Fix BinDisc quantile mistakes (#9)

* Fix BinDisc quantile mistakes

* Fix FImdlp tests

* Fix tests, samples and remove uneeded support files

* Add coypright header to sources
Fix coverage report
Add coverage badge to README

* Update sonar github action

* Move sources to a folder and change ArffFiles files to library

* Add recursive submodules to github action
This commit is contained in:
Ricardo Montañana Gómez
2024-07-04 17:27:39 +02:00
committed by GitHub
parent 7b0673fd4b
commit e36d9af8f9
35 changed files with 1383 additions and 923 deletions

View File

@@ -13,9 +13,10 @@ jobs:
env:
BUILD_WRAPPER_OUT_DIR: build_wrapper_output_directory # Directory where build-wrapper output will be placed
steps:
- uses: actions/checkout@v4.1.6
- uses: actions/checkout@v4
with:
fetch-depth: 0 # Shallow clones should be disabled for a better relevancy of analysis
submodules: recursive
- name: Install sonar-scanner and build-wrapper
uses: SonarSource/sonarcloud-github-c-cpp@v2
- name: Install lcov & gcovr
@@ -28,17 +29,16 @@ jobs:
unzip libtorch-cxx11-abi-shared-with-deps-2.3.1+cpu.zip
- name: Tests & build-wrapper
run: |
cmake -S . -B build -Wno-dev -DCMAKE_PREFIX_PATH=$(pwd)/libtorch -DENABLE_TESTING=ON
build-wrapper-linux-x86-64 --out-dir ${{ env.BUILD_WRAPPER_OUT_DIR }} cmake --build build/ --config Release
cmake -S . -B build -Wno-dev -DCMAKE_PREFIX_PATH=$(pwd)/libtorch -DCMAKE_BUILD_TYPE=Debug -DENABLE_TESTING=ON
build-wrapper-linux-x86-64 --out-dir ${{ env.BUILD_WRAPPER_OUT_DIR }} cmake --build build/ --config Debug
cmake --build build -j 4
cd build
make
ctest -C Release --output-on-failure --test-dir tests
cd ..
gcovr -f CPPFImdlp.cpp -f Metrics.cpp -f BinDisc.cpp -f Discretizer.cpp --txt --sonarqube=coverage.xml
ctest -C Debug --output-on-failure -j 4
gcovr -f ../src/CPPFImdlp.cpp -f ../src/Metrics.cpp -f ../src/BinDisc.cpp -f ../src/Discretizer.cpp --txt --sonarqube=coverage.xml
- name: Run sonar-scanner
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
SONAR_TOKEN: ${{ secrets.SONAR_TOKEN }}
run: |
sonar-scanner --define sonar.cfamily.build-wrapper-output="${{ env.BUILD_WRAPPER_OUT_DIR }}" \
--define sonar.coverageReportPaths=coverage.xml
sonar-scanner --define sonar.cfamily.compile-commands="${{ env.BUILD_WRAPPER_OUT_DIR }}" \
--define sonar.coverageReportPaths=build/coverage.xml

3
.gitmodules vendored Normal file
View File

@@ -0,0 +1,3 @@
[submodule "tests/lib/Files"]
path = tests/lib/Files
url = https://github.com/rmontanana/ArffFiles.git

2
.vscode/launch.json vendored
View File

@@ -8,7 +8,7 @@
"name": "C++ Launch config",
"type": "cppdbg",
"request": "launch",
"program": "${workspaceFolder}/tests/build/Metrics_unittest",
"program": "${workspaceFolder}/tests/build/BinDisc_unittest",
"cwd": "${workspaceFolder}/tests/build",
"args": [],
"launchCompleteCommand": "exec-run",

View File

@@ -1,11 +1,34 @@
cmake_minimum_required(VERSION 3.20)
project(mdlp)
set(CMAKE_CXX_STANDARD 17)
cmake_policy(SET CMP0135 NEW)
find_package(Torch REQUIRED)
include_directories(${TORCH_INCLUDE_DIRS})
add_library(mdlp CPPFImdlp.cpp Metrics.cpp BinDisc.cpp Discretizer.cpp)
target_link_libraries(mdlp "${TORCH_LIBRARIES}")
add_subdirectory(sample)
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-elide-constructors")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -O3")
if (NOT ${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-default-inline")
endif()
if (ENABLE_TESTING)
MESSAGE("Debug mode")
enable_testing()
set(CODE_COVERAGE ON)
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
add_subdirectory(tests)
else(ENABLE_TESTING)
MESSAGE("Release mode")
endif(ENABLE_TESTING)
add_subdirectory(sample)
include_directories(
${TORCH_INCLUDE_DIRS}
${mdlp_SOURCE_DIR}/src
)
add_library(mdlp src/CPPFImdlp.cpp src/Metrics.cpp src/BinDisc.cpp src/Discretizer.cpp)
target_link_libraries(mdlp "${TORCH_LIBRARIES}")

View File

@@ -1,41 +0,0 @@
#include "Discretizer.h"
namespace mdlp {
labels_t& Discretizer::transform(const samples_t& data)
{
discretizedData.clear();
discretizedData.reserve(data.size());
for (const precision_t& item : data) {
auto upper = std::upper_bound(cutPoints.begin(), cutPoints.end(), item);
discretizedData.push_back(upper - cutPoints.begin());
}
return discretizedData;
}
labels_t& Discretizer::fit_transform(samples_t& X_, labels_t& y_)
{
fit(X_, y_);
return transform(X_);
}
void Discretizer::fit_t(torch::Tensor& X_, torch::Tensor& y_)
{
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
fit(X, y);
}
torch::Tensor Discretizer::transform_t(torch::Tensor& X_)
{
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<float>(), X_.data_ptr<float>() + num_elements);
auto result = transform(X);
return torch::tensor(result, torch::kInt32);
}
torch::Tensor Discretizer::fit_transform_t(torch::Tensor& X_, torch::Tensor& y_)
{
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
auto result = fit_transform(X, y);
return torch::tensor(result, torch::kInt32);
}
}

View File

@@ -1,27 +0,0 @@
#ifndef DISCRETIZER_H
#define DISCRETIZER_H
#include <string>
#include <algorithm>
#include <torch/torch.h>
#include "typesFImdlp.h"
namespace mdlp {
class Discretizer {
public:
Discretizer() = default;
virtual ~Discretizer() = default;
inline cutPoints_t getCutPoints() const { return cutPoints; };
virtual void fit(samples_t& X_, labels_t& y_) = 0;
labels_t& transform(const samples_t& data);
labels_t& fit_transform(samples_t& X_, labels_t& y_);
void fit_t(torch::Tensor& X_, torch::Tensor& y_);
torch::Tensor transform_t(torch::Tensor& X_);
torch::Tensor fit_transform_t(torch::Tensor& X_, torch::Tensor& y_);
static inline std::string version() { return "1.2.2"; };
protected:
labels_t discretizedData = labels_t();
cutPoints_t cutPoints;
};
}
#endif

View File

@@ -1,13 +1,32 @@
SHELL := /bin/bash
.DEFAULT_GOAL := build
.PHONY: build test
lcov := lcov
build:
@if [ -d build_release ]; then rm -fr build_release; fi
@mkdir build_release
@cmake -B build_release -S . -DCMAKE_BUILD_TYPE=Release -DENABLE_TESTING=OFF
@cmake --build build_release
@cmake --build build_release -j 8
test:
@echo "Testing..."
@cd tests && ./test
@if [ -d build_debug ]; then rm -fr build_debug; fi
@mkdir build_debug
@cmake -B build_debug -S . -DCMAKE_BUILD_TYPE=Debug -DENABLE_TESTING=ON
@cmake --build build_debug -j 8
@cd build_debug/tests && ctest --output-on-failure -j 8
@cd build_debug/tests && $(lcov) --capture --directory ../ --demangle-cpp --ignore-errors source,source --ignore-errors mismatch --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info '/usr/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'gtest/*' --output-file coverage.info >/dev/null 2>&1;
@genhtml build_debug/tests/coverage.info --demangle-cpp --output-directory build_debug/tests/coverage --title "Discretizer mdlp Coverage Report" -s -k -f --legend
@echo "* Coverage report is generated at build_debug/tests/coverage/index.html"
@which python || (echo ">>> Please install python"; exit 1)
@if [ ! -f build_debug/tests/coverage.info ]; then \
echo ">>> No coverage.info file found!"; \
exit 1; \
fi
@echo ">>> Updating coverage badge..."
@env python update_coverage.py build_debug/tests

