22 Commits
v2.0.0 ... main

Author SHA1 Message Date
Ricardo Montañana Gómez
42b91d1391 Create version 2.1.1 (#12)
* Update version and dependencies

* Fix conan and create new version (#11)

* First approach

* Fix debug conan build target

* Add viewcoverage and fix coverage generation

* Add more tests to cover new integrity checks

* Add tests to accomplish 100%

* Fix conan-create makefile target

* Update debug build

* Fix release build

* Update github build workflow

* Update github workflow

* Update github workflow

* Update github workflow

* Update github workflow remove coverage report
2025-07-19 22:04:10 +02:00
08d8910b34 Add version 2.7.1 2025-07-16 16:11:16 +02:00
Ricardo Montañana Gómez
6d8b55a808 Fix conan (#10)
* Fix debug conan build target

* Add viewcoverage and fix coverage generation

* Add more tests to cover new integrity checks

* Add tests to accomplish 100%

* Fix conan-create makefile target
2025-07-02 20:09:34 +02:00
c1759ba1ce Fix conan build 2025-06-28 19:17:44 +02:00
f1dae498ac Fix tests 2025-06-28 18:41:33 +02:00
4418ea8a6f Compiling right 2025-06-28 17:18:57 +02:00
159e24b5cb Remove submodule 2025-06-28 16:38:43 +02:00
77e28e728e Remove submodule 2025-06-28 16:38:19 +02:00
18db982dec Update build method 2025-06-28 13:55:04 +02:00
99b751a4d4 Claude enhancement proposal 2025-06-28 13:17:31 +02:00
059fd33b4e Begin adding conan dependency manager 2025-06-28 01:27:22 +02:00
e068bf0a54 Add technical analysis report 2025-06-27 12:35:48 +02:00
Ricardo Montañana Gómez
cfb993f5ec Update README.md 2024-11-29 14:43:37 +01:00
7d62d6af4a Remove unneeded ; 2024-11-20 20:07:09 +01:00
ea70535984 Update config variable names 2024-09-29 13:28:44 +02:00
2d8b949abd Refactor library version and installation 2024-07-23 00:36:31 +02:00
ab12622009 Add install cmake/make target 2024-07-22 22:01:33 +02:00
248a511972 Add flag to build sample in Makefile 2024-07-22 19:38:12 +02:00
d9bd0126f9 Fix version number in tests 2024-07-22 12:23:21 +02:00
210af46a88 Change library name to fimdlp 2024-07-22 11:26:16 +02:00
2db60e007d Update version in test 2024-07-04 18:21:26 +02:00
1cf245fa49 Update version number 2024-07-04 18:19:05 +02:00
44 changed files with 2042 additions and 158 deletions

11
.conan/profiles/default Normal file
View File

@@ -0,0 +1,11 @@
[settings]
os=Linux
arch=x86_64
compiler=gcc
compiler.version=11
compiler.libcxx=libstdc++11
build_type=Release
[conf]
tools.system.package_manager:mode=install
tools.system.package_manager:sudo=True

View File

@@ -19,26 +19,29 @@ jobs:
submodules: recursive
- name: Install sonar-scanner and build-wrapper
uses: SonarSource/sonarcloud-github-c-cpp@v2
- name: Install Python and Conan
run: |
sudo apt-get update
sudo apt-get -y install python3 python3-pip
pip3 install conan
- name: Install lcov & gcovr
run: |
sudo apt-get -y install lcov
sudo apt-get -y install gcovr
- name: Install Libtorch
- name: Setup Conan profileson
run: |
wget https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-2.3.1%2Bcpu.zip
unzip libtorch-cxx11-abi-shared-with-deps-2.3.1+cpu.zip
conan profile detect --force
conan remote add cimmeria https://conan.rmontanana.es/artifactory/api/conan/Cimmeria
- name: Install dependencies with Conan
run: |
conan install . --build=missing -of build_debug -s build_type=Debug -o enable_testing=True
- name: Configure with CMake
run: |
cmake -S . -B build_debug -DCMAKE_TOOLCHAIN_FILE=build_debug/build/Debug/generators/conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Debug -DENABLE_TESTING=ON
- name: Tests & build-wrapper
run: |
cmake -S . -B build -Wno-dev -DCMAKE_PREFIX_PATH=$(pwd)/libtorch -DCMAKE_BUILD_TYPE=Debug -DENABLE_TESTING=ON
build-wrapper-linux-x86-64 --out-dir ${{ env.BUILD_WRAPPER_OUT_DIR }} cmake --build build/ --config Debug
cmake --build build -j 4
cd build
ctest -C Debug --output-on-failure -j 4
gcovr -f ../src/CPPFImdlp.cpp -f ../src/Metrics.cpp -f ../src/BinDisc.cpp -f ../src/Discretizer.cpp --txt --sonarqube=coverage.xml
- name: Run sonar-scanner
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
SONAR_TOKEN: ${{ secrets.SONAR_TOKEN }}
run: |
sonar-scanner --define sonar.cfamily.compile-commands="${{ env.BUILD_WRAPPER_OUT_DIR }}" \
--define sonar.coverageReportPaths=build/coverage.xml
build-wrapper-linux-x86-64 --out-dir ${{ env.BUILD_WRAPPER_OUT_DIR }} cmake --build build_debug --config Debug -j 4
cp -r tests/datasets build_debug/tests/datasets
cd build_debug/tests
ctest --output-on-failure -j 4

3
.gitignore vendored
View File

@@ -39,4 +39,5 @@ build_release
.idea
cmake-*
**/CMakeFiles
**/gcovr-report
**/gcovr-report
CMakeUserPresets.json

3
.gitmodules vendored
View File

@@ -1,3 +0,0 @@
[submodule "tests/lib/Files"]
path = tests/lib/Files
url = https://github.com/rmontanana/ArffFiles.git

View File

@@ -104,6 +104,10 @@
"stop_token": "cpp",
"text_encoding": "cpp",
"typeindex": "cpp",
"valarray": "cpp"
"valarray": "cpp",
"csignal": "cpp",
"regex": "cpp",
"future": "cpp",
"shared_mutex": "cpp"
}
}

222
CHANGELOG.md Normal file
View File

@@ -0,0 +1,222 @@
# Changelog
All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [2.1.1] - 2025-07-17
### Internal Changes
- Updated Libtorch to version 2.7.1
- Updated ArffFiles library to version 1.2.1
- Enhance CMake configuration for better compatibility
## [2.1.0] - 2025-06-28
### Added
- Conan dependency manager support
- Technical analysis report
### Changed
- Updated README.md
- Refactored library version and installation system
- Updated config variable names
### Fixed
- Removed unneeded semicolon
## [2.0.1] - 2024-07-22
### Added
- CMake install target and make install command
- Flag to control sample building in Makefile
### Changed
- Library name changed to `fimdlp`
- Updated version numbers across test files
### Fixed
- Version number consistency in tests
## [2.0.0] - 2024-07-04
### Added
- Makefile with build & test actions for easier development
- PyTorch (libtorch) integration for tensor operations
### Changed
- Major refactoring of build system
- Updated build workflows and CI configuration
### Fixed
- BinDisc quantile calculation errors (#9)
- Error in percentile method calculation
- Integer type issues in calculations
- Multiple GitHub Actions configuration fixes
## [1.2.1] - 2024-06-08
### Added
- PyTorch tensor methods for discretization
- Improved library build system
### Changed
- Refactored sample build process
### Fixed
- Library creation and linking issues
- Multiple GitHub Actions workflow fixes
## [1.2.0] - 2024-06-05
### Added
- **Discretizer** - Abstract base class for all discretization algorithms (#8)
- **BinDisc** - K-bins discretization with quantile and uniform strategies (#7)
- Transform method to discretize values using existing cut points
- Support for multiple datasets in sample program
- Docker development container configuration
### Changed
- Refactored system types throughout the library
- Improved sample program with better dataset handling
- Enhanced build system with debug options
### Fixed
- Transform method initialization issues
- ARFF file attribute name extraction
- Sample program library binary separation
## [1.1.3] - 2024-06-05
### Added
- `max_cutpoints` hyperparameter for controlling algorithm complexity
- `max_depth` and `min_length` as configurable hyperparameters
- Enhanced sample program with hyperparameter support
- Additional datasets for testing
### Changed
- Improved constructor design and parameter handling
- Enhanced test coverage and reporting
- Refactored build system configuration
### Fixed
- Depth initialization in fit method
- Code quality improvements and smell fixes
- Exception handling in value cut point calculations
## [1.1.2] - 2023-04-01
### Added
- Comprehensive test suite with GitHub Actions CI
- SonarCloud integration for code quality analysis
- Enhanced build system with automated testing
### Changed
- Improved GitHub Actions workflow configuration
- Updated project structure for better maintainability
### Fixed
- Build system configuration issues
- Test execution and coverage reporting
## [1.1.1] - 2023-02-22
### Added
- Limits header for proper compilation
- Enhanced build system support
### Changed
- Updated version numbering system
- Improved SonarCloud configuration
### Fixed
- ValueCutPoint exception handling (removed unnecessary exception)
- Build system compatibility issues
- GitHub Actions token configuration
## [1.1.0] - 2023-02-21
### Added
- Classic algorithm implementation for performance comparison
- Enhanced ValueCutPoint logic with same_values detection
- Glass dataset support in sample program
- Debug configuration for development
### Changed
- Refactored ValueCutPoint algorithm for better accuracy
- Improved candidate selection logic
- Enhanced sample program with multiple datasets
### Fixed
- Sign error in valueCutPoint calculation
- Final cut value computation
- Duplicate dataset handling in sample
## [1.0.0.0] - 2022-12-21
### Added
- Initial release of MDLP (Minimum Description Length Principle) discretization library
- Core CPPFImdlp algorithm implementation based on Fayyad & Irani's paper
- Entropy and information gain calculation methods
- Sample program demonstrating library usage
- CMake build system
- Basic test suite
- ARFF file format support for datasets
### Features
- Recursive discretization using entropy-based criteria
- Stable sorting with tie-breaking for identical values
- Configurable algorithm parameters
- Cross-platform C++ implementation
---
## Release Notes
### Version 2.x
- **Breaking Changes**: Library renamed to `fimdlp`
- **Major Enhancement**: PyTorch integration for improved performance
- **New Features**: Comprehensive discretization framework with multiple algorithms
### Version 1.x
- **Core Algorithm**: MDLP discretization implementation
- **Extensibility**: Hyperparameter support and algorithm variants
- **Quality**: Comprehensive testing and CI/CD pipeline
### Version 1.0.x
- **Foundation**: Initial stable implementation
- **Algorithm**: Core MDLP discretization functionality

77
CLAUDE.md Normal file
View File

@@ -0,0 +1,77 @@
# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Project Overview
This is a C++ implementation of the MDLP (Minimum Description Length Principle) discretization algorithm based on Fayyad & Irani's paper. The library provides discretization methods for continuous-valued attributes in classification learning.
## Build System
The project uses CMake with a Makefile wrapper for common tasks:
### Common Commands
- `make build` - Build release version with sample program
- `make test` - Run full test suite with coverage report
- `make install` - Install the library
### Build Configurations
- **Release**: Built in `build_release/` directory
- **Debug**: Built in `build_debug/` directory (for testing)
### Dependencies
- PyTorch (libtorch) - Required dependency
- GoogleTest - Fetched automatically for testing
- Coverage tools: lcov, genhtml
## Code Architecture
### Core Components
1. **Discretizer** (`src/Discretizer.h/cpp`) - Abstract base class for all discretizers
2. **CPPFImdlp** (`src/CPPFImdlp.h/cpp`) - Main MDLP algorithm implementation
3. **BinDisc** (`src/BinDisc.h/cpp`) - K-bins discretization (quantile/uniform strategies)
4. **Metrics** (`src/Metrics.h/cpp`) - Entropy and information gain calculations
### Key Data Types
- `samples_t` - Input data samples
- `labels_t` - Classification labels
- `indices_t` - Index arrays for sorting/processing
- `precision_t` - Floating-point precision type
### Algorithm Flow
1. Data is sorted using labels as tie-breakers for identical values
2. MDLP recursively finds optimal cut points using entropy-based criteria
3. Cut points are validated to ensure meaningful splits
4. Transform method maps continuous values to discrete bins
## Testing
Tests are built with GoogleTest and include:
- `Metrics_unittest` - Entropy/information gain tests
- `FImdlp_unittest` - Core MDLP algorithm tests
- `BinDisc_unittest` - K-bins discretization tests
- `Discretizer_unittest` - Base class functionality tests
### Running Tests
```bash
make test # Runs all tests and generates coverage report
cd build_debug/tests && ctest # Run tests directly
```
Coverage reports are generated at `build_debug/tests/coverage/index.html`.
## Sample Usage
The sample program demonstrates basic usage:
```bash
build_release/sample/sample -f iris -m 2
```
## Development Notes
- The library uses PyTorch tensors for efficient numerical operations
- Code follows C++17 standards
- Coverage is maintained at 100%
- The implementation handles edge cases like duplicate values and small intervals
- Conan package manager support is available via `conanfile.py`

