mirror of
https://github.com/rmontanana/mdlp.git
synced 2025-08-15 23:45:57 +00:00
Compare commits
40 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
42b91d1391 | ||
08d8910b34
|
|||
|
6d8b55a808 | ||
c1759ba1ce
|
|||
f1dae498ac
|
|||
4418ea8a6f
|
|||
159e24b5cb
|
|||
77e28e728e
|
|||
18db982dec
|
|||
99b751a4d4
|
|||
059fd33b4e
|
|||
e068bf0a54
|
|||
|
cfb993f5ec | ||
7d62d6af4a
|
|||
ea70535984
|
|||
2d8b949abd
|
|||
ab12622009
|
|||
248a511972
|
|||
d9bd0126f9
|
|||
210af46a88
|
|||
2db60e007d
|
|||
1cf245fa49
|
|||
|
e36d9af8f9 | ||
7b0673fd4b
|
|||
a1346e1943
|
|||
b3fc598c29
|
|||
cc1efa0b4e
|
|||
90965877eb
|
|||
c4e6c041fe
|
|||
7938df7f0f
|
|||
7ee9896734
|
|||
8f7f605670
|
|||
2f55b27691
|
|||
378fbd51ef
|
|||
402d0da878
|
|||
f34bcc2ed7
|
|||
c9ba35fb58
|
|||
e205668906
|
|||
633aa52849
|
|||
61de687476
|
11
.conan/profiles/default
Normal file
11
.conan/profiles/default
Normal file
@@ -0,0 +1,11 @@
|
||||
[settings]
|
||||
os=Linux
|
||||
arch=x86_64
|
||||
compiler=gcc
|
||||
compiler.version=11
|
||||
compiler.libcxx=libstdc++11
|
||||
build_type=Release
|
||||
|
||||
[conf]
|
||||
tools.system.package_manager:mode=install
|
||||
tools.system.package_manager:sudo=True
|
37
.github/workflows/build.yml
vendored
37
.github/workflows/build.yml
vendored
@@ -13,28 +13,35 @@ jobs:
|
||||
env:
|
||||
BUILD_WRAPPER_OUT_DIR: build_wrapper_output_directory # Directory where build-wrapper output will be placed
|
||||
steps:
|
||||
- uses: actions/checkout@v4.1.6
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0 # Shallow clones should be disabled for a better relevancy of analysis
|
||||
submodules: recursive
|
||||
- name: Install sonar-scanner and build-wrapper
|
||||
uses: SonarSource/sonarcloud-github-c-cpp@v2
|
||||
- name: Install Python and Conan
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get -y install python3 python3-pip
|
||||
pip3 install conan
|
||||
- name: Install lcov & gcovr
|
||||
run: |
|
||||
sudo apt-get -y install lcov
|
||||
sudo apt-get -y install gcovr
|
||||
- name: Setup Conan profileson
|
||||
run: |
|
||||
conan profile detect --force
|
||||
conan remote add cimmeria https://conan.rmontanana.es/artifactory/api/conan/Cimmeria
|
||||
- name: Install dependencies with Conan
|
||||
run: |
|
||||
conan install . --build=missing -of build_debug -s build_type=Debug -o enable_testing=True
|
||||
- name: Configure with CMake
|
||||
run: |
|
||||
cmake -S . -B build_debug -DCMAKE_TOOLCHAIN_FILE=build_debug/build/Debug/generators/conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Debug -DENABLE_TESTING=ON
|
||||
- name: Tests & build-wrapper
|
||||
run: |
|
||||
cmake -S . -B build -Wno-dev
|
||||
build-wrapper-linux-x86-64 --out-dir ${{ env.BUILD_WRAPPER_OUT_DIR }} cmake --build build/ --config Release
|
||||
cd build
|
||||
make
|
||||
ctest -C Release --output-on-failure --test-dir tests
|
||||
cd ..
|
||||
gcovr -f CPPFImdlp.cpp -f Metrics.cpp -f BinDisc.cpp --txt --sonarqube=coverage.xml
|
||||
- name: Run sonar-scanner
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
SONAR_TOKEN: ${{ secrets.SONAR_TOKEN }}
|
||||
run: |
|
||||
sonar-scanner --define sonar.cfamily.build-wrapper-output="${{ env.BUILD_WRAPPER_OUT_DIR }}" \
|
||||
--define sonar.coverageReportPaths=coverage.xml
|
||||
build-wrapper-linux-x86-64 --out-dir ${{ env.BUILD_WRAPPER_OUT_DIR }} cmake --build build_debug --config Debug -j 4
|
||||
cp -r tests/datasets build_debug/tests/datasets
|
||||
cd build_debug/tests
|
||||
ctest --output-on-failure -j 4
|
||||
|
5
.gitignore
vendored
5
.gitignore
vendored
@@ -33,8 +33,11 @@
|
||||
**/build
|
||||
build_Debug
|
||||
build_Release
|
||||
build_debug
|
||||
build_release
|
||||
**/lcoverage
|
||||
.idea
|
||||
cmake-*
|
||||
**/CMakeFiles
|
||||
**/gcovr-report
|
||||
**/gcovr-report
|
||||
CMakeUserPresets.json
|
||||
|
22
.vscode/settings.json
vendored
22
.vscode/settings.json
vendored
@@ -88,6 +88,26 @@
|
||||
"*.toml": "toml",
|
||||
"utility": "cpp",
|
||||
"span": "cpp",
|
||||
"*.tcc": "cpp"
|
||||
"*.tcc": "cpp",
|
||||
"bit": "cpp",
|
||||
"charconv": "cpp",
|
||||
"cinttypes": "cpp",
|
||||
"codecvt": "cpp",
|
||||
"functional": "cpp",
|
||||
"iterator": "cpp",
|
||||
"memory_resource": "cpp",
|
||||
"random": "cpp",
|
||||
"source_location": "cpp",
|
||||
"format": "cpp",
|
||||
"numbers": "cpp",
|
||||
"semaphore": "cpp",
|
||||
"stop_token": "cpp",
|
||||
"text_encoding": "cpp",
|
||||
"typeindex": "cpp",
|
||||
"valarray": "cpp",
|
||||
"csignal": "cpp",
|
||||
"regex": "cpp",
|
||||
"future": "cpp",
|
||||
"shared_mutex": "cpp"
|
||||
}
|
||||
}
|
99
BinDisc.cpp
99
BinDisc.cpp
@@ -1,99 +0,0 @@
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
#include <cmath>
|
||||
#include "BinDisc.h"
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
namespace mdlp {
|
||||
|
||||
BinDisc::BinDisc(int n_bins, strategy_t strategy) :
|
||||
Discretizer(), n_bins{ n_bins }, strategy{ strategy }
|
||||
{
|
||||
if (n_bins < 3) {
|
||||
throw std::invalid_argument("n_bins must be greater than 2");
|
||||
}
|
||||
}
|
||||
BinDisc::~BinDisc() = default;
|
||||
void BinDisc::fit(samples_t& X)
|
||||
{
|
||||
// y is included for compatibility with the Discretizer interface
|
||||
cutPoints.clear();
|
||||
if (X.empty()) {
|
||||
cutPoints.push_back(std::numeric_limits<precision_t>::max());
|
||||
return;
|
||||
}
|
||||
if (strategy == strategy_t::QUANTILE) {
|
||||
fit_quantile(X);
|
||||
} else if (strategy == strategy_t::UNIFORM) {
|
||||
fit_uniform(X);
|
||||
}
|
||||
}
|
||||
void BinDisc::fit(samples_t& X, labels_t& y)
|
||||
{
|
||||
fit(X);
|
||||
}
|
||||
std::vector<precision_t> linspace(precision_t start, precision_t end, int num)
|
||||
{
|
||||
// Doesn't include end point as it is not needed
|
||||
if (start == end) {
|
||||
return { 0 };
|
||||
}
|
||||
precision_t delta = (end - start) / static_cast<precision_t>(num - 1);
|
||||
std::vector<precision_t> linspc;
|
||||
for (size_t i = 0; i < num - 1; ++i) {
|
||||
precision_t val = start + delta * static_cast<precision_t>(i);
|
||||
linspc.push_back(val);
|
||||
}
|
||||
return linspc;
|
||||
}
|
||||
size_t clip(const size_t n, size_t lower, size_t upper)
