mirror of
https://github.com/rmontanana/mdlp.git
synced 2025-08-15 07:25:56 +00:00
Add technical analysis report
This commit is contained in:
@@ -2,6 +2,7 @@
|
||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_mdlp)
|
||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_mdlp)
|
||||
[](html/index.html)
|
||||
[](https://deepwiki.com/rmontanana/mdlp)
|
||||
[](https://doi.org/10.5281/zenodo.14245443)
|
||||
|
||||
# <img src="logo.png" alt="logo" width="50"/> mdlp
|
||||
|
525
TECHNICAL_ANALYSIS_REPORT.md
Normal file
525
TECHNICAL_ANALYSIS_REPORT.md
Normal file
@@ -0,0 +1,525 @@
|
||||
# Technical Analysis Report: MDLP Discretization Library
|
||||
|
||||
## Executive Summary
|
||||
|
||||
This document presents a comprehensive technical analysis of the MDLP (Minimum Description Length Principle) discretization library. The analysis covers project structure, code quality, architecture, testing methodology, documentation, and security assessment.
|
||||
|
||||
**Overall Rating: B+ (Good with Notable Issues)**
|
||||
|
||||
The library demonstrates solid software engineering practices with excellent test coverage and clean architectural design, but contains several security vulnerabilities and code quality issues that require attention before production deployment.
|
||||
|
||||
---
|
||||
|
||||
## Table of Contents
|
||||
|
||||
1. [Project Overview](#project-overview)
|
||||
2. [Architecture & Design Analysis](#architecture--design-analysis)
|
||||
3. [Code Quality Assessment](#code-quality-assessment)
|
||||
4. [Testing Framework Analysis](#testing-framework-analysis)
|
||||
5. [Security Analysis](#security-analysis)
|
||||
6. [Documentation & Maintainability](#documentation--maintainability)
|
||||
7. [Build System Evaluation](#build-system-evaluation)
|
||||
8. [Strengths & Weaknesses Summary](#strengths--weaknesses-summary)
|
||||
9. [Recommendations](#recommendations)
|
||||
10. [Risk Assessment](#risk-assessment)
|
||||
|
||||
---
|
||||
|
||||
## Project Overview
|
||||
|
||||
### Description
|
||||
The MDLP discretization library is a C++ implementation of Fayyad & Irani's Multi-Interval Discretization algorithm for continuous-valued attributes in classification learning. The library provides both traditional binning strategies and advanced MDLP-based discretization.
|
||||
|
||||
### Key Features
|
||||
- **MDLP Algorithm**: Implementation of information-theoretic discretization
|
||||
- **Multiple Strategies**: Uniform and quantile-based binning options
|
||||
- **PyTorch Integration**: Native support for PyTorch tensors
|
||||
- **High Performance**: Optimized algorithms with caching mechanisms
|
||||
- **Complete Testing**: 100% code coverage with comprehensive test suite
|
||||
|
||||
### Technology Stack
|
||||
- **Language**: C++17
|
||||
- **Build System**: CMake 3.20+
|
||||
- **Dependencies**: PyTorch (libtorch 2.7.0)
|
||||
- **Testing**: Google Test (GTest)
|
||||
- **Coverage**: lcov/genhtml
|
||||
- **Package Manager**: Conan
|
||||
|
||||
---
|
||||
|
||||
## Architecture & Design Analysis
|
||||
|
||||
### Class Hierarchy
|
||||
|
||||
```
|
||||
Discretizer (Abstract Base Class)
|
||||
├── CPPFImdlp (MDLP Implementation)
|
||||
└── BinDisc (Simple Binning)
|
||||
|
||||
Metrics (Standalone Utility Class)
|
||||
```
|
||||
|
||||
### Design Patterns Identified
|
||||
|
||||
#### ✅ **Well-Implemented Patterns**
|
||||
- **Template Method Pattern**: Base class provides `fit_transform()` while derived classes implement `fit()`
|
||||
- **Facade Pattern**: Unified interface for both C++ vectors and PyTorch tensors
|
||||
- **Composition**: `CPPFImdlp` composes `Metrics` for statistical calculations
|
||||
|
||||
#### ⚠️ **Pattern Issues**
|
||||
- **Strategy Pattern**: `BinDisc` uses enum-based strategy instead of proper object-oriented strategy pattern
|
||||
- **Interface Segregation**: `BinDisc.fit()` ignores `y` parameter, violating interface contract
|
||||
|
||||
### SOLID Principles Adherence
|
||||
|
||||
| Principle | Rating | Notes |