View File

@@ -1,34 +1,81 @@
cmake_minimum_required(VERSION 3.20)
project(mdlp)
project(fimdlp
LANGUAGES CXX
DESCRIPTION "Discretization algorithm based on the paper by Fayyad & Irani Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning."
HOMEPAGE_URL "https://github.com/rmontanana/mdlp"
VERSION 2.1.1
)
set(CMAKE_CXX_STANDARD 17)
cmake_policy(SET CMP0135 NEW)
find_package(Torch REQUIRED)
# Find dependencies
find_package(Torch CONFIG REQUIRED)
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-elide-constructors")
# Options
# -------
option(ENABLE_TESTING OFF)
option(COVERAGE OFF)
add_subdirectory(config)
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-elide-constructors")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -O3")
if (NOT ${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-default-inline")
endif()
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
message(STATUS "Debug mode")
else()
message(STATUS "Release mode")
endif()
if (ENABLE_TESTING)
MESSAGE("Debug mode")
message(STATUS "Testing is enabled")
enable_testing()
set(CODE_COVERAGE ON)
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
set(GCC_COVERAGE_LINK_FLAGS "${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
add_subdirectory(tests)
else(ENABLE_TESTING)
MESSAGE("Release mode")
endif(ENABLE_TESTING)
else()
message(STATUS "Testing is disabled")
endif()
message(STATUS "Building sample")
add_subdirectory(sample)
include_directories(
${TORCH_INCLUDE_DIRS}
${mdlp_SOURCE_DIR}/src
${fimdlp_SOURCE_DIR}/src
${CMAKE_BINARY_DIR}/configured_files/include
)
add_library(mdlp src/CPPFImdlp.cpp src/Metrics.cpp src/BinDisc.cpp src/Discretizer.cpp)
target_link_libraries(mdlp "${TORCH_LIBRARIES}")
add_library(fimdlp src/CPPFImdlp.cpp src/Metrics.cpp src/BinDisc.cpp src/Discretizer.cpp)
target_link_libraries(fimdlp PRIVATE torch::torch)
# Installation
# ------------
include(CMakePackageConfigHelpers)
write_basic_package_version_file(
"${CMAKE_CURRENT_BINARY_DIR}/fimdlpConfigVersion.cmake"
VERSION ${PROJECT_VERSION}
COMPATIBILITY AnyNewerVersion
)
install(TARGETS fimdlp
EXPORT fimdlpTargets
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib)
install(DIRECTORY src/ DESTINATION include/fimdlp FILES_MATCHING PATTERN "*.h")
install(FILES ${CMAKE_BINARY_DIR}/configured_files/include/config.h DESTINATION include/fimdlp)
install(EXPORT fimdlpTargets
FILE fimdlpTargets.cmake
NAMESPACE fimdlp::
DESTINATION lib/cmake/fimdlp)
configure_file(fimdlpConfig.cmake.in "${CMAKE_CURRENT_BINARY_DIR}/fimdlpConfig.cmake" @ONLY)
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/fimdlpConfig.cmake"
"${CMAKE_CURRENT_BINARY_DIR}/fimdlpConfigVersion.cmake"
DESTINATION lib/cmake/fimdlp)

155
CONAN_README.md Normal file
View File

@@ -0,0 +1,155 @@
# Conan Package for fimdlp
This directory contains the Conan package configuration for the fimdlp library.
## Dependencies
The package manages the following dependencies:
### Build Requirements
- **libtorch/2.4.1** - PyTorch C++ library for tensor operations
### Test Requirements (when testing enabled)
- **catch2/3.8.1** - Modern C++ testing framework
- **arff-files** - ARFF file format support (included locally in tests/lib/Files/)
## Building with Conan
### 1. Install Dependencies and Build
```bash
# Install dependencies
conan install . --output-folder=build --build=missing
# Build the project
cd build
cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release
cmake --build .
```
### 2. Using the Build Script
```bash
# Build release version
./scripts/build_conan.sh
# Build with tests
./scripts/build_conan.sh --test
```
## Creating a Package
### 1. Create Package Locally
```bash
conan create . --profile:build=default --profile:host=default
```
### 2. Create Package with Options
```bash
# Create with testing enabled
conan create . -o enable_testing=True --profile:build=default --profile:host=default
# Create shared library version
conan create . -o shared=True --profile:build=default --profile:host=default
```
### 3. Using the Package Creation Script
```bash
./scripts/create_package.sh
```
## Uploading to Cimmeria
### 1. Configure Remote
```bash
# Add Cimmeria remote
conan remote add cimmeria https://conan.rmontanana.es/artifactory/api/conan/Cimmeria
# Login to Cimmeria
conan remote login cimmeria <username>
```
### 2. Upload Package
```bash
# Upload the package
conan upload fimdlp/2.1.0 --remote=cimmeria --all
# Or use the script (will configure remote instructions if not set up)
./scripts/create_package.sh
```
## Using the Package
### In conanfile.txt
```ini
[requires]
fimdlp/2.1.0
[generators]
CMakeDeps
CMakeToolchain
```
### In conanfile.py
```python
def requirements(self):
self.requires("fimdlp/2.1.0")
```
### In CMakeLists.txt
```cmake
find_package(fimdlp REQUIRED)
target_link_libraries(your_target fimdlp::fimdlp)
```
## Package Options
| Option | Values | Default | Description |
|--------|--------|---------|-------------|
| shared | True/False | False | Build shared library |
| fPIC | True/False | True | Position independent code |
| enable_testing | True/False | False | Enable test suite |
| enable_sample | True/False | False | Build sample program |
## Example Usage
```cpp
#include <fimdlp/CPPFImdlp.h>
#include <fimdlp/Metrics.h>
int main() {
// Create MDLP discretizer
CPPFImdlp discretizer;
// Calculate entropy
Metrics metrics;
std::vector<int> labels = {0, 1, 0, 1, 1};
double entropy = metrics.entropy(labels);
return 0;
}
```
## Testing
The package includes comprehensive tests that can be enabled with:
```bash
conan create . -o enable_testing=True
```
## Requirements
- C++17 compatible compiler
- CMake 3.20 or later
- Conan 2.0 or later

View File

@@ -1,32 +1,85 @@
SHELL := /bin/bash
.DEFAULT_GOAL := build
.PHONY: build test
.DEFAULT_GOAL := help
.PHONY: debug release install test conan-create viewcoverage
lcov := lcov
build:
@if [ -d build_release ]; then rm -fr build_release; fi
@mkdir build_release
@cmake -B build_release -S . -DCMAKE_BUILD_TYPE=Release -DENABLE_TESTING=OFF
@cmake --build build_release -j 8
f_debug = build_debug
f_release = build_release
genhtml = genhtml
docscdir = docs
test:
@if [ -d build_debug ]; then rm -fr build_debug; fi
@mkdir build_debug
@cmake -B build_debug -S . -DCMAKE_BUILD_TYPE=Debug -DENABLE_TESTING=ON
@cmake --build build_debug -j 8
@cd build_debug/tests && ctest --output-on-failure -j 8
@cd build_debug/tests && $(lcov) --capture --directory ../ --demangle-cpp --ignore-errors source,source --ignore-errors mismatch --output-file coverage.info >/dev/null 2>&1; \
define build_target
@echo ">>> Building the project for $(1)..."
@if [ -d $(2) ]; then rm -fr $(2); fi
@conan install . --build=missing -of $(2) -s build_type=$(1) $(4)
@cmake -S . -B $(2) -DCMAKE_TOOLCHAIN_FILE=$(2)/build/$(1)/generators/conan_toolchain.cmake -DCMAKE_BUILD_TYPE=$(1) -D$(3)
@cmake --build $(2) --config $(1) -j 8
endef
debug: ## Build Debug version of the library
@$(call build_target,"Debug","$(f_debug)", "ENABLE_TESTING=ON", "-o enable_testing=True")
release: ## Build Release version of the library
@$(call build_target,"Release","$(f_release)", "ENABLE_TESTING=OFF", "-o enable_testing=False")
install: ## Install the library
@echo ">>> Installing the project..."
@cmake --build $(f_release) --target install -j 8
test: ## Build Debug version and run tests
@echo ">>> Building Debug version and running tests..."
@$(MAKE) debug;
@cp -r tests/datasets $(f_debug)/tests/datasets
@cd $(f_debug)/tests && ctest --output-on-failure -j 8
@echo ">>> Generating coverage report..."
@cd $(f_debug)/tests && $(lcov) --capture --directory ../ --demangle-cpp --ignore-errors source,source --ignore-errors mismatch --ignore-errors inconsistent --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info '/usr/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'gtest/*' --output-file coverage.info >/dev/null 2>&1;
@genhtml build_debug/tests/coverage.info --demangle-cpp --output-directory build_debug/tests/coverage --title "Discretizer mdlp Coverage Report" -s -k -f --legend
@echo "* Coverage report is generated at build_debug/tests/coverage/index.html"
$(lcov) --remove coverage.info 'gtest/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info '*/.conan2/*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1;
@genhtml $(f_debug)/tests/coverage.info --demangle-cpp --output-directory $(f_debug)/tests/coverage --title "Discretizer mdlp Coverage Report" -s -k -f --legend
@echo "* Coverage report is generated at $(f_debug)/tests/coverage/index.html"
@which python || (echo ">>> Please install python"; exit 1)
@if [ ! -f build_debug/tests/coverage.info ]; then \
@if [ ! -f $(f_debug)/tests/coverage.info ]; then \
echo ">>> No coverage.info file found!"; \
exit 1; \
fi
@echo ">>> Updating coverage badge..."
@env python update_coverage.py build_debug/tests
@env python update_coverage.py $(f_debug)/tests
@echo ">>> Done"
viewcoverage: ## View the html coverage report
@which $(genhtml) >/dev/null || (echo ">>> Please install lcov (genhtml not found)"; exit 1)
@if [ ! -d $(docscdir)/coverage ]; then mkdir -p $(docscdir)/coverage; fi
@if [ ! -f $(f_debug)/tests/coverage.info ]; then \
echo ">>> No coverage.info file found. Run make coverage first!"; \
exit 1; \
fi
@$(genhtml) $(f_debug)/tests/coverage.info --demangle-cpp --output-directory $(docscdir)/coverage --title "FImdlp Coverage Report" -s -k -f --legend >/dev/null 2>&1;
@xdg-open $(docscdir)/coverage/index.html || open $(docscdir)/coverage/index.html 2>/dev/null
@echo ">>> Done";
conan-create: ## Create the conan package
@echo ">>> Creating the conan package..."
conan create . --build=missing -tf "" -s:a build_type=Release
conan create . --build=missing -tf "" -s:a build_type=Debug -o "&:enable_testing=False"
@echo ">>> Done"
help: ## Show help message
@IFS=$$'\n' ; \
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
printf "%s\n\n" "Usage: make [task]"; \
printf "%-20s %s\n" "task" "help" ; \
printf "%-20s %s\n" "------" "----" ; \
for help_line in $${help_lines[@]}; do \
IFS=$$':' ; \
help_split=($$help_line) ; \
help_command=`echo $${help_split[0]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \
help_info=`echo $${help_split[2]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \
printf '\033[36m'; \
printf "%-20s %s" $$help_command ; \
printf '\033[0m'; \
printf "%s\n" $$help_info; \
done

