Files
mdlp/sample/sample.cpp
Ricardo Montañana Gómez e36d9af8f9 Fix BinDisc quantile mistakes (#9)
* Fix BinDisc quantile mistakes

* Fix FImdlp tests

* Fix tests, samples and remove uneeded support files

* Add coypright header to sources
Fix coverage report
Add coverage badge to README

* Update sonar github action

* Move sources to a folder and change ArffFiles files to library

* Add recursive submodules to github action
2024-07-04 17:27:39 +02:00

226 lines
9.0 KiB
C++

// ****************************************************************
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX - FileType: SOURCE
// SPDX - License - Identifier: MIT
// ****************************************************************
#include <iostream>
#include <vector>
#include <iomanip>
#include <chrono>
#include <algorithm>
#include <cstring>
#include <getopt.h>
#include <torch/torch.h>
#include <ArffFiles.hpp>
#include "Discretizer.h"
#include "CPPFImdlp.h"
#include "BinDisc.h"
const string PATH = "tests/datasets/";
/* print a description of all supported options */
void usage(const char* path)
{
/* take only the last portion of the path */
const char* basename = strrchr(path, '/');
basename = basename ? basename + 1 : path;
std::cout << "usage: " << basename << "[OPTION]" << std::endl;
std::cout << " -h, --help\t\t Print this help and exit." << std::endl;
std::cout
<< " -f, --file[=FILENAME]\t {all, diabetes, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors, test}."
<< std::endl;
std::cout << " -p, --path[=FILENAME]\t folder where the arff dataset is located, default " << PATH << std::endl;
std::cout << " -m, --max_depth=INT\t max_depth pased to discretizer. Default = MAX_INT" << std::endl;
std::cout
<< " -c, --max_cutpoints=FLOAT\t percentage of lines expressed in decimal or integer number or cut points. Default = 0 -> any"
<< std::endl;
std::cout << " -n, --min_length=INT\t interval min_length pased to discretizer. Default = 3" << std::endl;
}
tuple<string, string, int, int, float> parse_arguments(int argc, char** argv)
{
string file_name;
string path = PATH;
int max_depth = numeric_limits<int>::max();
int min_length = 3;
float max_cutpoints = 0;
const vector<struct option> long_options = {
{"help", no_argument, nullptr, 'h'},
{"file", required_argument, nullptr, 'f'},
{"path", required_argument, nullptr, 'p'},
{"max_depth", required_argument, nullptr, 'm'},
{"max_cutpoints", required_argument, nullptr, 'c'},
{"min_length", required_argument, nullptr, 'n'},
{nullptr, no_argument, nullptr, 0}
};
while (true) {
const auto c = getopt_long(argc, argv, "hf:p:m:c:n:", long_options.data(), nullptr);
if (c == -1)
break;
switch (c) {
case 'h':
usage(argv[0]);
exit(0);
case 'f':
file_name = string(optarg);
break;
case 'm':
max_depth = stoi(optarg);
break;
case 'n':
min_length = stoi(optarg);
break;
case 'c':
max_cutpoints = stof(optarg);
break;
case 'p':
path = optarg;
if (path.back() != '/')
path += '/';
break;
case '?':
usage(argv[0]);
exit(1);
default:
abort();
}
}
if (file_name.empty()) {
usage(argv[0]);
exit(1);
}
return make_tuple(file_name, path, max_depth, min_length, max_cutpoints);
}
void process_file(const string& path, const string& file_name, bool class_last, int max_depth, int min_length,
float max_cutpoints)
{
ArffFiles file;
file.load(path + file_name + ".arff", class_last);
const auto attributes = file.getAttributes();
const auto items = file.getSize();
std::cout << "Number of lines: " << items << std::endl;
std::cout << "Attributes: " << std::endl;
for (auto attribute : attributes) {
std::cout << "Name: " << get<0>(attribute) << " Type: " << get<1>(attribute) << std::endl;
}
std::cout << "Class name: " << file.getClassName() << std::endl;
std::cout << "Class type: " << file.getClassType() << std::endl;
std::cout << "Data: " << std::endl;
std::vector<mdlp::samples_t>& X = file.getX();
mdlp::labels_t& y = file.getY();
for (int i = 0; i < 5; i++) {
for (auto feature : X) {
std::cout << fixed << setprecision(1) << feature[i] << " ";
}
std::cout << y[i] << std::endl;
}