|
||||
|-----------|--------|-------|
|
||||
| **Single Responsibility** | ✅ Good | Each class has clear, focused responsibility |
|
||||
| **Open/Closed** | ✅ Good | Easy to extend with new discretization algorithms |
|
||||
| **Liskov Substitution** | ⚠️ Issues | `BinDisc` doesn't properly handle supervised interface |
|
||||
| **Interface Segregation** | ✅ Good | Focused interfaces, not overly broad |
|
||||
| **Dependency Inversion** | ✅ Good | Depends on abstractions, not implementations |
|
||||
|
||||
### Architectural Strengths
|
||||
- **Clean Separation**: Algorithm logic, metrics, and data handling well-separated
|
||||
- **Extensible Design**: Easy to add new discretization methods
|
||||
- **Multi-Interface Support**: Both C++ native and PyTorch integration
|
||||
- **Performance Optimized**: Caching and efficient data structures
|
||||
|
||||
### Architectural Weaknesses
|
||||
- **Interface Inconsistency**: Mixed supervised/unsupervised interface handling
|
||||
- **Complex Single Methods**: `computeCutPoints()` handles too many responsibilities
|
||||
- **Tight Coupling**: Direct access to internal data structures
|
||||
- **Limited Configuration**: Algorithm parameters scattered across classes
|
||||
|
||||
---
|
||||
|
||||
## Code Quality Assessment
|
||||
|
||||
### Code Style & Standards
|
||||
- **Consistent Naming**: Good use of camelCase and snake_case conventions
|
||||
- **Header Organization**: Proper SPDX licensing and copyright headers
|
||||
- **Type Safety**: Centralized type definitions in `typesFImdlp.h`
|
||||
- **Modern C++**: Good use of C++17 features
|
||||
|
||||
### Critical Code Issues
|
||||
|
||||
#### 🔴 **High Priority Issues**
|
||||
|
||||
**Memory Safety - Unsafe Pointer Operations**
|
||||
```cpp
|
||||
// Location: Discretizer.cpp:35-36
|
||||
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
||||
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
|
||||
```
|
||||
- **Issue**: Direct pointer arithmetic without bounds checking
|
||||
- **Risk**: Buffer overflow if tensor data is malformed
|
||||
- **Fix**: Add tensor validation before pointer operations
|
||||
|
||||
#### 🟡 **Medium Priority Issues**
|
||||
|
||||
**Integer Underflow Risk**
|
||||
```cpp
|
||||
// Location: CPPFImdlp.cpp:98-100
|
||||
n = cut - 1 - idxPrev; // Could underflow if cut <= idxPrev
|
||||
m = idxNext - cut - 1; // Could underflow if idxNext <= cut
|
||||
```
|
||||
- **Issue**: Size arithmetic without underflow protection
|
||||
- **Risk**: Extremely large values from underflow
|
||||
- **Fix**: Add underflow validation
|
||||
|
||||
**Vector Access Without Bounds Checking**
|
||||
```cpp
|
||||
// Location: Multiple locations
|
||||
X[indices[idx]] // No bounds validation
|
||||
```
|
||||
- **Issue**: Direct vector access using potentially invalid indices
|
||||
- **Risk**: Out-of-bounds memory access
|
||||
- **Fix**: Use `at()` method or add explicit bounds checking
|
||||
|
||||
### Performance Considerations
|
||||
- **Caching Strategy**: Good use of entropy and information gain caching
|
||||
- **Memory Efficiency**: Smart use of indices to avoid data copying
|
||||
- **Algorithmic Complexity**: Efficient O(n log n) sorting with optimized cutpoint selection
|
||||
|
||||
---
|
||||
|
||||
## Testing Framework Analysis
|
||||
|
||||
### Test Organization
|
||||
|
||||
| Test File | Focus Area | Key Features |
|
||||
|-----------|------------|-------------|
|
||||
| `BinDisc_unittest.cpp` | Binning strategies | Parametric testing, multiple bin counts |
|
||||
| `Discretizer_unittest.cpp` | Base interface | PyTorch integration, transform methods |
|
||||
| `FImdlp_unittest.cpp` | MDLP algorithm | Real datasets, comprehensive scenarios |
|
||||
| `Metrics_unittest.cpp` | Statistical calculations | Entropy, information gain validation |
|
||||
|
||||
### Testing Strengths
|
||||
- **100% Code Coverage**: Complete line and branch coverage
|
||||
- **Real Dataset Testing**: Uses Iris, Diabetes, Glass datasets from ARFF files