View File

@@ -2,6 +2,8 @@
[![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_mdlp&metric=alert_status)](https://sonarcloud.io/summary/new_code?id=rmontanana_mdlp)
[![Reliability Rating](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_mdlp&metric=reliability_rating)](https://sonarcloud.io/summary/new_code?id=rmontanana_mdlp)
[![Coverage Badge](https://img.shields.io/badge/Coverage-100,0%25-green)](html/index.html)
[![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/rmontanana/mdlp)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.16025501.svg)](https://doi.org/10.5281/zenodo.16025501)
# <img src="logo.png" alt="logo" width="50"/> mdlp
@@ -16,9 +18,7 @@ Other features:
- Intervals with the same value of the variable are not taken into account for cutpoints.
- Intervals have to have more than two examples to be evaluated (mdlp).
- The algorithm returns the cut points for the variable.
- The transform method uses the cut points returning its index in the following way:
cut[i - 1] <= x < cut[i]

View File

@@ -0,0 +1,525 @@
# Technical Analysis Report: MDLP Discretization Library
## Executive Summary
This document presents a comprehensive technical analysis of the MDLP (Minimum Description Length Principle) discretization library. The analysis covers project structure, code quality, architecture, testing methodology, documentation, and security assessment.
**Overall Rating: B+ (Good with Notable Issues)**
The library demonstrates solid software engineering practices with excellent test coverage and clean architectural design, but contains several security vulnerabilities and code quality issues that require attention before production deployment.
---
## Table of Contents
1. [Project Overview](#project-overview)
2. [Architecture & Design Analysis](#architecture--design-analysis)
3. [Code Quality Assessment](#code-quality-assessment)
4. [Testing Framework Analysis](#testing-framework-analysis)
5. [Security Analysis](#security-analysis)
6. [Documentation & Maintainability](#documentation--maintainability)
7. [Build System Evaluation](#build-system-evaluation)
8. [Strengths & Weaknesses Summary](#strengths--weaknesses-summary)
9. [Recommendations](#recommendations)
10. [Risk Assessment](#risk-assessment)
---
## Project Overview
### Description
The MDLP discretization library is a C++ implementation of Fayyad & Irani's Multi-Interval Discretization algorithm for continuous-valued attributes in classification learning. The library provides both traditional binning strategies and advanced MDLP-based discretization.
### Key Features
- **MDLP Algorithm**: Implementation of information-theoretic discretization
- **Multiple Strategies**: Uniform and quantile-based binning options
- **PyTorch Integration**: Native support for PyTorch tensors
- **High Performance**: Optimized algorithms with caching mechanisms
- **Complete Testing**: 100% code coverage with comprehensive test suite
### Technology Stack
- **Language**: C++17
- **Build System**: CMake 3.20+
- **Dependencies**: PyTorch (libtorch 2.7.0)
- **Testing**: Google Test (GTest)
- **Coverage**: lcov/genhtml
- **Package Manager**: Conan
---
## Architecture & Design Analysis
### Class Hierarchy
```
Discretizer (Abstract Base Class)
├── CPPFImdlp (MDLP Implementation)
└── BinDisc (Simple Binning)
Metrics (Standalone Utility Class)
```
### Design Patterns Identified
#### ✅ **Well-Implemented Patterns**
- **Template Method Pattern**: Base class provides `fit_transform()` while derived classes implement `fit()`
- **Facade Pattern**: Unified interface for both C++ vectors and PyTorch tensors
- **Composition**: `CPPFImdlp` composes `Metrics` for statistical calculations
#### ⚠️ **Pattern Issues**
- **Strategy Pattern**: `BinDisc` uses enum-based strategy instead of proper object-oriented strategy pattern
- **Interface Segregation**: `BinDisc.fit()` ignores `y` parameter, violating interface contract
### SOLID Principles Adherence
| Principle | Rating | Notes |
|-----------|--------|-------|
| **Single Responsibility** | ✅ Good | Each class has clear, focused responsibility |
| **Open/Closed** | ✅ Good | Easy to extend with new discretization algorithms |
| **Liskov Substitution** | ⚠️ Issues | `BinDisc` doesn't properly handle supervised interface |
| **Interface Segregation** | ✅ Good | Focused interfaces, not overly broad |
| **Dependency Inversion** | ✅ Good | Depends on abstractions, not implementations |
### Architectural Strengths
- **Clean Separation**: Algorithm logic, metrics, and data handling well-separated
- **Extensible Design**: Easy to add new discretization methods
- **Multi-Interface Support**: Both C++ native and PyTorch integration
- **Performance Optimized**: Caching and efficient data structures
### Architectural Weaknesses
- **Interface Inconsistency**: Mixed supervised/unsupervised interface handling
- **Complex Single Methods**: `computeCutPoints()` handles too many responsibilities
- **Tight Coupling**: Direct access to internal data structures
- **Limited Configuration**: Algorithm parameters scattered across classes
---
## Code Quality Assessment
### Code Style & Standards
- **Consistent Naming**: Good use of camelCase and snake_case conventions
- **Header Organization**: Proper SPDX licensing and copyright headers
- **Type Safety**: Centralized type definitions in `typesFImdlp.h`
- **Modern C++**: Good use of C++17 features
### Critical Code Issues
#### 🔴 **High Priority Issues**
**Memory Safety - Unsafe Pointer Operations**
```cpp
// Location: Discretizer.cpp:35-36
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
```
- **Issue**: Direct pointer arithmetic without bounds checking
- **Risk**: Buffer overflow if tensor data is malformed
- **Fix**: Add tensor validation before pointer operations
#### 🟡 **Medium Priority Issues**
**Integer Underflow Risk**
```cpp
// Location: CPPFImdlp.cpp:98-100
n = cut - 1 - idxPrev; // Could underflow if cut <= idxPrev
m = idxNext - cut - 1; // Could underflow if idxNext <= cut
```
- **Issue**: Size arithmetic without underflow protection
- **Risk**: Extremely large values from underflow
- **Fix**: Add underflow validation
**Vector Access Without Bounds Checking**
```cpp
// Location: Multiple locations
X[indices[idx]] // No bounds validation
```
- **Issue**: Direct vector access using potentially invalid indices
- **Risk**: Out-of-bounds memory access
- **Fix**: Use `at()` method or add explicit bounds checking
### Performance Considerations
- **Caching Strategy**: Good use of entropy and information gain caching
- **Memory Efficiency**: Smart use of indices to avoid data copying
- **Algorithmic Complexity**: Efficient O(n log n) sorting with optimized cutpoint selection
---
## Testing Framework Analysis
### Test Organization
| Test File | Focus Area | Key Features |
|-----------|------------|-------------|
| `BinDisc_unittest.cpp` | Binning strategies | Parametric testing, multiple bin counts |
| `Discretizer_unittest.cpp` | Base interface | PyTorch integration, transform methods |
| `FImdlp_unittest.cpp` | MDLP algorithm | Real datasets, comprehensive scenarios |
| `Metrics_unittest.cpp` | Statistical calculations | Entropy, information gain validation |
### Testing Strengths
- **100% Code Coverage**: Complete line and branch coverage
- **Real Dataset Testing**: Uses Iris, Diabetes, Glass datasets from ARFF files
- **Edge Case Coverage**: Empty datasets, constant values, single elements
- **Parametric Testing**: Multiple configurations and strategies
- **Data-Driven Approach**: Systematic test generation with `tests.txt`
- **Multiple APIs**: Tests both C++ vectors and PyTorch tensors
### Testing Methodology
- **Framework**: Google Test with proper fixture usage
- **Precision Testing**: Consistent floating-point comparison margins
- **Exception Testing**: Proper error condition validation
- **Integration Testing**: End-to-end algorithm validation
### Testing Gaps
- **Performance Testing**: No benchmarks or performance regression tests
- **Memory Testing**: Limited memory pressure or leak testing
- **Thread Safety**: No concurrent access testing
- **Fuzzing**: No randomized input testing
---
## Security Analysis
### Overall Security Risk: **MEDIUM**
### Critical Security Vulnerabilities
#### 🔴 **HIGH RISK - Memory Safety**
**Unsafe PyTorch Tensor Operations**
- **Location**: `Discretizer.cpp:35-36, 42, 49-50`
- **Vulnerability**: Direct pointer arithmetic without validation
- **Impact**: Buffer overflow, memory corruption
- **Exploit Scenario**: Malformed tensor data causing out-of-bounds access
- **Mitigation**:
```cpp
if (!X_.is_contiguous() || !y_.is_contiguous()) {
throw std::invalid_argument("Tensors must be contiguous");
}
if (X_.dtype() != torch::kFloat32 || y_.dtype() != torch::kInt32) {
throw std::invalid_argument("Invalid tensor types");
}
```
#### 🟡 **MEDIUM RISK - Input Validation**
**Insufficient Parameter Validation**
- **Location**: Multiple entry points
- **Vulnerability**: Missing bounds checking on user inputs
- **Impact**: Integer overflow, out-of-bounds access
- **Examples**:
- `proposed_cuts` parameter without overflow protection
- Tensor dimensions not validated
- Array indices not bounds-checked
**Thread Safety Issues**
- **Location**: `Metrics` class cache containers
- **Vulnerability**: Shared state without synchronization
- **Impact**: Race conditions, data corruption
- **Mitigation**: Add mutex protection or document thread requirements
#### 🟢 **LOW RISK - Information Disclosure**
**Debug Information Leakage**
- **Location**: Sample code and test files
- **Vulnerability**: Detailed internal data exposure
- **Impact**: Minor information disclosure
- **Mitigation**: Remove or conditionalize debug output
### Security Recommendations
#### Immediate Actions
1. **Add Tensor Validation**: Comprehensive validation before pointer operations
2. **Implement Bounds Checking**: Explicit validation for all array access
3. **Add Overflow Protection**: Safe arithmetic operations
#### Short-term Actions
1. **Enhance Input Validation**: Parameter validation at all public interfaces
2. **Add Thread Safety**: Documentation or synchronization mechanisms
3. **Update Dependencies**: Ensure PyTorch is current and secure
---
## Documentation & Maintainability
### Current Documentation Status
#### ✅ **Available Documentation**
- **README.md**: Basic usage instructions and build commands
- **Code Comments**: SPDX headers and licensing information
- **Build Instructions**: CMake configuration and make targets
#### ❌ **Missing Documentation**
- **API Documentation**: No comprehensive API reference
- **Algorithm Documentation**: Limited explanation of MDLP implementation
- **Usage Examples**: Minimal code examples beyond basic sample
- **Configuration Guide**: No detailed parameter explanation
- **Architecture Documentation**: No design document or UML diagrams
### Maintainability Assessment
#### Strengths
- **Clear Code Structure**: Well-organized class hierarchy
- **Consistent Style**: Uniform naming and formatting conventions
- **Separation of Concerns**: Clear module boundaries
- **Version Control**: Proper git repository with meaningful commits
#### Weaknesses
- **Complex Methods**: Some functions handle multiple responsibilities
- **Magic Numbers**: Hardcoded values without explanation
- **Limited Comments**: Algorithm logic lacks explanatory comments
- **Configuration Scattered**: Parameters spread across multiple classes
### Documentation Recommendations
1. **Generate API Documentation**: Use Doxygen for comprehensive API docs
2. **Add Algorithm Explanation**: Document MDLP implementation details
3. **Create Usage Guide**: Comprehensive examples and tutorials
4. **Architecture Document**: High-level design documentation
5. **Configuration Reference**: Centralized parameter documentation
---
## Build System Evaluation
### CMake Configuration Analysis
#### Strengths
- **Modern CMake**: Uses version 3.20+ with current best practices
- **Multi-Configuration**: Separate debug/release builds
- **Dependency Management**: Proper PyTorch integration
- **Installation Support**: Complete install targets and package config
- **Testing Integration**: CTest integration with coverage
#### Build Features
```cmake
# Key configurations
set(CMAKE_CXX_STANDARD 17)
find_package(Torch CONFIG REQUIRED)
option(ENABLE_TESTING OFF)
option(ENABLE_SAMPLE OFF)
option(COVERAGE OFF)
```
### Build System Issues
#### Security Concerns
- **Debug Flags**: May affect release builds
- **Dependency Versions**: Fixed PyTorch version without security updates
#### Usability Issues
- **Complex Makefile**: Manual build directory management
- **Coverage Complexity**: Complex lcov command chain
### Build Recommendations
1. **Simplify Build Process**: Use CMake presets for common configurations
2. **Improve Dependency Management**: Flexible version constraints
3. **Add Build Validation**: Compiler and platform checks
4. **Enhance Documentation**: Detailed build instructions
---
## Strengths & Weaknesses Summary
### 🏆 **Key Strengths**
#### Technical Excellence
- **Algorithmic Correctness**: Faithful implementation of Fayyad & Irani algorithm
- **Performance Optimization**: Efficient caching and data structures
- **Code Coverage**: 100% test coverage with comprehensive edge cases
- **Modern C++**: Good use of C++17 features and best practices
#### Software Engineering
- **Clean Architecture**: Well-structured OOP design with clear separation
- **SOLID Principles**: Generally good adherence to design principles
- **Multi-Platform**: CMake-based build system for cross-platform support
- **Professional Quality**: Proper licensing, version control, CI/CD integration
#### API Design
- **Multiple Interfaces**: Both C++ native and PyTorch tensor support
- **Sklearn-like API**: Familiar `fit()`/`transform()`/`fit_transform()` pattern
- **Extensible**: Easy to add new discretization algorithms
### ⚠️ **Critical Weaknesses**
#### Security Issues
- **Memory Safety**: Unsafe pointer operations in PyTorch integration
- **Input Validation**: Insufficient bounds checking and parameter validation
- **Thread Safety**: Shared state without proper synchronization
#### Code Quality
- **Interface Consistency**: LSP violation in `BinDisc` class
- **Method Complexity**: Some functions handle too many responsibilities
- **Error Handling**: Inconsistent exception handling patterns
#### Documentation
- **API Documentation**: Minimal inline documentation
- **Usage Examples**: Limited practical examples
- **Architecture Documentation**: No high-level design documentation
---
## Recommendations
### 🚨 **Immediate Actions (HIGH Priority)**
#### Security Fixes
```cpp
// 1. Add tensor validation in Discretizer::fit_t()
void Discretizer::fit_t(const torch::Tensor& X_, const torch::Tensor& y_) {
// Validate tensor properties
if (!X_.is_contiguous() || !y_.is_contiguous()) {
throw std::invalid_argument("Tensors must be contiguous");
}
if (X_.sizes().size() != 1 || y_.sizes().size() != 1) {
throw std::invalid_argument("Only 1D tensors supported");
}
if (X_.dtype() != torch::kFloat32 || y_.dtype() != torch::kInt32) {
throw std::invalid_argument("Invalid tensor types");
}
// ... rest of implementation
}
```
```cpp
// 2. Add bounds checking for vector access
inline precision_t safe_vector_access(const samples_t& vec, size_t idx) {
if (idx >= vec.size()) {
throw std::out_of_range("Vector index out of bounds");
}
return vec[idx];
}
```
```cpp
// 3. Add underflow protection in arithmetic operations
size_t safe_subtract(size_t a, size_t b) {
if (b > a) {
throw std::underflow_error("Subtraction would cause underflow");
}
return a - b;
}
```
### 📋 **Short-term Actions (MEDIUM Priority)**
#### Code Quality Improvements
1. **Fix Interface Consistency**: Separate supervised/unsupervised interfaces
2. **Refactor Complex Methods**: Break down `computeCutPoints()` function
3. **Standardize Error Handling**: Consistent exception types and messages
4. **Add Input Validation**: Comprehensive parameter checking
#### Thread Safety
```cpp
// Add thread safety to Metrics class
class Metrics {
private:
mutable std::mutex cache_mutex;
cacheEnt_t entropyCache;
cacheIg_t igCache;
public:
precision_t entropy(size_t start, size_t end) const {
std::lock_guard<std::mutex> lock(cache_mutex);
// ... implementation
}
};
```
### 📚 **Long-term Actions (LOW Priority)**
#### Documentation & Usability
1. **API Documentation**: Generate comprehensive Doxygen documentation
2. **Usage Examples**: Create detailed tutorial and example repository
3. **Performance Testing**: Add benchmarking and regression tests
4. **Architecture Documentation**: Create design documents and UML diagrams
#### Code Modernization
1. **Strategy Pattern**: Proper implementation for `BinDisc` strategies
2. **Configuration Management**: Centralized parameter handling
3. **Factory Pattern**: Discretizer creation factory
4. **Resource Management**: RAII patterns for memory safety
---
## Risk Assessment
### Risk Priority Matrix
| Risk Category | High | Medium | Low | Total |
|---------------|------|--------|-----|-------|
| **Security** | 1 | 7 | 2 | 10 |
| **Code Quality** | 2 | 5 | 3 | 10 |
| **Maintainability** | 0 | 3 | 4 | 7 |
| **Performance** | 0 | 1 | 2 | 3 |
| **Total** | **3** | **16** | **11** | **30** |
### Risk Impact Assessment
#### Critical Risks (Immediate Attention Required)
1. **Memory Safety Vulnerabilities**: Could lead to crashes or security exploits
2. **Interface Consistency Issues**: Violates expected behavior contracts
3. **Input Validation Gaps**: Potential for crashes with malformed input
#### Moderate Risks (Address in Next Release)
1. **Thread Safety Issues**: Problems in multi-threaded environments
2. **Complex Method Design**: Maintenance and debugging difficulties
3. **Documentation Gaps**: Reduced adoption and maintainability
#### Low Risks (Future Improvements)
1. **Performance Optimization**: Minor efficiency improvements
2. **Code Style Consistency**: Enhanced readability
3. **Build System Enhancements**: Improved developer experience
---
## Conclusion
The MDLP discretization library represents a solid implementation of an important machine learning algorithm with excellent test coverage and clean architectural design. However, it requires attention to security vulnerabilities and code quality issues before production deployment.
### Final Verdict
**Rating: B+ (Good with Notable Issues)**
- **Core Algorithm**: Excellent implementation of MDLP with proper mathematical foundations
- **Software Engineering**: Good OOP design following most best practices
- **Testing**: Exemplary test coverage and methodology
- **Security**: Notable vulnerabilities requiring immediate attention
- **Documentation**: Adequate but could be significantly improved
### Deployment Recommendation
**Not Ready for Production** without addressing HIGH priority security issues, particularly around memory safety and input validation. Once these are resolved, the library would be suitable for production use in most contexts.
### Next Steps
1. **Security Audit**: Address all HIGH and MEDIUM priority security issues
2. **Code Review**: Implement fixes for interface consistency and method complexity
3. **Documentation**: Create comprehensive API documentation and usage guides
4. **Testing**: Add performance benchmarks and stress testing
5. **Release**: Prepare version 2.1.0 with security and quality improvements
---
## Appendix
### Files Analyzed
- `src/CPPFImdlp.h` & `src/CPPFImdlp.cpp` - MDLP algorithm implementation
- `src/Discretizer.h` & `src/Discretizer.cpp` - Base class and PyTorch integration
- `src/BinDisc.h` & `src/BinDisc.cpp` - Simple binning strategies
- `src/Metrics.h` & `src/Metrics.cpp` - Statistical calculations
- `src/typesFImdlp.h` - Type definitions
- `CMakeLists.txt` - Build configuration
- `conanfile.py` - Dependency management
- `tests/*` - Comprehensive test suite
### Analysis Date
**Report Generated**: June 27, 2025
### Tools Used
- **Static Analysis**: Manual code review with security focus
- **Architecture Analysis**: SOLID principles and design pattern evaluation
- **Test Analysis**: Coverage and methodology assessment
- **Security Analysis**: Vulnerability assessment with risk prioritization
---
*This report provides a comprehensive technical analysis of the MDLP discretization library. For questions or clarifications, please refer to the project repository or contact the development team.*

