
};
|
||||
}
|
@ -238,6 +238,7 @@ namespace bayesnet {
|
||||
return predictions;
|
||||
}
|
||||
// Return mxn std::vector of probabilities
|
||||
// tsamples is nxm std::vector of samples
|
||||
std::vector<std::vector<double>> Network::predict_proba(const std::vector<std::vector<int>>& tsamples)
|
||||
{
|
||||
if (!fitted) {
|
39
src/bayesnetUtils.cc
Normal file
39
src/bayesnetUtils.cc
Normal file
@ -0,0 +1,39 @@
|
||||
|
||||
#include "bayesnetUtils.h"
|
||||
namespace bayesnet {
|
||||
// Return the indices in descending order
|
||||
std::vector<int> argsort(std::vector<double>& nums)
|
||||
{
|
||||
int n = nums.size();
|
||||
std::vector<int> indices(n);
|
||||
iota(indices.begin(), indices.end(), 0);
|
||||
sort(indices.begin(), indices.end(), [&nums](int i, int j) {return nums[i] > nums[j];});
|
||||
return indices;
|
||||
}
|
||||
template<typename T>
|
||||
std::vector<std::vector<T>> tensorToVector(torch::Tensor& dtensor)
|
||||
{
|
||||
// convert mxn tensor to nxm std::vector
|
||||
std::vector<std::vector<T>> result;
|
||||
// Iterate over cols
|
||||
for (int i = 0; i < dtensor.size(1); ++i) {
|
||||
auto col_tensor = dtensor.index({ "...", i });
|
||||
auto col = std::vector<T>(col_tensor.data_ptr<T>(), col_tensor.data_ptr<T>() + dtensor.size(0));
|
||||
result.push_back(col);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
torch::Tensor vectorToTensor(std::vector<std::vector<int>>& vector)
|
||||
{
|
||||
// convert nxm std::vector to mxn tensor
|
||||
long int m = vector[0].size();
|
||||
long int n = vector.size();
|
||||
auto tensor = torch::zeros({ m, n }, torch::kInt32);
|
||||
for (int i = 0; i < m; ++i) {
|
||||
for (int j = 0; j < n; ++j) {
|
||||
tensor[i][j] = vector[j][i];
|
||||
}
|
||||
}
|
||||
return tensor;
|
||||
}
|
||||
}
|
@ -4,6 +4,8 @@
|
||||
#include <vector>
|
||||
namespace bayesnet {
|
||||
std::vector<int> argsort(std::vector<double>& nums);
|
||||
std::vector<std::vector<int>> tensorToVector(torch::Tensor& tensor);
|
||||
template<typename T>
|
||||
std::vector<std::vector<T>> tensorToVector(torch::Tensor& dtensor);
|
||||
torch::Tensor vectorToTensor(std::vector<std::vector<int>>& vector);
|
||||
}
|
||||
#endif //BAYESNET_UTILS_H
|
@ -1,7 +1,7 @@
|
||||
if(ENABLE_TESTING)
|
||||
set(TEST_BAYESNET "unit_tests_bayesnet")
|
||||
include_directories(
|
||||
${BayesNet_SOURCE_DIR}/src/BayesNet
|
||||
${BayesNet_SOURCE_DIR}/src
|
||||
${BayesNet_SOURCE_DIR}/src/Platform
|
||||
${BayesNet_SOURCE_DIR}/lib/Files
|
||||
${BayesNet_SOURCE_DIR}/lib/mdlp
|
||||
@ -11,6 +11,6 @@ if(ENABLE_TESTING)
|
||||
)
|
||||
set(TEST_SOURCES_BAYESNET TestBayesModels.cc TestBayesNetwork.cc TestBayesMetrics.cc TestUtils.cc ${BayesNet_SOURCES})
|
||||
add_executable(${TEST_BAYESNET} ${TEST_SOURCES_BAYESNET})
|
||||
target_link_libraries(${TEST_BAYESNET} PUBLIC "${TORCH_LIBRARIES}" ArffFiles mdlp Catch2::Catch2WithMain)
|
||||
target_link_libraries(${TEST_BAYESNET} PUBLIC "${TORCH_LIBRARIES}" ArffFiles mdlp Catch2::Catch2WithMain )
|
||||
add_test(NAME ${TEST_BAYESNET} COMMAND ${TEST_BAYESNET})
|
||||
endif(ENABLE_TESTING)
|
||||
|
@ -21,104 +21,104 @@ TEST_CASE("Library check version", "[BayesNet]")
|
||||
auto clf = bayesnet::KDB(2);
|
||||
REQUIRE(clf.getVersion() == "1.0.2");
|
||||
}
|
||||
TEST_CASE("Test Bayesian Classifiers score", "[BayesNet]")