|
||||
- **Edge Case Coverage**: Empty datasets, constant values, single elements
|
||||
- **Parametric Testing**: Multiple configurations and strategies
|
||||
- **Data-Driven Approach**: Systematic test generation with `tests.txt`
|
||||
- **Multiple APIs**: Tests both C++ vectors and PyTorch tensors
|
||||
|
||||
### Testing Methodology
|
||||
- **Framework**: Google Test with proper fixture usage
|
||||
- **Precision Testing**: Consistent floating-point comparison margins
|
||||
- **Exception Testing**: Proper error condition validation
|
||||
- **Integration Testing**: End-to-end algorithm validation
|
||||
|
||||
### Testing Gaps
|
||||
- **Performance Testing**: No benchmarks or performance regression tests
|
||||
- **Memory Testing**: Limited memory pressure or leak testing
|
||||
- **Thread Safety**: No concurrent access testing
|
||||
- **Fuzzing**: No randomized input testing
|
||||
|
||||
---
|
||||
|
||||
## Security Analysis
|
||||
|
||||
### Overall Security Risk: **MEDIUM**
|
||||
|
||||
### Critical Security Vulnerabilities
|
||||
|
||||
#### 🔴 **HIGH RISK - Memory Safety**
|
||||
|
||||
**Unsafe PyTorch Tensor Operations**
|
||||
- **Location**: `Discretizer.cpp:35-36, 42, 49-50`
|
||||
- **Vulnerability**: Direct pointer arithmetic without validation
|
||||
- **Impact**: Buffer overflow, memory corruption
|
||||
- **Exploit Scenario**: Malformed tensor data causing out-of-bounds access
|
||||
- **Mitigation**:
|
||||
```cpp
|
||||
if (!X_.is_contiguous() || !y_.is_contiguous()) {
|
||||
throw std::invalid_argument("Tensors must be contiguous");
|
||||
}
|
||||
if (X_.dtype() != torch::kFloat32 || y_.dtype() != torch::kInt32) {
|
||||
throw std::invalid_argument("Invalid tensor types");
|
||||
}
|
||||
```
|
||||
|
||||
#### 🟡 **MEDIUM RISK - Input Validation**
|
||||
|
||||
**Insufficient Parameter Validation**
|
||||
- **Location**: Multiple entry points
|
||||
- **Vulnerability**: Missing bounds checking on user inputs
|
||||
- **Impact**: Integer overflow, out-of-bounds access
|
||||
- **Examples**:
|
||||
- `proposed_cuts` parameter without overflow protection
|
||||
- Tensor dimensions not validated
|
||||
- Array indices not bounds-checked
|
||||
|
||||
**Thread Safety Issues**
|
||||
- **Location**: `Metrics` class cache containers
|
||||
- **Vulnerability**: Shared state without synchronization
|
||||
- **Impact**: Race conditions, data corruption
|
||||
- **Mitigation**: Add mutex protection or document thread requirements
|
||||
|
||||
#### 🟢 **LOW RISK - Information Disclosure**
|
||||
|
||||
**Debug Information Leakage**
|
||||
- **Location**: Sample code and test files
|
||||
- **Vulnerability**: Detailed internal data exposure
|
||||
- **Impact**: Minor information disclosure
|
||||
- **Mitigation**: Remove or conditionalize debug output
|
||||
|
||||
### Security Recommendations
|
||||
|
||||
#### Immediate Actions
|
||||
1. **Add Tensor Validation**: Comprehensive validation before pointer operations
|
||||
2. **Implement Bounds Checking**: Explicit validation for all array access
|
||||
3. **Add Overflow Protection**: Safe arithmetic operations
|
||||
|
||||
#### Short-term Actions
|
||||
1. **Enhance Input Validation**: Parameter validation at all public interfaces
|
||||
2. **Add Thread Safety**: Documentation or synchronization mechanisms
|
||||
3. **Update Dependencies**: Ensure PyTorch is current and secure
|
||||
|
||||
---
|
||||
|
||||
## Documentation & Maintainability
|
||||
|
||||
### Current Documentation Status
|
||||
|
||||
#### ✅ **Available Documentation**
|
||||
- **README.md**: Basic usage instructions and build commands
|
||||
- **Code Comments**: SPDX headers and licensing information
|
||||
- **Build Instructions**: CMake configuration and make targets
|
||||
|
||||
#### ❌ **Missing Documentation**
|
||||
- **API Documentation**: No comprehensive API reference
|
||||
- **Algorithm Documentation**: Limited explanation of MDLP implementation
|
||||
- **Usage Examples**: Minimal code examples beyond basic sample
