mirror of
https://github.com/rmontanana/mdlp.git
synced 2025-08-15 23:45:57 +00:00
Claude enhancement proposal
This commit is contained in:
182
CHANGELOG.md
Normal file
182
CHANGELOG.md
Normal file
@@ -0,0 +1,182 @@
|
||||
# Changelog
|
||||
|
||||
All notable changes to this project will be documented in this file.
|
||||
|
||||
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
|
||||
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||
|
||||
## [Unreleased]
|
||||
|
||||
### Added
|
||||
- Conan dependency manager support
|
||||
- Technical analysis report
|
||||
|
||||
### Changed
|
||||
- Updated README.md
|
||||
- Refactored library version and installation system
|
||||
- Updated config variable names
|
||||
|
||||
### Fixed
|
||||
- Removed unneeded semicolon
|
||||
|
||||
## [2.0.1] - 2024-07-22
|
||||
|
||||
### Added
|
||||
- CMake install target and make install command
|
||||
- Flag to control sample building in Makefile
|
||||
|
||||
### Changed
|
||||
- Library name changed to `fimdlp`
|
||||
- Updated version numbers across test files
|
||||
|
||||
### Fixed
|
||||
- Version number consistency in tests
|
||||
|
||||
## [2.0.0] - 2024-07-04
|
||||
|
||||
### Added
|
||||
- Makefile with build & test actions for easier development
|
||||
- PyTorch (libtorch) integration for tensor operations
|
||||
|
||||
### Changed
|
||||
- Major refactoring of build system
|
||||
- Updated build workflows and CI configuration
|
||||
|
||||
### Fixed
|
||||
- BinDisc quantile calculation errors (#9)
|
||||
- Error in percentile method calculation
|
||||
- Integer type issues in calculations
|
||||
- Multiple GitHub Actions configuration fixes
|
||||
|
||||
## [1.2.1] - 2024-06-08
|
||||
|
||||
### Added
|
||||
- PyTorch tensor methods for discretization
|
||||
- Improved library build system
|
||||
|
||||
### Changed
|
||||
- Refactored sample build process
|
||||
|
||||
### Fixed
|
||||
- Library creation and linking issues
|
||||
- Multiple GitHub Actions workflow fixes
|
||||
|
||||
## [1.2.0] - 2024-06-05
|
||||
|
||||
### Added
|
||||
- **Discretizer** - Abstract base class for all discretization algorithms (#8)
|
||||
- **BinDisc** - K-bins discretization with quantile and uniform strategies (#7)
|
||||
- Transform method to discretize values using existing cut points
|
||||
- Support for multiple datasets in sample program
|
||||
- Docker development container configuration
|
||||
|
||||
### Changed
|
||||
- Refactored system types throughout the library
|
||||
- Improved sample program with better dataset handling
|
||||
- Enhanced build system with debug options
|
||||
|
||||
### Fixed
|
||||
- Transform method initialization issues
|
||||
- ARFF file attribute name extraction
|
||||
- Sample program library binary separation
|
||||
|
||||
## [1.1.3] - 2024-06-05
|
||||
|
||||
### Added
|
||||
- `max_cutpoints` hyperparameter for controlling algorithm complexity
|
||||
- `max_depth` and `min_length` as configurable hyperparameters
|
||||
- Enhanced sample program with hyperparameter support
|
||||
- Additional datasets for testing
|
||||
|
||||
### Changed
|
||||
- Improved constructor design and parameter handling
|
||||
- Enhanced test coverage and reporting
|
||||
- Refactored build system configuration
|
||||
|
||||