|
||||
{
|
||||
return std::max(lower, std::min(n, upper));
|
||||
}
|
||||
std::vector<precision_t> percentile(samples_t& data, std::vector<precision_t>& percentiles)
|
||||
{
|
||||
// Implementation taken from https://dpilger26.github.io/NumCpp/doxygen/html/percentile_8hpp_source.html
|
||||
std::vector<precision_t> results;
|
||||
results.reserve(percentiles.size());
|
||||
for (auto percentile : percentiles) {
|
||||
const size_t i = static_cast<size_t>(std::floor(static_cast<double>(data.size() - 1) * percentile / 100.));
|
||||
const auto indexLower = clip(i, 0, data.size() - 1);
|
||||
const double percentI = static_cast<double>(indexLower) / static_cast<double>(data.size() - 1);
|
||||
const double fraction =
|
||||
(percentile / 100.0 - percentI) /
|
||||
(static_cast<double>(indexLower + 1) / static_cast<double>(data.size() - 1) - percentI);
|
||||
const auto value = data[indexLower] + (data[indexLower + 1] - data[indexLower]) * fraction;
|
||||
if (value != results.back())
|
||||
results.push_back(value);
|
||||
}
|
||||
return results;
|
||||
}
|
||||
void BinDisc::fit_quantile(samples_t& X)
|
||||
{
|
||||
auto quantiles = linspace(0.0, 100.0, n_bins + 1);
|
||||
auto data = X;
|
||||
std::sort(data.begin(), data.end());
|
||||
if (data.front() == data.back() || data.size() == 1) {
|
||||
// if X is constant
|
||||
cutPoints.push_back(std::numeric_limits<precision_t>::max());
|
||||
return;
|
||||
}
|
||||
cutPoints = percentile(data, quantiles);
|
||||
normalizeCutPoints();
|
||||
}
|
||||
void BinDisc::fit_uniform(samples_t& X)
|
||||
{
|
||||
|
||||
auto minmax = std::minmax_element(X.begin(), X.end());
|
||||
cutPoints = linspace(*minmax.first, *minmax.second, n_bins + 1);
|
||||
normalizeCutPoints();
|
||||
}
|
||||
void BinDisc::normalizeCutPoints()
|
||||
{
|
||||
// Add max value to the end
|
||||
cutPoints.push_back(std::numeric_limits<precision_t>::max());
|
||||
// Remove first as it is not needed
|
||||
cutPoints.erase(cutPoints.begin());
|
||||
}
|
||||
}
|
222
CHANGELOG.md
Normal file
222
CHANGELOG.md
Normal file
@@ -0,0 +1,222 @@
|
||||
# Changelog
|
||||
|
||||
All notable changes to this project will be documented in this file.
|
||||
|
||||
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
|
||||
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||
|
||||
## [2.1.1] - 2025-07-17
|
||||
|
||||
### Internal Changes
|
||||
|
||||
- Updated Libtorch to version 2.7.1
|
||||
- Updated ArffFiles library to version 1.2.1
|
||||
- Enhance CMake configuration for better compatibility
|
||||
|
||||
## [2.1.0] - 2025-06-28
|
||||
|
||||
### Added
|
||||
|
||||
- Conan dependency manager support
|
||||
- Technical analysis report
|
||||
|
||||
### Changed
|
||||
|
||||
- Updated README.md
|
||||
- Refactored library version and installation system
|
||||
- Updated config variable names
|
||||
|
||||
### Fixed
|
||||
|
||||
- Removed unneeded semicolon
|
||||
|
||||
## [2.0.1] - 2024-07-22
|
||||
|
||||
### Added
|
||||
|
||||
- CMake install target and make install command
|
||||
- Flag to control sample building in Makefile
|
||||
|
||||
### Changed
|
||||
|
||||
- Library name changed to `fimdlp`
|
||||
- Updated version numbers across test files
|
||||
|
||||
### Fixed
|
||||
|
||||
- Version number consistency in tests
|
||||
|
||||
## [2.0.0] - 2024-07-04
|
||||
|
||||
### Added
|
||||
|
||||
- Makefile with build & test actions for easier development
|
||||
- PyTorch (libtorch) integration for tensor operations
|
||||
|
||||
### Changed
|
||||
|
||||
- Major refactoring of build system
|
||||
- Updated build workflows and CI configuration
|
||||
|
||||
### Fixed
|
||||
|
||||
- BinDisc quantile calculation errors (#9)
|
||||
- Error in percentile method calculation
|
||||
- Integer type issues in calculations
|
||||
- Multiple GitHub Actions configuration fixes
|
||||
|
||||
## [1.2.1] - 2024-06-08
|
||||
|
||||
### Added
|
||||
|
||||
- PyTorch tensor methods for discretization
|
||||
- Improved library build system
|
||||
|
||||
### Changed
|
||||
|
||||
- Refactored sample build process
|
||||
|
||||
### Fixed
|
||||
|
||||
- Library creation and linking issues
|
||||
- Multiple GitHub Actions workflow fixes
|
||||
|
||||
## [1.2.0] - 2024-06-05
|
||||
|
||||
### Added
|
||||
|
||||
- **Discretizer** - Abstract base class for all discretization algorithms (#8)
|
||||
- **BinDisc** - K-bins discretization with quantile and uniform strategies (#7)
|
||||
- Transform method to discretize values using existing cut points
|
||||
- Support for multiple datasets in sample program
|
||||
- Docker development container configuration
|
||||
|
||||
### Changed
|
||||
|
||||
- Refactored system types throughout the library
|
||||
- Improved sample program with better dataset handling
|
||||
- Enhanced build system with debug options
|
||||
|
||||
### Fixed
|
||||
|
||||
- Transform method initialization issues
|
||||
- ARFF file attribute name extraction
|
||||
- Sample program library binary separation
|
||||
|
||||
## [1.1.3] - 2024-06-05
|
||||
|
||||
### Added
|
||||
|
||||
- `max_cutpoints` hyperparameter for controlling algorithm complexity
|
||||
- `max_depth` and `min_length` as configurable hyperparameters
|
||||
- Enhanced sample program with hyperparameter support
|
||||
- Additional datasets for testing
|
||||
|
||||
### Changed
|
||||
|
||||
- Improved constructor design and parameter handling
|
||||
- Enhanced test coverage and reporting
|
||||
- Refactored build system configuration
|
||||
|
||||
### Fixed
|
||||
|
||||
- Depth initialization in fit method
|
||||
- Code quality improvements and smell fixes
|
||||
- Exception handling in value cut point calculations
|
||||
|
||||
## [1.1.2] - 2023-04-01
|
||||
|
||||
### Added
|
||||
|
||||
- Comprehensive test suite with GitHub Actions CI
|
||||
- SonarCloud integration for code quality analysis
|
||||
- Enhanced build system with automated testing
|
||||
|
||||
### Changed
|
||||
|
||||
- Improved GitHub Actions workflow configuration
|
||||
- Updated project structure for better maintainability
|
||||
|
||||
### Fixed
|
||||
|
||||
- Build system configuration issues