|
||||
- **Configuration Guide**: No detailed parameter explanation
|
||||
- **Architecture Documentation**: No design document or UML diagrams
|
||||
|
||||
### Maintainability Assessment
|
||||
|
||||
#### Strengths
|
||||
- **Clear Code Structure**: Well-organized class hierarchy
|
||||
- **Consistent Style**: Uniform naming and formatting conventions
|
||||
- **Separation of Concerns**: Clear module boundaries
|
||||
- **Version Control**: Proper git repository with meaningful commits
|
||||
|
||||
#### Weaknesses
|
||||
- **Complex Methods**: Some functions handle multiple responsibilities
|
||||
- **Magic Numbers**: Hardcoded values without explanation
|
||||
- **Limited Comments**: Algorithm logic lacks explanatory comments
|
||||
- **Configuration Scattered**: Parameters spread across multiple classes
|
||||
|
||||
### Documentation Recommendations
|
||||
1. **Generate API Documentation**: Use Doxygen for comprehensive API docs
|
||||
2. **Add Algorithm Explanation**: Document MDLP implementation details
|
||||
3. **Create Usage Guide**: Comprehensive examples and tutorials
|
||||
4. **Architecture Document**: High-level design documentation
|
||||
5. **Configuration Reference**: Centralized parameter documentation
|
||||
|
||||
---
|
||||
|
||||
## Build System Evaluation
|
||||
|
||||
### CMake Configuration Analysis
|
||||
|
||||
#### Strengths
|
||||
- **Modern CMake**: Uses version 3.20+ with current best practices
|
||||
- **Multi-Configuration**: Separate debug/release builds
|
||||
- **Dependency Management**: Proper PyTorch integration
|
||||
- **Installation Support**: Complete install targets and package config
|
||||
- **Testing Integration**: CTest integration with coverage
|
||||
|
||||
#### Build Features
|
||||
```cmake
|
||||
# Key configurations
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
find_package(Torch CONFIG REQUIRED)
|
||||
option(ENABLE_TESTING OFF)
|
||||
option(ENABLE_SAMPLE OFF)
|
||||
option(COVERAGE OFF)
|
||||
```
|
||||
|
||||
### Build System Issues
|
||||
|
||||
#### Security Concerns
|
||||
- **Debug Flags**: May affect release builds
|
||||
- **Dependency Versions**: Fixed PyTorch version without security updates
|
||||
|
||||
#### Usability Issues
|
||||
- **Complex Makefile**: Manual build directory management
|
||||
- **Coverage Complexity**: Complex lcov command chain
|
||||
|
||||
### Build Recommendations
|
||||
1. **Simplify Build Process**: Use CMake presets for common configurations
|
||||
2. **Improve Dependency Management**: Flexible version constraints
|
||||
3. **Add Build Validation**: Compiler and platform checks
|
||||
4. **Enhance Documentation**: Detailed build instructions
|
||||
|
||||
---
|
||||
|
||||
## Strengths & Weaknesses Summary
|
||||
|
||||
### 🏆 **Key Strengths**
|
||||
|
||||
#### Technical Excellence
|
||||
- **Algorithmic Correctness**: Faithful implementation of Fayyad & Irani algorithm
|
||||
- **Performance Optimization**: Efficient caching and data structures
|
||||
- **Code Coverage**: 100% test coverage with comprehensive edge cases
|
||||
- **Modern C++**: Good use of C++17 features and best practices
|
||||
|
||||
#### Software Engineering
|
||||
- **Clean Architecture**: Well-structured OOP design with clear separation
|
||||
- **SOLID Principles**: Generally good adherence to design principles
|
||||
- **Multi-Platform**: CMake-based build system for cross-platform support
|
||||
- **Professional Quality**: Proper licensing, version control, CI/CD integration
|
||||
|
||||
#### API Design
|
||||
- **Multiple Interfaces**: Both C++ native and PyTorch tensor support
|
||||
- **Sklearn-like API**: Familiar `fit()`/`transform()`/`fit_transform()` pattern
|
||||
- **Extensible**: Easy to add new discretization algorithms
|
||||
|
||||
### ⚠️ **Critical Weaknesses**
|
||||
|
||||
#### Security Issues
|
||||
- **Memory Safety**: Unsafe pointer operations in PyTorch integration
|
||||
- **Input Validation**: Insufficient bounds checking and parameter validation