View File

@@ -1,6 +1,7 @@
[![Build](https://github.com/rmontanana/mdlp/actions/workflows/build.yml/badge.svg)](https://github.com/rmontanana/mdlp/actions/workflows/build.yml)
[![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_mdlp&metric=alert_status)](https://sonarcloud.io/summary/new_code?id=rmontanana_mdlp)
[![Reliability Rating](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_mdlp&metric=reliability_rating)](https://sonarcloud.io/summary/new_code?id=rmontanana_mdlp)
[![Coverage Badge](https://img.shields.io/badge/Coverage-100,0%25-green)](html/index.html)
# <img src="logo.png" alt="logo" width="50"/> mdlp
@@ -31,15 +32,14 @@ Other features:
To run the sample, just execute the following commands:
```bash
cmake -B build -S .
cmake --build build
build/sample/sample -f iris -m 2
build/sample/sample -h
make build
build_release/sample/sample -f iris -m 2
build_release/sample/sample -h
```
## Test
To run the tests and see coverage (llvm & gcovr have to be installed), execute the following commands:
To run the tests and see coverage (llvm with lcov and genhtml have to be installed), execute the following commands:
```bash
make test

View File

@@ -2,5 +2,10 @@ set(CMAKE_CXX_STANDARD 17)
set(CMAKE_BUILD_TYPE Debug)
add_executable(sample sample.cpp ../tests/ArffFiles.cpp)
include_directories(
${mdlp_SOURCE_DIR}/src
${mdlp_SOURCE_DIR}/tests/lib/Files
)
add_executable(sample sample.cpp )
target_link_libraries(sample mdlp "${TORCH_LIBRARIES}")

View File

@@ -1,3 +1,9 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include <iostream>
#include <vector>
#include <iomanip>
@@ -6,10 +12,10 @@
#include <cstring>
#include <getopt.h>
#include <torch/torch.h>
#include "../Discretizer.h"
#include "../CPPFImdlp.h"
#include "../BinDisc.h"
#include "../tests/ArffFiles.h"
#include <ArffFiles.hpp>
#include "Discretizer.h"
#include "CPPFImdlp.h"
#include "BinDisc.h"
const string PATH = "tests/datasets/";
@@ -144,7 +150,7 @@ void process_file(const string& path, const string& file_name, bool class_last,
auto result = test.fit_transform_t(Xt, yt);
std::cout << "Transformed data (torch)...: " << std::endl;
for (int i = 130; i < 135; i++) {
std::cout << std::fixed << std::setprecision(1) << Xt[i].item<float>() << " " << result[i].item<int>() << std::endl;
std::cout << std::fixed << std::setprecision(1) << Xt[i].item<mdlp::precision_t>() << " " << result[i].item<int>() << std::endl;
}
auto disc = mdlp::BinDisc(3);
auto res_v = disc.fit_transform(X[0], y);
@@ -152,7 +158,7 @@ void process_file(const string& path, const string& file_name, bool class_last,
auto res_t = disc.transform_t(Xt);
std::cout << "Transformed data (BinDisc)...: " << std::endl;
for (int i = 130; i < 135; i++) {
std::cout << std::fixed << std::setprecision(1) << Xt[i].item<float>() << " " << res_v[i] << " " << res_t[i].item<int>() << std::endl;
std::cout << std::fixed << std::setprecision(1) << Xt[i].item<mdlp::precision_t>() << " " << res_v[i] << " " << res_t[i].item<int>() << std::endl;
}
}

View File

@@ -3,7 +3,7 @@ sonar.organization=rmontanana
# This is the name and version displayed in the SonarCloud UI.
sonar.projectName=mdlp
sonar.projectVersion=1.2.1
sonar.projectVersion=2.0.0
# sonar.test.exclusions=tests/**
# sonar.tests=tests/
# sonar.coverage.exclusions=tests/**,sample/**
@@ -11,4 +11,4 @@ sonar.projectVersion=1.2.1
#sonar.sources=.
# Encoding of the source code. Default is default system encoding
sonar.sourceEncoding=UTF-8
sonar.sourceEncoding=UTF-8

View File

@@ -1,5 +1,10 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include <algorithm>
#include <limits>
#include <cmath>
#include "BinDisc.h"
#include <iostream>
@@ -20,12 +25,15 @@ namespace mdlp {
// y is included for compatibility with the Discretizer interface
cutPoints.clear();
if (X.empty()) {
cutPoints.push_back(std::numeric_limits<precision_t>::max());
cutPoints.push_back(0.0);
cutPoints.push_back(0.0);
return;
}
if (strategy == strategy_t::QUANTILE) {
direction = bound_dir_t::RIGHT;
fit_quantile(X);
} else if (strategy == strategy_t::UNIFORM) {
direction = bound_dir_t::RIGHT;
fit_uniform(X);
}
}
@@ -35,65 +43,56 @@ namespace mdlp {
}
std::vector<precision_t> linspace(precision_t start, precision_t end, int num)
{
// Doesn't include end point as it is not needed
if (start == end) {
return { 0 };
return { start, end };
}
precision_t delta = (end - start) / static_cast<precision_t>(num - 1);
std::vector<precision_t> linspc;
for (size_t i = 0; i < num - 1; ++i) {
for (size_t i = 0; i < num; ++i) {
precision_t val = start + delta * static_cast<precision_t>(i);
linspc.push_back(val);
}
return linspc;
}
size_t clip(const size_t n, size_t lower, size_t upper)
size_t clip(const size_t n, const size_t lower, const size_t upper)
{
return std::max(lower, std::min(n, upper));
}
std::vector<precision_t> percentile(samples_t& data, std::vector<precision_t>& percentiles)
std::vector<precision_t> percentile(samples_t& data, const std::vector<precision_t>& percentiles)
{
// Implementation taken from https://dpilger26.github.io/NumCpp/doxygen/html/percentile_8hpp_source.html
std::vector<precision_t> results;
bool first = true;
results.reserve(percentiles.size());
for (auto percentile : percentiles) {
const size_t i = static_cast<size_t>(std::floor(static_cast<double>(data.size() - 1) * percentile / 100.));
const auto i = static_cast<size_t>(std::floor(static_cast<precision_t>(data.size() - 1) * percentile / 100.));
const auto indexLower = clip(i, 0, data.size() - 2);
const double percentI = static_cast<double>(indexLower) / static_cast<double>(data.size() - 1);
const double fraction =
const precision_t percentI = static_cast<precision_t>(indexLower) / static_cast<precision_t>(data.size() - 1);
const precision_t fraction =
(percentile / 100.0 - percentI) /
(static_cast<double>(indexLower + 1) / static_cast<double>(data.size() - 1) - percentI);
const auto value = data[indexLower] + (data[indexLower + 1] - data[indexLower]) * fraction;
if (value != results.back())
(static_cast<precision_t>(indexLower + 1) / static_cast<precision_t>(data.size() - 1) - percentI);
if (const auto value = data[indexLower] + (data[indexLower + 1] - data[indexLower]) * fraction; value != results.back() || first) // first needed as results.back() return is undefined for empty vectors
results.push_back(value);
first = false;
}
return results;
}
void BinDisc::fit_quantile(samples_t& X)
void BinDisc::fit_quantile(const samples_t& X)
{
auto quantiles = linspace(0.0, 100.0, n_bins + 1);
auto data = X;
std::sort(data.begin(), data.end());
if (data.front() == data.back() || data.size() == 1) {
// if X is constant
cutPoints.push_back(std::numeric_limits<precision_t>::max());
// if X is constant, pass any two given points that shall be ignored in transform
cutPoints.push_back(data.front());
cutPoints.push_back(data.front());
return;
}
cutPoints = percentile(data, quantiles);
normalizeCutPoints();
}
void BinDisc::fit_uniform(samples_t& X)
void BinDisc::fit_uniform(const samples_t& X)
{
auto minmax = std::minmax_element(X.begin(), X.end());
cutPoints = linspace(*minmax.first, *minmax.second, n_bins + 1);
normalizeCutPoints();
}
void BinDisc::normalizeCutPoints()
{
// Add max value to the end
cutPoints.push_back(std::numeric_limits<precision_t>::max());
// Remove first as it is not needed
cutPoints.erase(cutPoints.begin());
auto [vmin, vmax] = std::minmax_element(X.begin(), X.end());
cutPoints = linspace(*vmin, *vmax, n_bins + 1);
}
}

View File

@@ -1,3 +1,9 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#ifndef BINDISC_H
#define BINDISC_H
@@ -18,9 +24,8 @@ namespace mdlp {
void fit(samples_t& X_, labels_t& y) override;
void fit(samples_t& X);
private:
void fit_uniform(samples_t&);
void fit_quantile(samples_t&);
void normalizeCutPoints();
void fit_uniform(const samples_t&);
void fit_quantile(const samples_t&);
int n_bins;
strategy_t strategy;
};

View File

@@ -1,3 +1,9 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include <numeric>
#include <algorithm>
#include <set>
@@ -12,6 +18,7 @@ namespace mdlp {
max_depth(max_depth_),
proposed_cuts(proposed)
{
direction = bound_dir_t::RIGHT;
}
size_t CPPFImdlp::compute_max_num_cut_points() const
@@ -20,12 +27,12 @@ namespace mdlp {
if (proposed_cuts == 0) {
return numeric_limits<size_t>::max();
}
if (proposed_cuts < 0 || proposed_cuts > static_cast<float>(X.size())) {
if (proposed_cuts < 0 || proposed_cuts > static_cast<precision_t>(X.size())) {
throw invalid_argument("wrong proposed num_cuts value");
}
if (proposed_cuts < 1)
return static_cast<size_t>(round(static_cast<float>(X.size()) * proposed_cuts));
return static_cast<size_t>(proposed_cuts);
return static_cast<size_t>(round(static_cast<precision_t>(X.size()) * proposed_cuts));
return static_cast<size_t>(proposed_cuts); // The 2 extra cutpoints should not be considered here as this parameter is considered before they are added
}
void CPPFImdlp::fit(samples_t& X_, labels_t& y_)
@@ -58,6 +65,10 @@ namespace mdlp {
resizeCutPoints();
}
}
// Insert first & last X value to the cutpoints as them shall be ignored in transform
auto [vmin, vmax] = std::minmax_element(X.begin(), X.end());
cutPoints.push_back(*vmax);
cutPoints.insert(cutPoints.begin(), *vmin);
}
pair<precision_t, size_t> CPPFImdlp::valueCutPoint(size_t start, size_t cut, size_t end)

View File

@@ -1,3 +1,9 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#ifndef CPPFIMDLP_H
#define CPPFIMDLP_H

54
src/Discretizer.cpp Normal file
View File

@@ -0,0 +1,54 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include "Discretizer.h"
namespace mdlp {
labels_t& Discretizer::transform(const samples_t& data)
{
discretizedData.clear();
discretizedData.reserve(data.size());
// CutPoints always have at least two items
// Have to ignore first and last cut points provided
auto first = cutPoints.begin() + 1;
auto last = cutPoints.end() - 1;
auto bound = direction == bound_dir_t::LEFT ? std::lower_bound<std::vector<precision_t>::iterator, precision_t> : std::upper_bound<std::vector<precision_t>::iterator, precision_t>;
for (const precision_t& item : data) {
auto pos = bound(first, last, item);
auto number = pos - first;
discretizedData.push_back(static_cast<label_t>(number));
}
return discretizedData;
}
labels_t& Discretizer::fit_transform(samples_t& X_, labels_t& y_)
{
fit(X_, y_);
return transform(X_);
}
void Discretizer::fit_t(const torch::Tensor& X_, const torch::Tensor& y_)
{
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
fit(X, y);
}
torch::Tensor Discretizer::transform_t(const torch::Tensor& X_)
{
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
auto result = transform(X);
return torch::tensor(result, torch_label_t);
}
torch::Tensor Discretizer::fit_transform_t(const torch::Tensor& X_, const torch::Tensor& y_)
{
auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
auto result = fit_transform(X, y);
return torch::tensor(result, torch_label_t);
}
}

39
src/Discretizer.h Normal file
View File

@@ -0,0 +1,39 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#ifndef DISCRETIZER_H
#define DISCRETIZER_H
#include <string>
#include <algorithm>
#include "typesFImdlp.h"
#include <torch/torch.h>
namespace mdlp {
enum class bound_dir_t {
LEFT,
RIGHT
};
const auto torch_label_t = torch::kInt32;
class Discretizer {
public:
Discretizer() = default;
virtual ~Discretizer() = default;
inline cutPoints_t getCutPoints() const { return cutPoints; };