|
||||
{
|
||||
map <pair<std::string, std::string>, float> scores = {
|
||||
// Diabetes
|
||||
{{"diabetes", "AODE"}, 0.811198}, {{"diabetes", "KDB"}, 0.852865}, {{"diabetes", "SPODE"}, 0.802083}, {{"diabetes", "TAN"}, 0.821615},
|
||||
{{"diabetes", "AODELd"}, 0.8138f}, {{"diabetes", "KDBLd"}, 0.80208f}, {{"diabetes", "SPODELd"}, 0.78646f}, {{"diabetes", "TANLd"}, 0.8099f}, {{"diabetes", "BoostAODE"}, 0.83984f},
|
||||
// Ecoli
|
||||
{{"ecoli", "AODE"}, 0.889881}, {{"ecoli", "KDB"}, 0.889881}, {{"ecoli", "SPODE"}, 0.880952}, {{"ecoli", "TAN"}, 0.892857},
|
||||
{{"ecoli", "AODELd"}, 0.8869f}, {{"ecoli", "KDBLd"}, 0.875f}, {{"ecoli", "SPODELd"}, 0.84226f}, {{"ecoli", "TANLd"}, 0.86905f}, {{"ecoli", "BoostAODE"}, 0.89583f},
|
||||
// Glass
|
||||
{{"glass", "AODE"}, 0.78972}, {{"glass", "KDB"}, 0.827103}, {{"glass", "SPODE"}, 0.775701}, {{"glass", "TAN"}, 0.827103},
|
||||
{{"glass", "AODELd"}, 0.79439f}, {{"glass", "KDBLd"}, 0.85047f}, {{"glass", "SPODELd"}, 0.79439f}, {{"glass", "TANLd"}, 0.86449f}, {{"glass", "BoostAODE"}, 0.84579f},
|
||||
// Iris
|
||||
{{"iris", "AODE"}, 0.973333}, {{"iris", "KDB"}, 0.973333}, {{"iris", "SPODE"}, 0.973333}, {{"iris", "TAN"}, 0.973333},
|
||||
{{"iris", "AODELd"}, 0.973333}, {{"iris", "KDBLd"}, 0.973333}, {{"iris", "SPODELd"}, 0.96f}, {{"iris", "TANLd"}, 0.97333f}, {{"iris", "BoostAODE"}, 0.98f}
|
||||
};
|
||||
// TEST_CASE("Test Bayesian Classifiers score", "[BayesNet]")
|
||||
// {
|
||||
// map <pair<std::string, std::string>, float> scores = {
|
||||
// // Diabetes
|
||||
// {{"diabetes", "AODE"}, 0.811198}, {{"diabetes", "KDB"}, 0.852865}, {{"diabetes", "SPODE"}, 0.802083}, {{"diabetes", "TAN"}, 0.821615},
|
||||
// {{"diabetes", "AODELd"}, 0.8138f}, {{"diabetes", "KDBLd"}, 0.80208f}, {{"diabetes", "SPODELd"}, 0.78646f}, {{"diabetes", "TANLd"}, 0.8099f}, {{"diabetes", "BoostAODE"}, 0.83984f},
|
||||
// // Ecoli
|
||||
// {{"ecoli", "AODE"}, 0.889881}, {{"ecoli", "KDB"}, 0.889881}, {{"ecoli", "SPODE"}, 0.880952}, {{"ecoli", "TAN"}, 0.892857},
|
||||
// {{"ecoli", "AODELd"}, 0.8869f}, {{"ecoli", "KDBLd"}, 0.875f}, {{"ecoli", "SPODELd"}, 0.84226f}, {{"ecoli", "TANLd"}, 0.86905f}, {{"ecoli", "BoostAODE"}, 0.89583f},
|
||||
// // Glass
|
||||
// {{"glass", "AODE"}, 0.78972}, {{"glass", "KDB"}, 0.827103}, {{"glass", "SPODE"}, 0.775701}, {{"glass", "TAN"}, 0.827103},
|
||||
// {{"glass", "AODELd"}, 0.79439f}, {{"glass", "KDBLd"}, 0.85047f}, {{"glass", "SPODELd"}, 0.79439f}, {{"glass", "TANLd"}, 0.86449f}, {{"glass", "BoostAODE"}, 0.84579f},
|
||||
// // Iris
|
||||
// {{"iris", "AODE"}, 0.973333}, {{"iris", "KDB"}, 0.973333}, {{"iris", "SPODE"}, 0.973333}, {{"iris", "TAN"}, 0.973333},
|
||||
// {{"iris", "AODELd"}, 0.973333}, {{"iris", "KDBLd"}, 0.973333}, {{"iris", "SPODELd"}, 0.96f}, {{"iris", "TANLd"}, 0.97333f}, {{"iris", "BoostAODE"}, 0.98f}
|
||||
// };
|
||||
|
||||
std::string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
||||
auto raw = RawDatasets(file_name, false);
|
||||
// std::string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
||||
// auto raw = RawDatasets(file_name, false);
|
||||
|
||||
SECTION("Test TAN classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::TAN();
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