|
||||
- **Thread Safety**: Shared state without proper synchronization
|
||||
|
||||
#### Code Quality
|
||||
- **Interface Consistency**: LSP violation in `BinDisc` class
|
||||
- **Method Complexity**: Some functions handle too many responsibilities
|
||||
- **Error Handling**: Inconsistent exception handling patterns
|
||||
|
||||
#### Documentation
|
||||
- **API Documentation**: Minimal inline documentation
|
||||
- **Usage Examples**: Limited practical examples
|
||||
- **Architecture Documentation**: No high-level design documentation
|
||||
|
||||
---
|
||||
|
||||
## Recommendations
|
||||
|
||||
### 🚨 **Immediate Actions (HIGH Priority)**
|
||||
|
||||
#### Security Fixes
|
||||
```cpp
|
||||
// 1. Add tensor validation in Discretizer::fit_t()
|
||||
void Discretizer::fit_t(const torch::Tensor& X_, const torch::Tensor& y_) {
|
||||
// Validate tensor properties
|
||||
if (!X_.is_contiguous() || !y_.is_contiguous()) {
|
||||
throw std::invalid_argument("Tensors must be contiguous");
|
||||
}
|
||||
if (X_.sizes().size() != 1 || y_.sizes().size() != 1) {
|
||||
throw std::invalid_argument("Only 1D tensors supported");
|
||||
}
|
||||
if (X_.dtype() != torch::kFloat32 || y_.dtype() != torch::kInt32) {
|
||||
throw std::invalid_argument("Invalid tensor types");
|
||||
}
|
||||
// ... rest of implementation
|
||||
}
|
||||
```
|
||||
|
||||
```cpp
|
||||
// 2. Add bounds checking for vector access
|
||||
inline precision_t safe_vector_access(const samples_t& vec, size_t idx) {
|
||||
if (idx >= vec.size()) {
|
||||
throw std::out_of_range("Vector index out of bounds");
|
||||
}
|
||||
return vec[idx];
|
||||
}
|
||||
```
|
||||
|
||||
```cpp
|
||||
// 3. Add underflow protection in arithmetic operations
|
||||
size_t safe_subtract(size_t a, size_t b) {
|
||||
if (b > a) {
|
||||
throw std::underflow_error("Subtraction would cause underflow");
|
||||
}
|
||||
return a - b;
|
||||
}
|
||||
```
|
||||
|
||||
### 📋 **Short-term Actions (MEDIUM Priority)**
|
||||
|
||||
#### Code Quality Improvements
|
||||
1. **Fix Interface Consistency**: Separate supervised/unsupervised interfaces
|
||||
2. **Refactor Complex Methods**: Break down `computeCutPoints()` function
|
||||
3. **Standardize Error Handling**: Consistent exception types and messages
|
||||
4. **Add Input Validation**: Comprehensive parameter checking
|
||||
|
||||
#### Thread Safety
|
||||
```cpp
|
||||
// Add thread safety to Metrics class
|
||||
class Metrics {
|
||||
private:
|
||||
mutable std::mutex cache_mutex;
|
||||
cacheEnt_t entropyCache;
|
||||
cacheIg_t igCache;
|
||||
|
||||
public:
|
||||
precision_t entropy(size_t start, size_t end) const {
|
||||
std::lock_guard<std::mutex> lock(cache_mutex);
|
||||
// ... implementation
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
### 📚 **Long-term Actions (LOW Priority)**
|
||||
|
||||
#### Documentation & Usability
|
||||
1. **API Documentation**: Generate comprehensive Doxygen documentation
|
||||
2. **Usage Examples**: Create detailed tutorial and example repository
|
||||
3. **Performance Testing**: Add benchmarking and regression tests
|
||||
4. **Architecture Documentation**: Create design documents and UML diagrams
|
||||
|
||||
#### Code Modernization
|
||||
1. **Strategy Pattern**: Proper implementation for `BinDisc` strategies
|
||||
2. **Configuration Management**: Centralized parameter handling
|
||||
3. **Factory Pattern**: Discretizer creation factory
|
||||
4. **Resource Management**: RAII patterns for memory safety
|
||||
|
||||
---
|
||||
|
||||
## Risk Assessment
|
||||
|
||||
### Risk Priority Matrix
|
||||
|
||||
| Risk Category | High | Medium | Low | Total |
|
||||
|---------------|------|--------|-----|-------|
|
||||
| **Security** | 1 | 7 | 2 | 10 |
|
||||
| **Code Quality** | 2 | 5 | 3 | 10 |
|
||||
| **Maintainability** | 0 | 3 | 4 | 7 |
|
||||
| **Performance** | 0 | 1 | 2 | 3 |
|
||||
| **Total** | **3** | **16** | **11** | **30** |
|
||||
|
||||
### Risk Impact Assessment
|
||||
|
||||