|
||||
- Test execution and coverage reporting
|
||||
|
||||
## [1.1.1] - 2023-02-22
|
||||
|
||||
### Added
|
||||
|
||||
- Limits header for proper compilation
|
||||
- Enhanced build system support
|
||||
|
||||
### Changed
|
||||
|
||||
- Updated version numbering system
|
||||
- Improved SonarCloud configuration
|
||||
|
||||
### Fixed
|
||||
|
||||
- ValueCutPoint exception handling (removed unnecessary exception)
|
||||
- Build system compatibility issues
|
||||
- GitHub Actions token configuration
|
||||
|
||||
## [1.1.0] - 2023-02-21
|
||||
|
||||
### Added
|
||||
|
||||
- Classic algorithm implementation for performance comparison
|
||||
- Enhanced ValueCutPoint logic with same_values detection
|
||||
- Glass dataset support in sample program
|
||||
- Debug configuration for development
|
||||
|
||||
### Changed
|
||||
|
||||
- Refactored ValueCutPoint algorithm for better accuracy
|
||||
- Improved candidate selection logic
|
||||
- Enhanced sample program with multiple datasets
|
||||
|
||||
### Fixed
|
||||
|
||||
- Sign error in valueCutPoint calculation
|
||||
- Final cut value computation
|
||||
- Duplicate dataset handling in sample
|
||||
|
||||
## [1.0.0.0] - 2022-12-21
|
||||
|
||||
### Added
|
||||
|
||||
- Initial release of MDLP (Minimum Description Length Principle) discretization library
|
||||
- Core CPPFImdlp algorithm implementation based on Fayyad & Irani's paper
|
||||
- Entropy and information gain calculation methods
|
||||
- Sample program demonstrating library usage
|
||||
- CMake build system
|
||||
- Basic test suite
|
||||
- ARFF file format support for datasets
|
||||
|
||||
### Features
|
||||
|
||||
- Recursive discretization using entropy-based criteria
|
||||
- Stable sorting with tie-breaking for identical values
|
||||
- Configurable algorithm parameters
|
||||
- Cross-platform C++ implementation
|
||||
|
||||
---
|
||||
|
||||
## Release Notes
|
||||
|
||||
### Version 2.x
|
||||
|
||||
- **Breaking Changes**: Library renamed to `fimdlp`
|
||||
- **Major Enhancement**: PyTorch integration for improved performance
|
||||
- **New Features**: Comprehensive discretization framework with multiple algorithms
|
||||
|
||||
### Version 1.x
|
||||
|
||||
- **Core Algorithm**: MDLP discretization implementation
|
||||
- **Extensibility**: Hyperparameter support and algorithm variants
|
||||
- **Quality**: Comprehensive testing and CI/CD pipeline
|
||||
|
||||
### Version 1.0.x
|
||||
|
||||
- **Foundation**: Initial stable implementation
|
||||
- **Algorithm**: Core MDLP discretization functionality
|
77
CLAUDE.md
Normal file
77
CLAUDE.md
Normal file
@@ -0,0 +1,77 @@
|
||||
# CLAUDE.md
|
||||
|
||||
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
|
||||
|
||||
## Project Overview
|
||||
|
||||
This is a C++ implementation of the MDLP (Minimum Description Length Principle) discretization algorithm based on Fayyad & Irani's paper. The library provides discretization methods for continuous-valued attributes in classification learning.
|
||||
|
||||
## Build System
|
||||
|
||||
The project uses CMake with a Makefile wrapper for common tasks:
|
||||
|
||||
### Common Commands
|
||||
- `make build` - Build release version with sample program
|
||||
- `make test` - Run full test suite with coverage report
|
||||
- `make install` - Install the library
|
||||
|
||||
### Build Configurations
|
||||
- **Release**: Built in `build_release/` directory
|
||||
- **Debug**: Built in `build_debug/` directory (for testing)
|
||||
|
||||
### Dependencies
|
||||
- PyTorch (libtorch) - Required dependency
|
||||
- GoogleTest - Fetched automatically for testing
|
||||
- Coverage tools: lcov, genhtml
|
||||
|
||||
## Code Architecture
|
||||
|
||||
### Core Components
|
||||
|
||||
1. **Discretizer** (`src/Discretizer.h/cpp`) - Abstract base class for all discretizers
|
||||
2. **CPPFImdlp** (`src/CPPFImdlp.h/cpp`) - Main MDLP algorithm implementation
|
||||
3. **BinDisc** (`src/BinDisc.h/cpp`) - K-bins discretization (quantile/uniform strategies)
|
||||
4. **Metrics** (`src/Metrics.h/cpp`) - Entropy and information gain calculations
|
||||
|
||||
### Key Data Types
|
||||
- `samples_t` - Input data samples
|
||||
- `labels_t` - Classification labels
|
||||
- `indices_t` - Index arrays for sorting/processing
|
||||
- `precision_t` - Floating-point precision type
|
||||
|
||||
### Algorithm Flow
|
||||
1. Data is sorted using labels as tie-breakers for identical values
|
||||
2. MDLP recursively finds optimal cut points using entropy-based criteria
|
||||
3. Cut points are validated to ensure meaningful splits
|
||||
4. Transform method maps continuous values to discrete bins
|
||||
|
||||
## Testing
|
||||
|
||||
Tests are built with GoogleTest and include:
|
||||
- `Metrics_unittest` - Entropy/information gain tests
|
||||
- `FImdlp_unittest` - Core MDLP algorithm tests
|
||||
- `BinDisc_unittest` - K-bins discretization tests
|
||||
- `Discretizer_unittest` - Base class functionality tests
|
||||
|
||||
### Running Tests
|
||||
```bash
|
||||
make test # Runs all tests and generates coverage report
|
||||
cd build_debug/tests && ctest # Run tests directly
|
||||
```
|
||||
|
||||
Coverage reports are generated at `build_debug/tests/coverage/index.html`.
|
||||
|
||||
## Sample Usage
|
||||
|
||||
The sample program demonstrates basic usage:
|
||||
```bash
|
||||
build_release/sample/sample -f iris -m 2
|
||||
```
|
||||
|
||||
## Development Notes
|
||||
|
||||
- The library uses PyTorch tensors for efficient numerical operations
|
||||
- Code follows C++17 standards
|
||||
- Coverage is maintained at 100%
|
||||
- The implementation handles edge cases like duplicate values and small intervals
|
||||
- Conan package manager support is available via `conanfile.py`
|
@@ -1,13 +1,81 @@
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
project(mdlp)
|
||||
|
||||
if (POLICY CMP0135)
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
endif ()
|
||||
project(fimdlp
|
||||
LANGUAGES CXX
|
||||
DESCRIPTION "Discretization algorithm based on the paper by Fayyad & Irani Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning."