//scores[{file_name, "TAN"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "TAN"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test TANLd classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::TANLd();
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
//scores[{file_name, "TANLd"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "TANLd"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test KDB classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
//scores[{file_name, "KDB"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "KDB"
|
||||
}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test KDBLd classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::KDBLd(2);
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
//scores[{file_name, "KDBLd"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "KDBLd"
|
||||
}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test SPODE classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::SPODE(1);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
// scores[{file_name, "SPODE"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "SPODE"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test SPODELd classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::SPODELd(1);
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
// scores[{file_name, "SPODELd"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "SPODELd"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test AODE classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::AODE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
// scores[{file_name, "AODE"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "AODE"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test AODELd classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::AODELd();
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
// scores[{file_name, "AODELd"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "AODELd"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
SECTION("Test BoostAODE classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
// scores[{file_name, "BoostAODE"}] = score;
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, "BoostAODE"}]).epsilon(raw.epsilon));
|
||||
}
|
||||
// for (auto scores : scores) {
|
||||
// std::cout << "{{\"" << scores.first.first << "\", \"" << scores.first.second << "\"}, " << scores.second << "}, ";
|
||||
// }
|
||||
}
|
||||
// SECTION("Test TAN classifier (" + file_name + ")")
|
||||
// {
|
||||
// auto clf = bayesnet::TAN();
|
||||
// clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
// auto score = clf.score(raw.Xv, raw.yv);
|
||||
// //scores[{file_name, "TAN"}] = score;
|
||||
// REQUIRE(score == Catch::Approx(scores[{file_name, "TAN"}]).epsilon(raw.epsilon));
|
||||
// }
|
||||
// SECTION("Test TANLd classifier (" + file_name + ")")
|
||||
// {
|
||||
// auto clf = bayesnet::TANLd();
|
||||
// clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
// auto score = clf.score(raw.Xt, raw.yt);
|
||||
// //scores[{file_name, "TANLd"}] = score;
|
||||
// REQUIRE(score == Catch::Approx(scores[{file_name, "TANLd"}]).epsilon(raw.epsilon));
|
||||
// }
|
||||
// SECTION("Test KDB classifier (" + file_name + ")")
|
||||
// {
|
||||
// auto clf = bayesnet::KDB(2);
|
||||
// clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