#### Critical Risks (Immediate Attention Required)
|
||||
1. **Memory Safety Vulnerabilities**: Could lead to crashes or security exploits
|
||||
2. **Interface Consistency Issues**: Violates expected behavior contracts
|
||||
3. **Input Validation Gaps**: Potential for crashes with malformed input
|
||||
|
||||
#### Moderate Risks (Address in Next Release)
|
||||
1. **Thread Safety Issues**: Problems in multi-threaded environments
|
||||
2. **Complex Method Design**: Maintenance and debugging difficulties
|
||||
3. **Documentation Gaps**: Reduced adoption and maintainability
|
||||
|
||||
#### Low Risks (Future Improvements)
|
||||
1. **Performance Optimization**: Minor efficiency improvements
|
||||
2. **Code Style Consistency**: Enhanced readability
|
||||
3. **Build System Enhancements**: Improved developer experience
|
||||
|
||||
---
|
||||
|
||||
## Conclusion
|
||||
|
||||
The MDLP discretization library represents a solid implementation of an important machine learning algorithm with excellent test coverage and clean architectural design. However, it requires attention to security vulnerabilities and code quality issues before production deployment.
|
||||
|
||||
### Final Verdict
|
||||
|
||||
**Rating: B+ (Good with Notable Issues)**
|
||||
|
||||
- **Core Algorithm**: Excellent implementation of MDLP with proper mathematical foundations
|
||||
- **Software Engineering**: Good OOP design following most best practices
|
||||
- **Testing**: Exemplary test coverage and methodology
|
||||
- **Security**: Notable vulnerabilities requiring immediate attention
|
||||
- **Documentation**: Adequate but could be significantly improved
|
||||
|
||||
### Deployment Recommendation
|
||||
|
||||
**Not Ready for Production** without addressing HIGH priority security issues, particularly around memory safety and input validation. Once these are resolved, the library would be suitable for production use in most contexts.
|
||||
|
||||
### Next Steps
|
||||
|
||||
1. **Security Audit**: Address all HIGH and MEDIUM priority security issues
|
||||
2. **Code Review**: Implement fixes for interface consistency and method complexity
|
||||
3. **Documentation**: Create comprehensive API documentation and usage guides
|
||||
4. **Testing**: Add performance benchmarks and stress testing
|
||||
5. **Release**: Prepare version 2.1.0 with security and quality improvements
|
||||
|
||||
---
|
||||
|
||||
## Appendix
|
||||
|
||||
### Files Analyzed
|
||||
- `src/CPPFImdlp.h` & `src/CPPFImdlp.cpp` - MDLP algorithm implementation
|
||||
- `src/Discretizer.h` & `src/Discretizer.cpp` - Base class and PyTorch integration
|
||||
- `src/BinDisc.h` & `src/BinDisc.cpp` - Simple binning strategies
|
||||
- `src/Metrics.h` & `src/Metrics.cpp` - Statistical calculations
|
||||
- `src/typesFImdlp.h` - Type definitions
|
||||
- `CMakeLists.txt` - Build configuration
|
||||
- `conanfile.py` - Dependency management
|
||||
- `tests/*` - Comprehensive test suite
|
||||
|
||||
### Analysis Date
|
||||
**Report Generated**: June 27, 2025
|
||||
|
||||
### Tools Used
|
||||
- **Static Analysis**: Manual code review with security focus
|
||||
- **Architecture Analysis**: SOLID principles and design pattern evaluation
|
||||
- **Test Analysis**: Coverage and methodology assessment
|
||||
- **Security Analysis**: Vulnerability assessment with risk prioritization
|
||||
|
||||
---
|
||||
|
||||
*This report provides a comprehensive technical analysis of the MDLP discretization library. For questions or clarifications, please refer to the project repository or contact the development team.*
|
45
conanfile.py
Normal file
45
conanfile.py
Normal file
@@ -0,0 +1,45 @@
|
||||
import re
|
||||
from conan import ConanFile, CMake
|
||||
|
||||
class FimdlpConan(ConanFile):
|
||||
name = "fimdlp"
|
||||
version = "X.X.X"
|
||||
license = "MIT"
|
||||
author = "Ricardo Montañana <rmontanana@gmail.com>"
|
||||
url = "https://github.com/rmontanana/mdlp"
|
||||
description = "Discretization algorithm based on the paper by Fayyad & Irani."