### Fixed
|
||||
- Depth initialization in fit method
|
||||
- Code quality improvements and smell fixes
|
||||
- Exception handling in value cut point calculations
|
||||
|
||||
## [1.1.2] - 2023-04-01
|
||||
|
||||
### Added
|
||||
- Comprehensive test suite with GitHub Actions CI
|
||||
- SonarCloud integration for code quality analysis
|
||||
- Enhanced build system with automated testing
|
||||
|
||||
### Changed
|
||||
- Improved GitHub Actions workflow configuration
|
||||
- Updated project structure for better maintainability
|
||||
|
||||
### Fixed
|
||||
- Build system configuration issues
|
||||
- Test execution and coverage reporting
|
||||
|
||||
## [1.1.1] - 2023-02-22
|
||||
|
||||
### Added
|
||||
- Limits header for proper compilation
|
||||
- Enhanced build system support
|
||||
|
||||
### Changed
|
||||
- Updated version numbering system
|
||||
- Improved SonarCloud configuration
|
||||
|
||||
### Fixed
|
||||
- ValueCutPoint exception handling (removed unnecessary exception)
|
||||
- Build system compatibility issues
|
||||
- GitHub Actions token configuration
|
||||
|
||||
## [1.1.0] - 2023-02-21
|
||||
|
||||
### Added
|
||||
- Classic algorithm implementation for performance comparison
|
||||
- Enhanced ValueCutPoint logic with same_values detection
|
||||
- Glass dataset support in sample program
|
||||
- Debug configuration for development
|
||||
|
||||
### Changed
|
||||
- Refactored ValueCutPoint algorithm for better accuracy
|
||||
- Improved candidate selection logic
|
||||
- Enhanced sample program with multiple datasets
|
||||
|
||||
### Fixed
|
||||
- Sign error in valueCutPoint calculation
|
||||
- Final cut value computation
|
||||
- Duplicate dataset handling in sample
|
||||
|
||||
## [1.0.0.0] - 2022-12-21
|
||||
|
||||
### Added
|
||||
- Initial release of MDLP (Minimum Description Length Principle) discretization library
|
||||
- Core CPPFImdlp algorithm implementation based on Fayyad & Irani's paper
|
||||
- Entropy and information gain calculation methods
|
||||
- Sample program demonstrating library usage
|
||||
- CMake build system
|
||||
- Basic test suite
|
||||
- ARFF file format support for datasets
|
||||
|
||||
### Features
|
||||
- Recursive discretization using entropy-based criteria
|
||||
- Stable sorting with tie-breaking for identical values
|
||||
- Configurable algorithm parameters
|
||||
- Cross-platform C++ implementation
|
||||
|
||||
---
|
||||
|
||||
## Release Notes
|
||||
|
||||
### Version 2.x
|
||||
- **Breaking Changes**: Library renamed to `fimdlp`
|
||||
- **Major Enhancement**: PyTorch integration for improved performance
|
||||
- **New Features**: Comprehensive discretization framework with multiple algorithms
|
||||
|
||||
### Version 1.x
|
||||
- **Core Algorithm**: MDLP discretization implementation
|
||||
- **Extensibility**: Hyperparameter support and algorithm variants
|
||||
- **Quality**: Comprehensive testing and CI/CD pipeline
|
||||
|
||||
### Version 1.0.x
|
||||
- **Foundation**: Initial stable implementation
|
||||
- **Algorithm**: Core MDLP discretization functionality
|
@@ -4,7 +4,7 @@ project(fimdlp
|
||||
LANGUAGES CXX
|
||||
DESCRIPTION "Discretization algorithm based on the paper by Fayyad & Irani Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning."