virtual void fit(samples_t& X_, labels_t& y_) = 0;
labels_t& transform(const samples_t& data);
labels_t& fit_transform(samples_t& X_, labels_t& y_);
void fit_t(const torch::Tensor& X_, const torch::Tensor& y_);
torch::Tensor transform_t(const torch::Tensor& X_);
torch::Tensor fit_transform_t(const torch::Tensor& X_, const torch::Tensor& y_);
static inline std::string version() { return "1.2.3"; };
protected:
labels_t discretizedData = labels_t();
cutPoints_t cutPoints; // At least two cutpoints must be provided, the first and the last will be ignored in transform
bound_dir_t direction; // used in transform
};
}
#endif

View File

@@ -1,3 +1,9 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include "Metrics.h"
#include <set>
#include <cmath>

View File

@@ -1,3 +1,9 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#ifndef CCMETRICS_H
#define CCMETRICS_H

View File

@@ -8,8 +8,9 @@
using namespace std;
namespace mdlp {
typedef float precision_t;
typedef int label_t;
typedef std::vector<precision_t> samples_t;
typedef std::vector<int> labels_t;
typedef std::vector<label_t> labels_t;
typedef std::vector<size_t> indices_t;
typedef std::vector<precision_t> cutPoints_t;
typedef std::map<std::pair<int, int>, precision_t> cacheEnt_t;

View File

@@ -1,132 +0,0 @@
#include "ArffFiles.h"
#include <fstream>
#include <sstream>
#include <map>
using namespace std;
ArffFiles::ArffFiles() = default;
vector<string> ArffFiles::getLines() const
{
return lines;
}
unsigned long int ArffFiles::getSize() const
{
return lines.size();
}
vector<pair<string, string>> ArffFiles::getAttributes() const
{
return attributes;
}
string ArffFiles::getClassName() const
{
return className;
}
string ArffFiles::getClassType() const
{
return classType;
}
vector<mdlp::samples_t>& ArffFiles::getX()
{
return X;
}
vector<int>& ArffFiles::getY()
{
return y;
}
void ArffFiles::load(const string& fileName, bool classLast)
{
ifstream file(fileName);
if (!file.is_open()) {
throw invalid_argument("Unable to open file");
}
string line;
string keyword;
string attribute;
string type;
string type_w;
while (getline(file, line)) {
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
continue;
}
if (line.find("@attribute") != string::npos || line.find("@ATTRIBUTE") != string::npos) {
stringstream ss(line);
ss >> keyword >> attribute;
type = "";
while (ss >> type_w)
type += type_w + " ";
attributes.emplace_back(trim(attribute), trim(type));
continue;
}
if (line[0] == '@') {
continue;
}
lines.push_back(line);
}
file.close();
if (attributes.empty())
throw invalid_argument("No attributes found");
if (classLast) {
className = get<0>(attributes.back());
classType = get<1>(attributes.back());
attributes.pop_back();
} else {
className = get<0>(attributes.front());
classType = get<1>(attributes.front());
attributes.erase(attributes.begin());
}
generateDataset(classLast);
}
void ArffFiles::generateDataset(bool classLast)
{
X = vector<mdlp::samples_t>(attributes.size(), mdlp::samples_t(lines.size()));
auto yy = vector<string>(lines.size(), "");
int labelIndex = classLast ? static_cast<int>(attributes.size()) : 0;
for (size_t i = 0; i < lines.size(); i++) {
stringstream ss(lines[i]);
string value;
int pos = 0;
int xIndex = 0;
while (getline(ss, value, ',')) {
if (pos++ == labelIndex) {
yy[i] = value;
} else {
X[xIndex++][i] = stof(value);
}
}
}
y = factorize(yy);
}
string ArffFiles::trim(const string& source)
{
string s(source);
s.erase(0, s.find_first_not_of(" '\n\r\t"));
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
return s;
}
vector<int> ArffFiles::factorize(const vector<string>& labels_t)
{
vector<int> yy;
yy.reserve(labels_t.size());
map<string, int> labelMap;
int i = 0;
for (const string& label : labels_t) {
if (labelMap.find(label) == labelMap.end()) {
labelMap[label] = i++;
}
yy.push_back(labelMap[label]);
}
return yy;
}

View File

@@ -1,35 +0,0 @@
#ifndef ARFFFILES_H
#define ARFFFILES_H
#include <string>
#include <vector>
#include "../typesFImdlp.h"
using namespace std;
class ArffFiles {
private:
vector<string> lines;
vector<pair<string, string>> attributes;
string className;
string classType;
vector<mdlp::samples_t> X;
vector<int> y;
void generateDataset(bool);
public:
ArffFiles();
void load(const string&, bool = true);
vector<string> getLines() const;
unsigned long int getSize() const;
string getClassName() const;
string getClassType() const;
static string trim(const string&);
vector<mdlp::samples_t>& getX();
vector<int>& getY();
vector<pair<string, string>> getAttributes() const;
static vector<int> factorize(const vector<string>& labels_t);
};
#endif

View File

@@ -1,9 +1,16 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include <fstream>
#include <string>
#include <iostream>
#include "gtest/gtest.h"
#include "ArffFiles.h"
#include "../BinDisc.h"
#include <ArffFiles.hpp>
#include "BinDisc.h"
#include "Experiments.hpp"
namespace mdlp {
const float margin = 1e-4;
@@ -40,10 +47,11 @@ namespace mdlp {
auto y = labels_t();
fit(X, y);
auto cuts = getCutPoints();
ASSERT_EQ(3, cuts.size());
EXPECT_NEAR(3.66667, cuts.at(0), margin);
EXPECT_NEAR(6.33333, cuts.at(1), margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts.at(2));
ASSERT_EQ(4, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(3.66667, cuts.at(1), margin);
EXPECT_NEAR(6.33333, cuts.at(2), margin);
EXPECT_NEAR(9.0, cuts.at(3), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2 };
EXPECT_EQ(expected, labels);
@@ -53,10 +61,11 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(3, cuts.size());
EXPECT_NEAR(3.666667, cuts[0], margin);
EXPECT_NEAR(6.333333, cuts[1], margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
ASSERT_EQ(4, cuts.size());
EXPECT_NEAR(1, cuts[0], margin);
EXPECT_NEAR(3.666667, cuts[1], margin);
EXPECT_NEAR(6.333333, cuts[2], margin);
EXPECT_NEAR(9, cuts[3], margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2 };
EXPECT_EQ(expected, labels);
@@ -66,10 +75,11 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 };
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(3, cuts.size());
EXPECT_EQ(4.0, cuts[0]);
EXPECT_EQ(7.0, cuts[1]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
ASSERT_EQ(4, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(4.0, cuts.at(1), margin);
EXPECT_NEAR(7.0, cuts.at(2), margin);
EXPECT_NEAR(10.0, cuts.at(3), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 2 };
EXPECT_EQ(expected, labels);
@@ -79,10 +89,11 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 };
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(3, cuts.size());
EXPECT_EQ(4, cuts[0]);
EXPECT_EQ(7, cuts[1]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
ASSERT_EQ(4, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(4.0, cuts.at(1), margin);
EXPECT_NEAR(7.0, cuts.at(2), margin);
EXPECT_NEAR(10.0, cuts.at(3), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 2 };
EXPECT_EQ(expected, labels);
@@ -92,10 +103,11 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 };
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(3, cuts.size());
EXPECT_NEAR(4.33333, cuts[0], margin);
EXPECT_NEAR(7.66667, cuts[1], margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
ASSERT_EQ(4, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(4.33333, cuts.at(1), margin);
EXPECT_NEAR(7.66667, cuts.at(2), margin);
EXPECT_NEAR(11.0, cuts.at(3), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2 };
EXPECT_EQ(expected, labels);
@@ -105,10 +117,11 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 };
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(3, cuts.size());
EXPECT_NEAR(4.33333, cuts[0], margin);
EXPECT_NEAR(7.66667, cuts[1], margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
ASSERT_EQ(4, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(4.33333, cuts.at(1), margin);
EXPECT_NEAR(7.66667, cuts.at(2), margin);
EXPECT_NEAR(11.0, cuts.at(3), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2 };
EXPECT_EQ(expected, labels);
@@ -118,8 +131,9 @@ namespace mdlp {
samples_t X = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(1, cuts.size());
EXPECT_EQ(numeric_limits<float>::max(), cuts[0]);
ASSERT_EQ(2, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(1, cuts.at(1), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 0, 0 };
EXPECT_EQ(expected, labels);
@@ -129,8 +143,9 @@ namespace mdlp {
samples_t X = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(1, cuts.size());
EXPECT_EQ(numeric_limits<float>::max(), cuts[0]);
ASSERT_EQ(2, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(1, cuts.at(1), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 0, 0 };
EXPECT_EQ(expected, labels);
@@ -140,16 +155,18 @@ namespace mdlp {
samples_t X = {};
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(1, cuts.size());
EXPECT_EQ(numeric_limits<float>::max(), cuts[0]);
ASSERT_EQ(2, cuts.size());
EXPECT_NEAR(0, cuts.at(0), margin);
EXPECT_NEAR(0, cuts.at(1), margin);
}
TEST_F(TestBinDisc3Q, EmptyQuantile)
{
samples_t X = {};
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(1, cuts.size());
EXPECT_EQ(numeric_limits<float>::max(), cuts[0]);
ASSERT_EQ(2, cuts.size());
EXPECT_NEAR(0, cuts.at(0), margin);
EXPECT_NEAR(0, cuts.at(1), margin);
}
TEST(TestBinDisc3, ExceptionNumberBins)
{
@@ -160,10 +177,11 @@ namespace mdlp {
samples_t X = { 3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0 };
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(3, cuts.size());
EXPECT_NEAR(1.66667, cuts[0], margin);
EXPECT_NEAR(2.33333, cuts[1], margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
ASSERT_EQ(4, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(1.66667, cuts.at(1), margin);
EXPECT_NEAR(2.33333, cuts.at(2), margin);
EXPECT_NEAR(3.0, cuts.at(3), margin);
auto labels = transform(X);
labels_t expected = { 2, 0, 0, 2, 0, 0, 2, 0, 0 };
EXPECT_EQ(expected, labels);
@@ -174,9 +192,10 @@ namespace mdlp {
samples_t X = { 3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(2, cuts.size());
EXPECT_NEAR(1.66667, cuts[0], margin);
EXPECT_EQ(numeric_limits<float>::max(), cuts[1]);
ASSERT_EQ(3, cuts.size());
EXPECT_NEAR(1, cuts.at(0), margin);
EXPECT_NEAR(1.66667, cuts.at(1), margin);
EXPECT_NEAR(3.0, cuts.at(2), margin);
auto labels = transform(X);
labels_t expected = { 1, 0, 0, 1, 0, 0, 1, 0, 0 };
EXPECT_EQ(expected, labels);
@@ -187,11 +206,12 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
ASSERT_EQ(3.75, cuts[0]);
EXPECT_EQ(6.5, cuts[1]);
EXPECT_EQ(9.25, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(1.0, cuts.at(0), margin);
EXPECT_NEAR(3.75, cuts.at(1), margin);
EXPECT_NEAR(6.5, cuts.at(2), margin);
EXPECT_NEAR(9.25, cuts.at(3), margin);
EXPECT_NEAR(12.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3 };
EXPECT_EQ(expected, labels);
@@ -201,11 +221,12 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
ASSERT_EQ(3.75, cuts[0]);
EXPECT_EQ(6.5, cuts[1]);
EXPECT_EQ(9.25, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(1.0, cuts.at(0), margin);
EXPECT_NEAR(3.75, cuts.at(1), margin);
EXPECT_NEAR(6.5, cuts.at(2), margin);
EXPECT_NEAR(9.25, cuts.at(3), margin);
EXPECT_NEAR(12.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3 };
EXPECT_EQ(expected, labels);
@@ -215,11 +236,12 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
EXPECT_EQ(4.0, cuts[0]);
EXPECT_EQ(7.0, cuts[1]);
EXPECT_EQ(10.0, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(1.0, cuts.at(0), margin);