16
conandata.yml Normal file
View File

@@ -0,0 +1,16 @@
sources:
"2.1.0":
url: "https://github.com/rmontanana/mdlp/archive/refs/tags/v2.1.0.tar.gz"
sha256: "placeholder_sha256_hash"
"2.0.1":
url: "https://github.com/rmontanana/mdlp/archive/refs/tags/v2.0.1.tar.gz"
sha256: "placeholder_sha256_hash"
"2.0.0":
url: "https://github.com/rmontanana/mdlp/archive/refs/tags/v2.0.0.tar.gz"
sha256: "placeholder_sha256_hash"
patches:
"2.1.0":
- patch_file: "patches/001-cmake-fix.patch"
patch_description: "Fix CMake configuration for Conan compatibility"
patch_type: "portability"

111
conanfile.py Normal file
View File

@@ -0,0 +1,111 @@
import os
import re
from conan import ConanFile
from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout, CMakeDeps
from conan.tools.files import load, copy
class FimdlpConan(ConanFile):
name = "fimdlp"
version = "X.X.X"
license = "MIT"
author = "Ricardo Montañana <rmontanana@gmail.com>"
url = "https://github.com/rmontanana/mdlp"
description = "Discretization algorithm based on the paper by Fayyad & Irani Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning."
topics = ("machine-learning", "discretization", "mdlp", "classification")
# Package configuration
settings = "os", "compiler", "build_type", "arch"
options = {
"shared": [True, False],
"fPIC": [True, False],
"enable_testing": [True, False],
"enable_sample": [True, False],
}
default_options = {
"shared": False,
"fPIC": True,
"enable_testing": False,
"enable_sample": False,
}
# Sources are located in the same place as this recipe, copy them to the recipe
exports_sources = "CMakeLists.txt", "src/*", "sample/*", "tests/*", "config/*", "fimdlpConfig.cmake.in"
def set_version(self):
content = load(self, "CMakeLists.txt")
version_pattern = re.compile(r'project\s*\([^\)]*VERSION\s+([0-9]+\.[0-9]+\.[0-9]+)', re.IGNORECASE | re.DOTALL)
match = version_pattern.search(content)
if match:
self.version = match.group(1)
else:
raise Exception("Version not found in CMakeLists.txt")
def config_options(self):
if self.settings.os == "Windows":
self.options.rm_safe("fPIC")
def configure(self):
if self.options.shared:
self.options.rm_safe("fPIC")
def requirements(self):
# PyTorch dependency for tensor operations
self.requires("libtorch/2.7.1")
def build_requirements(self):
self.requires("arff-files/1.2.1") # for tests and sample
if self.options.enable_testing:
self.test_requires("gtest/1.16.0")
def layout(self):
cmake_layout(self)
def generate(self):
# Generate CMake configuration files
deps = CMakeDeps(self)
deps.generate()
tc = CMakeToolchain(self)
# Set CMake variables based on options
tc.variables["ENABLE_TESTING"] = self.options.enable_testing
tc.variables["ENABLE_SAMPLE"] = self.options.enable_sample
tc.variables["BUILD_SHARED_LIBS"] = self.options.shared
tc.generate()
def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
# Run tests if enabled
if self.options.enable_testing:
cmake.test()
def package(self):
# Install using CMake
cmake = CMake(self)
cmake.install()
# Copy license file
copy(self, "LICENSE", src=self.source_folder, dst=os.path.join(self.package_folder, "licenses"))
def package_info(self):
# Library configuration
self.cpp_info.libs = ["fimdlp"]
self.cpp_info.includedirs = ["include"]
# CMake package configuration
self.cpp_info.set_property("cmake_file_name", "fimdlp")
self.cpp_info.set_property("cmake_target_name", "fimdlp::fimdlp")
# Compiler features
self.cpp_info.cppstd = "17"
# System libraries (if needed)
if self.settings.os in ["Linux", "FreeBSD"]:
self.cpp_info.system_libs.append("m") # Math library
self.cpp_info.system_libs.append("pthread") # Threading
# Build information for consumers
self.cpp_info.builddirs = ["lib/cmake/fimdlp"]