|
||||
HOMEPAGE_URL "https://github.com/rmontanana/mdlp"
|
||||
VERSION 2.0.1
|
||||
VERSION 2.1.0
|
||||
)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
|
@@ -22,13 +22,15 @@ namespace mdlp {
|
||||
BinDisc::~BinDisc() = default;
|
||||
void BinDisc::fit(samples_t& X)
|
||||
{
|
||||
// y is included for compatibility with the Discretizer interface
|
||||
cutPoints.clear();
|
||||
// Input validation
|
||||
if (X.empty()) {
|
||||
cutPoints.push_back(0.0);
|
||||
cutPoints.push_back(0.0);
|
||||
return;
|
||||
throw std::invalid_argument("Input data X cannot be empty");
|
||||
}
|
||||
if (X.size() < static_cast<size_t>(n_bins)) {
|
||||
throw std::invalid_argument("Input data size must be at least equal to n_bins");
|
||||
}
|
||||
|
||||
cutPoints.clear();
|
||||
if (strategy == strategy_t::QUANTILE) {
|
||||
direction = bound_dir_t::RIGHT;
|
||||
fit_quantile(X);
|
||||
@@ -39,10 +41,31 @@ namespace mdlp {
|
||||
}
|
||||
void BinDisc::fit(samples_t& X, labels_t& y)
|
||||
{
|
||||
// Input validation for supervised interface
|
||||
if (X.size() != y.size()) {
|
||||
throw std::invalid_argument("X and y must have the same size");
|
||||
}
|
||||
if (X.empty() || y.empty()) {
|
||||
throw std::invalid_argument("X and y cannot be empty");
|
||||
}
|
||||
|
||||
// BinDisc is inherently unsupervised, but we validate inputs for consistency
|
||||
// Note: y parameter is validated but not used in binning strategy
|
||||
fit(X);
|
||||
}
|
||||
std::vector<precision_t> linspace(precision_t start, precision_t end, int num)
|
||||
{
|
||||
// Input validation
|
||||
if (num < 2) {
|
||||
throw std::invalid_argument("Number of points must be at least 2 for linspace");
|
||||
}
|
||||
if (std::isnan(start) || std::isnan(end)) {
|
||||
throw std::invalid_argument("Start and end values cannot be NaN");
|
||||
}
|
||||
if (std::isinf(start) || std::isinf(end)) {
|
||||
throw std::invalid_argument("Start and end values cannot be infinite");
|
||||
}
|
||||
|
||||
if (start == end) {
|
||||
return { start, end };
|
||||
}
|
||||
@@ -60,6 +83,14 @@ namespace mdlp {
|
||||
}
|
||||
std::vector<precision_t> percentile(samples_t& data, const std::vector<precision_t>& percentiles)
|
||||
{
|
||||
// Input validation
|
||||
if (data.empty()) {
|
||||
throw std::invalid_argument("Data cannot be empty for percentile calculation");
|
||||
}
|
||||
if (percentiles.empty()) {
|
||||
throw std::invalid_argument("Percentiles cannot be empty");
|
||||
}
|
||||
|
||||
// Implementation taken from https://dpilger26.github.io/NumCpp/doxygen/html/percentile_8hpp_source.html
|
||||
std::vector<precision_t> results;
|
||||
bool first = true;
|
||||
|
@@ -8,6 +8,7 @@
|
||||
#include <algorithm>
|
||||
#include <set>
|
||||
#include <cmath>
|
||||
#include <stdexcept>
|
||||
#include "CPPFImdlp.h"
|
||||
|
||||
namespace mdlp {
|
||||
@@ -18,6 +19,17 @@ namespace mdlp {
|
||||
max_depth(max_depth_),
|
||||
proposed_cuts(proposed)
|
||||
{
|
||||
// Input validation for constructor parameters
|
||||
if (min_length_ < 3) {
|
||||
throw std::invalid_argument("min_length must be greater than 2");
|
||||
}
|
||||
if (max_depth_ < 1) {
|
||||
throw std::invalid_argument("max_depth must be greater than 0");
|
||||
}
|
||||
if (proposed < 0.0f) {
|
||||