EXPECT_NEAR(4.0, cuts.at(1), margin);
EXPECT_NEAR(7.0, cuts.at(2), margin);
EXPECT_NEAR(10.0, cuts.at(3), margin);
EXPECT_NEAR(13.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 };
EXPECT_EQ(expected, labels);
@@ -229,11 +251,12 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
EXPECT_EQ(4.0, cuts[0]);
EXPECT_EQ(7.0, cuts[1]);
EXPECT_EQ(10.0, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(1.0, cuts.at(0), margin);
EXPECT_NEAR(4.0, cuts.at(1), margin);
EXPECT_NEAR(7.0, cuts.at(2), margin);
EXPECT_NEAR(10.0, cuts.at(3), margin);
EXPECT_NEAR(13.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 };
EXPECT_EQ(expected, labels);
@@ -243,11 +266,12 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
EXPECT_EQ(4.25, cuts[0]);
EXPECT_EQ(7.5, cuts[1]);
EXPECT_EQ(10.75, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(1.0, cuts.at(0), margin);
EXPECT_NEAR(4.25, cuts.at(1), margin);
EXPECT_NEAR(7.5, cuts.at(2), margin);
EXPECT_NEAR(10.75, cuts.at(3), margin);
EXPECT_NEAR(14.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 };
EXPECT_EQ(expected, labels);
@@ -257,11 +281,12 @@ namespace mdlp {
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
EXPECT_EQ(4.25, cuts[0]);
EXPECT_EQ(7.5, cuts[1]);
EXPECT_EQ(10.75, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(1.0, cuts.at(0), margin);
EXPECT_NEAR(4.25, cuts.at(1), margin);
EXPECT_NEAR(7.5, cuts.at(2), margin);
EXPECT_NEAR(10.75, cuts.at(3), margin);
EXPECT_NEAR(14.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 };
EXPECT_EQ(expected, labels);
@@ -271,11 +296,12 @@ namespace mdlp {
samples_t X = { 15.0, 8.0, 12.0, 14.0, 6.0, 1.0, 13.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
EXPECT_EQ(4.5, cuts[0]);
EXPECT_EQ(8, cuts[1]);
EXPECT_EQ(11.5, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(1.0, cuts.at(0), margin);
EXPECT_NEAR(4.5, cuts.at(1), margin);
EXPECT_NEAR(8, cuts.at(2), margin);
EXPECT_NEAR(11.5, cuts.at(3), margin);
EXPECT_NEAR(15.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 3, 2, 3, 3, 1, 0, 3, 2, 2, 2, 1, 0, 0, 1, 0 };
EXPECT_EQ(expected, labels);
@@ -285,11 +311,12 @@ namespace mdlp {
samples_t X = { 15.0, 13.0, 12.0, 14.0, 6.0, 1.0, 8.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0 };
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
EXPECT_EQ(4.5, cuts[0]);
EXPECT_EQ(8, cuts[1]);
EXPECT_EQ(11.5, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(1.0, cuts.at(0), margin);
EXPECT_NEAR(4.5, cuts.at(1), margin);
EXPECT_NEAR(8, cuts.at(2), margin);
EXPECT_NEAR(11.5, cuts.at(3), margin);
EXPECT_NEAR(15.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 3, 3, 3, 3, 1, 0, 2, 2, 2, 2, 1, 0, 0, 1, 0 };
EXPECT_EQ(expected, labels);
@@ -300,11 +327,12 @@ namespace mdlp {
// 0 1 2 3 4 5 6 7 8 9
fit(X);
auto cuts = getCutPoints();
EXPECT_EQ(4, cuts.size());
EXPECT_EQ(1.0, cuts[0]);
EXPECT_EQ(2.0, cuts[1]);
ASSERT_EQ(3.0, cuts[2]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(0.0, cuts.at(0), margin);
EXPECT_NEAR(1.0, cuts.at(1), margin);
EXPECT_NEAR(2.0, cuts.at(2), margin);
EXPECT_NEAR(3.0, cuts.at(3), margin);
EXPECT_NEAR(4.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 0, 1, 1, 1, 2, 2, 3, 3, 3, 3 };
EXPECT_EQ(expected, labels);
@@ -315,50 +343,69 @@ namespace mdlp {
// 0 1 2 3 4 5 6 7 8 9
fit(X);
auto cuts = getCutPoints();
ASSERT_EQ(3, cuts.size());
EXPECT_EQ(2.0, cuts[0]);
ASSERT_EQ(3.0, cuts[1]);
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
ASSERT_EQ(5, cuts.size());
EXPECT_NEAR(0.0, cuts.at(0), margin);
EXPECT_NEAR(1.0, cuts.at(1), margin);
EXPECT_NEAR(2.0, cuts.at(2), margin);
EXPECT_NEAR(3.0, cuts.at(3), margin);
EXPECT_NEAR(4.0, cuts.at(4), margin);
auto labels = transform(X);
labels_t expected = { 0, 0, 0, 0, 1, 1, 2, 2, 2, 2 };
labels_t expected = { 0, 1, 1, 1, 2, 2, 3, 3, 3, 3 };
EXPECT_EQ(expected, labels);
}
TEST_F(TestBinDisc4U, irisUniform)
TEST(TestBinDiscGeneric, Fileset)
{
ArffFiles file;
file.load(data_path + "iris.arff", true);
vector<samples_t>& X = file.getX();
fit(X[0]);
auto Xt = transform(X[0]);
labels_t expected = { 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 2, 2, 1, 2, 1, 2, 0, 2, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 2, 1, 3, 2, 2, 3, 0, 3, 2, 3, 2, 2, 2, 1, 1, 2, 2, 3, 3, 1, 2, 1, 3, 2, 2, 3, 2, 1, 2, 3, 3, 3, 2, 2, 1, 3, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 };
EXPECT_EQ(expected, Xt);
auto Xtt = fit_transform(X[0], file.getY());
EXPECT_EQ(expected, Xtt);
auto Xt_t = torch::tensor(X[0], torch::kFloat32);
auto y_t = torch::tensor(file.getY(), torch::kInt32);
auto Xtt_t = fit_transform_t(Xt_t, y_t);
for (int i = 0; i < expected.size(); i++)
EXPECT_EQ(expected[i], Xtt_t[i].item<int>());
}
TEST_F(TestBinDisc4Q, irisQuantile)
{
ArffFiles file;
file.load(data_path + "iris.arff", true);
vector<samples_t>& X = file.getX();
fit(X[0]);
auto Xt = transform(X[0]);
labels_t expected = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 3, 3, 1, 3, 1, 2, 0, 3, 1, 0, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 1, 2, 2, 3, 2, 3, 3, 0, 3, 3, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 2, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2 };
EXPECT_EQ(expected, Xt);
auto Xtt = fit_transform(X[0], file.getY());
EXPECT_EQ(expected, Xtt);
auto Xt_t = torch::tensor(X[0], torch::kFloat32);
auto y_t = torch::tensor(file.getY(), torch::kInt32);
auto Xtt_t = fit_transform_t(Xt_t, y_t);
for (int i = 0; i < expected.size(); i++)
EXPECT_EQ(expected[i], Xtt_t[i].item<int>());
fit_t(Xt_t, y_t);
auto Xt_t2 = transform_t(Xt_t);
for (int i = 0; i < expected.size(); i++)
EXPECT_EQ(expected[i], Xt_t2[i].item<int>());
Experiments exps(data_path + "tests.txt");
int num = 0;
while (exps.is_next()) {
++num;
Experiment exp = exps.next();
BinDisc disc(exp.n_bins_, exp.strategy_[0] == 'Q' ? strategy_t::QUANTILE : strategy_t::UNIFORM);
std::vector<precision_t> test;
if (exp.type_ == experiment_t::RANGE) {
for (float i = exp.from_; i < exp.to_; i += exp.step_) {
test.push_back(i);
}
} else {
test = exp.dataset_;
}
// show_vector(test, "Test");
auto empty = std::vector<int>();
auto Xt = disc.fit_transform(test, empty);
auto cuts = disc.getCutPoints();
EXPECT_EQ(exp.discretized_data_.size(), Xt.size());
auto flag = false;
size_t n_errors = 0;
if (num < 40) {
//
// Check discretization of only the first 40 tests as after we cannot ensure the same codification due to precision problems
//
for (int i = 0; i < exp.discretized_data_.size(); ++i) {
if (exp.discretized_data_.at(i) != Xt.at(i)) {
if (!flag) {
if (exp.type_ == experiment_t::RANGE)
std::cout << "+Exp #: " << num << " From: " << exp.from_ << " To: " << exp.to_ << " Step: " << exp.step_ << " Bins: " << exp.n_bins_ << " Strategy: " << exp.strategy_ << std::endl;
else {
std::cout << "+Exp #: " << num << " strategy: " << exp.strategy_ << " " << " n_bins: " << exp.n_bins_ << " ";
show_vector(exp.dataset_, "Dataset");
}
show_vector(cuts, "Cuts");
std::cout << "Error at " << i << " test[i]=" << test.at(i) << " Expected: " << exp.discretized_data_.at(i) << " Got: " << Xt.at(i) << std::endl;
flag = true;
EXPECT_EQ(exp.discretized_data_.at(i), Xt.at(i));
}
n_errors++;
}
}
if (flag) {
std::cout << "*** Found " << n_errors << " mistakes in this experiment dataset" << std::endl;
}
}
EXPECT_EQ(exp.cutpoints_.size(), cuts.size());
for (int i = 0; i < exp.cutpoints_.size(); ++i) {
EXPECT_NEAR(exp.cutpoints_.at(i), cuts.at(i), margin);
}
}
std::cout << "* Number of experiments tested: " << num << std::endl;
}
}

View File

@@ -1,6 +1,3 @@
cmake_minimum_required(VERSION 3.20)
set(CMAKE_CXX_STANDARD 17)
cmake_policy(SET CMP0135 NEW)
include(FetchContent)
include_directories(${GTEST_INCLUDE_DIRS})
FetchContent_Declare(
@@ -11,28 +8,30 @@ FetchContent_Declare(
set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)
FetchContent_MakeAvailable(googletest)
find_package(Torch REQUIRED)
include_directories(
${TORCH_INCLUDE_DIRS}
${mdlp_SOURCE_DIR}/src
${mdlp_SOURCE_DIR}/tests/lib/Files
)
enable_testing()
include_directories(${TORCH_INCLUDE_DIRS})
add_executable(Metrics_unittest ../Metrics.cpp Metrics_unittest.cpp)
add_executable(Metrics_unittest ${mdlp_SOURCE_DIR}/src/Metrics.cpp Metrics_unittest.cpp)
target_link_libraries(Metrics_unittest GTest::gtest_main)
target_compile_options(Metrics_unittest PRIVATE --coverage)
target_link_options(Metrics_unittest PRIVATE --coverage)
add_executable(FImdlp_unittest ../CPPFImdlp.cpp ArffFiles.cpp ../Metrics.cpp FImdlp_unittest.cpp ../Discretizer.cpp)
add_executable(FImdlp_unittest FImdlp_unittest.cpp
${mdlp_SOURCE_DIR}/src/CPPFImdlp.cpp ${mdlp_SOURCE_DIR}/src/Metrics.cpp ${mdlp_SOURCE_DIR}/src/Discretizer.cpp)
target_link_libraries(FImdlp_unittest GTest::gtest_main "${TORCH_LIBRARIES}")
target_compile_options(FImdlp_unittest PRIVATE --coverage)
target_link_options(FImdlp_unittest PRIVATE --coverage)
add_executable(BinDisc_unittest ../BinDisc.cpp ArffFiles.cpp BinDisc_unittest.cpp ../Discretizer.cpp)
add_executable(BinDisc_unittest BinDisc_unittest.cpp ${mdlp_SOURCE_DIR}/src/BinDisc.cpp ${mdlp_SOURCE_DIR}/src/Discretizer.cpp)
target_link_libraries(BinDisc_unittest GTest::gtest_main "${TORCH_LIBRARIES}")
target_compile_options(BinDisc_unittest PRIVATE --coverage)
target_link_options(BinDisc_unittest PRIVATE --coverage)
add_executable(Discretizer_unittest ../BinDisc.cpp ../CPPFImdlp.cpp ArffFiles.cpp ../Metrics.cpp ../Discretizer.cpp Discretizer_unittest.cpp)
add_executable(Discretizer_unittest Discretizer_unittest.cpp
${mdlp_SOURCE_DIR}/src/BinDisc.cpp ${mdlp_SOURCE_DIR}/src/CPPFImdlp.cpp ${mdlp_SOURCE_DIR}/src/Metrics.cpp ${mdlp_SOURCE_DIR}/src/Discretizer.cpp )
target_link_libraries(Discretizer_unittest GTest::gtest_main "${TORCH_LIBRARIES}")
target_compile_options(Discretizer_unittest PRIVATE --coverage)
target_link_options(Discretizer_unittest PRIVATE --coverage)

View File

@@ -1,11 +1,17 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include <fstream>
#include <string>
#include <iostream>
#include <ArffFiles.hpp>
#include "gtest/gtest.h"
#include "ArffFiles.h"
#include "../Discretizer.h"
#include "../BinDisc.h"
#include "../CPPFImdlp.h"
#include "Discretizer.h"
#include "BinDisc.h"
#include "CPPFImdlp.h"
namespace mdlp {
const float margin = 1e-4;
@@ -20,7 +26,15 @@ namespace mdlp {
return "../../tests/datasets/";
}
const std::string data_path = set_data_path();
const labels_t iris_quantile = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 3, 3, 1, 3, 1, 2, 0, 3, 1, 0, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 1, 2, 2, 3, 2, 3, 3, 0, 3, 3, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 2, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2 };
TEST(Discretizer, Version)
{
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
auto version = disc->version();
delete disc;
std::cout << "Version computed: " << version;
EXPECT_EQ("1.2.3", version);
}
TEST(Discretizer, BinIrisUniform)
{
ArffFiles file;
@@ -43,12 +57,198 @@ namespace mdlp {
auto y = labels_t();
disc->fit(X[0], y);
auto Xt = disc->transform(X[0]);
labels_t expected = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 3, 3, 1, 3, 1, 2, 0, 3, 1, 0, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 1, 2, 2, 3, 2, 3, 3, 0, 3, 3, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 2, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2 };
delete disc;
EXPECT_EQ(expected, Xt);
EXPECT_EQ(iris_quantile, Xt);