4
config/CMakeLists.txt Normal file
View File

@@ -0,0 +1,4 @@
configure_file(
"config.h.in"
"${CMAKE_BINARY_DIR}/configured_files/include/config.h" ESCAPE_QUOTES
)

13
config/config.h.in Normal file
View File

@@ -0,0 +1,13 @@
#pragma once
#include <string>
#include <string_view>
#define PROJECT_VERSION_MAJOR @PROJECT_VERSION_MAJOR @
#define PROJECT_VERSION_MINOR @PROJECT_VERSION_MINOR @
#define PROJECT_VERSION_PATCH @PROJECT_VERSION_PATCH @
static constexpr std::string_view project_mdlp_name = "@PROJECT_NAME@";
static constexpr std::string_view project_mdlp_version = "@PROJECT_VERSION@";
static constexpr std::string_view project_mdlp_description = "@PROJECT_DESCRIPTION@";
static constexpr std::string_view git_mdlp_sha = "@GIT_SHA@";

2
fimdlpConfig.cmake.in Normal file
View File

@@ -0,0 +1,2 @@
@PACKAGE_INIT@
include("${CMAKE_CURRENT_LIST_DIR}/fimdlpTargets.cmake")

47
getversion.py Normal file
View File

@@ -0,0 +1,47 @@
# read the version from the CMakeLists.txt file
import re
import sys
from pathlib import Path
def get_version_from_cmakelists(cmakelists_path):
# Read the CMakeLists.txt file
try:
with open(cmakelists_path, 'r') as file:
content = file.read()
except IOError as e:
print(f"Error reading {cmakelists_path}: {e}")
sys.exit(1)
# Use regex to find the version line
# The regex pattern looks for a line that starts with 'project' and captures the version number
# in the format VERSION x.y.z where x, y, and z are digits.
# It allows for optional whitespace around the parentheses and the version number.
version_pattern = re.compile(
r'project\s*\([^\)]*VERSION\s+([0-9]+\.[0-9]+\.[0-9]+)', re.IGNORECASE | re.DOTALL
)
match = version_pattern.search(content)
if match:
return match.group(1)
else:
return None
def main():
# Get the path to the CMakeLists.txt file
cmakelists_path = Path(__file__).parent / "CMakeLists.txt"
# Check if the file exists
if not cmakelists_path.exists():
print(f"Error: {cmakelists_path} does not exist.")
sys.exit(1)
# Get the version from the CMakeLists.txt file
version = get_version_from_cmakelists(cmakelists_path)
if version:
print(f"Version: {version}")
else:
print("Version not found in CMakeLists.txt.")
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -1,11 +1,12 @@
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_BUILD_TYPE Debug)
find_package(arff-files REQUIRED)
include_directories(
${mdlp_SOURCE_DIR}/src
${mdlp_SOURCE_DIR}/tests/lib/Files
${fimdlp_SOURCE_DIR}/src
${CMAKE_BINARY_DIR}/configured_files/include
${arff-files_INCLUDE_DIRS}
)
add_executable(sample sample.cpp )
target_link_libraries(sample mdlp "${TORCH_LIBRARIES}")
add_executable(sample sample.cpp)
target_link_libraries(sample PRIVATE fimdlp torch::torch arff-files::arff-files)

25
scripts/build_conan.sh Executable file
View File

@@ -0,0 +1,25 @@
#!/bin/bash
# Build script for fimdlp using Conan
set -e
echo "Building fimdlp with Conan..."
# Clean previous builds
rm -rf build_conan
# Install dependencies and build
conan install . --output-folder=build_conan --build=missing --profile:build=default --profile:host=default
# Build the project
cd build_conan
cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release
cmake --build .
echo "Build completed successfully!"
# Run tests if requested
if [ "$1" = "--test" ]; then
echo "Running tests..."
ctest --output-on-failure
fi

33
scripts/create_package.sh Executable file
View File

@@ -0,0 +1,33 @@
#!/bin/bash
# Script to create and upload fimdlp Conan package
set -e
PACKAGE_NAME="fimdlp"
PACKAGE_VERSION="2.1.0"
REMOTE_NAME="cimmeria"
echo "Creating Conan package for $PACKAGE_NAME/$PACKAGE_VERSION..."
# Create the package
conan create . --profile:build=default --profile:host=default
echo "Package created successfully!"
# Test the package
echo "Testing package..."
conan test test_package $PACKAGE_NAME/$PACKAGE_VERSION@ --profile:build=default --profile:host=default
echo "Package tested successfully!"
# Upload to Cimmeria (if remote is configured)
if conan remote list | grep -q "$REMOTE_NAME"; then
echo "Uploading package to $REMOTE_NAME..."
conan upload $PACKAGE_NAME/$PACKAGE_VERSION --remote=$REMOTE_NAME --all
echo "Package uploaded to $REMOTE_NAME successfully!"
else
echo "Remote '$REMOTE_NAME' not configured. To upload the package:"
echo "1. Add the remote: conan remote add $REMOTE_NAME <cimmeria-url>"
echo "2. Login: conan remote login $REMOTE_NAME <username>"
echo "3. Upload: conan upload $PACKAGE_NAME/$PACKAGE_VERSION --remote=$REMOTE_NAME --all"
fi

View File

@@ -3,7 +3,7 @@ sonar.organization=rmontanana
# This is the name and version displayed in the SonarCloud UI.
sonar.projectName=mdlp
sonar.projectVersion=2.0.0
sonar.projectVersion=2.0.1
# sonar.test.exclusions=tests/**
# sonar.tests=tests/
# sonar.coverage.exclusions=tests/**,sample/**

View File

@@ -22,13 +22,15 @@ namespace mdlp {
BinDisc::~BinDisc() = default;
void BinDisc::fit(samples_t& X)
{
// y is included for compatibility with the Discretizer interface
cutPoints.clear();
// Input validation
if (X.empty()) {
cutPoints.push_back(0.0);
cutPoints.push_back(0.0);
return;
throw std::invalid_argument("Input data X cannot be empty");
}
if (X.size() < static_cast<size_t>(n_bins)) {
throw std::invalid_argument("Input data size must be at least equal to n_bins");
}
cutPoints.clear();
if (strategy == strategy_t::QUANTILE) {
direction = bound_dir_t::RIGHT;
fit_quantile(X);
@@ -39,10 +41,27 @@ namespace mdlp {
}
void BinDisc::fit(samples_t& X, labels_t& y)
{
if (X.empty()) {
throw std::invalid_argument("X cannot be empty");
}
// BinDisc is inherently unsupervised, but we validate inputs for consistency
// Note: y parameter is validated but not used in binning strategy
fit(X);
}
std::vector<precision_t> linspace(precision_t start, precision_t end, int num)
std::vector<precision_t> BinDisc::linspace(precision_t start, precision_t end, int num)
{
// Input validation
if (num < 2) {
throw std::invalid_argument("Number of points must be at least 2 for linspace");
}
if (std::isnan(start) || std::isnan(end)) {
throw std::invalid_argument("Start and end values cannot be NaN");
}
if (std::isinf(start) || std::isinf(end)) {
throw std::invalid_argument("Start and end values cannot be infinite");
}
if (start == end) {
return { start, end };
}
@@ -58,8 +77,16 @@ namespace mdlp {
{
return std::max(lower, std::min(n, upper));
}
std::vector<precision_t> percentile(samples_t& data, const std::vector<precision_t>& percentiles)
std::vector<precision_t> BinDisc::percentile(samples_t& data, const std::vector<precision_t>& percentiles)
{
// Input validation
if (data.empty()) {
throw std::invalid_argument("Data cannot be empty for percentile calculation");
}
if (percentiles.empty()) {
throw std::invalid_argument("Percentiles cannot be empty");
}
// Implementation taken from https://dpilger26.github.io/NumCpp/doxygen/html/percentile_8hpp_source.html
std::vector<precision_t> results;
bool first = true;

View File

@@ -23,6 +23,9 @@ namespace mdlp {
// y is included for compatibility with the Discretizer interface
void fit(samples_t& X_, labels_t& y) override;
void fit(samples_t& X);
protected:
std::vector<precision_t> linspace(precision_t start, precision_t end, int num);
std::vector<precision_t> percentile(samples_t& data, const std::vector<precision_t>& percentiles);
private:
void fit_uniform(const samples_t&);
void fit_quantile(const samples_t&);