throw std::invalid_argument("proposed_cuts must be non-negative");
|
||||
}
|
||||
|
||||
direction = bound_dir_t::RIGHT;
|
||||
}
|
||||
|
||||
@@ -49,12 +61,6 @@ namespace mdlp {
|
||||
if (X.empty() || y.empty()) {
|
||||
throw invalid_argument("X and y must have at least one element");
|
||||
}
|
||||
if (min_length < 3) {
|
||||
throw invalid_argument("min_length must be greater than 2");
|
||||
}
|
||||
if (max_depth < 1) {
|
||||
throw invalid_argument("max_depth must be greater than 0");
|
||||
}
|
||||
indices = sortIndices(X_, y_);
|
||||
metrics.setData(y, indices);
|
||||
computeCutPoints(0, X.size(), 1);
|
||||
@@ -81,26 +87,32 @@ namespace mdlp {
|
||||
precision_t previous;
|
||||
precision_t actual;
|
||||
precision_t next;
|
||||
previous = X[indices[idxPrev]];
|
||||
actual = X[indices[cut]];
|
||||
next = X[indices[idxNext]];
|
||||
previous = safe_X_access(idxPrev);
|
||||
actual = safe_X_access(cut);
|
||||
next = safe_X_access(idxNext);
|
||||
// definition 2 of the paper => X[t-1] < X[t]
|
||||
// get the first equal value of X in the interval
|
||||
while (idxPrev > start && actual == previous) {
|
||||
previous = X[indices[--idxPrev]];
|
||||
--idxPrev;
|
||||
previous = safe_X_access(idxPrev);
|
||||
}
|
||||
backWall = idxPrev == start && actual == previous;
|
||||
// get the last equal value of X in the interval
|
||||
while (idxNext < end - 1 && actual == next) {
|
||||
next = X[indices[++idxNext]];
|
||||
++idxNext;
|
||||
next = safe_X_access(idxNext);
|
||||
}
|
||||
// # of duplicates before cutpoint
|
||||
n = cut - 1 - idxPrev;
|
||||
n = safe_subtract(safe_subtract(cut, 1), idxPrev);
|
||||
// # of duplicates after cutpoint
|
||||
m = idxNext - cut - 1;
|
||||
m = safe_subtract(safe_subtract(idxNext, cut), 1);
|
||||
// Decide which values to use
|
||||
cut = cut + (backWall ? m + 1 : -n);
|
||||
actual = X[indices[cut]];
|
||||
if (backWall) {
|
||||
cut = cut + m + 1;
|
||||
} else {
|
||||
cut = safe_subtract(cut, n);
|
||||
}
|
||||
actual = safe_X_access(cut);
|
||||
return { (actual + previous) / 2, cut };
|
||||
}
|
||||
|
||||
@@ -109,7 +121,7 @@ namespace mdlp {
|
||||
size_t cut;
|
||||
pair<precision_t, size_t> result;
|
||||
// Check if the interval length and the depth are Ok
|
||||
if (end - start < min_length || depth_ > max_depth)
|
||||
if (end < start || safe_subtract(end, start) < min_length || depth_ > max_depth)
|
||||
return;
|
||||
depth = depth_ > depth ? depth_ : depth;
|
||||
cut = getCandidate(start, end);
|
||||
@@ -129,14 +141,14 @@ namespace mdlp {
|
||||
/* Definition 1: A binary discretization for A is determined by selecting the cut point TA for which
|
||||
E(A, TA; S) is minimal amongst all the candidate cut points. */
|
||||
size_t candidate = numeric_limits<size_t>::max();
|
||||
size_t elements = end - start;
|
||||
size_t elements = safe_subtract(end, start);
|
||||
bool sameValues = true;
|
||||
precision_t entropy_left;
|
||||
precision_t entropy_right;
|
||||
precision_t minEntropy;
|
||||
// Check if all the values of the variable in the interval are the same
|
||||
for (size_t idx = start + 1; idx < end; idx++) {
|
||||
if (X[indices[idx]] != X[indices[start]]) {
|
||||
if (safe_X_access(idx) != safe_X_access(start)) {
|
||||
sameValues = false;
|
||||
break;
|
||||
}
|
||||