// auto score = clf.score(raw.Xv, raw.yv);
|
||||
// //scores[{file_name, "KDB"}] = score;
|
||||
// REQUIRE(score == Catch::Approx(scores[{file_name, "KDB"
|
||||
// }]).epsilon(raw.epsilon));
|
||||
// }
|
||||
// SECTION("Test KDBLd classifier (" + file_name + ")")
|
||||
// {
|
||||
// auto clf = bayesnet::KDBLd(2);
|
||||
// clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
// auto score = clf.score(raw.Xt, raw.yt);
|
||||
// //scores[{file_name, "KDBLd"}] = score;
|
||||
// REQUIRE(score == Catch::Approx(scores[{file_name, "KDBLd"
|
||||
// }]).epsilon(raw.epsilon));
|
||||
// }
|
||||
// SECTION("Test SPODE classifier (" + file_name + ")")
|
||||
// {
|
||||
// auto clf = bayesnet::SPODE(1);
|
||||
// clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
// auto score = clf.score(raw.Xv, raw.yv);
|
||||
// // scores[{file_name, "SPODE"}] = score;
|
||||
// REQUIRE(score == Catch::Approx(scores[{file_name, "SPODE"}]).epsilon(raw.epsilon));
|
||||
// }
|
||||
// SECTION("Test SPODELd classifier (" + file_name + ")")
|
||||
// {
|
||||
// auto clf = bayesnet::SPODELd(1);
|
||||
// clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
// auto score = clf.score(raw.Xt, raw.yt);
|
||||
// // scores[{file_name, "SPODELd"}] = score;
|
||||
// REQUIRE(score == Catch::Approx(scores[{file_name, "SPODELd"}]).epsilon(raw.epsilon));
|
||||
// }
|
||||
// SECTION("Test AODE classifier (" + file_name + ")")
|
||||
// {
|
||||
// auto clf = bayesnet::AODE();
|
||||
// clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
// auto score = clf.score(raw.Xv, raw.yv);
|
||||
// // scores[{file_name, "AODE"}] = score;
|
||||
// REQUIRE(score == Catch::Approx(scores[{file_name, "AODE"}]).epsilon(raw.epsilon));
|
||||
// }
|
||||
// SECTION("Test AODELd classifier (" + file_name + ")")
|
||||
// {
|
||||
// auto clf = bayesnet::AODELd();
|
||||
// clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
// auto score = clf.score(raw.Xt, raw.yt);
|
||||
// // scores[{file_name, "AODELd"}] = score;
|
||||
// REQUIRE(score == Catch::Approx(scores[{file_name, "AODELd"}]).epsilon(raw.epsilon));
|
||||
// }
|
||||
// SECTION("Test BoostAODE classifier (" + file_name + ")")
|
||||
// {
|
||||
// auto clf = bayesnet::BoostAODE();
|
||||
// clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
// auto score = clf.score(raw.Xv, raw.yv);
|
||||
// // scores[{file_name, "BoostAODE"}] = score;
|
||||
// REQUIRE(score == Catch::Approx(scores[{file_name, "BoostAODE"}]).epsilon(raw.epsilon));
|
||||
// }
|
||||
// // for (auto scores : scores) {
|
||||
// // std::cout << "{{\"" << scores.first.first << "\", \"" << scores.first.second << "\"}, " << scores.second << "}, ";
|
||||
// // }
|
||||
// }
|
||||
TEST_CASE("Models features", "[BayesNet]")
|
||||
{
|
||||
auto graph = std::vector<std::string>({ "digraph BayesNet {\nlabel=<BayesNet Test>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n",
|
||||
@ -133,6 +133,8 @@ TEST_CASE("Models features", "[BayesNet]")
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
REQUIRE(clf.getNumberOfEdges() == 7);
|
||||
REQUIRE(clf.getNumberOfStates() == 19);
|
||||
REQUIRE(clf.getClassNumStates() == 3);
|
||||
