Add selectKParis method
This commit is contained in:
parent
8784a24898
commit
2e3e0e0fc2
@ -19,9 +19,151 @@ namespace bayesnet {
|
||||
BoostA2DE::BoostA2DE(bool predict_voting) : Boost(predict_voting)
|
||||
{
|
||||
}
|
||||
std::vector<int> BoostA2DE::initializeModels()
|
||||
{
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
std::vector<int> featuresSelected = featureSelection(weights_);
|
||||
if (featuresSelected.size() < 2) {
|
||||
notes.push_back("No features selected in initialization");
|
||||
status = ERROR;
|
||||
return std::vector<int>();
|
||||
}
|
||||
for (int i = 0; i < featuresSelected.size() - 1; i++) {
|
||||
for (int j = i + 1; j < featuresSelected.size(); j++) {
|
||||
auto parents = { featuresSelected[i], featuresSelected[j] };
|
||||
std::unique_ptr<Classifier> model = std::make_unique<SPnDE>(parents);
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(1.0); // They will be updated later in trainModel
|
||||
n_models++;
|
||||
}
|
||||
}
|
||||
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||
return featuresSelected;
|
||||
}
|
||||
void BoostA2DE::trainModel(const torch::Tensor& weights)
|
||||
{
|
||||
//
|
||||
// Logging setup
|
||||
//
|
||||
// loguru::set_thread_name("BoostA2DE");
|
||||
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||||
// loguru::add_file("boostA2DE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||||
|
||||
// // Algorithm based on the adaboost algorithm for classification
|
||||
// // as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||
// fitted = true;
|
||||
// double alpha_t = 0;
|
||||
// torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
// bool finished = false;
|
||||
// std::vector<int> featuresUsed;
|
||||
// if (selectFeatures) {
|
||||
// featuresUsed = initializeModels();
|
||||
// auto ypred = predict(X_train);
|
||||
// std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
// // Update significance of the models
|
||||
// for (int i = 0; i < n_models; ++i) {
|
||||
// significanceModels[i] = alpha_t;
|
||||
// }
|
||||
// if (finished) {
|
||||
// return;
|
||||
// }
|
||||
// }
|
||||
// int numItemsPack = 0; // The counter of the models inserted in the current pack
|
||||
// // Variables to control the accuracy finish condition
|
||||
// double priorAccuracy = 0.0;
|
||||
// double improvement = 1.0;
|
||||
// double convergence_threshold = 1e-4;
|
||||
// int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
|
||||
// // Step 0: Set the finish condition
|
||||
// // epsilon sub t > 0.5 => inverse the weights policy
|
||||
// // validation error is not decreasing
|
||||
// // run out of features
|
||||
// bool ascending = order_algorithm == Orders.ASC;
|
||||
// std::mt19937 g{ 173 };
|
||||
// while (!finished) {
|
||||
// // Step 1: Build ranking with mutual information
|
||||
// auto pairSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
|
||||
// if (order_algorithm == Orders.RAND) {
|
||||
// std::shuffle(featureSelection.begin(), featureSelection.end(), g);
|
||||
// }
|
||||
// // Remove used features
|
||||
// featureSelection.erase(remove_if(begin(featureSelection), end(featureSelection), [&](auto x)
|
||||
// { return std::find(begin(featuresUsed), end(featuresUsed), x) != end(featuresUsed);}),
|
||||
// end(featureSelection)
|
||||
// );
|
||||
// int k = bisection ? pow(2, tolerance) : 1;
|
||||
// int counter = 0; // The model counter of the current pack
|
||||
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||
// while (counter++ < k && featureSelection.size() > 0) {
|
||||
// auto feature = featureSelection[0];
|
||||
// featureSelection.erase(featureSelection.begin());
|
||||
// std::unique_ptr<Classifier> model;
|
||||
// model = std::make_unique<SPODE>(feature);
|
||||
// model->fit(dataset, features, className, states, weights_);
|
||||
// alpha_t = 0.0;
|
||||
// if (!block_update) {
|
||||
// auto ypred = model->predict(X_train);
|
||||