}
TEST(Discretizer, BinIrisQuantileTorch)
{
ArffFiles file;
Discretizer* disc = new BinDisc(4, strategy_t::QUANTILE);
file.load(data_path + "iris.arff", true);
auto X = file.getX();
auto y = file.getY();
auto X_torch = torch::tensor(X[0], torch::kFloat32);
auto yt = torch::tensor(y, torch::kInt32);
disc->fit_t(X_torch, yt);
torch::Tensor Xt = disc->transform_t(X_torch);
delete disc;
EXPECT_EQ(iris_quantile.size(), Xt.size(0));
for (int i = 0; i < iris_quantile.size(); ++i) {
EXPECT_EQ(iris_quantile.at(i), Xt[i].item<int>());
}
}
TEST(Discretizer, BinIrisQuantileTorchFit_transform)
{
ArffFiles file;
Discretizer* disc = new BinDisc(4, strategy_t::QUANTILE);
file.load(data_path + "iris.arff", true);
auto X = file.getX();
auto y = file.getY();
auto X_torch = torch::tensor(X[0], torch::kFloat32);
auto yt = torch::tensor(y, torch::kInt32);
torch::Tensor Xt = disc->fit_transform_t(X_torch, yt);
delete disc;
EXPECT_EQ(iris_quantile.size(), Xt.size(0));
for (int i = 0; i < iris_quantile.size(); ++i) {
EXPECT_EQ(iris_quantile.at(i), Xt[i].item<int>());
}
}
TEST(Discretizer, FImdlpIris)
{
auto labelsq = {
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
2,
1,
1,
1,
1,
1,
1,
1,
0,
1,
0,
0,
0,
1,
1,
0,
0,
1,
1,
1,
0,
0,
1,
0,
0,
1,
0,
0,
0,
0,
1,
0,
1,
0,
1,
0,
3,
3,
3,
1,
3,
1,
2,
0,
3,
1,
0,
2,
2,
2,
1,
3,
1,
2,
2,
1,
2,
2,
2,
2,
3,
3,
3,
3,
2,
1,
1,
1,
2,
2,
1,
2,
3,
2,
1,
1,
1,
2,
2,
0,
1,
1,
1,
2,
1,
1,
2,
2,
3,
2,
3,
3,
0,
3,
3,
3,
3,
3,
3,
1,
2,
3,
3,
3,
3,
2,
3,
1,
3,
2,
3,
3,
2,
2,
3,
3,
3,
3,
3,
2,
2,
3,
2,
3,
2,
3,
3,
3,
2,
3,
3,
3,
2,
3,
2,
2,
};
labels_t expected = {
5, 3, 4, 4, 5, 5, 5, 5, 2, 4, 5, 5, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5,
5, 4, 5, 3, 5, 5, 5, 4, 4, 5, 5, 5, 4, 4, 5, 4, 3, 5, 5, 0, 4, 5,

139
tests/Experiments.hpp Normal file
View File

@@ -0,0 +1,139 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#ifndef EXPERIMENTS_HPP
#define EXPERIMENTS_HPP
#include<sstream>
#include<iostream>
#include<string>
#include<fstream>
#include<vector>
#include<tuple>
#include "typesFImdlp.h"
template <typename T>
void show_vector(const std::vector<T>& data, std::string title)
{
std::cout << title << ": ";
std::string sep = "";
for (const auto& d : data) {
std::cout << sep << d;
sep = ", ";
}
std::cout << std::endl;
}
enum class experiment_t {
RANGE,
VECTOR
};
class Experiment {
public:
Experiment(float from_, float to_, float step_, int n_bins, std::string strategy, std::vector<int> data_discretized, std::vector<mdlp::precision_t> cutpoints) :
from_{ from_ }, to_{ to_ }, step_{ step_ }, n_bins_{ n_bins }, strategy_{ strategy }, discretized_data_{ data_discretized }, cutpoints_{ cutpoints }, type_{ experiment_t::RANGE }
{
validate_strategy();
}
Experiment(std::vector<mdlp::precision_t> dataset, int n_bins, std::string strategy, std::vector<int> data_discretized, std::vector<mdlp::precision_t> cutpoints) :
n_bins_{ n_bins }, strategy_{ strategy }, dataset_{ dataset }, discretized_data_{ data_discretized }, cutpoints_{ cutpoints }, type_{ experiment_t::VECTOR }
{
validate_strategy();
}
void validate_strategy()
{
if (strategy_ != "Q" && strategy_ != "U") {
throw std::invalid_argument("Invalid strategy " + strategy_);
}
}
float from_;
float to_;
float step_;
int n_bins_;
std::string strategy_;
std::vector<mdlp::precision_t> dataset_;
std::vector<int> discretized_data_;
std::vector<mdlp::precision_t> cutpoints_;
experiment_t type_;
};
class Experiments {
public:
Experiments(const std::string filename) : filename{ filename }
{
test_file.open(filename);
if (!test_file.is_open()) {
throw std::runtime_error("File " + filename + " not found");
}
exp_end = false;
}
~Experiments()
{
test_file.close();
}
bool end() const
{
return exp_end;
}
bool is_next()
{
while (std::getline(test_file, line) && line[0] == '#');
if (test_file.eof()) {
exp_end = true;
return false;
}
return true;
}
Experiment next()
{
return parse_experiment(line);
}
private:
std::tuple<float, float, float, int, std::string> parse_header(const std::string& line)
{
std::istringstream iss(line);
std::string from_, to_, step_, n_bins, strategy;
iss >> from_ >> to_ >> step_ >> n_bins >> strategy;
return { std::stof(from_), std::stof(to_), std::stof(step_), std::stoi(n_bins), strategy };
}
template <typename T>
std::vector<T> parse_vector(const std::string& line)
{
std::istringstream iss(line);
std::vector<T> data;
std::string d;
while (iss >> d) {
data.push_back(std::is_same<T, float>::value ? std::stof(d) : std::stoi(d));
}
return data;
}
Experiment parse_experiment(std::string& line)
{
// Read experiment lines
std::string experiment, data, cuts, strategy;
std::getline(test_file, experiment);
std::getline(test_file, data);
std::getline(test_file, cuts);
// split data into variables
float from_, to_, step_;
int n_bins;
std::vector<mdlp::precision_t> dataset;
auto data_discretized = parse_vector<int>(data);
auto cutpoints = parse_vector<mdlp::precision_t>(cuts);
if (line == "RANGE") {
tie(from_, to_, step_, n_bins, strategy) = parse_header(experiment);
return Experiment{ from_, to_, step_, n_bins, strategy, data_discretized, cutpoints };
}
strategy = experiment.substr(0, 1);
n_bins = std::stoi(experiment.substr(1, 1));
data = experiment.substr(3, experiment.size() - 4);
dataset = parse_vector<mdlp::precision_t>(data);
return Experiment(dataset, n_bins, strategy, data_discretized, cutpoints);
}
std::ifstream test_file;
std::string filename;
std::string line;
bool exp_end;
};
#endif

View File

@@ -1,9 +1,15 @@
#include "gtest/gtest.h"
#include "../Metrics.h"
#include "../CPPFImdlp.h"
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include <fstream>
#include <iostream>
#include "ArffFiles.h"
#include <ArffFiles.hpp>
#include "gtest/gtest.h"
#include "Metrics.h"
#include "CPPFImdlp.h"
#define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \
try { \
@@ -124,7 +130,7 @@ namespace mdlp {
{
samples_t X_ = { 1, 2, 2, 3, 4, 2, 3 };
labels_t y_ = { 0, 0, 1, 2, 3, 4, 5 };
cutPoints_t expected = { 1.5f, 2.5f };
cutPoints_t expected = { 1.0, 1.5f, 2.5f, 4.0 };
fit(X_, y_);
auto computed = getCutPoints();
EXPECT_EQ(computed.size(), expected.size());
@@ -167,29 +173,31 @@ namespace mdlp {
y = { 1 };
fit(X, y);
computed = getCutPoints();
EXPECT_EQ(computed.size(), 0);
EXPECT_EQ(computed.size(), 2);
X = { 1, 3 };
y = { 1, 2 };
fit(X, y);
computed = getCutPoints();
EXPECT_EQ(computed.size(), 0);
EXPECT_EQ(computed.size(), 2);
X = { 2, 4 };
y = { 1, 2 };
fit(X, y);
computed = getCutPoints();
EXPECT_EQ(computed.size(), 0);
EXPECT_EQ(computed.size(), 2);
X = { 1, 2, 3 };
y = { 1, 2, 2 };
fit(X, y);
computed = getCutPoints();
EXPECT_EQ(computed.size(), 1);
EXPECT_NEAR(computed[0], 1.5, precision);
EXPECT_EQ(computed.size(), 3);
EXPECT_NEAR(computed[0], 1, precision);
EXPECT_NEAR(computed[1], 1.5, precision);
EXPECT_NEAR(computed[2], 3, precision);
}
TEST_F(TestFImdlp, TestArtificialDataset)
{
fit(X, y);
cutPoints_t expected = { 5.05f };
cutPoints_t expected = { 4.7, 5.05, 6.0 };
vector<precision_t> computed = getCutPoints();
EXPECT_EQ(computed.size(), expected.size());
for (unsigned long i = 0; i < computed.size(); i++) {
@@ -200,10 +208,10 @@ namespace mdlp {
TEST_F(TestFImdlp, TestIris)
{
vector<cutPoints_t> expected = {
{5.45f, 5.75f},
{2.75f, 2.85f, 2.95f, 3.05f, 3.35f},
{2.45f, 4.75f, 5.05f},
{0.8f, 1.75f}
{4.3, 5.45f, 5.75f, 7.9},
{2, 2.75f, 2.85f, 2.95f, 3.05f, 3.35f, 4.4},
{1, 2.45f, 4.75f, 5.05f, 6.9},
{0.1, 0.8f, 1.75f, 2.5}
};
vector<int> depths = { 3, 5, 4, 3 };
auto test = CPPFImdlp();
@@ -213,7 +221,7 @@ namespace mdlp {
TEST_F(TestFImdlp, ComputeCutPointsGCase)
{
cutPoints_t expected;
expected = { 1.5 };
expected = { 0, 1.5, 2 };
samples_t X_ = { 0, 1, 2, 2, 2 };
labels_t y_ = { 1, 1, 1, 2, 2 };
fit(X_, y_);
@@ -247,10 +255,10 @@ namespace mdlp {
// Set max_depth to 1
auto test = CPPFImdlp(3, 1, 0);
vector<cutPoints_t> expected = {
{5.45f},
{3.35f},
{2.45f},
{0.8f}
{4.3, 5.45f, 7.9},
{2, 3.35f, 4.4},
{1, 2.45f, 6.9},
{0.1, 0.8f, 2.5}
};
vector<int> depths = { 1, 1, 1, 1 };
test_dataset(test, "iris", expected, depths);
@@ -261,10 +269,10 @@ namespace mdlp {
auto test = CPPFImdlp(75, 100, 0);
// Set min_length to 75
vector<cutPoints_t> expected = {
{5.45f, 5.75f},
{2.85f, 3.35f},
{2.45f, 4.75f},
{0.8f, 1.75f}
{4.3, 5.45f, 5.75f, 7.9},
{2, 2.85f, 3.35f, 4.4},
{1, 2.45f, 4.75f, 6.9},
{0.1, 0.8f, 1.75f, 2.5}
};
vector<int> depths = { 3, 2, 2, 2 };
test_dataset(test, "iris", expected, depths);
@@ -275,10 +283,10 @@ namespace mdlp {
// Set min_length to 75
auto test = CPPFImdlp(75, 2, 0);
vector<cutPoints_t> expected = {
{5.45f, 5.75f},
{2.85f, 3.35f},
{2.45f, 4.75f},
{0.8f, 1.75f}
{4.3, 5.45f, 5.75f, 7.9},
{2, 2.85f, 3.35f, 4.4},
{1, 2.45f, 4.75f, 6.9},
{0.1, 0.8f, 1.75f, 2.5}
};
vector<int> depths = { 2, 2, 2, 2 };
test_dataset(test, "iris", expected, depths);
@@ -289,10 +297,10 @@ namespace mdlp {
// Set min_length to 75
auto test = CPPFImdlp(75, 2, 1);
vector<cutPoints_t> expected = {
{5.45f},
{2.85f},
{2.45f},
{0.8f}
{4.3, 5.45f, 7.9},
{2, 2.85f, 4.4},
{1, 2.45f, 6.9},
{0.1, 0.8f, 2.5}
};
vector<int> depths = { 2, 2, 2, 2 };
test_dataset(test, "iris", expected, depths);
@@ -304,10 +312,10 @@ namespace mdlp {
// Set min_length to 75
auto test = CPPFImdlp(75, 2, 0.2f);
vector<cutPoints_t> expected = {
{5.45f, 5.75f},
{2.85f, 3.35f},
{2.45f, 4.75f},
{0.8f, 1.75f}
{4.3, 5.45f, 5.75f, 7.9},
{2, 2.85f, 3.35f, 4.4},
{1, 2.45f, 4.75f, 6.9},
{0.1, 0.8f, 1.75f, 2.5}
};
vector<int> depths = { 2, 2, 2, 2 };
test_dataset(test, "iris", expected, depths);
@@ -327,7 +335,6 @@ namespace mdlp {
computed = compute_max_num_cut_points();
ASSERT_EQ(expected, computed);
}
}
TEST_F(TestFImdlp, TransformTest)
{
@@ -345,15 +352,15 @@ namespace mdlp {
vector<samples_t>& X = file.getX();
labels_t& y = file.getY();
fit(X[1], y);
// auto computed = transform(X[1]);
// EXPECT_EQ(computed.size(), expected.size());
// for (unsigned long i = 0; i < computed.size(); i++) {
// EXPECT_EQ(computed[i], expected[i]);
// }
// auto computed_ft = fit_transform(X[1], y);
// EXPECT_EQ(computed_ft.size(), expected.size());
// for (unsigned long i = 0; i < computed_ft.size(); i++) {
// EXPECT_EQ(computed_ft[i], expected[i]);
// }
auto computed = transform(X[1]);
EXPECT_EQ(computed.size(), expected.size());
for (unsigned long i = 0; i < computed.size(); i++) {
EXPECT_EQ(computed[i], expected[i]);
}
auto computed_ft = fit_transform(X[1], y);
EXPECT_EQ(computed_ft.size(), expected.size());
for (unsigned long i = 0; i < computed_ft.size(); i++) {
EXPECT_EQ(computed_ft[i], expected[i]);
}
}
}

View File

@@ -1,5 +1,11 @@
// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include "gtest/gtest.h"
#include "../Metrics.h"
#include "Metrics.h"
namespace mdlp {
class TestMetrics : public Metrics, public testing::Test {

222
tests/datasets/tests.txt Normal file
View File

@@ -0,0 +1,222 @@
#
# from, to, step, #bins, Q/U
# discretized data
# cut points
#
#
# Range experiments
#
RANGE
0, 100, 1, 4, Q
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
0.0, 24.75, 49.5, 74.25, 99.0
RANGE
0, 50, 1, 4, Q
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
0.0, 12.25, 24.5, 36.75, 49.0
RANGE
0, 100, 1, 3, Q
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
0.0, 33.0, 66.0, 99.0
RANGE
0, 50, 1, 3, Q
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
0.0, 16.33333, 32.66667, 49.0
RANGE
0, 10, 1, 3, Q
0, 0, 0, 1, 1, 1, 2, 2, 2, 2