View File

@@ -8,6 +8,7 @@
#include <algorithm>
#include <set>
#include <cmath>
#include <stdexcept>
#include "CPPFImdlp.h"
namespace mdlp {
@@ -18,6 +19,17 @@ namespace mdlp {
max_depth(max_depth_),
proposed_cuts(proposed)
{
// Input validation for constructor parameters
if (min_length_ < 3) {
throw std::invalid_argument("min_length must be greater than 2");
}
if (max_depth_ < 1) {
throw std::invalid_argument("max_depth must be greater than 0");
}
if (proposed < 0.0f) {
throw std::invalid_argument("proposed_cuts must be non-negative");
}
direction = bound_dir_t::RIGHT;
}
@@ -27,7 +39,7 @@ namespace mdlp {
if (proposed_cuts == 0) {
return numeric_limits<size_t>::max();
}
if (proposed_cuts < 0 || proposed_cuts > static_cast<precision_t>(X.size())) {
if (proposed_cuts > static_cast<precision_t>(X.size())) {
throw invalid_argument("wrong proposed num_cuts value");
}
if (proposed_cuts < 1)
@@ -44,17 +56,11 @@ namespace mdlp {
discretizedData.clear();
cutPoints.clear();
if (X.size() != y.size()) {
throw invalid_argument("X and y must have the same size");
throw std::invalid_argument("X and y must have the same size: " + std::to_string(X.size()) + " != " + std::to_string(y.size()));
}
if (X.empty() || y.empty()) {
throw invalid_argument("X and y must have at least one element");
}
if (min_length < 3) {
throw invalid_argument("min_length must be greater than 2");
}
if (max_depth < 1) {
throw invalid_argument("max_depth must be greater than 0");
}
indices = sortIndices(X_, y_);
metrics.setData(y, indices);
computeCutPoints(0, X.size(), 1);
@@ -81,26 +87,33 @@ namespace mdlp {
precision_t previous;
precision_t actual;
precision_t next;
previous = X[indices[idxPrev]];
actual = X[indices[cut]];
next = X[indices[idxNext]];
previous = safe_X_access(idxPrev);
actual = safe_X_access(cut);
next = safe_X_access(idxNext);
// definition 2 of the paper => X[t-1] < X[t]
// get the first equal value of X in the interval
while (idxPrev > start && actual == previous) {
previous = X[indices[--idxPrev]];
--idxPrev;
previous = safe_X_access(idxPrev);
}
backWall = idxPrev == start && actual == previous;
// get the last equal value of X in the interval
while (idxNext < end - 1 && actual == next) {
next = X[indices[++idxNext]];
++idxNext;
next = safe_X_access(idxNext);
}
// # of duplicates before cutpoint
n = cut - 1 - idxPrev;
n = safe_subtract(safe_subtract(cut, 1), idxPrev);
// # of duplicates after cutpoint
m = idxNext - cut - 1;
// Decide which values to use
cut = cut + (backWall ? m + 1 : -n);
actual = X[indices[cut]];
if (backWall) {
m = int(idxNext - cut - 1) < 0 ? 0 : m; // Ensure m right
cut = cut + m + 1;
} else {
cut = safe_subtract(cut, n);
}
actual = safe_X_access(cut);
return { (actual + previous) / 2, cut };
}
@@ -109,7 +122,7 @@ namespace mdlp {
size_t cut;
pair<precision_t, size_t> result;
// Check if the interval length and the depth are Ok
if (end - start < min_length || depth_ > max_depth)
if (end < start || safe_subtract(end, start) < min_length || depth_ > max_depth)
return;
depth = depth_ > depth ? depth_ : depth;
cut = getCandidate(start, end);
@@ -129,14 +142,14 @@ namespace mdlp {
/* Definition 1: A binary discretization for A is determined by selecting the cut point TA for which
E(A, TA; S) is minimal amongst all the candidate cut points. */
size_t candidate = numeric_limits<size_t>::max();
size_t elements = end - start;
size_t elements = safe_subtract(end, start);
bool sameValues = true;
precision_t entropy_left;
precision_t entropy_right;
precision_t minEntropy;
// Check if all the values of the variable in the interval are the same
for (size_t idx = start + 1; idx < end; idx++) {
if (X[indices[idx]] != X[indices[start]]) {
if (safe_X_access(idx) != safe_X_access(start)) {
sameValues = false;
break;
}
@@ -146,7 +159,7 @@ namespace mdlp {
minEntropy = metrics.entropy(start, end);
for (size_t idx = start + 1; idx < end; idx++) {
// Cutpoints are always on boundaries (definition 2)
if (y[indices[idx]] == y[indices[idx - 1]])
if (safe_y_access(idx) == safe_y_access(idx - 1))
continue;
entropy_left = precision_t(idx - start) / static_cast<precision_t>(elements) * metrics.entropy(start, idx);
entropy_right = precision_t(end - idx) / static_cast<precision_t>(elements) * metrics.entropy(idx, end);
@@ -168,7 +181,7 @@ namespace mdlp {
precision_t ent;
precision_t ent1;
precision_t ent2;
auto N = precision_t(end - start);
auto N = precision_t(safe_subtract(end, start));
k = metrics.computeNumClasses(start, end);
k1 = metrics.computeNumClasses(start, cut);
k2 = metrics.computeNumClasses(cut, end);
@@ -188,6 +201,9 @@ namespace mdlp {
indices_t idx(X_.size());
std::iota(idx.begin(), idx.end(), 0);
stable_sort(idx.begin(), idx.end(), [&X_, &y_](size_t i1, size_t i2) {
if (i1 >= X_.size() || i2 >= X_.size() || i1 >= y_.size() || i2 >= y_.size()) {
throw std::out_of_range("Index out of bounds in sort comparison");
}
if (X_[i1] == X_[i2])
return y_[i1] < y_[i2];
else
@@ -206,7 +222,7 @@ namespace mdlp {
size_t end;
for (size_t idx = 0; idx < cutPoints.size(); idx++) {
end = begin;
while (X[indices[end]] < cutPoints[idx] && end < X.size())
while (end < indices.size() && safe_X_access(end) < cutPoints[idx] && end < X.size())
end++;
entropy = metrics.entropy(begin, end);
if (entropy > maxEntropy) {

View File

@@ -39,6 +39,35 @@ namespace mdlp {
size_t getCandidate(size_t, size_t);
size_t compute_max_num_cut_points() const;
pair<precision_t, size_t> valueCutPoint(size_t, size_t, size_t);
inline precision_t safe_X_access(size_t idx) const
{
if (idx >= indices.size()) {
throw std::out_of_range("Index out of bounds for indices array");
}
size_t real_idx = indices[idx];
if (real_idx >= X.size()) {
throw std::out_of_range("Index out of bounds for X array");
}
return X[real_idx];
}
inline label_t safe_y_access(size_t idx) const
{
if (idx >= indices.size()) {
throw std::out_of_range("Index out of bounds for indices array");
}
size_t real_idx = indices[idx];
if (real_idx >= y.size()) {
throw std::out_of_range("Index out of bounds for y array");
}
return y[real_idx];
}
inline size_t safe_subtract(size_t a, size_t b) const
{
if (b > a) {
throw std::underflow_error("Subtraction would cause underflow");
}
return a - b;
}
};
}
#endif

View File

@@ -10,6 +10,14 @@ namespace mdlp {
labels_t& Discretizer::transform(const samples_t& data)
{
// Input validation
if (data.empty()) {
throw std::invalid_argument("Data for transformation cannot be empty");
}
if (cutPoints.size() < 2) {
throw std::runtime_error("Discretizer not fitted yet or no valid cut points found");
}
discretizedData.clear();
discretizedData.reserve(data.size());
// CutPoints always have at least two items
@@ -31,6 +39,23 @@ namespace mdlp {
}
void Discretizer::fit_t(const torch::Tensor& X_, const torch::Tensor& y_)
{
// Validate tensor properties for security
if (X_.sizes().size() != 1 || y_.sizes().size() != 1) {
throw std::invalid_argument("Only 1D tensors supported");
}
if (X_.dtype() != torch::kFloat32) {
throw std::invalid_argument("X tensor must be Float32 type");
}
if (y_.dtype() != torch::kInt32) {
throw std::invalid_argument("y tensor must be Int32 type");
}
if (X_.numel() != y_.numel()) {
throw std::invalid_argument("X and y tensors must have same number of elements");
}
if (X_.numel() == 0) {
throw std::invalid_argument("Tensors cannot be empty");
}
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
@@ -38,6 +63,17 @@ namespace mdlp {
}
torch::Tensor Discretizer::transform_t(const torch::Tensor& X_)
{
// Validate tensor properties for security
if (X_.sizes().size() != 1) {
throw std::invalid_argument("Only 1D tensors supported");
}
if (X_.dtype() != torch::kFloat32) {
throw std::invalid_argument("X tensor must be Float32 type");
}
if (X_.numel() == 0) {
throw std::invalid_argument("Tensor cannot be empty");
}
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
auto result = transform(X);
@@ -45,6 +81,23 @@ namespace mdlp {
}
torch::Tensor Discretizer::fit_transform_t(const torch::Tensor& X_, const torch::Tensor& y_)
{
// Validate tensor properties for security
if (X_.sizes().size() != 1 || y_.sizes().size() != 1) {
throw std::invalid_argument("Only 1D tensors supported");
}
if (X_.dtype() != torch::kFloat32) {
throw std::invalid_argument("X tensor must be Float32 type");
}
if (y_.dtype() != torch::kInt32) {
throw std::invalid_argument("y tensor must be Int32 type");
}
if (X_.numel() != y_.numel()) {
throw std::invalid_argument("X and y tensors must have same number of elements");
}
if (X_.numel() == 0) {
throw std::invalid_argument("Tensors cannot be empty");
}
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);

View File

@@ -11,6 +11,7 @@
#include <algorithm>
#include "typesFImdlp.h"
#include <torch/torch.h>
#include "config.h"
namespace mdlp {
enum class bound_dir_t {
@@ -29,7 +30,7 @@ namespace mdlp {
void fit_t(const torch::Tensor& X_, const torch::Tensor& y_);
torch::Tensor transform_t(const torch::Tensor& X_);
torch::Tensor fit_transform_t(const torch::Tensor& X_, const torch::Tensor& y_);
static inline std::string version() { return "1.2.3"; };
static inline std::string version() { return { project_mdlp_version.begin(), project_mdlp_version.end() }; };
protected:
labels_t discretizedData = labels_t();
cutPoints_t cutPoints; // At least two cutpoints must be provided, the first and the last will be ignored in transform

View File

@@ -26,6 +26,7 @@ namespace mdlp {
void Metrics::setData(const labels_t& y_, const indices_t& indices_)
{
std::lock_guard<std::mutex> lock(cache_mutex);
indices = indices_;
y = y_;
numClasses = computeNumClasses(0, indices.size());
@@ -35,15 +36,23 @@ namespace mdlp {
precision_t Metrics::entropy(size_t start, size_t end)
{
if (end - start < 2)
return 0;
// Check cache first with read lock
{
std::lock_guard<std::mutex> lock(cache_mutex);
if (entropyCache.find({ start, end }) != entropyCache.end()) {
return entropyCache[{start, end}];
}
}
// Compute entropy outside of lock
precision_t p;
precision_t ventropy = 0;
int nElements = 0;
labels_t counts(numClasses + 1, 0);
if (end - start < 2)
return 0;
if (entropyCache.find({ start, end }) != entropyCache.end()) {
return entropyCache[{start, end}];
}
for (auto i = &indices[start]; i != &indices[end]; ++i) {
counts[y[*i]]++;
nElements++;
@@ -54,12 +63,27 @@ namespace mdlp {
ventropy -= p * log2(p);
}
}
entropyCache[{start, end}] = ventropy;
// Update cache with write lock
{
std::lock_guard<std::mutex> lock(cache_mutex);
entropyCache[{start, end}] = ventropy;
}
return ventropy;
}
precision_t Metrics::informationGain(size_t start, size_t cut, size_t end)
{
// Check cache first with read lock
{
std::lock_guard<std::mutex> lock(cache_mutex);
if (igCache.find(make_tuple(start, cut, end)) != igCache.end()) {
return igCache[make_tuple(start, cut, end)];
}
}
// Compute information gain outside of lock
precision_t iGain;
precision_t entropyInterval;
precision_t entropyLeft;
@@ -67,9 +91,7 @@ namespace mdlp {
size_t nElementsLeft = cut - start;
size_t nElementsRight = end - cut;
size_t nElements = end - start;
if (igCache.find(make_tuple(start, cut, end)) != igCache.end()) {
return igCache[make_tuple(start, cut, end)];
}
entropyInterval = entropy(start, end);
entropyLeft = entropy(start, cut);
entropyRight = entropy(cut, end);
@@ -77,7 +99,13 @@ namespace mdlp {
(static_cast<precision_t>(nElementsLeft) * entropyLeft +
static_cast<precision_t>(nElementsRight) * entropyRight) /
static_cast<precision_t>(nElements);
igCache[make_tuple(start, cut, end)] = iGain;
// Update cache with write lock
{
std::lock_guard<std::mutex> lock(cache_mutex);
igCache[make_tuple(start, cut, end)] = iGain;
}
return iGain;
}

View File

@@ -8,6 +8,7 @@
#define CCMETRICS_H
#include "typesFImdlp.h"
#include <mutex>
namespace mdlp {
class Metrics {
@@ -15,6 +16,7 @@ namespace mdlp {
labels_t& y;
indices_t& indices;
int numClasses;
mutable std::mutex cache_mutex;
cacheEnt_t entropyCache = cacheEnt_t();
cacheIg_t igCache = cacheIg_t();
public:

View File

@@ -1,3 +1,9 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#ifndef TYPES_H
#define TYPES_H

View File

@@ -0,0 +1,9 @@
cmake_minimum_required(VERSION 3.20)
project(test_fimdlp)
set(CMAKE_CXX_STANDARD 17)
find_package(fimdlp REQUIRED)
add_executable(test_fimdlp test_fimdlp.cpp)
target_link_libraries(test_fimdlp fimdlp::fimdlp)

View File

@@ -0,0 +1,9 @@
{
"version": 4,
"vendor": {
"conan": {}
},
"include": [
"build/Release/generators/CMakePresets.json"
]
}

View File

@@ -0,0 +1,9 @@
[requires]
fimdlp/2.0.1
[generators]
CMakeDeps
CMakeToolchain
[layout]
cmake_layout