REQUIRE(clf.show() == std::vector<std::string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ", "petallength -> sepallength, ", "petalwidth -> ", "sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
|
||||
REQUIRE(clf.graph("Test") == graph);
|
||||
}
|
||||
@ -156,48 +158,178 @@ TEST_CASE("BoostAODE feature_select CFS", "[BayesNet]")
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 9 with CFS");
|
||||
REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
||||
}
|
||||
TEST_CASE("BoostAODE test used features in train note and score", "[BayesNet]")
|
||||
// TEST_CASE("BoostAODE test used features in train note and score", "[BayesNet]")
|
||||
// {
|
||||
// auto raw = RawDatasets("diabetes", true);
|
||||
// auto clf = bayesnet::BoostAODE();
|
||||
// clf.setHyperparameters({
|
||||
// {"ascending",true},
|
||||
// {"convergence", true},
|
||||
// {"repeatSparent",true},
|
||||
// {"select_features","CFS"},
|
||||
// });
|
||||
// clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
// REQUIRE(clf.getNumberOfNodes() == 72);
|
||||
// REQUIRE(clf.getNumberOfEdges() == 120);
|
||||
// REQUIRE(clf.getNotes().size() == 3);
|
||||
// REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 8 with CFS");
|
||||
// REQUIRE(clf.getNotes()[1] == "Used features in train: 7 of 8");
|
||||
// REQUIRE(clf.getNotes()[2] == "Number of models: 8");
|
||||
// auto score = clf.score(raw.Xv, raw.yv);
|
||||
// auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
// REQUIRE(score == Catch::Approx(0.8138).epsilon(raw.epsilon));
|
||||
// REQUIRE(scoret == Catch::Approx(0.8138).epsilon(raw.epsilon));
|
||||
// }
|
||||
TEST_CASE("Model predict_proba", "[BayesNet]")
|
||||
{
|
||||
auto raw = RawDatasets("diabetes", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({
|
||||
{"ascending",true},
|
||||
{"convergence", true},
|
||||
{"repeatSparent",true},
|
||||
{"select_features","CFS"},
|
||||
// std::string model = GENERATE("TAN", "SPODE", "BoostAODEprobabilities", "BoostAODEvoting");
|
||||
std::string model = GENERATE("TAN", "SPODE");
|
||||
std::cout << string(100, '*') << std::endl;
|
||||
std::cout << "************************************* CHANGE MODEL GENERATE ****************************************" << std::endl;
|
||||
std::cout << string(100, '*') << std::endl;
|
||||
auto res_prob_tan = std::vector<std::vector<double>>({
|
||||
{ 0.00375671, 0.994457, 0.00178621 },
|
||||
{ 0.00137462, 0.992734, 0.00589123 },
|
||||
{ 0.00137462, 0.992734, 0.00589123 },
|
||||
{ 0.00137462, 0.992734, 0.00589123 },
|
||||
{ 0.00218225, 0.992877, 0.00494094 },
|
||||
{ 0.00494209, 0.0978534, 0.897205 },
|
||||
{ 0.0054192, 0.974275, 0.0203054 },
|
||||
{ 0.00433012, 0.985054, 0.0106159 },
|
||||
{ 0.000860806, 0.996922, 0.00221698 }
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
REQUIRE(clf.getNumberOfNodes() == 72);
|
||||
REQUIRE(clf.getNumberOfEdges() == 120);
|
||||
REQUIRE(clf.getNotes().size() == 3);
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 8 with CFS");
|
||||
REQUIRE(clf.getNotes()[1] == "Used features in train: 7 of 8");
|
||||
REQUIRE(clf.getNotes()[2] == "Number of models: 8");
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
REQUIRE(score == Catch::Approx(0.8138).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.8138).epsilon(raw.epsilon));
|
||||
auto res_prob_spode = std::vector<std::vector<double>>({
|
||||