// // Step 3.1: Compute the classifier amout of say
|
||||
// std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
// }
|
||||
// // Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
// numItemsPack++;
|
||||
// featuresUsed.push_back(feature);
|
||||
// models.push_back(std::move(model));
|
||||
// significanceModels.push_back(alpha_t);
|
||||
// n_models++;
|
||||
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
|
||||
// }
|
||||
// if (block_update) {
|
||||
// std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
||||
// }
|
||||
// if (convergence && !finished) {
|
||||
// auto y_val_predict = predict(X_test);
|
||||
// double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||||
// if (priorAccuracy == 0) {
|
||||
// priorAccuracy = accuracy;
|
||||
// } else {
|
||||
// improvement = accuracy - priorAccuracy;
|
||||
// }
|
||||
// if (improvement < convergence_threshold) {
|
||||
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
// tolerance++;
|
||||
// } else {
|
||||
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
// tolerance = 0; // Reset the counter if the model performs better
|
||||
// numItemsPack = 0;
|
||||
// }
|
||||
// if (convergence_best) {
|
||||
// // Keep the best accuracy until now as the prior accuracy
|
||||
// priorAccuracy = std::max(accuracy, priorAccuracy);
|
||||
// } else {
|
||||
// // Keep the last accuray obtained as the prior accuracy
|
||||
// priorAccuracy = accuracy;
|
||||
// }
|
||||
// }
|
||||
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
||||
// finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
|
||||
// }
|
||||
// if (tolerance > maxTolerance) {
|
||||
// if (numItemsPack < n_models) {
|
||||
// notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
||||
// for (int i = 0; i < numItemsPack; ++i) {
|
||||
// significanceModels.pop_back();
|
||||
// models.pop_back();
|
||||
// n_models--;
|
||||
// }
|
||||
// } else {
|
||||
// notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||
// }
|
||||
// }
|
||||
// if (featuresUsed.size() != features.size()) {
|
||||
// notes.push_back("Used features in train: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()));
|
||||
// status = WARNING;
|
||||
// }
|
||||
// notes.push_back("Number of models: " + std::to_string(n_models));
|
||||
}
|
||||
std::vector<std::string> BoostA2DE::graph(const std::string& title) const
|
||||
{
|
||||
|
@ -18,6 +18,8 @@ namespace bayesnet {
|
||||
std::vector<std::string> graph(const std::string& title = "BoostA2DE") const override;
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
std::vector<int> initializeModels();
|
||||
};
|
||||
}
|
||||
#endif
|
@ -10,14 +10,12 @@
|
||||
#include <limits.h>
|
||||
#include <tuple>
|
||||
#include "BoostAODE.h"
|
||||
#include "lib/log/loguru.cpp"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
BoostAODE::BoostAODE(bool predict_voting) : Boost(predict_voting)
|
||||
{
|
||||
}
|
||||
|
||||
std::vector<int> BoostAODE::initializeModels()
|
||||
{
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
@ -37,9 +35,9 @@ namespace bayesnet {
|
||||
//
|
||||
// Logging setup
|
||||
//
|
||||
loguru::set_thread_name("BoostAODE");
|
||||
loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||||
loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||||
// loguru::set_thread_name("BoostAODE");
|
||||
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||||
// loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||||
|
||||
// Algorithm based on the adaboost algorithm for classification
|
||||
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||
@ -85,7 +83,7 @@ namespace bayesnet {
|
||||
);
|
||||
int k = bisection ? pow(2, tolerance) : 1;
|
||||
int counter = 0; // The model counter of the current pack
|
||||
VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||
while (counter++ < k && featureSelection.size() > 0) {
|
||||
auto feature = featureSelection[0];