|
||||
HOMEPAGE_URL "https://github.com/rmontanana/mdlp"
|
||||
VERSION 2.1.1
|
||||
)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
# Find dependencies
|
||||
find_package(Torch CONFIG REQUIRED)
|
||||
|
||||
add_library(mdlp CPPFImdlp.cpp Metrics.cpp)
|
||||
# Options
|
||||
# -------
|
||||
option(ENABLE_TESTING OFF)
|
||||
option(COVERAGE OFF)
|
||||
|
||||
add_subdirectory(config)
|
||||
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-elide-constructors")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -O3")
|
||||
if (NOT ${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-default-inline")
|
||||
endif()
|
||||
|
||||
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
|
||||
message(STATUS "Debug mode")
|
||||
else()
|
||||
message(STATUS "Release mode")
|
||||
endif()
|
||||
|
||||
if (ENABLE_TESTING)
|
||||
message(STATUS "Testing is enabled")
|
||||
enable_testing()
|
||||
set(CODE_COVERAGE ON)
|
||||
set(GCC_COVERAGE_LINK_FLAGS "${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||
add_subdirectory(tests)
|
||||
else()
|
||||
message(STATUS "Testing is disabled")
|
||||
endif()
|
||||
|
||||
message(STATUS "Building sample")
|
||||
add_subdirectory(sample)
|
||||
add_subdirectory(tests)
|
||||
|
||||
include_directories(
|
||||
${fimdlp_SOURCE_DIR}/src
|
||||
${CMAKE_BINARY_DIR}/configured_files/include
|
||||
)
|
||||
|
||||
add_library(fimdlp src/CPPFImdlp.cpp src/Metrics.cpp src/BinDisc.cpp src/Discretizer.cpp)
|
||||
target_link_libraries(fimdlp PRIVATE torch::torch)
|
||||
|
||||
# Installation
|
||||
# ------------
|
||||
include(CMakePackageConfigHelpers)
|
||||
write_basic_package_version_file(
|
||||
"${CMAKE_CURRENT_BINARY_DIR}/fimdlpConfigVersion.cmake"
|
||||
VERSION ${PROJECT_VERSION}
|
||||
COMPATIBILITY AnyNewerVersion
|
||||
)
|
||||
|
||||
install(TARGETS fimdlp
|
||||
EXPORT fimdlpTargets
|
||||
ARCHIVE DESTINATION lib
|
||||
LIBRARY DESTINATION lib)
|
||||
|
||||
install(DIRECTORY src/ DESTINATION include/fimdlp FILES_MATCHING PATTERN "*.h")
|
||||
install(FILES ${CMAKE_BINARY_DIR}/configured_files/include/config.h DESTINATION include/fimdlp)
|
||||
|
||||
install(EXPORT fimdlpTargets
|
||||
FILE fimdlpTargets.cmake
|
||||
NAMESPACE fimdlp::
|
||||
DESTINATION lib/cmake/fimdlp)
|
||||
|
||||
configure_file(fimdlpConfig.cmake.in "${CMAKE_CURRENT_BINARY_DIR}/fimdlpConfig.cmake" @ONLY)
|
||||
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/fimdlpConfig.cmake"
|
||||
"${CMAKE_CURRENT_BINARY_DIR}/fimdlpConfigVersion.cmake"
|
||||
DESTINATION lib/cmake/fimdlp)
|
||||
|
||||
|
155
CONAN_README.md
Normal file
155
CONAN_README.md
Normal file
@@ -0,0 +1,155 @@
|
||||
# Conan Package for fimdlp
|
||||
|
||||
This directory contains the Conan package configuration for the fimdlp library.
|
||||
|
||||
## Dependencies
|
||||
|
||||
The package manages the following dependencies:
|
||||
|
||||
### Build Requirements
|
||||
|
||||
- **libtorch/2.4.1** - PyTorch C++ library for tensor operations
|
||||
|
||||
### Test Requirements (when testing enabled)
|
||||
|
||||
- **catch2/3.8.1** - Modern C++ testing framework
|
||||
- **arff-files** - ARFF file format support (included locally in tests/lib/Files/)
|
||||
|
||||
## Building with Conan
|
||||
|
||||
### 1. Install Dependencies and Build
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
conan install . --output-folder=build --build=missing
|
||||
|
||||
# Build the project
|
||||
cd build
|
||||
cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release
|
||||
cmake --build .
|
||||
```
|
||||
|
||||
### 2. Using the Build Script
|
||||
|
||||
```bash
|
||||
# Build release version
|
||||
./scripts/build_conan.sh
|
||||
|
||||
# Build with tests
|
||||
./scripts/build_conan.sh --test
|
||||
```
|
||||
|
||||
## Creating a Package
|
||||
|
||||
### 1. Create Package Locally
|
||||
|
||||
```bash
|
||||
conan create . --profile:build=default --profile:host=default
|
||||
```
|
||||
|
||||
### 2. Create Package with Options
|
||||
|
||||
```bash
|
||||
# Create with testing enabled
|
||||
conan create . -o enable_testing=True --profile:build=default --profile:host=default
|
||||
|
||||
# Create shared library version
|
||||
conan create . -o shared=True --profile:build=default --profile:host=default
|
||||
```
|
||||
|
||||
### 3. Using the Package Creation Script
|
||||
|
||||
```bash
|
||||
./scripts/create_package.sh
|
||||
```
|
||||
|
||||
## Uploading to Cimmeria
|
||||
|
||||
### 1. Configure Remote
|
||||
|
||||
```bash
|
||||
# Add Cimmeria remote
|
||||
conan remote add cimmeria https://conan.rmontanana.es/artifactory/api/conan/Cimmeria
|
||||
|
||||
# Login to Cimmeria
|
||||
conan remote login cimmeria <username>
|
||||
```
|
||||
|
||||
### 2. Upload Package
|
||||
|
||||
```bash
|
||||
# Upload the package
|
||||
conan upload fimdlp/2.1.0 --remote=cimmeria --all
|
||||
|
||||
# Or use the script (will configure remote instructions if not set up)
|
||||
./scripts/create_package.sh
|
||||
```
|
||||
|
||||
## Using the Package
|
||||
|
||||
### In conanfile.txt
|
||||
|
||||
```ini
|
||||
[requires]
|
||||
fimdlp/2.1.0
|
||||
|
||||
[generators]
|
||||
CMakeDeps
|
||||
CMakeToolchain
|
||||
```
|
||||
|
||||
### In conanfile.py
|
||||
|
||||
```python
|
||||
def requirements(self):
|
||||
self.requires("fimdlp/2.1.0")
|
||||
```
|
||||
|
||||
### In CMakeLists.txt
|
||||
|
||||
```cmake
|
||||
find_package(fimdlp REQUIRED)
|
||||
target_link_libraries(your_target fimdlp::fimdlp)
|
||||
```
|
||||
|
||||
## Package Options
|
||||
|
||||
| Option | Values | Default | Description |
|
||||
|--------|--------|---------|-------------|
|
||||
| shared | True/False | False | Build shared library |
|
||||
| fPIC | True/False | True | Position independent code |
|
||||
| enable_testing | True/False | False | Enable test suite |
|
||||
| enable_sample | True/False | False | Build sample program |
|
||||
|
||||
## Example Usage
|
||||
|
||||
```cpp
|
||||
#include <fimdlp/CPPFImdlp.h>
|
||||
#include <fimdlp/Metrics.h>
|
||||
|
||||
int main() {
|
||||
// Create MDLP discretizer
|
||||
CPPFImdlp discretizer;
|
||||
|
||||
// Calculate entropy
|