@@ -146,7 +158,7 @@ namespace mdlp {
|
||||
minEntropy = metrics.entropy(start, end);
|
||||
for (size_t idx = start + 1; idx < end; idx++) {
|
||||
// Cutpoints are always on boundaries (definition 2)
|
||||
if (y[indices[idx]] == y[indices[idx - 1]])
|
||||
if (safe_y_access(idx) == safe_y_access(idx - 1))
|
||||
continue;
|
||||
entropy_left = precision_t(idx - start) / static_cast<precision_t>(elements) * metrics.entropy(start, idx);
|
||||
entropy_right = precision_t(end - idx) / static_cast<precision_t>(elements) * metrics.entropy(idx, end);
|
||||
@@ -168,7 +180,7 @@ namespace mdlp {
|
||||
precision_t ent;
|
||||
precision_t ent1;
|
||||
precision_t ent2;
|
||||
auto N = precision_t(end - start);
|
||||
auto N = precision_t(safe_subtract(end, start));
|
||||
k = metrics.computeNumClasses(start, end);
|
||||
k1 = metrics.computeNumClasses(start, cut);
|
||||
k2 = metrics.computeNumClasses(cut, end);
|
||||
@@ -188,6 +200,9 @@ namespace mdlp {
|
||||
indices_t idx(X_.size());
|
||||
std::iota(idx.begin(), idx.end(), 0);
|
||||
stable_sort(idx.begin(), idx.end(), [&X_, &y_](size_t i1, size_t i2) {
|
||||
if (i1 >= X_.size() || i2 >= X_.size() || i1 >= y_.size() || i2 >= y_.size()) {
|
||||
throw std::out_of_range("Index out of bounds in sort comparison");
|
||||
}
|
||||
if (X_[i1] == X_[i2])
|
||||
return y_[i1] < y_[i2];
|
||||
else
|
||||
@@ -206,7 +221,7 @@ namespace mdlp {
|
||||
size_t end;
|
||||
for (size_t idx = 0; idx < cutPoints.size(); idx++) {
|
||||
end = begin;
|
||||
while (X[indices[end]] < cutPoints[idx] && end < X.size())
|
||||
while (end < indices.size() && safe_X_access(end) < cutPoints[idx] && end < X.size())
|
||||
end++;
|
||||
entropy = metrics.entropy(begin, end);
|
||||
if (entropy > maxEntropy) {
|
||||
|
@@ -39,6 +39,33 @@ namespace mdlp {
|
||||
size_t getCandidate(size_t, size_t);
|
||||
size_t compute_max_num_cut_points() const;
|
||||
pair<precision_t, size_t> valueCutPoint(size_t, size_t, size_t);
|
||||
private:
|
||||
inline precision_t safe_X_access(size_t idx) const {
|
||||
if (idx >= indices.size()) {
|
||||
throw std::out_of_range("Index out of bounds for indices array");
|
||||
}
|
||||
size_t real_idx = indices[idx];
|
||||
if (real_idx >= X.size()) {
|
||||
throw std::out_of_range("Index out of bounds for X array");
|
||||
}
|
||||
return X[real_idx];
|
||||
}
|
||||
inline label_t safe_y_access(size_t idx) const {
|
||||
if (idx >= indices.size()) {
|
||||
throw std::out_of_range("Index out of bounds for indices array");
|
||||
}
|
||||
size_t real_idx = indices[idx];
|
||||
if (real_idx >= y.size()) {
|
||||
throw std::out_of_range("Index out of bounds for y array");
|
||||
}
|
||||
return y[real_idx];
|
||||
}
|
||||
inline size_t safe_subtract(size_t a, size_t b) const {
|
||||
if (b > a) {
|
||||
throw std::underflow_error("Subtraction would cause underflow");
|
||||
}
|
||||
return a - b;
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
||||
|
@@ -10,6 +10,14 @@ namespace mdlp {
|
||||
|
||||
labels_t& Discretizer::transform(const samples_t& data)
|
||||
{
|
||||
// Input validation
|
||||
if (data.empty()) {
|
||||
throw std::invalid_argument("Data for transformation cannot be empty");
|
||||
}
|
||||
if (cutPoints.size() < 2) {
|
||||