|
||||
featureSelection.erase(featureSelection.begin());
|
||||
@ -104,7 +102,7 @@ namespace bayesnet {
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(alpha_t);
|
||||
n_models++;
|
||||
VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
|
||||
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
|
||||
}
|
||||
if (block_update) {
|
||||
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
||||
@ -118,10 +116,10 @@ namespace bayesnet {
|
||||
improvement = accuracy - priorAccuracy;
|
||||
}
|
||||
if (improvement < convergence_threshold) {
|
||||
VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance++;
|
||||
} else {
|
||||
VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance = 0; // Reset the counter if the model performs better
|
||||
numItemsPack = 0;
|
||||
}
|
||||
@ -133,13 +131,13 @@ namespace bayesnet {
|
||||
priorAccuracy = accuracy;
|
||||
}
|
||||
}
|
||||
VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
||||
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
||||
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
|
||||
}
|
||||
if (tolerance > maxTolerance) {
|
||||
if (numItemsPack < n_models) {
|
||||
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
||||
VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
||||
for (int i = 0; i < numItemsPack; ++i) {
|
||||
significanceModels.pop_back();
|
||||
models.pop_back();
|
||||
@ -147,7 +145,7 @@ namespace bayesnet {
|
||||
}
|
||||
} else {
|
||||
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||
VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||
}
|
||||
}
|
||||
if (featuresUsed.size() != features.size()) {
|
||||
|
@ -10,6 +10,7 @@
|
||||
#include <vector>
|
||||
#include "bayesnet/classifiers/SPODE.h"
|
||||
#include "Boost.h"
|
||||
|
||||
namespace bayesnet {
|
||||
class BoostAODE : public Boost {
|
||||
public:
|
||||
|
@ -30,6 +30,44 @@ namespace bayesnet {
|
||||
}
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
}
|
||||
std::vector<std::pair<int, int>> Metrics::SelectKPairs(const torch::Tensor& weights, bool ascending, unsigned k)
|
||||
{
|
||||
// Return the K Best features
|
||||
auto n = features.size();
|
||||
if (k == 0) {
|
||||
k = n;
|
||||
}
|
||||
// compute scores
|
||||
scoresKPairs.clear();
|
||||
pairsKBest.clear();
|
||||
auto label = samples.index({ -1, "..." });
|
||||
// for (int i = 0; i < n; ++i) {
|
||||
// for (int j = i + 1; j < n; ++j) {
|
||||
// scoresKBest.push_back(mutualInformation(samples.index({ i, "..." }), samples.index({ j, "..." }), weights));
|
||||
// featuresKBest.push_back(i);
|
||||
// featuresKBest.push_back(j);
|
||||
// }
|
||||
// }
|
||||
// // sort & reduce scores and features
|
||||
// if (ascending) {
|
||||
// sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
|
||||
// { return scoresKBest[i] < scoresKBest[j]; });
|
||||
// sort(scoresKBest.begin(), scoresKBest.end(), std::less<double>());
|
||||
// if (k < n) {
|
||||
// for (int i = 0; i < n - k; ++i) {
|
||||
// featuresKBest.erase(featuresKBest.begin());
|
||||
// scoresKBest.erase(scoresKBest.begin());
|
||||
// }
|
||||
// }
|
||||
// } else {
|
||||
// sort(featuresKBest.begin(), featuresKBest.end(), [&](int i, int j)
|
||||
// { return scoresKBest[i] > scoresKBest[j]; });
|
||||
// sort(scoresKBest.begin(), scoresKBest.end(), std::greater<double>());
|
||||
// featuresKBest.resize(k);
|
||||
// scoresKBest.resize(k);
|
||||
// }
|
||||
return pairsKBest;
|
||||
}
|
||||
std::vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
|
||||
{
|
||||
// Return the K Best features
|
||||
|
@ -16,6 +16,7 @@ namespace bayesnet {
|
||||
Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
||||
Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
||||
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
|
||||
std::vector<std::pair<int, int>> SelectKPairs(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
|
||||