||||
Metrics metrics;
|
||||
std::vector<int> labels = {0, 1, 0, 1, 1};
|
||||
double entropy = metrics.entropy(labels);
|
||||
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
## Testing
|
||||
|
||||
The package includes comprehensive tests that can be enabled with:
|
||||
|
||||
```bash
|
||||
conan create . -o enable_testing=True
|
||||
```
|
||||
|
||||
## Requirements
|
||||
|
||||
- C++17 compatible compiler
|
||||
- CMake 3.20 or later
|
||||
- Conan 2.0 or later
|
38
CPPFImdlp.h
38
CPPFImdlp.h
@@ -1,38 +0,0 @@
|
||||
#ifndef CPPFIMDLP_H
|
||||
#define CPPFIMDLP_H
|
||||
|
||||
#include "typesFImdlp.h"
|
||||
#include <limits>
|
||||
#include <utility>
|
||||
#include <string>
|
||||
#include "Metrics.h"
|
||||
#include "Discretizer.h"
|
||||
|
||||
namespace mdlp {
|
||||
class CPPFImdlp : public Discretizer {
|
||||
public:
|
||||
CPPFImdlp() = default;
|
||||
CPPFImdlp(size_t min_length_, int max_depth_, float proposed);
|
||||
virtual ~CPPFImdlp() = default;
|
||||
void fit(samples_t& X_, labels_t& y_) override;
|
||||
inline int get_depth() const { return depth; };
|
||||
protected:
|
||||
size_t min_length = 3;
|
||||
int depth = 0;
|
||||
int max_depth = numeric_limits<int>::max();
|
||||
float proposed_cuts = 0;
|
||||
indices_t indices = indices_t();
|
||||
samples_t X = samples_t();
|
||||
labels_t y = labels_t();
|
||||
Metrics metrics = Metrics(y, indices);
|
||||
size_t num_cut_points = numeric_limits<size_t>::max();
|
||||
static indices_t sortIndices(samples_t&, labels_t&);
|
||||
void computeCutPoints(size_t, size_t, int);
|
||||
void resizeCutPoints();
|
||||
bool mdlp(size_t, size_t, size_t);
|
||||
size_t getCandidate(size_t, size_t);
|
||||
size_t compute_max_num_cut_points() const;
|
||||
pair<precision_t, size_t> valueCutPoint(size_t, size_t, size_t);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,31 +0,0 @@
|
||||
#ifndef DISCRETIZER_H
|
||||
#define DISCRETIZER_H
|
||||
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include "typesFImdlp.h"
|
||||
|
||||
namespace mdlp {
|
||||
class Discretizer {
|
||||
public:
|
||||
Discretizer() = default;
|
||||
virtual ~Discretizer() = default;
|
||||
virtual void fit(samples_t& X_, labels_t& y_) = 0;
|
||||
inline cutPoints_t getCutPoints() const { return cutPoints; };
|
||||
labels_t& transform(const samples_t& data)
|
||||
{
|
||||
discretizedData.clear();
|
||||
discretizedData.reserve(data.size());
|
||||
for (const precision_t& item : data) {
|
||||
auto upper = std::upper_bound(cutPoints.begin(), cutPoints.end(), item);
|
||||
discretizedData.push_back(upper - cutPoints.begin());
|
||||
}
|
||||
return discretizedData;
|
||||
};
|
||||
static inline std::string version() { return "1.2.0"; };
|
||||
protected:
|
||||
labels_t discretizedData = labels_t();
|
||||
cutPoints_t cutPoints;
|
||||
};
|
||||
}
|
||||
#endif
|
85
Makefile
Normal file
85
Makefile
Normal file
@@ -0,0 +1,85 @@
|
||||
SHELL := /bin/bash
|
||||
.DEFAULT_GOAL := help
|
||||
.PHONY: debug release install test conan-create viewcoverage
|
||||
lcov := lcov
|
||||
|
||||
f_debug = build_debug
|
||||
f_release = build_release
|
||||
genhtml = genhtml
|
||||
docscdir = docs
|
||||
|
||||
define build_target
|
||||
@echo ">>> Building the project for $(1)..."
|
||||
@if [ -d $(2) ]; then rm -fr $(2); fi
|
||||
@conan install . --build=missing -of $(2) -s build_type=$(1) $(4)
|
||||
@cmake -S . -B $(2) -DCMAKE_TOOLCHAIN_FILE=$(2)/build/$(1)/generators/conan_toolchain.cmake -DCMAKE_BUILD_TYPE=$(1) -D$(3)
|
||||
@cmake --build $(2) --config $(1) -j 8
|
||||
endef
|
||||
|
||||
debug: ## Build Debug version of the library
|
||||
@$(call build_target,"Debug","$(f_debug)", "ENABLE_TESTING=ON", "-o enable_testing=True")
|
||||
|
||||
release: ## Build Release version of the library
|
||||
@$(call build_target,"Release","$(f_release)", "ENABLE_TESTING=OFF", "-o enable_testing=False")
|
||||
|
||||
install: ## Install the library
|
||||
@echo ">>> Installing the project..."
|
||||
@cmake --build $(f_release) --target install -j 8
|
||||
|
||||
test: ## Build Debug version and run tests
|
||||
@echo ">>> Building Debug version and running tests..."
|
||||
@$(MAKE) debug;
|
||||
@cp -r tests/datasets $(f_debug)/tests/datasets
|
||||
@cd $(f_debug)/tests && ctest --output-on-failure -j 8
|
||||
@echo ">>> Generating coverage report..."
|
||||
@cd $(f_debug)/tests && $(lcov) --capture --directory ../ --demangle-cpp --ignore-errors source,source --ignore-errors mismatch --ignore-errors inconsistent --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info '/usr/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'gtest/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info '*/.conan2/*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1;
|
||||
@genhtml $(f_debug)/tests/coverage.info --demangle-cpp --output-directory $(f_debug)/tests/coverage --title "Discretizer mdlp Coverage Report" -s -k -f --legend
|
||||
@echo "* Coverage report is generated at $(f_debug)/tests/coverage/index.html"
|
||||
@which python || (echo ">>> Please install python"; exit 1)
|
||||
@if [ ! -f $(f_debug)/tests/coverage.info ]; then \
|
||||
echo ">>> No coverage.info file found!"; \
|
||||
exit 1; \
|
||||
fi
|
||||
@echo ">>> Updating coverage badge..."
|
||||
@env python update_coverage.py $(f_debug)/tests
|
||||
@echo ">>> Done"
|
||||
|
||||
viewcoverage: ## View the html coverage report
|
||||
@which $(genhtml) >/dev/null || (echo ">>> Please install lcov (genhtml not found)"; exit 1)
|
||||
@if [ ! -d $(docscdir)/coverage ]; then mkdir -p $(docscdir)/coverage; fi
|
||||
@if [ ! -f $(f_debug)/tests/coverage.info ]; then \
|
||||
echo ">>> No coverage.info file found. Run make coverage first!"; \
|
||||
exit 1; \
|
||||
fi
|
||||
@$(genhtml) $(f_debug)/tests/coverage.info --demangle-cpp --output-directory $(docscdir)/coverage --title "FImdlp Coverage Report" -s -k -f --legend >/dev/null 2>&1;
|
||||
@xdg-open $(docscdir)/coverage/index.html || open $(docscdir)/coverage/index.html 2>/dev/null
|
||||
@echo ">>> Done";
|
||||
|
||||
conan-create: ## Create the conan package
|
||||
@echo ">>> Creating the conan package..."