throw std::runtime_error("Discretizer not fitted yet or no valid cut points found");
|
||||
}
|
||||
|
||||
discretizedData.clear();
|
||||
discretizedData.reserve(data.size());
|
||||
// CutPoints always have at least two items
|
||||
@@ -31,6 +39,26 @@ namespace mdlp {
|
||||
}
|
||||
void Discretizer::fit_t(const torch::Tensor& X_, const torch::Tensor& y_)
|
||||
{
|
||||
// Validate tensor properties for security
|
||||
if (!X_.is_contiguous() || !y_.is_contiguous()) {
|
||||
throw std::invalid_argument("Tensors must be contiguous");
|
||||
}
|
||||
if (X_.sizes().size() != 1 || y_.sizes().size() != 1) {
|
||||
throw std::invalid_argument("Only 1D tensors supported");
|
||||
}
|
||||
if (X_.dtype() != torch::kFloat32) {
|
||||
throw std::invalid_argument("X tensor must be Float32 type");
|
||||
}
|
||||
if (y_.dtype() != torch::kInt32) {
|
||||
throw std::invalid_argument("y tensor must be Int32 type");
|
||||
}
|
||||
if (X_.numel() != y_.numel()) {
|
||||
throw std::invalid_argument("X and y tensors must have same number of elements");
|
||||
}
|
||||
if (X_.numel() == 0) {
|
||||
throw std::invalid_argument("Tensors cannot be empty");
|
||||
}
|
||||
|
||||
auto num_elements = X_.numel();
|
||||
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
||||
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
|
||||
@@ -38,6 +66,20 @@ namespace mdlp {
|
||||
}
|
||||
torch::Tensor Discretizer::transform_t(const torch::Tensor& X_)
|
||||
{
|
||||
// Validate tensor properties for security
|
||||
if (!X_.is_contiguous()) {
|
||||
throw std::invalid_argument("Tensor must be contiguous");
|
||||
}
|
||||
if (X_.sizes().size() != 1) {
|
||||
throw std::invalid_argument("Only 1D tensors supported");
|
||||
}
|
||||
if (X_.dtype() != torch::kFloat32) {
|
||||
throw std::invalid_argument("X tensor must be Float32 type");
|
||||
}
|
||||
if (X_.numel() == 0) {
|
||||
throw std::invalid_argument("Tensor cannot be empty");
|
||||
}
|
||||
|
||||
auto num_elements = X_.numel();
|
||||
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
||||
auto result = transform(X);
|
||||
@@ -45,6 +87,26 @@ namespace mdlp {
|
||||
}
|
||||
torch::Tensor Discretizer::fit_transform_t(const torch::Tensor& X_, const torch::Tensor& y_)
|
||||
{
|
||||
// Validate tensor properties for security
|
||||
if (!X_.is_contiguous() || !y_.is_contiguous()) {
|
||||
throw std::invalid_argument("Tensors must be contiguous");
|
||||
}
|
||||
if (X_.sizes().size() != 1 || y_.sizes().size() != 1) {
|
||||
throw std::invalid_argument("Only 1D tensors supported");
|
||||
}
|
||||
if (X_.dtype() != torch::kFloat32) {
|
||||
throw std::invalid_argument("X tensor must be Float32 type");
|
||||
}
|
||||
if (y_.dtype() != torch::kInt32) {
|
||||
throw std::invalid_argument("y tensor must be Int32 type");
|
||||
}
|
||||
if (X_.numel() != y_.numel()) {
|
||||
throw std::invalid_argument("X and y tensors must have same number of elements");
|
||||
}
|
||||
if (X_.numel() == 0) {
|
||||
throw std::invalid_argument("Tensors cannot be empty");
|
||||
}
|
||||
|
||||
auto num_elements = X_.numel();
|
||||
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
||||
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
|
||||
|
@@ -26,6 +26,7 @@ namespace mdlp {
|
||||
|
||||
void Metrics::setData(const labels_t& y_, const indices_t& indices_)