auto test = mdlp::CPPFImdlp(min_length, max_depth, max_cutpoints);
size_t total = 0;
for (auto i = 0; i < attributes.size(); i++) {
auto min_max = minmax_element(X[i].begin(), X[i].end());
std::cout << "Cut points for feature " << get<0>(attributes[i]) << ": [" << setprecision(3);
test.fit(X[i], y);
auto cut_points = test.getCutPoints();
for (auto item : cut_points) {
std::cout << item;
if (item != cut_points.back())
std::cout << ", ";
}
total += test.getCutPoints().size();
std::cout << "]" << std::endl;
std::cout << "Min: " << *min_max.first << " Max: " << *min_max.second << std::endl;
std::cout << "--------------------------" << std::endl;
}
std::cout << "Total cut points ...: " << total << std::endl;
std::cout << "Total feature states: " << total + attributes.size() << std::endl;
std::cout << "Version ............: " << test.version() << std::endl;
std::cout << "Transformed data (vector)..: " << std::endl;
test.fit(X[0], y);
auto data = test.transform(X[0]);
for (int i = 130; i < 135; i++) {
std::cout << std::fixed << std::setprecision(1) << X[0][i] << " " << data[i] << std::endl;
}
auto Xt = torch::tensor(X[0], torch::kFloat32);
auto yt = torch::tensor(y, torch::kInt32);
//test.fit_t(Xt, yt);
auto result = test.fit_transform_t(Xt, yt);
std::cout << "Transformed data (torch)...: " << std::endl;
for (int i = 130; i < 135; i++) {
std::cout << std::fixed << std::setprecision(1) << Xt[i].item<mdlp::precision_t>() << " " << result[i].item<int>() << std::endl;
}
auto disc = mdlp::BinDisc(3);
auto res_v = disc.fit_transform(X[0], y);
disc.fit_t(Xt, yt);
auto res_t = disc.transform_t(Xt);
std::cout << "Transformed data (BinDisc)...: " << std::endl;
for (int i = 130; i < 135; i++) {
std::cout << std::fixed << std::setprecision(1) << Xt[i].item<mdlp::precision_t>() << " " << res_v[i] << " " << res_t[i].item<int>() << std::endl;
}
}
void process_all_files(const map<string, bool>& datasets, const string& path, int max_depth, int min_length,
float max_cutpoints)
{
std::cout << "Results: " << "Max_depth: " << max_depth << " Min_length: " << min_length << " Max_cutpoints: "
<< max_cutpoints << std::endl << std::endl;
printf("%-20s %4s %4s\n", "Dataset", "Feat", "Cuts Time(ms)");
printf("==================== ==== ==== ========\n");
for (const auto& dataset : datasets) {
ArffFiles file;
file.load(path + dataset.first + ".arff", dataset.second);
auto attributes = file.getAttributes();
std::vector<mdlp::samples_t>& X = file.getX();
mdlp::labels_t& y = file.getY();
size_t timing = 0;
size_t cut_points = 0;
for (auto i = 0; i < attributes.size(); i++) {
auto test = mdlp::CPPFImdlp(min_length, max_depth, max_cutpoints);
std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now();
test.fit(X[i], y);
std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now();
timing += std::chrono::duration_cast<std::chrono::milliseconds>(end - begin).count();
cut_points += test.getCutPoints().size();
}
printf("%-20s %4lu %4zu %8zu\n", dataset.first.c_str(), attributes.size(), cut_points, timing);
}
}
int main(int argc, char** argv)
{
std::map<std::string, bool> datasets = {
{"diabetes", true},
{"glass", true},
{"iris", true},
{"kdd_JapaneseVowels", false},
{"letter", true},
{"liver-disorders", true},
{"mfeat-factors", true},
{"test", true}
};
std::string file_name;
std::string path;
int max_depth;
int min_length;
float max_cutpoints;
tie(file_name, path, max_depth, min_length, max_cutpoints) = parse_arguments(argc, argv);
if (datasets.find(file_name) == datasets.end() && file_name != "all") {
std::cout << "Invalid file name: " << file_name << std::endl;
usage(argv[0]);
exit(1);
}
if (file_name == "all")
process_all_files(datasets, path, max_depth, min_length, max_cutpoints);
else {
process_file(path, file_name, datasets[file_name], max_depth, min_length, max_cutpoints);
std::cout << "File name ....: " << file_name << std::endl;
std::cout << "Max depth ....: " << max_depth << std::endl;
std::cout << "Min length ...: " << min_length << std::endl;
std::cout << "Max cutpoints : " << max_cutpoints << std::endl;
}
return 0;
}