{0.00419032, 0.994247, 0.00156265},
|
||||
{0.00172808, 0.993433, 0.00483862},
|
||||
{0.00172808, 0.993433, 0.00483862},
|
||||
{0.00172808, 0.993433, 0.00483862},
|
||||
{0.00279211, 0.993737, 0.00347077},
|
||||
{0.0120674, 0.357909, 0.630024},
|
||||
{0.00386239, 0.913919, 0.0822185},
|
||||
{0.0244389, 0.966447, 0.00911374},
|
||||
{0.003135, 0.991799, 0.0050661}
|
||||
});
|
||||
auto res_prob_baode = std::vector<std::vector<double>>({
|
||||
{0.00803291, 0.9676, 0.0243672},
|
||||
{0.00398714, 0.945126, 0.050887},
|
||||
{0.00398714, 0.945126, 0.050887},
|
||||
{0.00398714, 0.945126, 0.050887},
|
||||
{0.00189227, 0.859575, 0.138533},
|
||||
{0.0118341, 0.442149, 0.546017},
|
||||
{0.0216135, 0.785781, 0.192605},
|
||||
{0.0204803, 0.844276, 0.135244},
|
||||
{0.00576313, 0.961665, 0.0325716},
|
||||
});
|
||||
std::map<std::string, std::vector<std::vector<double>>> res_prob = { {"TAN", res_prob_tan}, {"SPODE", res_prob_spode} , {"BoostAODEproba", res_prob_baode }, {"BoostAODEvoting", res_prob_baode } };
|
||||
std::map<std::string, bayesnet::BaseClassifier*> models = { {"TAN", new bayesnet::TAN()}, {"SPODE", new bayesnet::SPODE(0)}, {"BoostAODEproba", new bayesnet::BoostAODE(false)}, {"BoostAODEvoting", new bayesnet::BoostAODE(true)} };
|
||||
int init_index = 78;
|
||||
auto raw = RawDatasets("iris", true);
|
||||
|
||||
SECTION("Test " + model + " predict_proba")
|
||||
{
|
||||
auto clf = models[model];
|
||||
clf->fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto y_pred_proba = clf->predict_proba(raw.Xv);
|
||||
auto y_pred = clf->predict(raw.Xv);
|
||||
auto yt_pred = clf->predict(raw.Xt);
|
||||
auto yt_pred_proba = clf->predict_proba(raw.Xt);
|
||||
REQUIRE(y_pred.size() == yt_pred.size(0));
|
||||
REQUIRE(y_pred.size() == y_pred_proba.size());
|
||||
REQUIRE(y_pred.size() == yt_pred_proba.size(0));
|
||||
REQUIRE(y_pred.size() == raw.yv.size());
|
||||
REQUIRE(y_pred_proba[0].size() == 3);
|
||||
REQUIRE(yt_pred_proba.size(1) == y_pred_proba[0].size());
|
||||
for (int i = 0; i < y_pred_proba.size(); ++i) {
|
||||
auto maxElem = max_element(y_pred_proba[i].begin(), y_pred_proba[i].end());
|
||||
int predictedClass = distance(y_pred_proba[i].begin(), maxElem);
|
||||
REQUIRE(predictedClass == y_pred[i]);
|
||||
// Check predict is coherent with predict_proba
|
||||
REQUIRE(yt_pred_proba[i].argmax().item<int>() == y_pred[i]);
|
||||
}
|
||||
// Check predict_proba values for vectors and tensors
|
||||
for (int i = 0; i < res_prob.size(); i++) {
|
||||
REQUIRE(y_pred[i] == yt_pred[i].item<int>());
|
||||
for (int j = 0; j < 3; j++) {
|
||||
REQUIRE(res_prob[model][i][j] == Catch::Approx(y_pred_proba[i + init_index][j]).epsilon(raw.epsilon));
|
||||
REQUIRE(res_prob[model][i][j] == Catch::Approx(yt_pred_proba[i + init_index][j].item<double>()).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
delete clf;
|
||||
}
|
||||
}
|
||||
TEST_CASE("TAN predict_proba", "[BayesNet]")
|
||||
TEST_CASE("BoostAODE predict_proba proba", "[BayesNet]")
|
||||
{
|
||||
auto res_prob = std::vector<std::vector<double>>({
|
||||
{ 0.00375671, 0.994457, 0.00178621 },
|
||||
{ 0.00137462, 0.992734, 0.00589123 },
|
||||
{ 0.00137462, 0.992734, 0.00589123 },
|
||||
{ 0.00137462, 0.992734, 0.00589123 },
|
||||
{ 0.00218225, 0.992877, 0.00494094 },
|