std::vector<double> getScoresKBest() const;
|
||||
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
||||
double conditionalMutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights);
|
||||
@ -41,7 +42,7 @@ namespace bayesnet {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
template <class T>
|
||||
template <class T>
|
||||
T pop_first(std::vector<T>& v)
|
||||
{
|
||||
T temp = v[0];
|
||||
@ -52,6 +53,8 @@ namespace bayesnet {
|
||||
int classNumStates = 0;
|
||||
std::vector<double> scoresKBest;
|
||||
std::vector<int> featuresKBest; // sorted indices of the features
|
||||
std::vector<std::pair<int, int>> pairsKBest; // sorted indices of the pairs
|
||||
std::map<std::pair<int, int>, double> scoresKPairs;
|
||||
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
||||
};
|
||||
}
|
||||
|
@ -8,21 +8,35 @@
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include "bayesnet/utils/BayesMetrics.h"
|
||||
#include "bayesnet/ensembles/BoostA2DE.h"
|
||||
#include "TestUtils.h"
|
||||
|
||||
|
||||
TEST_CASE("Feature_select CFS", "[BoostA2DE]")
|
||||
TEST_CASE("Build basic model", "[BoostA2DE]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::BoostA2DE();
|
||||
clf.setHyperparameters({ {"select_features", "CFS"} });
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
REQUIRE(clf.getNumberOfNodes() == 0);
|
||||
REQUIRE(clf.getNumberOfEdges() == 0);
|
||||
// REQUIRE(clf.getNotes().size() == 2);
|
||||
// REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 9 with CFS");
|
||||
// REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
||||
auto raw = RawDatasets("diabetes", true);
|
||||
bayesnet::Metrics metrics(raw.dataset, raw.features, raw.className, raw.classNumStates);
|
||||
auto expected = std::map<std::pair<int, int>, double>{
|
||||
{ { 0, 1 }, 0.0 },
|
||||
{ { 0, 2 }, 0.287696 },
|
||||
{ { 0, 3 }, 0.403749 },
|
||||
{ { 1, 2 }, 1.17112 },
|
||||
{ { 1, 3 }, 1.31852 },
|
||||
{ { 2, 3 }, 0.210068 },
|
||||
};
|
||||
for (int i = 0; i < raw.features.size() - 1; ++i) {
|
||||
for (int j = i + 1; j < raw.features.size(); ++j) {
|
||||
double result = metrics.conditionalMutualInformation(raw.dataset.index({ i, "..." }), raw.dataset.index({ j, "..." }), raw.yt, raw.weights);
|
||||
// REQUIRE(result == Catch::Approx(expected.at({ i, j })).epsilon(raw.epsilon));
|
||||
auto clf = bayesnet::SPnDE({ i, j });
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
auto score = clf.score(raw.Xt, raw.yt);
|
||||
std::cout << " i " << i << " j " << j << " cmi "
|
||||
<< std::setw(8) << std::setprecision(6) << fixed << result
|
||||
<< " score = " << score << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
// TEST_CASE("Feature_select IWSS", "[BoostAODE]")
|
||||
// {
|
||||
|
@ -104,7 +104,7 @@ TEST_CASE("Order asc, desc & random", "[BoostAODE]")
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
INFO("BoostAODE order: " + order);
|
||||
INFO("BoostAODE order: " << order);
|
||||
REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||
}
|
||||
@ -120,7 +120,7 @@ TEST_CASE("Oddities", "[BoostAODE]")
|
||||
{ { "maxTolerance", 5 } },
|
||||
};
|
||||
for (const auto& hyper : bad_hyper.items()) {
|
||||
INFO("BoostAODE hyper: " + hyper.value().dump());
|
||||
INFO("BoostAODE hyper: " << hyper.value().dump());
|
||||
REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
|
||||
}
|
||||
REQUIRE_THROWS_AS(clf.setHyperparameters({ {"maxTolerance", 0 } }), std::invalid_argument);
|
||||
@ -131,7 +131,7 @@ TEST_CASE("Oddities", "[BoostAODE]")
|
||||
{ { "select_features","FCBF" }, { "threshold", 1.01 } },
|
||||
};
|
||||
for (const auto& hyper : bad_hyper_fit.items()) {
|
||||
INFO("BoostAODE hyper: " + hyper.value().dump());
|
||||
INFO("BoostAODE hyper: " << hyper.value().dump());
|
||||
clf.setHyperparameters(hyper.value());
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states), std::invalid_argument);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user