0.0, 3.0, 6.0, 9.0
RANGE
0, 100, 1, 4, U
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
0.0, 24.75, 49.5, 74.25, 99.0
RANGE
0, 50, 1, 4, U
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
0.0, 12.25, 24.5, 36.75, 49.0
RANGE
0, 100, 1, 3, U
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
0.0, 33.0, 66.0, 99.0
RANGE
0, 50, 1, 3, U
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
0.0, 16.33333, 32.66667, 49.0
RANGE
0, 10, 1, 3, U
0, 0, 0, 1, 1, 1, 2, 2, 2, 2
0.0, 3.0, 6.0, 9.0
RANGE
1, 10, 1, 3, Q
0, 0, 0, 1, 1, 1, 2, 2, 2
1.0, 3.66667, 6.33333, 9.0
RANGE
1, 10, 1, 3, U
0, 0, 0, 1, 1, 1, 2, 2, 2
1.0, 3.66667, 6.33333, 9.0
RANGE
1, 11, 1, 3, Q
0, 0, 0, 1, 1, 1, 2, 2, 2, 2
1.0, 4.0, 7.0, 10.0
RANGE
1, 11, 1, 3, U
0, 0, 0, 1, 1, 1, 2, 2, 2, 2
1.0, 4.0, 7.0, 10.0
RANGE
1, 12, 1, 3, Q
0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2
1.0, 4.33333, 7.66667, 11.0
RANGE
1, 12, 1, 3, U
0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2
1.0, 4.33333, 7.66667, 11.0
RANGE
1, 13, 1, 3, Q
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2
1.0, 4.66667, 8.33333, 12.0
RANGE
1, 13, 1, 3, U
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2
1.0, 4.66667, 8.33333, 12.0
RANGE
1, 14, 1, 3, Q
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.0, 9.0, 13.0
RANGE
1, 14, 1, 3, U
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.0, 9.0, 13.0
RANGE
1, 15, 1, 3, Q
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.33333, 9.66667, 14.0
RANGE
1, 15, 1, 3, U
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.33333, 9.66667, 14.0
#
# Vector experiments
#
VECTOR
Q3[3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0]
1, 0, 0, 1, 0, 0, 1, 0, 0
1.0, 1.66667, 3.0
VECTOR
U3[3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0]
2, 0, 0, 2, 0, 0, 2, 0, 0
1.0, 1.66667, 2.33333, 3.0
VECTOR
Q3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0]
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2
1.0, 4.66667, 8.33333, 12.0
VECTOR
U3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0]
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2
1.0, 4.66667, 8.33333, 12.0
VECTOR
Q3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0]
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.0, 9.0, 13.0
VECTOR
U3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0]
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.0, 9.0, 13.0
VECTOR
Q3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0]
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.33333, 9.66667, 14.0
VECTOR
U3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0]
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.33333, 9.66667, 14.0
VECTOR
Q3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0]
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.66667, 10.33333, 15.0
VECTOR
U3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0]
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2
1.0, 5.66667, 10.33333, 15.0
VECTOR
Q3[15.0, 8.0, 12.0, 14.0, 6.0, 1.0, 13.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0]
2, 1, 2, 2, 1, 0, 2, 2, 1, 1, 1, 0, 0, 0, 0
1.0, 5.66667, 10.33333, 15.0
VECTOR
U3[15.0, 8.0, 12.0, 14.0, 6.0, 1.0, 13.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0]
2, 1, 2, 2, 1, 0, 2, 2, 1, 1, 1, 0, 0, 0, 0
1.0, 5.66667, 10.33333, 15.0
VECTOR
Q3[0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 3.0, 4.0]
0, 1, 1, 1, 1, 1, 2, 2, 2, 2
0.0, 1.0, 3.0, 4.0
VECTOR
U3[0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 3.0, 4.0]
0, 0, 0, 0, 1, 1, 2, 2, 2, 2
0.0, 1.33333, 2.66667, 4.0
#
# Vector experiments with iris
#
VECTOR
Q3[5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.8, 4.8, 4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5.0, 5.0, 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5.0, 5.5, 4.9, 4.4, 5.1, 5.0, 4.5, 4.4, 5.0, 5.1, 4.8, 5.1, 4.6, 5.3, 5.0, 7.0, 6.4, 6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5.0, 5.9, 6.0, 6.1, 5.6, 6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7, 6.0, 5.7, 5.5, 5.5, 5.8, 6.0, 5.4, 6.0, 6.7, 6.3, 5.6, 5.5, 5.5, 6.1, 5.8, 5.0, 5.6, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3, 6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5, 7.7, 7.7, 6.0, 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2, 7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6.0, 6.9, 6.7, 6.9, 5.8, 6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9]
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 2, 1, 2, 0, 2, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1
4.3, 5.4, 6.3, 7.9
VECTOR
U3[5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.8, 4.8, 4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5.0, 5.0, 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5.0, 5.5, 4.9, 4.4, 5.1, 5.0, 4.5, 4.4, 5.0, 5.1, 4.8, 5.1, 4.6, 5.3, 5.0, 7.0, 6.4, 6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5.0, 5.9, 6.0, 6.1, 5.6, 6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7, 6.0, 5.7, 5.5, 5.5, 5.8, 6.0, 5.4, 6.0, 6.7, 6.3, 5.6, 5.5, 5.5, 6.1, 5.8, 5.0, 5.6, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3, 6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5, 7.7, 7.7, 6.0, 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2, 7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6.0, 6.9, 6.7, 6.9, 5.8, 6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9]
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 0, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1
4.3, 5.5, 6.7, 7.9
VECTOR
Q4[5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.8, 4.8, 4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5.0, 5.0, 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5.0, 5.5, 4.9, 4.4, 5.1, 5.0, 4.5, 4.4, 5.0, 5.1, 4.8, 5.1, 4.6, 5.3, 5.0, 7.0, 6.4, 6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5.0, 5.9, 6.0, 6.1, 5.6, 6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7, 6.0, 5.7, 5.5, 5.5, 5.8, 6.0, 5.4, 6.0, 6.7, 6.3, 5.6, 5.5, 5.5, 6.1, 5.8, 5.0, 5.6, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3, 6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5, 7.7, 7.7, 6.0, 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2, 7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6.0, 6.9, 6.7, 6.9, 5.8, 6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9]
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 3, 3, 1, 3, 1, 2, 0, 3, 1, 0, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 1, 2, 2, 3, 2, 3, 3, 0, 3, 3, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 2, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2
4.3, 5.1, 5.8, 6.4, 7.9
VECTOR
U4[5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.8, 4.8, 4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5.0, 5.0, 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5.0, 5.5, 4.9, 4.4, 5.1, 5.0, 4.5, 4.4, 5.0, 5.1, 4.8, 5.1, 4.6, 5.3, 5.0, 7.0, 6.4, 6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5.0, 5.9, 6.0, 6.1, 5.6, 6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7, 6.0, 5.7, 5.5, 5.5, 5.8, 6.0, 5.4, 6.0, 6.7, 6.3, 5.6, 5.5, 5.5, 6.1, 5.8, 5.0, 5.6, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3, 6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5, 7.7, 7.7, 6.0, 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2, 7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6.0, 6.9, 6.7, 6.9, 5.8, 6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9]
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 2, 2, 1, 2, 1, 2, 0, 2, 1, 0, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 0, 1, 1, 1, 2, 0, 1, 2, 1, 3, 2, 2, 3, 0, 3, 2, 3, 2, 2, 2, 1, 1, 2, 2, 3, 3, 1, 2, 1, 3, 2, 2, 3, 2, 2, 2, 3, 3, 3, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
4.3, 5.2, 6.1, 7.0, 7.9
VECTOR
Q3[3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.4, 3.0, 3.0, 4.0, 4.4, 3.9, 3.5, 3.8, 3.8, 3.4, 3.7, 3.6, 3.3, 3.4, 3.0, 3.4, 3.5, 3.4, 3.2, 3.1, 3.4, 4.1, 4.2, 3.1, 3.2, 3.5, 3.6, 3.0, 3.4, 3.5, 2.3, 3.2, 3.5, 3.8, 3.0, 3.8, 3.2, 3.7, 3.3, 3.2, 3.2, 3.1, 2.3, 2.8, 2.8, 3.3, 2.4, 2.9, 2.7, 2.0, 3.0, 2.2, 2.9, 2.9, 3.1, 3.0, 2.7, 2.2, 2.5, 3.2, 2.8, 2.5, 2.8, 2.9, 3.0, 2.8, 3.0, 2.9, 2.6, 2.4, 2.4, 2.7, 2.7, 3.0, 3.4, 3.1, 2.3, 3.0, 2.5, 2.6, 3.0, 2.6, 2.3, 2.7, 3.0, 2.9, 2.9, 2.5, 2.8, 3.3, 2.7, 3.0, 2.9, 3.0, 3.0, 2.5, 2.9, 2.5, 3.6, 3.2, 2.7, 3.0, 2.5, 2.8, 3.2, 3.0, 3.8, 2.6, 2.2, 3.2, 2.8, 2.8, 2.7, 3.3, 3.2, 2.8, 3.0, 2.8, 3.0, 2.8, 3.8, 2.8, 2.8, 2.6, 3.0, 3.4, 3.1, 3.0, 3.1, 3.1, 3.1, 2.7, 3.2, 3.3, 3.0, 2.5, 3.0, 3.4, 3.0]
2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 0, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 2, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 1, 1, 1, 1, 0, 1, 0, 2, 2, 0, 1, 0, 0, 2, 1, 2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 2, 1, 1, 1, 1, 1, 0, 2, 2, 1, 0, 1, 2, 1
2.0, 2.9, 3.2, 4.4
VECTOR
U3[3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.4, 3.0, 3.0, 4.0, 4.4, 3.9, 3.5, 3.8, 3.8, 3.4, 3.7, 3.6, 3.3, 3.4, 3.0, 3.4, 3.5, 3.4, 3.2, 3.1, 3.4, 4.1, 4.2, 3.1, 3.2, 3.5, 3.6, 3.0, 3.4, 3.5, 2.3, 3.2, 3.5, 3.8, 3.0, 3.8, 3.2, 3.7, 3.3, 3.2, 3.2, 3.1, 2.3, 2.8, 2.8, 3.3, 2.4, 2.9, 2.7, 2.0, 3.0, 2.2, 2.9, 2.9, 3.1, 3.0, 2.7, 2.2, 2.5, 3.2, 2.8, 2.5, 2.8, 2.9, 3.0, 2.8, 3.0, 2.9, 2.6, 2.4, 2.4, 2.7, 2.7, 3.0, 3.4, 3.1, 2.3, 3.0, 2.5, 2.6, 3.0, 2.6, 2.3, 2.7, 3.0, 2.9, 2.9, 2.5, 2.8, 3.3, 2.7, 3.0, 2.9, 3.0, 3.0, 2.5, 2.9, 2.5, 3.6, 3.2, 2.7, 3.0, 2.5, 2.8, 3.2, 3.0, 3.8, 2.6, 2.2, 3.2, 2.8, 2.8, 2.7, 3.3, 3.2, 2.8, 3.0, 2.8, 3.0, 2.8, 3.8, 2.8, 2.8, 2.6, 3.0, 3.4, 3.1, 3.0, 3.1, 3.1, 3.1, 2.7, 3.2, 3.3, 3.0, 2.5, 3.0, 3.4, 3.0]
1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 2, 1, 0, 1, 0, 1, 1, 1, 2, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1
2.0, 2.8, 3.6, 4.4
VECTOR
Q4[3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.4, 3.0, 3.0, 4.0, 4.4, 3.9, 3.5, 3.8, 3.8, 3.4, 3.7, 3.6, 3.3, 3.4, 3.0, 3.4, 3.5, 3.4, 3.2, 3.1, 3.4, 4.1, 4.2, 3.1, 3.2, 3.5, 3.6, 3.0, 3.4, 3.5, 2.3, 3.2, 3.5, 3.8, 3.0, 3.8, 3.2, 3.7, 3.3, 3.2, 3.2, 3.1, 2.3, 2.8, 2.8, 3.3, 2.4, 2.9, 2.7, 2.0, 3.0, 2.2, 2.9, 2.9, 3.1, 3.0, 2.7, 2.2, 2.5, 3.2, 2.8, 2.5, 2.8, 2.9, 3.0, 2.8, 3.0, 2.9, 2.6, 2.4, 2.4, 2.7, 2.7, 3.0, 3.4, 3.1, 2.3, 3.0, 2.5, 2.6, 3.0, 2.6, 2.3, 2.7, 3.0, 2.9, 2.9, 2.5, 2.8, 3.3, 2.7, 3.0, 2.9, 3.0, 3.0, 2.5, 2.9, 2.5, 3.6, 3.2, 2.7, 3.0, 2.5, 2.8, 3.2, 3.0, 3.8, 2.6, 2.2, 3.2, 2.8, 2.8, 2.7, 3.3, 3.2, 2.8, 3.0, 2.8, 3.0, 2.8, 3.8, 2.8, 2.8, 2.6, 3.0, 3.4, 3.1, 3.0, 3.1, 3.1, 3.1, 2.7, 3.2, 3.3, 3.0, 2.5, 3.0, 3.4, 3.0]
3, 2, 2, 2, 3, 3, 3, 3, 1, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3, 0, 2, 3, 3, 2, 3, 2, 3, 3, 2, 2, 2, 0, 1, 1, 3, 0, 1, 0, 0, 2, 0, 1, 1, 2, 2, 0, 0, 0, 2, 1, 0, 1, 1, 2, 1, 2, 1, 0, 0, 0, 0, 0, 2, 3, 2, 0, 2, 0, 0, 2, 0, 0, 0, 2, 1, 1, 0, 1, 3, 0, 2, 1, 2, 2, 0, 1, 0, 3, 2, 0, 2, 0, 1, 2, 2, 3, 0, 0, 2, 1, 1, 0, 3, 2, 1, 2, 1, 2, 1, 3, 1, 1, 0, 2, 3, 2, 2, 2, 2, 2, 0, 2, 3, 2, 0, 2, 3, 2
2.0, 2.8, 3.0, 3.3, 4.4
VECTOR
U4[3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.4, 3.0, 3.0, 4.0, 4.4, 3.9, 3.5, 3.8, 3.8, 3.4, 3.7, 3.6, 3.3, 3.4, 3.0, 3.4, 3.5, 3.4, 3.2, 3.1, 3.4, 4.1, 4.2, 3.1, 3.2, 3.5, 3.6, 3.0, 3.4, 3.5, 2.3, 3.2, 3.5, 3.8, 3.0, 3.8, 3.2, 3.7, 3.3, 3.2, 3.2, 3.1, 2.3, 2.8, 2.8, 3.3, 2.4, 2.9, 2.7, 2.0, 3.0, 2.2, 2.9, 2.9, 3.1, 3.0, 2.7, 2.2, 2.5, 3.2, 2.8, 2.5, 2.8, 2.9, 3.0, 2.8, 3.0, 2.9, 2.6, 2.4, 2.4, 2.7, 2.7, 3.0, 3.4, 3.1, 2.3, 3.0, 2.5, 2.6, 3.0, 2.6, 2.3, 2.7, 3.0, 2.9, 2.9, 2.5, 2.8, 3.3, 2.7, 3.0, 2.9, 3.0, 3.0, 2.5, 2.9, 2.5, 3.6, 3.2, 2.7, 3.0, 2.5, 2.8, 3.2, 3.0, 3.8, 2.6, 2.2, 3.2, 2.8, 2.8, 2.7, 3.3, 3.2, 2.8, 3.0, 2.8, 3.0, 2.8, 3.8, 2.8, 2.8, 2.6, 3.0, 3.4, 3.1, 3.0, 3.1, 3.1, 3.1, 2.7, 3.2, 3.3, 3.0, 2.5, 3.0, 3.4, 3.0]