|
||||
conan create . --build=missing -tf "" -s:a build_type=Release
|
||||
conan create . --build=missing -tf "" -s:a build_type=Debug -o "&:enable_testing=False"
|
||||
@echo ">>> Done"
|
||||
|
||||
help: ## Show help message
|
||||
@IFS=$$'\n' ; \
|
||||
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
|
||||
printf "%s\n\n" "Usage: make [task]"; \
|
||||
printf "%-20s %s\n" "task" "help" ; \
|
||||
printf "%-20s %s\n" "------" "----" ; \
|
||||
for help_line in $${help_lines[@]}; do \
|
||||
IFS=$$':' ; \
|
||||
help_split=($$help_line) ; \
|
||||
help_command=`echo $${help_split[0]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \
|
||||
help_info=`echo $${help_split[2]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \
|
||||
printf '\033[36m'; \
|
||||
printf "%-20s %s" $$help_command ; \
|
||||
printf '\033[0m'; \
|
||||
printf "%s\n" $$help_info; \
|
||||
done
|
27
README.md
27
README.md
@@ -1,6 +1,9 @@
|
||||
[](https://github.com/rmontanana/mdlp/actions/workflows/build.yml)
|
||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_mdlp)
|
||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_mdlp)
|
||||
[](html/index.html)
|
||||
[](https://deepwiki.com/rmontanana/mdlp)
|
||||
[](https://doi.org/10.5281/zenodo.16025501)
|
||||
|
||||
# <img src="logo.png" alt="logo" width="50"/> mdlp
|
||||
|
||||
@@ -14,28 +17,30 @@ The implementation tries to mitigate the problem of different label values with
|
||||
Other features:
|
||||
|
||||
- Intervals with the same value of the variable are not taken into account for cutpoints.
|
||||
- Intervals have to have more than two examples to be evaluated.
|
||||
- Intervals have to have more than two examples to be evaluated (mdlp).
|
||||
- The algorithm returns the cut points for the variable.
|
||||
- The transform method uses the cut points returning its index in the following way:
|
||||
|
||||
The algorithm returns the cut points for the variable.
|
||||
cut[i - 1] <= x < cut[i]
|
||||
|
||||
using the [std::upper_bound](https://en.cppreference.com/w/cpp/algorithm/upper_bound) method
|
||||
|
||||
- K-Bins discretization is also implemented, and "quantile" and "uniform" strategies are available.
|
||||
|
||||
## Sample
|
||||
|
||||
To run the sample, just execute the following commands:
|
||||
|
||||
```bash
|
||||
cd sample
|
||||
cmake -B build
|
||||
cd build
|
||||
make
|
||||
./sample -f iris -m 2
|
||||
./sample -h
|
||||
make build
|
||||
build_release/sample/sample -f iris -m 2
|
||||
build_release/sample/sample -h
|
||||
```
|
||||
|
||||
## Test
|
||||
|
||||
To run the tests and see coverage (llvm & gcovr have to be installed), execute the following commands:
|
||||
To run the tests and see coverage (llvm with lcov and genhtml have to be installed), execute the following commands:
|
||||
|
||||
```bash
|
||||
cd tests
|
||||
./test
|
||||
make test
|
||||
```
|
||||
|
525
TECHNICAL_ANALYSIS_REPORT.md
Normal file
525
TECHNICAL_ANALYSIS_REPORT.md
Normal file
@@ -0,0 +1,525 @@
|
||||
# Technical Analysis Report: MDLP Discretization Library
|
||||
|
||||
## Executive Summary
|
||||
|
||||
This document presents a comprehensive technical analysis of the MDLP (Minimum Description Length Principle) discretization library. The analysis covers project structure, code quality, architecture, testing methodology, documentation, and security assessment.
|
||||
|
||||
**Overall Rating: B+ (Good with Notable Issues)**
|
||||
|
||||
The library demonstrates solid software engineering practices with excellent test coverage and clean architectural design, but contains several security vulnerabilities and code quality issues that require attention before production deployment.
|
||||
|
||||
---
|
||||
|
||||
## Table of Contents
|
||||
|
||||
1. [Project Overview](#project-overview)
|
||||
2. [Architecture & Design Analysis](#architecture--design-analysis)
|
||||
3. [Code Quality Assessment](#code-quality-assessment)
|
||||
4. [Testing Framework Analysis](#testing-framework-analysis)
|
||||
5. [Security Analysis](#security-analysis)
|
||||
6. [Documentation & Maintainability](#documentation--maintainability)
|
||||
7. [Build System Evaluation](#build-system-evaluation)
|
||||
8. [Strengths & Weaknesses Summary](#strengths--weaknesses-summary)
|
||||
9. [Recommendations](#recommendations)
|
||||
10. [Risk Assessment](#risk-assessment)
|
||||
|
||||
---
|
||||
|
||||
## Project Overview
|
||||
|
||||
### Description
|
||||
The MDLP discretization library is a C++ implementation of Fayyad & Irani's Multi-Interval Discretization algorithm for continuous-valued attributes in classification learning. The library provides both traditional binning strategies and advanced MDLP-based discretization.
|
||||
|
||||
### Key Features
|
||||
- **MDLP Algorithm**: Implementation of information-theoretic discretization
|
||||
- **Multiple Strategies**: Uniform and quantile-based binning options
|
||||
- **PyTorch Integration**: Native support for PyTorch tensors
|
||||
- **High Performance**: Optimized algorithms with caching mechanisms
|
||||
- **Complete Testing**: 100% code coverage with comprehensive test suite
|
||||
|
||||
### Technology Stack
|
||||
- **Language**: C++17
|
||||
- **Build System**: CMake 3.20+
|
||||
- **Dependencies**: PyTorch (libtorch 2.7.0)
|
||||
- **Testing**: Google Test (GTest)
|
||||
- **Coverage**: lcov/genhtml
|
||||
- **Package Manager**: Conan
|
||||
|
||||
---
|
||||
|
||||
## Architecture & Design Analysis
|
||||
|
||||
### Class Hierarchy
|
||||
|
||||
```
|
||||
Discretizer (Abstract Base Class)
|
||||
├── CPPFImdlp (MDLP Implementation)
|
||||
└── BinDisc (Simple Binning)
|
||||
|
||||
Metrics (Standalone Utility Class)
|
||||
```
|
||||
|
||||
### Design Patterns Identified
|
||||
|
||||
#### ✅ **Well-Implemented Patterns**
|
||||
- **Template Method Pattern**: Base class provides `fit_transform()` while derived classes implement `fit()`
|
||||
- **Facade Pattern**: Unified interface for both C++ vectors and PyTorch tensors
|
||||
- **Composition**: `CPPFImdlp` composes `Metrics` for statistical calculations
|
||||
|
||||
#### ⚠️ **Pattern Issues**
|
||||
- **Strategy Pattern**: `BinDisc` uses enum-based strategy instead of proper object-oriented strategy pattern
|
||||
- **Interface Segregation**: `BinDisc.fit()` ignores `y` parameter, violating interface contract
|
||||
|
||||
### SOLID Principles Adherence
|
||||
|
||||
| Principle | Rating | Notes |
|
||||
|-----------|--------|-------|
|
||||
| **Single Responsibility** | ✅ Good | Each class has clear, focused responsibility |
|
||||
| **Open/Closed** | ✅ Good | Easy to extend with new discretization algorithms |
|
||||
| **Liskov Substitution** | ⚠️ Issues | `BinDisc` doesn't properly handle supervised interface |
