Add some tests and code quality badge
This commit is contained in:
parent
df45fddd45
commit
cb26ef2562
@ -4,6 +4,7 @@
|
||||
[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](<https://opensource.org/licenses/MIT>)
|
||||
![Gitea Release](https://img.shields.io/gitea/v/release/rmontanana/bayesnet?gitea_url=https://gitea.rmontanana.es:3000)
|
||||
![Gitea Last Commit](https://img.shields.io/gitea/last-commit/rmontanana/bayesnet?gitea_url=https://gitea.rmontanana.es:3000&logo=gitea)
|
||||
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/cf3e0ac71d764650b1bf4d8d00d303b1)](https://app.codacy.com/gh/Doctorado-ML/BayesNet/dashboard?utm_source=gh&utm_medium=referral&utm_content=&utm_campaign=Badge_grade)
|
||||
|
||||
Bayesian Network Classifiers using libtorch from scratch
|
||||
|
||||
|
@ -5,25 +5,23 @@ namespace bayesnet {
|
||||
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
{
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
className = className_;
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
||||
SPODE::fit(dataset, features, className, states);
|
||||
states = localDiscretizationProposal(states, model);
|
||||
return *this;
|
||||
return commonFit(features_, className_, states_);
|
||||
}
|
||||
|
||||
SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
{
|
||||
if (!torch::is_floating_point(dataset)) {
|
||||
throw std::runtime_error("Dataset must be a floating point tensor");
|
||||
}
|
||||
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
|
||||
y = dataset.index({ -1, "..." }).clone();
|
||||
y = dataset.index({ -1, "..." }).clone().to(torch::kInt32);
|
||||
return commonFit(features_, className_, states_);
|
||||
}
|
||||
|
||||
SPODELd& SPODELd::commonFit(const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
{
|
||||
features = features_;
|
||||
className = className_;
|
||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
@ -34,7 +32,6 @@ namespace bayesnet {
|
||||
states = localDiscretizationProposal(states, model);
|
||||
return *this;
|
||||
}
|
||||
|
||||
torch::Tensor SPODELd::predict(torch::Tensor& X)
|
||||
{
|
||||
auto Xt = prepareX(X);
|
||||
|
@ -10,6 +10,7 @@ namespace bayesnet {
|
||||
virtual ~SPODELd() = default;
|
||||
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
SPODELd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
SPODELd& commonFit(const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states);
|
||||
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
|
@ -10,18 +10,6 @@ namespace bayesnet {
|
||||
sort(indices.begin(), indices.end(), [&nums](int i, int j) {return nums[i] > nums[j];});
|
||||
return indices;
|
||||
}
|
||||
std::vector<std::vector<int>> tensorToVector(torch::Tensor& dtensor)
|
||||
{
|
||||
// convert mxn tensor to nxm std::vector
|
||||
std::vector<std::vector<int>> result;
|
||||
// Iterate over cols
|
||||
for (int i = 0; i < dtensor.size(1); ++i) {
|
||||
auto col_tensor = dtensor.index({ "...", i });
|
||||
auto col = std::vector<int>(col_tensor.data_ptr<int>(), col_tensor.data_ptr<int>() + dtensor.size(0));
|
||||
result.push_back(col);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
std::vector<std::vector<double>> tensorToVectorDouble(torch::Tensor& dtensor)
|
||||
{
|
||||
// convert mxn tensor to mxn std::vector
|
||||
|
@ -4,7 +4,6 @@
|
||||
#include <torch/torch.h>
|
||||
namespace bayesnet {
|
||||
std::vector<int> argsort(std::vector<double>& nums);
|
||||
std::vector<std::vector<int>> tensorToVector(torch::Tensor& dtensor);
|
||||
std::vector<std::vector<double>> tensorToVectorDouble(torch::Tensor& dtensor);
|
||||
torch::Tensor vectorToTensor(std::vector<std::vector<int>>& vector, bool transpose = true);
|
||||
}
|
||||
|
@ -1,4 +1,5 @@
|
||||
filter = bayesnet/
|
||||
exclude-directories = build_debug/lib/
|
||||
exclude = bayesnet/utils/loguru.*
|
||||
print-summary = yes
|
||||
sort = uncovered-percent
|
||||
|
@ -207,7 +207,7 @@ TEST_CASE("Model predict_proba", "[Models]")
|
||||
}
|
||||
TEST_CASE("BoostAODE voting-proba", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", false);
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::BoostAODE(false);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score_proba = clf.score(raw.Xv, raw.yv);
|
||||
@ -224,9 +224,53 @@ TEST_CASE("BoostAODE voting-proba", "[Models]")
|
||||
clf.dump_cpt();
|
||||
REQUIRE(clf.topological_order() == std::vector<std::string>());
|
||||
}
|
||||
TEST_CASE("AODE voting-proba", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::AODE(false);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score_proba = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_proba = clf.predict_proba(raw.Xv);
|
||||
clf.setHyperparameters({
|
||||
{"predict_voting",true},
|
||||
});
|
||||
auto score_voting = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_voting = clf.predict_proba(raw.Xv);
|
||||
REQUIRE(score_proba == Catch::Approx(0.79439f).epsilon(raw.epsilon));
|
||||
REQUIRE(score_voting == Catch::Approx(0.78972f).epsilon(raw.epsilon));
|
||||
REQUIRE(pred_voting[67][0] == Catch::Approx(0.888889).epsilon(raw.epsilon));
|
||||
REQUIRE(pred_proba[67][0] == Catch::Approx(0.702184).epsilon(raw.epsilon));
|
||||
REQUIRE(clf.topological_order() == std::vector<std::string>());
|
||||
}
|
||||
TEST_CASE("SPODELd dataset", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", false);
|
||||
auto clf = bayesnet::SPODELd(0);
|
||||
raw.dataset.to(torch::kFloat32);
|
||||
clf.fit(raw.dataset, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
clf.fit(raw.Xt, raw.yt, raw.featurest, raw.classNamet, raw.statest);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
REQUIRE(score == Catch::Approx(0.97333f).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.97333f).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("KDB with hyperparameters", "[Models]")
|
||||
{
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
clf.setHyperparameters({
|
||||
{"k", 3},
|
||||
{"theta", 0.7},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.featuresv, raw.classNamev, raw.statesv);
|
||||
auto scoret = clf.score(raw.Xv, raw.yv);
|
||||
REQUIRE(score == Catch::Approx(0.827103).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.761682).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("BoostAODE order asc, desc & random", "[Models]")
|
||||
{
|
||||
|
||||
auto raw = RawDatasets("glass", true);
|
||||
std::map<std::string, double> scores{
|
||||
{"asc", 0.83645f }, { "desc", 0.84579f }, { "rand", 0.84112 }
|
||||
|
Loading…
Reference in New Issue
Block a user