2, 1, 2, 1, 2, 3, 2, 2, 1, 1, 2, 2, 1, 1, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 3, 3, 1, 2, 2, 2, 1, 2, 2, 0, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 1, 0, 1, 1, 2, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 2, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 0, 1, 0, 2, 2, 1, 1, 0, 1, 2, 1, 3, 1, 0, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 2, 1
2.0, 2.6, 3.2, 3.8, 4.4
VECTOR
Q3[1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4, 1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1.0, 1.7, 1.9, 1.6, 1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 1.2, 1.3, 1.4, 1.3, 1.5, 1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4, 4.7, 4.5, 4.9, 4.0, 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4.0, 4.7, 3.6, 4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4.0, 4.9, 4.7, 4.3, 4.4, 4.8, 5.0, 4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4.0, 4.4, 4.6, 4.0, 3.3, 4.2, 4.2, 4.2, 4.3, 3.0, 4.1, 6.0, 5.1, 5.9, 5.6, 5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.3, 5.5, 5.0, 5.1, 5.3, 5.5, 6.7, 6.9, 5.0, 5.7, 4.9, 6.7, 4.9, 5.7, 6.0, 4.8, 4.9, 5.6, 5.8, 6.1, 6.4, 5.6, 5.1, 5.6, 6.1, 5.6, 5.5, 4.8, 5.4, 5.6, 5.1, 5.1, 5.9, 5.7, 5.2, 5.0, 5.2, 5.4, 5.1]
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
1.0, 2.63333, 4.9, 6.9
VECTOR
U3[1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4, 1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1.0, 1.7, 1.9, 1.6, 1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 1.2, 1.3, 1.4, 1.3, 1.5, 1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4, 4.7, 4.5, 4.9, 4.0, 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4.0, 4.7, 3.6, 4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4.0, 4.9, 4.7, 4.3, 4.4, 4.8, 5.0, 4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4.0, 4.4, 4.6, 4.0, 3.3, 4.2, 4.2, 4.2, 4.3, 3.0, 4.1, 6.0, 5.1, 5.9, 5.6, 5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.3, 5.5, 5.0, 5.1, 5.3, 5.5, 6.7, 6.9, 5.0, 5.7, 4.9, 6.7, 4.9, 5.7, 6.0, 4.8, 4.9, 5.6, 5.8, 6.1, 6.4, 5.6, 5.1, 5.6, 6.1, 5.6, 5.5, 4.8, 5.4, 5.6, 5.1, 5.1, 5.9, 5.7, 5.2, 5.0, 5.2, 5.4, 5.1]
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
1.0, 2.96667, 4.93333, 6.9
VECTOR
Q4[1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4, 1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1.0, 1.7, 1.9, 1.6, 1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 1.2, 1.3, 1.4, 1.3, 1.5, 1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4, 4.7, 4.5, 4.9, 4.0, 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4.0, 4.7, 3.6, 4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4.0, 4.9, 4.7, 4.3, 4.4, 4.8, 5.0, 4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4.0, 4.4, 4.6, 4.0, 3.3, 4.2, 4.2, 4.2, 4.3, 3.0, 4.1, 6.0, 5.1, 5.9, 5.6, 5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.3, 5.5, 5.0, 5.1, 5.3, 5.5, 6.7, 6.9, 5.0, 5.7, 4.9, 6.7, 4.9, 5.7, 6.0, 4.8, 4.9, 5.6, 5.8, 6.1, 6.4, 5.6, 5.1, 5.6, 6.1, 5.6, 5.5, 4.8, 5.4, 5.6, 5.1, 5.1, 5.9, 5.7, 5.2, 5.0, 5.2, 5.4, 5.1]
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 3, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3
1.0, 1.6, 4.35, 5.1, 6.9
VECTOR
U4[1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4, 1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1.0, 1.7, 1.9, 1.6, 1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 1.2, 1.3, 1.4, 1.3, 1.5, 1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4, 4.7, 4.5, 4.9, 4.0, 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4.0, 4.7, 3.6, 4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4.0, 4.9, 4.7, 4.3, 4.4, 4.8, 5.0, 4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4.0, 4.4, 4.6, 4.0, 3.3, 4.2, 4.2, 4.2, 4.3, 3.0, 4.1, 6.0, 5.1, 5.9, 5.6, 5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.3, 5.5, 5.0, 5.1, 5.3, 5.5, 6.7, 6.9, 5.0, 5.7, 4.9, 6.7, 4.9, 5.7, 6.0, 4.8, 4.9, 5.6, 5.8, 6.1, 6.4, 5.6, 5.1, 5.6, 6.1, 5.6, 5.5, 4.8, 5.4, 5.6, 5.1, 5.1, 5.9, 5.7, 5.2, 5.0, 5.2, 5.4, 5.1]
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2, 2, 3, 2, 2, 2, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2
1.0, 2.475, 3.95, 5.425, 6.9
VECTOR
Q3[0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.2, 0.1, 0.1, 0.2, 0.4, 0.4, 0.3, 0.3, 0.3, 0.2, 0.4, 0.2, 0.5, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.2, 0.4, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.2, 0.2, 0.3, 0.3, 0.2, 0.6, 0.4, 0.3, 0.2, 0.2, 0.2, 0.2, 1.4, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6, 1.0, 1.3, 1.4, 1.0, 1.5, 1.0, 1.4, 1.3, 1.4, 1.5, 1.0, 1.5, 1.1, 1.8, 1.3, 1.5, 1.2, 1.3, 1.4, 1.4, 1.7, 1.5, 1.0, 1.1, 1.0, 1.2, 1.6, 1.5, 1.6, 1.5, 1.3, 1.3, 1.3, 1.2, 1.4, 1.2, 1.0, 1.3, 1.2, 1.3, 1.3, 1.1, 1.3, 2.5, 1.9, 2.1, 1.8, 2.2, 2.1, 1.7, 1.8, 1.8, 2.5, 2.0, 1.9, 2.1, 2.0, 2.4, 2.3, 1.8, 2.2, 2.3, 1.5, 2.3, 2.0, 2.0, 1.8, 2.1, 1.8, 1.8, 1.8, 2.1, 1.6, 1.9, 2.0, 2.2, 1.5, 1.4, 2.3, 2.4, 1.8, 1.8, 2.1, 2.4, 2.3, 1.9, 2.3, 2.5, 2.3, 1.9, 2.0, 2.3, 1.8]
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
0.1, 0.86667, 1.6, 2.5
VECTOR
U3[0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.2, 0.1, 0.1, 0.2, 0.4, 0.4, 0.3, 0.3, 0.3, 0.2, 0.4, 0.2, 0.5, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.2, 0.4, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.2, 0.2, 0.3, 0.3, 0.2, 0.6, 0.4, 0.3, 0.2, 0.2, 0.2, 0.2, 1.4, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6, 1.0, 1.3, 1.4, 1.0, 1.5, 1.0, 1.4, 1.3, 1.4, 1.5, 1.0, 1.5, 1.1, 1.8, 1.3, 1.5, 1.2, 1.3, 1.4, 1.4, 1.7, 1.5, 1.0, 1.1, 1.0, 1.2, 1.6, 1.5, 1.6, 1.5, 1.3, 1.3, 1.3, 1.2, 1.4, 1.2, 1.0, 1.3, 1.2, 1.3, 1.3, 1.1, 1.3, 2.5, 1.9, 2.1, 1.8, 2.2, 2.1, 1.7, 1.8, 1.8, 2.5, 2.0, 1.9, 2.1, 2.0, 2.4, 2.3, 1.8, 2.2, 2.3, 1.5, 2.3, 2.0, 2.0, 1.8, 2.1, 1.8, 1.8, 1.8, 2.1, 1.6, 1.9, 2.0, 2.2, 1.5, 1.4, 2.3, 2.4, 1.8, 1.8, 2.1, 2.4, 2.3, 1.9, 2.3, 2.5, 2.3, 1.9, 2.0, 2.3, 1.8]
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
0.1, 0.9, 1.7, 2.5
VECTOR
Q4[0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.2, 0.1, 0.1, 0.2, 0.4, 0.4, 0.3, 0.3, 0.3, 0.2, 0.4, 0.2, 0.5, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.2, 0.4, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.2, 0.2, 0.3, 0.3, 0.2, 0.6, 0.4, 0.3, 0.2, 0.2, 0.2, 0.2, 1.4, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6, 1.0, 1.3, 1.4, 1.0, 1.5, 1.0, 1.4, 1.3, 1.4, 1.5, 1.0, 1.5, 1.1, 1.8, 1.3, 1.5, 1.2, 1.3, 1.4, 1.4, 1.7, 1.5, 1.0, 1.1, 1.0, 1.2, 1.6, 1.5, 1.6, 1.5, 1.3, 1.3, 1.3, 1.2, 1.4, 1.2, 1.0, 1.3, 1.2, 1.3, 1.3, 1.1, 1.3, 2.5, 1.9, 2.1, 1.8, 2.2, 2.1, 1.7, 1.8, 1.8, 2.5, 2.0, 1.9, 2.1, 2.0, 2.4, 2.3, 1.8, 2.2, 2.3, 1.5, 2.3, 2.0, 2.0, 1.8, 2.1, 1.8, 1.8, 1.8, 2.1, 1.6, 1.9, 2.0, 2.2, 1.5, 1.4, 2.3, 2.4, 1.8, 1.8, 2.1, 2.4, 2.3, 1.9, 2.3, 2.5, 2.3, 1.9, 2.0, 2.3, 1.8]
0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
0.1, 0.3, 1.3, 1.8, 2.5
VECTOR
U4[0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.2, 0.1, 0.1, 0.2, 0.4, 0.4, 0.3, 0.3, 0.3, 0.2, 0.4, 0.2, 0.5, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.2, 0.4, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.2, 0.2, 0.3, 0.3, 0.2, 0.6, 0.4, 0.3, 0.2, 0.2, 0.2, 0.2, 1.4, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6, 1.0, 1.3, 1.4, 1.0, 1.5, 1.0, 1.4, 1.3, 1.4, 1.5, 1.0, 1.5, 1.1, 1.8, 1.3, 1.5, 1.2, 1.3, 1.4, 1.4, 1.7, 1.5, 1.0, 1.1, 1.0, 1.2, 1.6, 1.5, 1.6, 1.5, 1.3, 1.3, 1.3, 1.2, 1.4, 1.2, 1.0, 1.3, 1.2, 1.3, 1.3, 1.1, 1.3, 2.5, 1.9, 2.1, 1.8, 2.2, 2.1, 1.7, 1.8, 1.8, 2.5, 2.0, 1.9, 2.1, 2.0, 2.4, 2.3, 1.8, 2.2, 2.3, 1.5, 2.3, 2.0, 2.0, 1.8, 2.1, 1.8, 1.8, 1.8, 2.1, 1.6, 1.9, 2.0, 2.2, 1.5, 1.4, 2.3, 2.4, 1.8, 1.8, 2.1, 2.4, 2.3, 1.9, 2.3, 2.5, 2.3, 1.9, 2.0, 2.3, 1.8]
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 3, 3, 3, 2, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2
0.1, 0.7, 1.3, 1.9, 2.5

1
tests/lib/Files Submodule

Submodule tests/lib/Files added at a5316928d4

View File

@@ -1,15 +0,0 @@
#!/bin/bash
if [ -d build ] && [ "$1" != "run" ]; then
rm -fr build
fi
if [ -d gcovr-report ] ; then
rm -fr gcovr-report
fi
cmake -S . -B build -Wno-dev -DCMAKE_BUILD_TYPE=Debug -DCMAKE_CXX_FLAGS="--coverage" -DCMAKE_C_FLAGS="--coverage"
cmake --build build
cd build
ctest --output-on-failure
cd ..
mkdir gcovr-report
cd ..
gcovr --gcov-filter "CPPFImdlp.cpp" --gcov-filter "Metrics.cpp" --gcov-filter "BinDisc.cpp" --gcov-filter "Discretizer.cpp" --txt --sonarqube=tests/gcovr-report/coverage.xml --exclude-noncode-lines

View File

@@ -1,412 +0,0 @@
from scipy.io.arff import loadarff
from sklearn.preprocessing import KBinsDiscretizer
def test(clf, X, expected, title):
X = [[x] for x in X]
clf.fit(X)
computed = [int(x[0]) for x in clf.transform(X)]
print(f"{title}")
print(f"{computed=}")
print(f"{expected=}")
assert computed == expected
print("-" * 80)
# Test Uniform Strategy
clf3u = KBinsDiscretizer(
n_bins=3, encode="ordinal", strategy="uniform", subsample=200_000
)
clf3q = KBinsDiscretizer(
n_bins=3, encode="ordinal", strategy="quantile", subsample=200_000
)
clf4u = KBinsDiscretizer(
n_bins=4, encode="ordinal", strategy="uniform", subsample=200_000
)
clf4q = KBinsDiscretizer(
n_bins=4, encode="ordinal", strategy="quantile", subsample=200_000
)
#
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
labels = [0, 0, 0, 1, 1, 1, 2, 2, 2]
test(clf3u, X, labels, title="Easy3BinsUniform")
test(clf3q, X, labels, title="Easy3BinsQuantile")
#
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
labels = [0, 0, 0, 1, 1, 1, 2, 2, 2, 2]
# En C++ se obtiene el mismo resultado en ambos, no como aquí
labels2 = [0, 0, 0, 1, 1, 1, 1, 2, 2, 2]
test(clf3u, X, labels, title="X10BinsUniform")
test(clf3q, X, labels2, title="X10BinsQuantile")
#
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0]
labels = [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2]
# En C++ se obtiene el mismo resultado en ambos, no como aquí
# labels2 = [0, 0, 0, 1, 1, 1, 1, 2, 2, 2]
test(clf3u, X, labels, title="X11BinsUniform")
test(clf3q, X, labels, title="X11BinsQuantile")
#
X = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
labels = [0, 0, 0, 0, 0, 0]
test(clf3u, X, labels, title="ConstantUniform")
test(clf3q, X, labels, title="ConstantQuantile")
#
X = [3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0]
labels = [2, 0, 0, 2, 0, 0, 2, 0, 0]
labels2 = [1, 0, 0, 1, 0, 0, 1, 0, 0] # igual que en C++
test(clf3u, X, labels, title="EasyRepeatedUniform")
test(clf3q, X, labels2, title="EasyRepeatedQuantile")
#
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0]
labels = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]
test(clf4u, X, labels, title="Easy4BinsUniform")
test(clf4q, X, labels, title="Easy4BinsQuantile")
#
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0]
labels = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3]
test(clf4u, X, labels, title="X13BinsUniform")
test(clf4q, X, labels, title="X13BinsQuantile")
#
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0]
labels = [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3]