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(cache_mutex);
|
||||
indices = indices_;
|
||||
y = y_;
|
||||
numClasses = computeNumClasses(0, indices.size());
|
||||
@@ -35,15 +36,23 @@ namespace mdlp {
|
||||
|
||||
precision_t Metrics::entropy(size_t start, size_t end)
|
||||
{
|
||||
if (end - start < 2)
|
||||
return 0;
|
||||
|
||||
// Check cache first with read lock
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(cache_mutex);
|
||||
if (entropyCache.find({ start, end }) != entropyCache.end()) {
|
||||
return entropyCache[{start, end}];
|
||||
}
|
||||
}
|
||||
|
||||
// Compute entropy outside of lock
|
||||
precision_t p;
|
||||
precision_t ventropy = 0;
|
||||
int nElements = 0;
|
||||
labels_t counts(numClasses + 1, 0);
|
||||
if (end - start < 2)
|
||||
return 0;
|
||||
if (entropyCache.find({ start, end }) != entropyCache.end()) {
|
||||
return entropyCache[{start, end}];
|
||||
}
|
||||
|
||||
for (auto i = &indices[start]; i != &indices[end]; ++i) {
|
||||
counts[y[*i]]++;
|
||||
nElements++;
|
||||
@@ -54,12 +63,27 @@ namespace mdlp {
|
||||
ventropy -= p * log2(p);
|
||||
}
|
||||
}
|
||||
entropyCache[{start, end}] = ventropy;
|
||||
|
||||
// Update cache with write lock
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(cache_mutex);
|
||||
entropyCache[{start, end}] = ventropy;
|
||||
}
|
||||
|
||||
return ventropy;
|
||||
}
|
||||
|
||||
precision_t Metrics::informationGain(size_t start, size_t cut, size_t end)
|
||||
{
|
||||
// Check cache first with read lock
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(cache_mutex);
|
||||
if (igCache.find(make_tuple(start, cut, end)) != igCache.end()) {
|
||||
return igCache[make_tuple(start, cut, end)];
|
||||
}
|
||||
}
|
||||
|
||||
// Compute information gain outside of lock
|
||||
precision_t iGain;
|
||||
precision_t entropyInterval;
|
||||
precision_t entropyLeft;
|
||||
@@ -67,9 +91,7 @@ namespace mdlp {
|
||||
size_t nElementsLeft = cut - start;
|
||||
size_t nElementsRight = end - cut;
|
||||
size_t nElements = end - start;
|
||||
if (igCache.find(make_tuple(start, cut, end)) != igCache.end()) {
|
||||
return igCache[make_tuple(start, cut, end)];
|
||||
}
|
||||
|
||||
entropyInterval = entropy(start, end);
|
||||
entropyLeft = entropy(start, cut);
|
||||
entropyRight = entropy(cut, end);
|
||||
@@ -77,7 +99,13 @@ namespace mdlp {
|
||||
(static_cast<precision_t>(nElementsLeft) * entropyLeft +
|
||||
static_cast<precision_t>(nElementsRight) * entropyRight) /
|
||||
static_cast<precision_t>(nElements);
|
||||
igCache[make_tuple(start, cut, end)] = iGain;
|
||||
|
||||
// Update cache with write lock
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(cache_mutex);
|
||||
igCache[make_tuple(start, cut, end)] = iGain;
|
||||
}
|
||||
|
||||
return iGain;
|
||||
}
|
||||
|
||||
|
@@ -8,6 +8,7 @@
|
||||
#define CCMETRICS_H
|
||||
|
||||
#include "typesFImdlp.h"
|
||||
#include <mutex>
|
||||
|
||||
namespace mdlp {
|
||||
class Metrics {
|
||||
@@ -15,6 +16,7 @@ namespace mdlp {
|
||||
labels_t& y;
|
||||
indices_t& indices;
|
||||
int numClasses;
|
||||
mutable std::mutex cache_mutex;
|
||||
cacheEnt_t entropyCache = cacheEnt_t();
|
||||
cacheIg_t igCache = cacheIg_t();
|
||||
public:
|
||||
|
Reference in New Issue
Block a user