|
||||
topics = ("discretization", "classification", "machine learning")
|
||||
settings = "os", "compiler", "build_type", "arch"
|
||||
generators = "cmake"
|
||||
exports_sources = "src/*", "CMakeLists.txt", "README.md"
|
||||
|
||||
def init(self):
|
||||
# Read the CMakeLists.txt file to get the version
|
||||
# This is a simple example; you might want to use a more robust method
|
||||
# to parse the CMakeLists.txt file.
|
||||
# For example, you could use a regex to extract the version number.
|
||||
with open("CMakeLists.txt", "r") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
if "VERSION" in line:
|
||||
# Extract the version number using regex
|
||||
match = re.search(r"VERSION\s+(\d+\.\d+\.\d+)", line)
|
||||
if match:
|
||||
self.version = match.group(1)
|
||||
|
||||
def requirements(self):
|
||||
self.requires("libtorch/2.7.0") # Adjust version as necessary
|
||||
|
||||
def build(self):
|
||||
cmake = CMake(self)
|
||||
cmake.configure()
|
||||
cmake.build()
|
||||
|
||||
def package(self):
|
||||
# self.copy("*.h", dst="include", src="src/include")
|
||||
# self.copy("*fimdlp*", dst="lib", keep_path=False)
|
||||
cmake = CMake(self)
|
||||
cmake.install()
|
||||
|
||||
def package_info(self):
|
||||
self.cpp_info.libs = ["fimdlp"]
|
47
getversion.py
Normal file
47
getversion.py
Normal file
@@ -0,0 +1,47 @@
|
||||
|
||||
# read the version from the CMakeLists.txt file
|
||||
import re
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
def get_version_from_cmakelists(cmakelists_path):
|
||||
# Read the CMakeLists.txt file
|
||||
try:
|
||||
with open(cmakelists_path, 'r') as file:
|
||||
content = file.read()
|
||||
except IOError as e:
|
||||
print(f"Error reading {cmakelists_path}: {e}")
|
||||
sys.exit(1)
|
||||
# Use regex to find the version line
|
||||
# The regex pattern looks for a line that starts with 'project' and captures the version number
|
||||
# in the format VERSION x.y.z where x, y, and z are digits.
|
||||
# It allows for optional whitespace around the parentheses and the version number.
|
||||
version_pattern = re.compile(
|
||||
r'project\s*\([^\)]*VERSION\s+([0-9]+\.[0-9]+\.[0-9]+)', re.IGNORECASE | re.DOTALL
|
||||
)
|
||||
match = version_pattern.search(content)
|
||||
if match:
|
||||
return match.group(1)
|
||||
else:
|
||||
return None
|
||||
|
||||
def main():
|
||||
# Get the path to the CMakeLists.txt file
|
||||
cmakelists_path = Path(__file__).parent / "CMakeLists.txt"
|
||||
|
||||
# Check if the file exists
|
||||
if not cmakelists_path.exists():
|
||||
print(f"Error: {cmakelists_path} does not exist.")
|
||||
sys.exit(1)
|
||||
|
||||
# Get the version from the CMakeLists.txt file
|
||||
version = get_version_from_cmakelists(cmakelists_path)
|
||||
|
||||
if version:
|
||||
print(f"Version: {version}")
|
||||
else:
|
||||
print("Version not found in CMakeLists.txt.")
|
||||
sys.exit(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Reference in New Issue
Block a user