Bayesian Network Classifiers using libtorch from scratch
Go to file
2024-03-08 09:02:22 +01:00
.vscode Update README and docs 2024-02-27 17:16:26 +01:00
cmake/modules Fix some mistakes to correct tests 2023-07-20 18:55:56 +02:00
config Remove other projects' sources 2024-01-07 19:58:22 +01:00
diagrams Upgrade models version and Add class diagram 2023-09-02 14:39:43 +02:00
docs Update version number and Changelog 2024-03-06 17:04:16 +01:00
lib Create installation process 2024-03-08 00:37:36 +01:00
sample Change include of library headers 2024-03-08 01:13:30 +01:00
src Change include of library headers 2024-03-08 01:13:30 +01:00
tests Change include of library headers 2024-03-08 01:13:30 +01:00
.clang-tidy Update gcovr config and fix some warnings 2024-02-28 11:51:37 +01:00
.gitignore Refactor sample to be out of main CMakeLists 2024-03-08 01:09:39 +01:00
.gitmodules Add info to CHANGELOG 2024-02-24 21:33:28 +01:00
CHANGELOG.md Update changelog and readme 2024-03-08 09:02:22 +01:00
CMakeLists.txt Refactor sample to be out of main CMakeLists 2024-03-08 01:09:39 +01:00
gcovr.cfg Update gcovr config and fix some warnings 2024-02-28 11:51:37 +01:00
LICENSE Initial commit 2023-06-29 19:52:57 +00:00
Makefile Refactor sample to be out of main CMakeLists 2024-03-08 01:09:39 +01:00
README.md Update changelog and readme 2024-03-08 09:02:22 +01:00

BayesNet

License: MIT

Bayesian Network Classifiers using libtorch from scratch

Installation

Release

make release
make buildr
sudo make install

Debug & Tests

make debug
make test
make coverage

Sample app

After building and installing the release version, you can run the sample app with the following commands:

make sample
make sample fname=tests/data/glass.arff

Models

BoostAODE