View File

@@ -0,0 +1,39 @@
#include <iostream>
#include <vector>
#include <fimdlp/CPPFImdlp.h>
#include <fimdlp/BinDisc.h>
int main() {
std::cout << "Testing FIMDLP package..." << std::endl;
// Test data - simple continuous values with binary classification
mdlp::samples_t data = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0};
mdlp::labels_t labels = {0, 0, 0, 1, 1, 0, 1, 1, 1, 1};
std::cout << "Created test data with " << data.size() << " samples" << std::endl;
// Test MDLP discretizer
mdlp::CPPFImdlp discretizer;
discretizer.fit(data, labels);
auto cut_points = discretizer.getCutPoints();
std::cout << "MDLP found " << cut_points.size() << " cut points" << std::endl;
for (size_t i = 0; i < cut_points.size(); ++i) {
std::cout << "Cut point " << i << ": " << cut_points[i] << std::endl;
}
// Test BinDisc discretizer
mdlp::BinDisc bin_discretizer(3, mdlp::strategy_t::UNIFORM); // 3 bins, uniform strategy
bin_discretizer.fit(data, labels);
auto bin_cut_points = bin_discretizer.getCutPoints();
std::cout << "BinDisc found " << bin_cut_points.size() << " cut points" << std::endl;
for (size_t i = 0; i < bin_cut_points.size(); ++i) {
std::cout << "Bin cut point " << i << ": " << bin_cut_points[i] << std::endl;
}
std::cout << "FIMDLP package test completed successfully!" << std::endl;
return 0;
}

View File

@@ -0,0 +1,9 @@
cmake_minimum_required(VERSION 3.20)
project(test_fimdlp)
find_package(fimdlp REQUIRED)
find_package(Torch REQUIRED)
add_executable(test_fimdlp src/test_fimdlp.cpp)
target_link_libraries(test_fimdlp fimdlp::fimdlp torch::torch)
target_compile_features(test_fimdlp PRIVATE cxx_std_17)

View File

@@ -0,0 +1,10 @@
{
"version": 4,
"vendor": {
"conan": {}
},
"include": [
"build/gcc-14-x86_64-gnu17-release/generators/CMakePresets.json",
"build/gcc-14-x86_64-gnu17-debug/generators/CMakePresets.json"
]
}

28
test_package/conanfile.py Normal file
View File

@@ -0,0 +1,28 @@
import os
from conan import ConanFile
from conan.tools.cmake import CMake, cmake_layout
from conan.tools.build import can_run
class FimdlpTestConan(ConanFile):
settings = "os", "compiler", "build_type", "arch"
# VirtualBuildEnv and VirtualRunEnv can be avoided if "tools.env:CONAN_RUN_TESTS" is false
generators = "CMakeDeps", "CMakeToolchain", "VirtualRunEnv"
apply_env = False # avoid the default VirtualBuildEnv from the base class
test_type = "explicit"
def requirements(self):
self.requires(self.tested_reference_str)
def layout(self):
cmake_layout(self)
def build(self):
cmake = CMake(self)
cmake.configure()
cmake.build()
def test(self):
if can_run(self):
cmd = os.path.join(self.cpp.build.bindir, "test_fimdlp")
self.run(cmd, env="conanrun")

View File

@@ -0,0 +1,27 @@
#include <iostream>
#include <vector>
#include <fimdlp/CPPFImdlp.h>
#include <fimdlp/Metrics.h>
int main() {
std::cout << "Testing fimdlp library..." << std::endl;
// Simple test of the library
try {
// Test Metrics class
Metrics metrics;
std::vector<int> labels = {0, 0, 1, 1, 0, 1};
double entropy = metrics.entropy(labels);
std::cout << "Entropy calculated: " << entropy << std::endl;
// Test CPPFImdlp creation
CPPFImdlp discretizer;
std::cout << "CPPFImdlp instance created successfully" << std::endl;
std::cout << "fimdlp library test completed successfully!" << std::endl;
return 0;
} catch (const std::exception& e) {
std::cerr << "Error testing fimdlp library: " << e.what() << std::endl;
return 1;
}
}

View File

@@ -11,18 +11,28 @@
#include <ArffFiles.hpp>
#include "BinDisc.h"
#include "Experiments.hpp"
#include <cmath>
#define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \
try { \
stmt; \
} catch (const etype& ex) { \
EXPECT_EQ(whatstring, std::string(ex.what())); \
throw; \
} \
, etype)
namespace mdlp {
const float margin = 1e-4;
static std::string set_data_path()
{
std::string path = "../datasets/";
std::string path = "datasets/";
std::ifstream file(path + "iris.arff");
if (file.is_open()) {
file.close();
return path;
}
return "../../tests/datasets/";
return "tests/datasets/";
}
const std::string data_path = set_data_path();
class TestBinDisc3U : public BinDisc, public testing::Test {
@@ -153,20 +163,12 @@ namespace mdlp {
TEST_F(TestBinDisc3U, EmptyUniform)
{
samples_t X = {};
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(2, cuts.size());
EXPECT_NEAR(0, cuts.at(0), margin);
EXPECT_NEAR(0, cuts.at(1), margin);
EXPECT_THROW(fit(X), std::invalid_argument);
}
TEST_F(TestBinDisc3Q, EmptyQuantile)
{
samples_t X = {};
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(2, cuts.size());
EXPECT_NEAR(0, cuts.at(0), margin);
EXPECT_NEAR(0, cuts.at(1), margin);
EXPECT_THROW(fit(X), std::invalid_argument);
}
TEST(TestBinDisc3, ExceptionNumberBins)
{
@@ -406,6 +408,66 @@ namespace mdlp {
EXPECT_NEAR(exp.cutpoints_.at(i), cuts.at(i), margin);
}
}
std::cout << "* Number of experiments tested: " << num << std::endl;
// std::cout << "* Number of experiments tested: " << num << std::endl;
}
TEST_F(TestBinDisc3U, FitDataSizeTooSmall)
{
// Test when data size is smaller than n_bins
samples_t X = { 1.0, 2.0 }; // Only 2 elements for 3 bins
EXPECT_THROW_WITH_MESSAGE(fit(X), std::invalid_argument, "Input data size must be at least equal to n_bins");
}
TEST_F(TestBinDisc3Q, FitDataSizeTooSmall)
{
// Test when data size is smaller than n_bins
samples_t X = { 1.0, 2.0 }; // Only 2 elements for 3 bins
EXPECT_THROW_WITH_MESSAGE(fit(X), std::invalid_argument, "Input data size must be at least equal to n_bins");
}
TEST_F(TestBinDisc3U, FitWithYEmptyX)
{
// Test fit(X, y) with empty X
samples_t X = {};
labels_t y = { 1, 2, 3 };
EXPECT_THROW_WITH_MESSAGE(fit(X, y), std::invalid_argument, "X cannot be empty");
}
TEST_F(TestBinDisc3U, LinspaceInvalidNumPoints)
{
// Test linspace with num < 2
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, 1.0f, 1), std::invalid_argument, "Number of points must be at least 2 for linspace");
}
TEST_F(TestBinDisc3U, LinspaceNaNValues)
{
// Test linspace with NaN values
float nan_val = std::numeric_limits<float>::quiet_NaN();
EXPECT_THROW_WITH_MESSAGE(linspace(nan_val, 1.0f, 3), std::invalid_argument, "Start and end values cannot be NaN");
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, nan_val, 3), std::invalid_argument, "Start and end values cannot be NaN");
}
TEST_F(TestBinDisc3U, LinspaceInfiniteValues)
{
// Test linspace with infinite values
float inf_val = std::numeric_limits<float>::infinity();
EXPECT_THROW_WITH_MESSAGE(linspace(inf_val, 1.0f, 3), std::invalid_argument, "Start and end values cannot be infinite");
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, inf_val, 3), std::invalid_argument, "Start and end values cannot be infinite");
}
TEST_F(TestBinDisc3U, PercentileEmptyData)
{
// Test percentile with empty data
samples_t empty_data = {};
std::vector<precision_t> percentiles = { 25.0f, 50.0f, 75.0f };
EXPECT_THROW_WITH_MESSAGE(percentile(empty_data, percentiles), std::invalid_argument, "Data cannot be empty for percentile calculation");
}
TEST_F(TestBinDisc3U, PercentileEmptyPercentiles)
{
// Test percentile with empty percentiles
samples_t data = { 1.0f, 2.0f, 3.0f };
std::vector<precision_t> empty_percentiles = {};
EXPECT_THROW_WITH_MESSAGE(percentile(data, empty_percentiles), std::invalid_argument, "Percentiles cannot be empty");
}
}

View File

@@ -1,38 +1,34 @@
include(FetchContent)
include_directories(${GTEST_INCLUDE_DIRS})
FetchContent_Declare(
googletest
URL https://github.com/google/googletest/archive/03597a01ee50ed33e9dfd640b249b4be3799d395.zip
)
# For Windows: Prevent overriding the parent project's compiler/linker settings
set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)
FetchContent_MakeAvailable(googletest)
find_package(arff-files REQUIRED)
find_package(GTest REQUIRED)
find_package(Torch CONFIG REQUIRED)
include_directories(
${TORCH_INCLUDE_DIRS}
${mdlp_SOURCE_DIR}/src
${mdlp_SOURCE_DIR}/tests/lib/Files
${libtorch_INCLUDE_DIRS_DEBUG}
${fimdlp_SOURCE_DIR}/src
${arff-files_INCLUDE_DIRS}
${CMAKE_BINARY_DIR}/configured_files/include
)
add_executable(Metrics_unittest ${mdlp_SOURCE_DIR}/src/Metrics.cpp Metrics_unittest.cpp)
add_executable(Metrics_unittest ${fimdlp_SOURCE_DIR}/src/Metrics.cpp Metrics_unittest.cpp)
target_link_libraries(Metrics_unittest GTest::gtest_main)
target_compile_options(Metrics_unittest PRIVATE --coverage)
target_link_options(Metrics_unittest PRIVATE --coverage)
add_executable(FImdlp_unittest FImdlp_unittest.cpp
${mdlp_SOURCE_DIR}/src/CPPFImdlp.cpp ${mdlp_SOURCE_DIR}/src/Metrics.cpp ${mdlp_SOURCE_DIR}/src/Discretizer.cpp)
target_link_libraries(FImdlp_unittest GTest::gtest_main "${TORCH_LIBRARIES}")
${fimdlp_SOURCE_DIR}/src/CPPFImdlp.cpp ${fimdlp_SOURCE_DIR}/src/Metrics.cpp ${fimdlp_SOURCE_DIR}/src/Discretizer.cpp)
target_link_libraries(FImdlp_unittest GTest::gtest_main torch::torch)
target_compile_options(FImdlp_unittest PRIVATE --coverage)
target_link_options(FImdlp_unittest PRIVATE --coverage)
add_executable(BinDisc_unittest BinDisc_unittest.cpp ${mdlp_SOURCE_DIR}/src/BinDisc.cpp ${mdlp_SOURCE_DIR}/src/Discretizer.cpp)
target_link_libraries(BinDisc_unittest GTest::gtest_main "${TORCH_LIBRARIES}")
add_executable(BinDisc_unittest BinDisc_unittest.cpp ${fimdlp_SOURCE_DIR}/src/BinDisc.cpp ${fimdlp_SOURCE_DIR}/src/Discretizer.cpp)
target_link_libraries(BinDisc_unittest GTest::gtest_main torch::torch)
target_compile_options(BinDisc_unittest PRIVATE --coverage)
target_link_options(BinDisc_unittest PRIVATE --coverage)
add_executable(Discretizer_unittest Discretizer_unittest.cpp
${mdlp_SOURCE_DIR}/src/BinDisc.cpp ${mdlp_SOURCE_DIR}/src/CPPFImdlp.cpp ${mdlp_SOURCE_DIR}/src/Metrics.cpp ${mdlp_SOURCE_DIR}/src/Discretizer.cpp )
target_link_libraries(Discretizer_unittest GTest::gtest_main "${TORCH_LIBRARIES}")
${fimdlp_SOURCE_DIR}/src/BinDisc.cpp ${fimdlp_SOURCE_DIR}/src/CPPFImdlp.cpp ${fimdlp_SOURCE_DIR}/src/Metrics.cpp ${fimdlp_SOURCE_DIR}/src/Discretizer.cpp )
target_link_libraries(Discretizer_unittest GTest::gtest_main torch::torch)
target_compile_options(Discretizer_unittest PRIVATE --coverage)
target_link_options(Discretizer_unittest PRIVATE --coverage)