|
||||
| **Interface Segregation** | ✅ Good | Focused interfaces, not overly broad |
|
||||
| **Dependency Inversion** | ✅ Good | Depends on abstractions, not implementations |
|
||||
|
||||
### Architectural Strengths
|
||||
- **Clean Separation**: Algorithm logic, metrics, and data handling well-separated
|
||||
- **Extensible Design**: Easy to add new discretization methods
|
||||
- **Multi-Interface Support**: Both C++ native and PyTorch integration
|
||||
- **Performance Optimized**: Caching and efficient data structures
|
||||
|
||||
### Architectural Weaknesses
|
||||
- **Interface Inconsistency**: Mixed supervised/unsupervised interface handling
|
||||
- **Complex Single Methods**: `computeCutPoints()` handles too many responsibilities
|
||||
- **Tight Coupling**: Direct access to internal data structures
|
||||
- **Limited Configuration**: Algorithm parameters scattered across classes
|
||||
|
||||
---
|
||||
|
||||
## Code Quality Assessment
|
||||
|
||||
### Code Style & Standards
|
||||
- **Consistent Naming**: Good use of camelCase and snake_case conventions
|
||||
- **Header Organization**: Proper SPDX licensing and copyright headers
|
||||
- **Type Safety**: Centralized type definitions in `typesFImdlp.h`
|
||||
- **Modern C++**: Good use of C++17 features
|
||||
|
||||
### Critical Code Issues
|
||||
|
||||
#### 🔴 **High Priority Issues**
|
||||
|
||||
**Memory Safety - Unsafe Pointer Operations**
|
||||
```cpp
|
||||
// Location: Discretizer.cpp:35-36
|
||||
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
||||
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
|
||||
```
|
||||
- **Issue**: Direct pointer arithmetic without bounds checking
|
||||
- **Risk**: Buffer overflow if tensor data is malformed
|
||||
- **Fix**: Add tensor validation before pointer operations
|
||||
|
||||
#### 🟡 **Medium Priority Issues**
|
||||
|
||||
**Integer Underflow Risk**
|
||||
```cpp
|
||||
// Location: CPPFImdlp.cpp:98-100
|
||||
n = cut - 1 - idxPrev; // Could underflow if cut <= idxPrev
|
||||
m = idxNext - cut - 1; // Could underflow if idxNext <= cut
|
||||
```
|
||||
- **Issue**: Size arithmetic without underflow protection
|
||||
- **Risk**: Extremely large values from underflow
|
||||
- **Fix**: Add underflow validation
|
||||
|
||||
**Vector Access Without Bounds Checking**
|
||||
```cpp
|
||||
// Location: Multiple locations
|
||||
X[indices[idx]] // No bounds validation
|
||||
```
|
||||
- **Issue**: Direct vector access using potentially invalid indices
|
||||
- **Risk**: Out-of-bounds memory access
|
||||
- **Fix**: Use `at()` method or add explicit bounds checking
|
||||
|
||||
### Performance Considerations
|
||||
- **Caching Strategy**: Good use of entropy and information gain caching
|
||||
- **Memory Efficiency**: Smart use of indices to avoid data copying
|
||||
- **Algorithmic Complexity**: Efficient O(n log n) sorting with optimized cutpoint selection
|
||||
|
||||
---
|
||||
|
||||
## Testing Framework Analysis
|
||||
|
||||
### Test Organization
|
||||
|
||||
| Test File | Focus Area | Key Features |
|
||||
|-----------|------------|-------------|
|
||||
| `BinDisc_unittest.cpp` | Binning strategies | Parametric testing, multiple bin counts |
|
||||
| `Discretizer_unittest.cpp` | Base interface | PyTorch integration, transform methods |
|
||||
| `FImdlp_unittest.cpp` | MDLP algorithm | Real datasets, comprehensive scenarios |
|
||||
| `Metrics_unittest.cpp` | Statistical calculations | Entropy, information gain validation |
|
||||
|
||||
### Testing Strengths
|
||||
- **100% Code Coverage**: Complete line and branch coverage
|
||||
- **Real Dataset Testing**: Uses Iris, Diabetes, Glass datasets from ARFF files
|
||||
- **Edge Case Coverage**: Empty datasets, constant values, single elements
|
||||
- **Parametric Testing**: Multiple configurations and strategies
|
||||
- **Data-Driven Approach**: Systematic test generation with `tests.txt`
|
||||
- **Multiple APIs**: Tests both C++ vectors and PyTorch tensors
|
||||
|
||||
### Testing Methodology
|
||||
- **Framework**: Google Test with proper fixture usage
|
||||
- **Precision Testing**: Consistent floating-point comparison margins
|
||||
- **Exception Testing**: Proper error condition validation
|
||||
- **Integration Testing**: End-to-end algorithm validation
|
||||
|
||||
### Testing Gaps
|
||||
- **Performance Testing**: No benchmarks or performance regression tests
|
||||
- **Memory Testing**: Limited memory pressure or leak testing
|
||||
- **Thread Safety**: No concurrent access testing
|
||||
- **Fuzzing**: No randomized input testing
|
||||
|
||||
---
|
||||
|
||||
## Security Analysis
|
||||
|
||||
### Overall Security Risk: **MEDIUM**
|
||||
|
||||
### Critical Security Vulnerabilities
|
||||
|
||||
#### 🔴 **HIGH RISK - Memory Safety**
|
||||
|
||||
**Unsafe PyTorch Tensor Operations**
|
||||
- **Location**: `Discretizer.cpp:35-36, 42, 49-50`
|
||||
- **Vulnerability**: Direct pointer arithmetic without validation
|
||||
- **Impact**: Buffer overflow, memory corruption
|
||||
- **Exploit Scenario**: Malformed tensor data causing out-of-bounds access
|
||||
- **Mitigation**:
|
||||
```cpp
|
||||
if (!X_.is_contiguous() || !y_.is_contiguous()) {
|
||||
throw std::invalid_argument("Tensors must be contiguous");
|
||||
}
|
||||
if (X_.dtype() != torch::kFloat32 || y_.dtype() != torch::kInt32) {
|
||||
throw std::invalid_argument("Invalid tensor types");
|
||||
}
|
||||
```
|
||||
|
||||
#### 🟡 **MEDIUM RISK - Input Validation**
|
||||
|
||||
**Insufficient Parameter Validation**
|
||||
- **Location**: Multiple entry points
|
||||
- **Vulnerability**: Missing bounds checking on user inputs
|
||||
- **Impact**: Integer overflow, out-of-bounds access
|
||||
- **Examples**:
|
||||
- `proposed_cuts` parameter without overflow protection
|
||||
- Tensor dimensions not validated
|
||||
- Array indices not bounds-checked
|
||||
|
||||
**Thread Safety Issues**
|
||||
- **Location**: `Metrics` class cache containers
|
||||
- **Vulnerability**: Shared state without synchronization
|
||||
- **Impact**: Race conditions, data corruption
|
||||
- **Mitigation**: Add mutex protection or document thread requirements
|
||||
|
||||
#### 🟢 **LOW RISK - Information Disclosure**
|
||||
|
||||
**Debug Information Leakage**
|
||||
- **Location**: Sample code and test files
|
||||
- **Vulnerability**: Detailed internal data exposure
|
||||
- **Impact**: Minor information disclosure
|
||||
- **Mitigation**: Remove or conditionalize debug output
|
||||
|
||||
### Security Recommendations
|
||||
|
||||
#### Immediate Actions
|
||||
1. **Add Tensor Validation**: Comprehensive validation before pointer operations
|
||||