||||
{ 0.00494209, 0.0978534, 0.897205 },
|
||||
{ 0.0054192, 0.974275, 0.0203054 },
|
||||
{ 0.00433012, 0.985054, 0.0106159 },
|
||||
{ 0.000860806, 0.996922, 0.00221698 }
|
||||
{0.00803291, 0.9676, 0.0243672},
|
||||
{0.00398714, 0.945126, 0.050887},
|
||||
{0.00398714, 0.945126, 0.050887},
|
||||
{0.00398714, 0.945126, 0.050887},
|
||||
{0.00189227, 0.859575, 0.138533},
|
||||
{0.0118341, 0.442149, 0.546017},
|
||||
{0.0216135, 0.785781, 0.192605},
|
||||
{0.0204803, 0.844276, 0.135244},
|
||||
{0.00576313, 0.961665, 0.0325716},
|
||||
});
|
||||
int init_index = 78;
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::TAN();
|
||||
auto clf = bayesnet::BoostAODE(false);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto y_pred_proba = clf.predict_proba(raw.Xv);
|
||||
auto y_pred = clf.predict(raw.Xv);
|
||||
auto yt_pred = clf.predict(raw.Xt);
|
||||
auto yt_pred_proba = clf.predict_proba(raw.Xt);
|
||||
std::cout << "yt_pred_proba proba sizes " << yt_pred_proba.sizes() << std::endl;
|
||||
REQUIRE(y_pred.size() == yt_pred.size(0));
|
||||
REQUIRE(y_pred.size() == y_pred_proba.size());
|
||||
REQUIRE(y_pred.size() == yt_pred_proba.size(0));
|
||||
REQUIRE(y_pred.size() == raw.yv.size());
|
||||
REQUIRE(y_pred_proba[0].size() == 3);
|
||||
REQUIRE(yt_pred_proba.size(1) == y_pred_proba[0].size());
|
||||
for (int i = 0; i < y_pred_proba.size(); ++i) {
|
||||
// Check predict is coherent with predict_proba
|
||||
auto maxElem = max_element(y_pred_proba[i].begin(), y_pred_proba[i].end());
|
||||
int predictedClass = distance(y_pred_proba[i].begin(), maxElem);
|
||||
REQUIRE(predictedClass == y_pred[i]);
|
||||
REQUIRE(yt_pred_proba[i].argmax().item<int>() == y_pred[i]);
|
||||
}
|
||||
// Check predict_proba values for vectors and tensors
|
||||
for (int i = 0; i < res_prob.size(); i++) {
|
||||
REQUIRE(y_pred[i] == yt_pred[i].item<int>());
|
||||
for (int j = 0; j < 3; j++) {
|
||||
REQUIRE(res_prob[i][j] == Catch::Approx(y_pred_proba[i + init_index][j]).epsilon(raw.epsilon));
|
||||
REQUIRE(res_prob[i][j] == Catch::Approx(yt_pred_proba[i + init_index][j].item<double>()).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
// for (int i = 0; i < res_prob.size(); i++) {
|
||||
// for (int j = 0; j < 3; j++) {
|
||||
// std::cout << y_pred_proba[i + init_index][j] << " ";
|
||||
// }
|
||||
// std::cout << std::endl;
|
||||
// }
|
||||
}
|
||||
TEST_CASE("BoostAODE predict_proba voting", "[BayesNet]")
|
||||
{
|
||||
auto res_prob = std::vector<std::vector<double>>({
|
||||
{0.00803291, 0.9676, 0.0243672},
|
||||
{0.00398714, 0.945126, 0.050887},
|
||||
{0.00398714, 0.945126, 0.050887},
|
||||
{0.00398714, 0.945126, 0.050887},
|
||||
{0.00189227, 0.859575, 0.138533},
|
||||
{0.0118341, 0.442149, 0.546017},
|
||||
{0.0216135, 0.785781, 0.192605},
|
||||
{0.0204803, 0.844276, 0.135244},
|
||||
{0.00576313, 0.961665, 0.0325716},
|
||||
});
|
||||
int init_index = 78;
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::BoostAODE(true);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto y_pred_proba = clf.predict_proba(raw.Xv);
|
||||
auto y_pred = clf.predict(raw.Xv);
|
||||
auto yt_pred = clf.predict(raw.Xt);
|
||||
auto yt_pred_proba = clf.predict_proba(raw.Xt);
|
||||
std::cout << "yt_pred_proba proba sizes " << yt_pred_proba.sizes() << std::endl;