test(clf4u, X, labels, title="X14BinsUniform")
test(clf4q, X, labels, title="X14BinsQuantile")
#
X1 = [15.0, 8.0, 12.0, 14.0, 6.0, 1.0, 13.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0]
X2 = [15.0, 13.0, 12.0, 14.0, 6.0, 1.0, 8.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0]
labels1 = [3, 2, 3, 3, 1, 0, 3, 2, 2, 2, 1, 0, 0, 1, 0]
labels2 = [3, 3, 3, 3, 1, 0, 2, 2, 2, 2, 1, 0, 0, 1, 0]
test(clf4u, X1, labels1, title="X15BinsUniform")
test(clf4q, X2, labels2, title="X15BinsQuantile")
#
X = [0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 3.0, 4.0]
labels = [0, 1, 1, 1, 2, 2, 3, 3, 3, 3]
test(clf4u, X, labels, title="RepeatedValuesUniform")
test(clf4q, X, labels, title="RepeatedValuesQuantile")
print(f"Uniform {clf4u.bin_edges_=}")
print(f"Quaintile {clf4q.bin_edges_=}")
print("-" * 80)
#
data, meta = loadarff("tests/datasets/iris.arff")
labelsu = [
0,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
1,
1,
1,
0,
1,
0,
1,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
1,
0,
1,
0,
0,
1,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
1,
0,
3,
2,
2,
1,
2,
1,
2,
0,
2,
0,
0,
1,
1,
1,
1,
2,
1,
1,
2,
1,
1,
1,
2,
1,
2,
2,
2,
2,
1,
1,
1,
1,
1,
1,
1,
1,
2,
2,
1,
1,
1,
1,
1,
0,
1,
1,
1,
2,
0,
1,
2,
1,
3,
2,
2,
3,
0,
3,
2,
3,
2,
2,
2,
1,
1,
2,
2,
3,
3,
1,
2,
1,
3,
2,
2,
3,
2,
1,
2,
3,
3,
3,
2,
2,
1,
3,
2,
2,
1,
2,
2,
2,
1,
2,
2,
2,
2,
2,
2,
1,
]
labelsq = [
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
2,
1,
1,
1,
1,
1,
1,
1,
0,
1,
0,
0,
0,
1,
1,
0,
0,
1,
1,
1,
0,
0,
1,
0,
0,
1,
0,
0,
0,
0,
1,
0,
1,
0,
1,
0,
3,
3,
3,
1,
3,
1,
2,
0,
3,
1,
0,
2,
2,
2,
1,
3,
1,
2,
2,
1,
2,
2,
2,
2,
3,
3,
3,
3,
2,
1,
1,
1,
2,
2,
1,
2,
3,
2,
1,
1,
1,
2,
2,
0,
1,
1,
1,
2,
1,
1,
2,
2,
3,
2,
3,
3,
0,
3,
3,
3,
3,
3,
3,
1,
2,
3,
3,
3,
3,
2,
3,
1,
3,
2,
3,
3,
2,
2,
3,
3,
3,
3,
3,
2,
2,
3,
2,
3,
2,
3,
3,
3,
2,
3,
3,
3,
2,
3,
2,
2,
]
# test(clf4u, data["sepallength"], labelsu, title="IrisUniform")
# test(clf4q, data["sepallength"], labelsq, title="IrisQuantile")
sepallength = [[x] for x in data["sepallength"]]
clf4u.fit(sepallength)
clf4q.fit(sepallength)
computedu = clf4u.transform(sepallength)
computedq = clf4q.transform(sepallength)
wrongu = 0
wrongq = 0
for i in range(len(labelsu)):
if labelsu[i] != computedu[i]:
wrongu += 1
if labelsq[i] != computedq[i]:
wrongq += 1
print(f"Iris sepallength diff. between BinDisc & sklearn::KBins Uniform ={wrongu:3d}")
print(f"Iris sepallength diff. between BinDisc & sklearn::KBins Quantile ={wrongq:3d}")

71
tests/tests_do.py Normal file
View File

@@ -0,0 +1,71 @@
# ***************************************************************
# SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
# SPDX-FileType: SOURCE
# SPDX-License-Identifier: MIT
# ***************************************************************
import json
from sklearn.preprocessing import KBinsDiscretizer
with open("datasets/tests.txt") as f:
data = f.readlines()
data = [x.strip() for x in data if x[0] != "#"]
errors = False
for i in range(0, len(data), 4):
experiment_type = data[i]
print("Experiment:", data[i + 1])
if experiment_type == "RANGE":
range_data = data[i + 1]
from_, to_, step_, n_bins_, strategy_ = range_data.split(",")
X = [[float(x)] for x in range(int(from_), int(to_), int(step_))]
else:
strategy_ = data[i + 1][0]
n_bins_ = data[i + 1][1]
vector = data[i + 1][2:]
X = [[float(x)] for x in json.loads(vector)]
strategy = "quantile" if strategy_.strip() == "Q" else "uniform"
disc = KBinsDiscretizer(
n_bins=int(n_bins_),
encode="ordinal",
strategy=strategy,
)
expected_data = data[i + 2]
cuts_data = data[i + 3]
disc.fit(X)
#
# Normalize the cutpoints to remove numerical errors such as 33.0000000001
# instead of 33
#
for j in range(len(disc.bin_edges_[0])):
disc.bin_edges_[0][j] = round(disc.bin_edges_[0][j], 5)
result = disc.transform(X)
result = [int(x) for x in result.flatten()]
expected = [int(x) for x in expected_data.split(",")]
#
# Check the Results
#
assert len(result) == len(expected)
for j in range(len(result)):
if result[j] != expected[j]:
print("* Error at", j, "Expected=", expected[j], "Result=", result[j])
errors = True
expected_cuts = disc.bin_edges_[0]
computed_cuts = [float(x) for x in cuts_data.split(",")]
assert len(expected_cuts) == len(computed_cuts)
for j in range(len(expected_cuts)):
if round(expected_cuts[j], 5) != computed_cuts[j]:
print(
"* Error at",
j,
"Expected=",
expected_cuts[j],
"Result=",
computed_cuts[j],
)
errors = True
if errors:
raise Exception("There were errors!")
print("*** All tests run succesfully! ***")

209
tests/tests_generate.ipynb Normal file
View File

@@ -0,0 +1,209 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.preprocessing import KBinsDiscretizer\n",
"from sklearn.datasets import load_iris"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"experiments_range = [\n",
" [0, 100, 1, 4, \"Q\"],\n",
" [0, 50, 1, 4, \"Q\"],\n",
" [0, 100, 1, 3, \"Q\"],\n",
" [0, 50, 1, 3, \"Q\"],\n",
" [0, 10, 1, 3, \"Q\"],\n",
" [0, 100, 1, 4, \"U\"],\n",
" [0, 50, 1, 4, \"U\"],\n",
" [0, 100, 1, 3, \"U\"],\n",
" [0, 50, 1, 3, \"U\"],\n",
"# \n",
" [0, 10, 1, 3, \"U\"],\n",
" [1, 10, 1, 3, \"Q\"],\n",
" [1, 10, 1, 3, \"U\"],\n",
" [1, 11, 1, 3, \"Q\"],\n",
" [1, 11, 1, 3, \"U\"],\n",
" [1, 12, 1, 3, \"Q\"],\n",
" [1, 12, 1, 3, \"U\"],\n",
" [1, 13, 1, 3, \"Q\"],\n",
" [1, 13, 1, 3, \"U\"],\n",
" [1, 14, 1, 3, \"Q\"],\n",
" [1, 14, 1, 3, \"U\"],\n",
" [1, 15, 1, 3, \"Q\"],\n",
" [1, 15, 1, 3, \"U\"]\n",
"]\n",
"experiments_vectors = [\n",
" (3, [3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0]),\n",
" (3, [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0]),\n",
" (3, [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0]),\n",
" (3, [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0]),\n",
" (3, [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0]),\n",
" (3, [15.0, 8.0, 12.0, 14.0, 6.0, 1.0, 13.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0]),\n",
" (3, [0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 3.0, 4.0])\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/rmontanana/miniconda3/lib/python3.11/site-packages/sklearn/preprocessing/_discretization.py:307: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 0 are removed. Consider decreasing the number of bins.\n",
" warnings.warn(\n"
]
}
],
"source": [
"def write_lists(file, data, cuts):\n",
" sep = \"\"\n",
" for res in data:\n",
" file.write(f\"{sep}{int(res):d}\")\n",
" sep= \", \"\n",
" file.write(\"\\n\")\n",
" sep = \"\"\n",
" for res in cuts:\n",
" file.write(sep + str(round(res,5)))\n",
" sep = \", \"\n",
" file.write(\"\\n\")\n",
"\n",
"def normalize_cuts(cuts):\n",
" #\n",
" # Normalize the cutpoints to remove numerical errors such as 33.0000000001\n",
" # instead of 33\n",
" #\n",
" for k in range(cuts.shape[0]):\n",
" for i in range(len(cuts[k])):\n",
" cuts[k][i] = round(cuts[k][i], 5)\n",
"\n",
"with open(\"datasets/tests.txt\", \"w\") as file:\n",
" file.write(\"#\\n\")\n",
" file.write(\"# from, to, step, #bins, Q/U\\n\")\n",
" file.write(\"# discretized data\\n\")\n",
" file.write(\"# cut points\\n\")\n",
" file.write(\"#\\n\")\n",
" #\n",
" # Range experiments\n",
" #\n",
" file.write(\"#\\n\")\n",
" file.write(\"# Range experiments\\n\")\n",
" file.write(\"#\\n\")\n",
" for experiment in experiments_range:\n",
" file.write(\"RANGE\\n\")\n",
" (from_, to_, step_, bins_, strategy) = experiment\n",
" disc = KBinsDiscretizer(n_bins=bins_, encode='ordinal', strategy='quantile' if strategy.strip() == \"Q\" else 'uniform')\n",
" data = [[x] for x in range(from_, to_, step_)]\n",
" disc.fit(data)\n",
" normalize_cuts(disc.bin_edges_)\n",
" result = disc.transform(data)\n",
" file.write(f\"{from_}, {to_}, {step_}, {bins_}, {strategy}\\n\")\n",
" write_lists(file, result, disc.bin_edges_[0])\n",
" #\n",
" # Vector experiments\n",
" #\n",
" file.write(\"#\\n\")\n",
" file.write(\"# Vector experiments\\n\")\n",
" file.write(\"#\\n\")\n",
" for n_bins, experiment in experiments_vectors:\n",
" for strategy in [\"Q\", \"U\"]:\n",
" file.write(\"VECTOR\\n\")\n",
" file.write(f\"{strategy}{n_bins}{experiment}\\n\")\n",
" disc = KBinsDiscretizer(\n",
" n_bins=n_bins,\n",
" encode=\"ordinal\",\n",
" \n",
" strategy=\"quantile\" if strategy.strip() == \"Q\" else \"uniform\",\n",
" )\n",
" data = [[x] for x in experiment]\n",
" disc.fit(data)\n",
" normalize_cuts(disc.bin_edges_)\n",
" result = disc.transform(data)\n",
" write_lists(file, result, disc.bin_edges_[0])\n",
" #\n",
" # Vector experiments iris\n",
" #\n",
" file.write(\"#\\n\");\n",
" file.write(\"# Vector experiments with iris\\n\");\n",
" file.write(\"#\\n\");\n",
" X, y = load_iris(return_X_y=True)\n",
" for i in range(X.shape[1]):\n",
" for n_bins in [3, 4]:\n",
" for strategy in [\"Q\", \"U\"]:\n",
" file.write(\"VECTOR\\n\")\n",
" experiment = X[:, i]\n",
" file.write(f\"{strategy}{n_bins}{experiment.tolist()}\\n\")\n",
" disc = KBinsDiscretizer(\n",
" n_bins=n_bins,\n",
" encode=\"ordinal\",\n",
" strategy=\"quantile\" if strategy.strip() == \"Q\" else \"uniform\")\n",
" data = [[x] for x in experiment]\n",
" disc.fit(data)\n",
" normalize_cuts(disc.bin_edges_)\n",
" result = disc.transform(data)\n",
" write_lists(file, result, disc.bin_edges_[0])"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cut points: [array([ 0., 33., 66., 99.])]\n",
"Mistaken transformed data disc.transform([[33]]) = [[0.]]\n",
"Reason of the mistake the cutpoint has decimals (double): 33.00000000000001\n"
]
}
],
"source": [
"#\n",
"# Proving the mistakes due to floating point precision\n",
"#\n",
"from sklearn.preprocessing import KBinsDiscretizer\n",
"\n",
"data = [[x] for x in range(100)]\n",
"disc = KBinsDiscretizer(n_bins=3, encode=\"ordinal\", strategy=\"quantile\")\n",
"disc.fit(data)\n",
"print(\"Cut points: \", disc.bin_edges_)\n",
"print(\"Mistaken transformed data disc.transform([[33]]) =\", disc.transform([[33]]))\n",
"print(\"Reason of the mistake the cutpoint has decimals (double): \", disc.bin_edges_[0][1])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.1.undefined"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

38
update_coverage.py Normal file
View File

@@ -0,0 +1,38 @@
# ***************************************************************
# SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
# SPDX-FileType: SOURCE
# SPDX-License-Identifier: MIT
# ***************************************************************
import subprocess
import sys
readme_file = "README.md"
print("Updating coverage...")
# Generate badge line
output = subprocess.check_output(
"lcov --summary " + sys.argv[1] + "/coverage.info",
shell=True,
)
value = output.decode("utf-8").strip()
percentage = 0
for line in value.splitlines():
if "lines" in line:
percentage = float(line.split(":")[1].split("%")[0])
break
print(f"Coverage: {percentage}%")
if percentage < 90:
print("⛔Coverage is less than 90%. I won't update the badge.")
sys.exit(1)
percentage_label = str(percentage).replace(".", ",")
coverage_line = f"[![Coverage Badge](https://img.shields.io/badge/Coverage-{percentage_label}%25-green)](html/index.html)"
# Update README.md
with open(readme_file, "r") as f:
lines = f.readlines()
with open(readme_file, "w") as f:
for line in lines:
if "img.shields.io/badge/Coverage" in line:
f.write(coverage_line + "\n")
else:
f.write(line)
print(f"✅Coverage updated with value: {percentage}")