View File

@@ -13,17 +13,26 @@
#include "BinDisc.h"
#include "CPPFImdlp.h"
#define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \
try { \
stmt; \
} catch (const etype& ex) { \
EXPECT_EQ(whatstring, std::string(ex.what())); \
throw; \
} \
, etype)
namespace mdlp {
const float margin = 1e-4;
static std::string set_data_path()
{
std::string path = "../datasets/";
std::string path = "tests/datasets/";
std::ifstream file(path + "iris.arff");
if (file.is_open()) {
file.close();
return path;
}
return "../../tests/datasets/";
return "datasets/";
}
const std::string data_path = set_data_path();
const labels_t iris_quantile = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 3, 3, 1, 3, 1, 2, 0, 3, 1, 0, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 1, 2, 2, 3, 2, 3, 3, 0, 3, 3, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 2, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2 };
@@ -32,8 +41,7 @@ namespace mdlp {
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
auto version = disc->version();
delete disc;
std::cout << "Version computed: " << version;
EXPECT_EQ("1.2.3", version);
EXPECT_EQ("2.1.1", version);
}
TEST(Discretizer, BinIrisUniform)
{
@@ -271,4 +279,110 @@ namespace mdlp {
EXPECT_EQ(computed[i], expected[i]);
}
}
TEST(Discretizer, TransformEmptyData)
{
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
samples_t empty_data = {};
EXPECT_THROW_WITH_MESSAGE(disc->transform(empty_data), std::invalid_argument, "Data for transformation cannot be empty");
delete disc;
}
TEST(Discretizer, TransformNotFitted)
{
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
samples_t data = { 1.0f, 2.0f, 3.0f };
EXPECT_THROW_WITH_MESSAGE(disc->transform(data), std::runtime_error, "Discretizer not fitted yet or no valid cut points found");
delete disc;
}
TEST(Discretizer, TensorValidationFit)
{
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
auto X = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
auto y = torch::tensor({ 1, 2, 3 }, torch::kInt32);
// Test non-1D tensors
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_2d, y), std::invalid_argument, "Only 1D tensors supported");
auto y_2d = torch::tensor({ {1, 2}, {3, 4} }, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_2d), std::invalid_argument, "Only 1D tensors supported");
// Test wrong tensor types
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_int, y), std::invalid_argument, "X tensor must be Float32 type");
auto y_float = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_float), std::invalid_argument, "y tensor must be Int32 type");
// Test mismatched sizes
auto y_short = torch::tensor({ 1, 2 }, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_short), std::invalid_argument, "X and y tensors must have same number of elements");
// Test empty tensors
auto X_empty = torch::tensor({}, torch::kFloat32);
auto y_empty = torch::tensor({}, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_empty, y_empty), std::invalid_argument, "Tensors cannot be empty");
delete disc;
}
TEST(Discretizer, TensorValidationTransform)
{
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
// First fit with valid data
auto X_fit = torch::tensor({ 1.0f, 2.0f, 3.0f, 4.0f }, torch::kFloat32);
auto y_fit = torch::tensor({ 1, 2, 3, 4 }, torch::kInt32);
disc->fit_t(X_fit, y_fit);
// Test non-1D tensor
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_2d), std::invalid_argument, "Only 1D tensors supported");
// Test wrong tensor type
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_int), std::invalid_argument, "X tensor must be Float32 type");
// Test empty tensor
auto X_empty = torch::tensor({}, torch::kFloat32);
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_empty), std::invalid_argument, "Tensor cannot be empty");
delete disc;
}
TEST(Discretizer, TensorValidationFitTransform)
{
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
auto X = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
auto y = torch::tensor({ 1, 2, 3 }, torch::kInt32);
// Test non-1D tensors
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_2d, y), std::invalid_argument, "Only 1D tensors supported");
auto y_2d = torch::tensor({ {1, 2}, {3, 4} }, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_2d), std::invalid_argument, "Only 1D tensors supported");
// Test wrong tensor types
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_int, y), std::invalid_argument, "X tensor must be Float32 type");
auto y_float = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_float), std::invalid_argument, "y tensor must be Int32 type");
// Test mismatched sizes
auto y_short = torch::tensor({ 1, 2 }, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_short), std::invalid_argument, "X and y tensors must have same number of elements");
// Test empty tensors
auto X_empty = torch::tensor({}, torch::kFloat32);
auto y_empty = torch::tensor({}, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_empty, y_empty), std::invalid_argument, "Tensors cannot be empty");
delete disc;
}
}

View File

@@ -40,13 +40,13 @@ namespace mdlp {
static string set_data_path()
{
string path = "../datasets/";
string path = "datasets/";
ifstream file(path + "iris.arff");
if (file.is_open()) {
file.close();
return path;
}
return "../../tests/datasets/";
return "tests/datasets/";
}
void checkSortedVector()
@@ -64,7 +64,7 @@ namespace mdlp {
{
EXPECT_EQ(computed.size(), expected.size());
for (unsigned long i = 0; i < computed.size(); i++) {
cout << "(" << computed[i] << ", " << expected[i] << ") ";
// cout << "(" << computed[i] << ", " << expected[i] << ") ";
EXPECT_NEAR(computed[i], expected[i], precision);
}
}
@@ -76,7 +76,7 @@ namespace mdlp {
X = X_;
y = y_;
indices = sortIndices(X, y);
cout << "* " << title << endl;
// cout << "* " << title << endl;
result = valueCutPoint(0, cut, 10);
EXPECT_NEAR(result.first, midPoint, precision);
EXPECT_EQ(result.second, limit);
@@ -95,9 +95,9 @@ namespace mdlp {
test.fit(X[feature], y);
EXPECT_EQ(test.get_depth(), depths[feature]);
auto computed = test.getCutPoints();
cout << "Feature " << feature << ": ";
// cout << "Feature " << feature << ": ";
checkCutPoints(computed, expected[feature]);
cout << endl;
// cout << endl;
}
}
};
@@ -113,17 +113,16 @@ namespace mdlp {
{
X = { 1, 2, 3 };
y = { 1, 2 };
EXPECT_THROW_WITH_MESSAGE(fit(X, y), invalid_argument, "X and y must have the same size");
EXPECT_THROW_WITH_MESSAGE(fit(X, y), invalid_argument, "X and y must have the same size: " + std::to_string(X.size()) + " != " + std::to_string(y.size()));
}
TEST_F(TestFImdlp, FitErrorMinLengtMaxDepth)
TEST_F(TestFImdlp, FitErrorMinLength)
{
auto testLength = CPPFImdlp(2, 10, 0);
auto testDepth = CPPFImdlp(3, 0, 0);
X = { 1, 2, 3 };
y = { 1, 2, 3 };
EXPECT_THROW_WITH_MESSAGE(testLength.fit(X, y), invalid_argument, "min_length must be greater than 2");
EXPECT_THROW_WITH_MESSAGE(testDepth.fit(X, y), invalid_argument, "max_depth must be greater than 0");
EXPECT_THROW_WITH_MESSAGE(CPPFImdlp(2, 10, 0), invalid_argument, "min_length must be greater than 2");
}
TEST_F(TestFImdlp, FitErrorMaxDepth)
{
EXPECT_THROW_WITH_MESSAGE(CPPFImdlp(3, 0, 0), invalid_argument, "max_depth must be greater than 0");
}
TEST_F(TestFImdlp, JoinFit)
@@ -137,14 +136,16 @@ namespace mdlp {
checkCutPoints(computed, expected);
}
TEST_F(TestFImdlp, FitErrorMinCutPoints)
{
EXPECT_THROW_WITH_MESSAGE(CPPFImdlp(3, 10, -1), invalid_argument, "proposed_cuts must be non-negative");
}
TEST_F(TestFImdlp, FitErrorMaxCutPoints)
{
auto testmin = CPPFImdlp(2, 10, -1);
auto testmax = CPPFImdlp(3, 0, 200);
X = { 1, 2, 3 };
y = { 1, 2, 3 };
EXPECT_THROW_WITH_MESSAGE(testmin.fit(X, y), invalid_argument, "wrong proposed num_cuts value");
EXPECT_THROW_WITH_MESSAGE(testmax.fit(X, y), invalid_argument, "wrong proposed num_cuts value");
auto test = CPPFImdlp(3, 1, 8);
samples_t X_ = { 1, 2, 2, 3, 4, 2, 3 };
labels_t y_ = { 0, 0, 1, 2, 3, 4, 5 };
EXPECT_THROW_WITH_MESSAGE(test.fit(X_, y_), invalid_argument, "wrong proposed num_cuts value");
}
TEST_F(TestFImdlp, SortIndices)
@@ -166,6 +167,15 @@ namespace mdlp {
indices = { 1, 2, 0 };
}
TEST_F(TestFImdlp, SortIndicesOutOfBounds)
{
// Test for out of bounds exception in sortIndices
samples_t X_long = { 1.0f, 2.0f, 3.0f };
labels_t y_short = { 1, 2 };
EXPECT_THROW_WITH_MESSAGE(sortIndices(X_long, y_short), std::out_of_range, "Index out of bounds in sort comparison");
}
TEST_F(TestFImdlp, TestShortDatasets)
{
vector<precision_t> computed;
@@ -363,4 +373,55 @@ namespace mdlp {
EXPECT_EQ(computed_ft[i], expected[i]);
}
}
TEST_F(TestFImdlp, SafeXAccessIndexOutOfBounds)
{
// Test safe_X_access with index out of bounds for indices array
X = { 1.0f, 2.0f, 3.0f };
y = { 1, 2, 3 };
indices = { 0, 1 }; // shorter than expected
// This should trigger the first exception in safe_X_access (idx >= indices.size())
EXPECT_THROW_WITH_MESSAGE(safe_X_access(2), std::out_of_range, "Index out of bounds for indices array");
}
TEST_F(TestFImdlp, SafeXAccessXOutOfBounds)
{
// Test safe_X_access with real_idx out of bounds for X array
X = { 1.0f, 2.0f }; // shorter array
y = { 1, 2, 3 };
indices = { 0, 1, 5 }; // indices[2] = 5 is out of bounds for X
// This should trigger the second exception in safe_X_access (real_idx >= X.size())
EXPECT_THROW_WITH_MESSAGE(safe_X_access(2), std::out_of_range, "Index out of bounds for X array");
}
TEST_F(TestFImdlp, SafeYAccessIndexOutOfBounds)
{
// Test safe_y_access with index out of bounds for indices array
X = { 1.0f, 2.0f, 3.0f };
y = { 1, 2, 3 };
indices = { 0, 1 }; // shorter than expected
// This should trigger the first exception in safe_y_access (idx >= indices.size())
EXPECT_THROW_WITH_MESSAGE(safe_y_access(2), std::out_of_range, "Index out of bounds for indices array");
}
TEST_F(TestFImdlp, SafeYAccessYOutOfBounds)
{
// Test safe_y_access with real_idx out of bounds for y array
X = { 1.0f, 2.0f, 3.0f };
y = { 1, 2 }; // shorter array
indices = { 0, 1, 5 }; // indices[2] = 5 is out of bounds for y
// This should trigger the second exception in safe_y_access (real_idx >= y.size())
EXPECT_THROW_WITH_MESSAGE(safe_y_access(2), std::out_of_range, "Index out of bounds for y array");
}
TEST_F(TestFImdlp, SafeSubtractUnderflow)
{
// Test safe_subtract with underflow condition (b > a)
EXPECT_THROW_WITH_MESSAGE(safe_subtract(3, 5), std::underflow_error, "Subtraction would cause underflow");
}
}

Submodule tests/lib/Files deleted from a5316928d4