|
||||
REQUIRE(y_pred.size() == yt_pred.size(0));
|
||||
REQUIRE(y_pred.size() == y_pred_proba.size());
|
||||
REQUIRE(y_pred.size() == yt_pred_proba.size(0));
|
||||
REQUIRE(y_pred.size() == raw.yv.size());
|
||||
@ -208,53 +340,24 @@ TEST_CASE("TAN predict_proba", "[BayesNet]")
|
||||
int predictedClass = distance(y_pred_proba[i].begin(), maxElem);
|
||||
REQUIRE(predictedClass == y_pred[i]);
|
||||
// Check predict is coherent with predict_proba
|
||||
for (int k = 0; k < yt_pred_proba[i].size(0); k++) {
|
||||
std::cout << yt_pred_proba[i][k].item<double>() << " ";
|
||||
}
|
||||
std::cout << "-> " << y_pred[i] << std::endl;
|
||||
REQUIRE(yt_pred_proba[i].argmax().item<int>() == y_pred[i]);
|
||||
}
|
||||
// Check predict_proba values for vectors and tensors
|
||||
for (int i = 0; i < res_prob.size(); i++) {
|
||||
REQUIRE(y_pred[i] == yt_pred[i].item<int>());
|
||||
for (int j = 0; j < 3; j++) {
|
||||
REQUIRE(res_prob[i][j] == Catch::Approx(y_pred_proba[i + init_index][j]).epsilon(raw.epsilon));
|
||||
REQUIRE(res_prob[i][j] == Catch::Approx(yt_pred_proba[i + init_index][j].item<double>()).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
}
|
||||
TEST_CASE("BoostAODE predict_proba voting", "[BayesNet]")
|
||||
{
|
||||
// auto res_prob = std::vector<std::vector<double>>({
|
||||
// { 0.00375671, 0.994457, 0.00178621 },
|
||||
// { 0.00137462, 0.992734, 0.00589123 },
|
||||
// { 0.00137462, 0.992734, 0.00589123 },
|
||||
// { 0.00137462, 0.992734, 0.00589123 },
|
||||
// { 0.00218225, 0.992877, 0.00494094 },
|
||||
// { 0.00494209, 0.0978534, 0.897205 },
|
||||
// { 0.0054192, 0.974275, 0.0203054 },
|
||||
// { 0.00433012, 0.985054, 0.0106159 },
|
||||
// { 0.000860806, 0.996922, 0.00221698 }
|
||||
// });
|
||||
// int init_index = 78;
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::BoostAODE(true);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto y_pred_proba = clf.predict_proba(raw.Xv);
|
||||
auto y_pred = clf.predict(raw.Xv);
|
||||
auto yt_pred_proba = clf.predict_proba(raw.Xt);
|
||||
// REQUIRE(y_pred.size() == y_pred_proba.size());
|
||||
// REQUIRE(y_pred.size() == yt_pred_proba.size(0));
|
||||
// REQUIRE(y_pred.size() == raw.yv.size());
|
||||
// REQUIRE(y_pred_proba[0].size() == 3);
|
||||
// REQUIRE(yt_pred_proba.size(1) == y_pred_proba[0].size());
|
||||
// for (int i = 0; i < y_pred_proba.size(); ++i) {
|
||||
// auto maxElem = max_element(y_pred_proba[i].begin(), y_pred_proba[i].end());
|
||||
// int predictedClass = distance(y_pred_proba[i].begin(), maxElem);
|
||||
// REQUIRE(predictedClass == y_pred[i]);
|
||||
// // Check predict is coherent with predict_proba
|
||||
// REQUIRE(yt_pred_proba[i].argmax().item<int>() == y_pred[i]);
|
||||
// }
|
||||
// // Check predict_proba values for vectors and tensors
|
||||
// for (int i = 0; i < res_prob.size(); i++) {
|
||||
// for (int j = 0; j < 3; j++) {
|
||||
// REQUIRE(res_prob[i][j] == Catch::Approx(y_pred_proba[i + init_index][j]).epsilon(raw.epsilon));
|
||||
// REQUIRE(res_prob[i][j] == Catch::Approx(yt_pred_proba[i + init_index][j].item<double>()).epsilon(raw.epsilon));
|
||||
// std::cout << y_pred_proba[i + init_index][j] << " ";
|
||||
// }
|
||||
// std::cout << std::endl;
|
||||
// }
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user