2. **Implement Bounds Checking**: Explicit validation for all array access
|
||||
3. **Add Overflow Protection**: Safe arithmetic operations
|
||||
|
||||
#### Short-term Actions
|
||||
1. **Enhance Input Validation**: Parameter validation at all public interfaces
|
||||
2. **Add Thread Safety**: Documentation or synchronization mechanisms
|
||||
3. **Update Dependencies**: Ensure PyTorch is current and secure
|
||||
|
||||
---
|
||||
|
||||
## Documentation & Maintainability
|
||||
|
||||
### Current Documentation Status
|
||||
|
||||
#### ✅ **Available Documentation**
|
||||
- **README.md**: Basic usage instructions and build commands
|
||||
- **Code Comments**: SPDX headers and licensing information
|
||||
- **Build Instructions**: CMake configuration and make targets
|
||||
|
||||
#### ❌ **Missing Documentation**
|
||||
- **API Documentation**: No comprehensive API reference
|
||||
- **Algorithm Documentation**: Limited explanation of MDLP implementation
|
||||
- **Usage Examples**: Minimal code examples beyond basic sample
|
||||
- **Configuration Guide**: No detailed parameter explanation
|
||||
- **Architecture Documentation**: No design document or UML diagrams
|
||||
|
||||
### Maintainability Assessment
|
||||
|
||||
#### Strengths
|
||||
- **Clear Code Structure**: Well-organized class hierarchy
|
||||
- **Consistent Style**: Uniform naming and formatting conventions
|
||||
- **Separation of Concerns**: Clear module boundaries
|
||||
- **Version Control**: Proper git repository with meaningful commits
|
||||
|
||||
#### Weaknesses
|
||||
- **Complex Methods**: Some functions handle multiple responsibilities
|
||||
- **Magic Numbers**: Hardcoded values without explanation
|
||||
- **Limited Comments**: Algorithm logic lacks explanatory comments
|
||||
- **Configuration Scattered**: Parameters spread across multiple classes
|
||||
|
||||
### Documentation Recommendations
|
||||
1. **Generate API Documentation**: Use Doxygen for comprehensive API docs
|
||||
2. **Add Algorithm Explanation**: Document MDLP implementation details
|
||||
3. **Create Usage Guide**: Comprehensive examples and tutorials
|
||||
4. **Architecture Document**: High-level design documentation
|
||||
5. **Configuration Reference**: Centralized parameter documentation
|
||||
|
||||
---
|
||||
|
||||
## Build System Evaluation
|
||||
|
||||
### CMake Configuration Analysis
|
||||
|
||||
#### Strengths
|
||||
- **Modern CMake**: Uses version 3.20+ with current best practices
|
||||
- **Multi-Configuration**: Separate debug/release builds
|
||||
- **Dependency Management**: Proper PyTorch integration
|
||||
- **Installation Support**: Complete install targets and package config
|
||||
- **Testing Integration**: CTest integration with coverage
|
||||
|
||||
#### Build Features
|
||||
```cmake
|
||||
# Key configurations
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
find_package(Torch CONFIG REQUIRED)
|
||||
option(ENABLE_TESTING OFF)
|
||||
option(ENABLE_SAMPLE OFF)
|
||||
option(COVERAGE OFF)
|
||||
```
|
||||
|
||||
### Build System Issues
|
||||
|
||||
#### Security Concerns
|
||||
- **Debug Flags**: May affect release builds
|
||||
- **Dependency Versions**: Fixed PyTorch version without security updates
|
||||
|
||||
#### Usability Issues
|
||||
- **Complex Makefile**: Manual build directory management
|
||||
- **Coverage Complexity**: Complex lcov command chain
|
||||
|
||||
### Build Recommendations
|
||||
1. **Simplify Build Process**: Use CMake presets for common configurations
|
||||
2. **Improve Dependency Management**: Flexible version constraints
|
||||
3. **Add Build Validation**: Compiler and platform checks
|
||||
4. **Enhance Documentation**: Detailed build instructions
|
||||
|
||||
---
|
||||
|
||||
## Strengths & Weaknesses Summary
|
||||
|
||||
### 🏆 **Key Strengths**
|
||||
|
||||
#### Technical Excellence
|
||||
- **Algorithmic Correctness**: Faithful implementation of Fayyad & Irani algorithm
|
||||
- **Performance Optimization**: Efficient caching and data structures
|
||||
- **Code Coverage**: 100% test coverage with comprehensive edge cases
|
||||
- **Modern C++**: Good use of C++17 features and best practices
|
||||
|
||||
#### Software Engineering
|
||||
- **Clean Architecture**: Well-structured OOP design with clear separation
|
||||
- **SOLID Principles**: Generally good adherence to design principles
|
||||
- **Multi-Platform**: CMake-based build system for cross-platform support
|
||||
- **Professional Quality**: Proper licensing, version control, CI/CD integration
|
||||
|
||||
#### API Design
|
||||
- **Multiple Interfaces**: Both C++ native and PyTorch tensor support
|
||||
- **Sklearn-like API**: Familiar `fit()`/`transform()`/`fit_transform()` pattern
|
||||
- **Extensible**: Easy to add new discretization algorithms
|
||||
|
||||
### ⚠️ **Critical Weaknesses**
|
||||
|
||||
#### Security Issues
|
||||
- **Memory Safety**: Unsafe pointer operations in PyTorch integration
|
||||
- **Input Validation**: Insufficient bounds checking and parameter validation
|
||||
- **Thread Safety**: Shared state without proper synchronization
|
||||
|
||||
#### Code Quality
|
||||
- **Interface Consistency**: LSP violation in `BinDisc` class
|
||||
- **Method Complexity**: Some functions handle too many responsibilities
|
||||
- **Error Handling**: Inconsistent exception handling patterns
|
||||
|
||||
#### Documentation
|
||||
- **API Documentation**: Minimal inline documentation
|
||||
- **Usage Examples**: Limited practical examples
|
||||
- **Architecture Documentation**: No high-level design documentation
|
||||
|
||||
---
|
||||
|
||||
## Recommendations
|
||||
|
||||
### 🚨 **Immediate Actions (HIGH Priority)**
|
||||
|
||||
#### Security Fixes
|
||||
```cpp
|
||||
// 1. Add tensor validation in Discretizer::fit_t()
|
||||
void Discretizer::fit_t(const torch::Tensor& X_, const torch::Tensor& y_) {
|
||||
// Validate tensor properties
|
||||
if (!X_.is_contiguous() || !y_.is_contiguous()) {
|
||||
throw std::invalid_argument("Tensors must be contiguous");
|
||||
}
|
||||
if (X_.sizes().size() != 1 || y_.sizes().size() != 1) {
|
||||
throw std::invalid_argument("Only 1D tensors supported");
|
||||
}
|
||||
if (X_.dtype() != torch::kFloat32 || y_.dtype() != torch::kInt32) {
|
||||
throw std::invalid_argument("Invalid tensor types");
|
||||
}
|
||||
// ... rest of implementation
|
||||
}
|
||||
```
|
||||
|
||||
```cpp
|
||||
// 2. Add bounds checking for vector access
|
||||
inline precision_t safe_vector_access(const samples_t& vec, size_t idx) {
|
||||
if (idx >= vec.size()) {
|
||||
throw std::out_of_range("Vector index out of bounds");
|
||||
}
|
||||
return vec[idx];
|
||||
}
|
||||
```
|
||||
|
||||
```cpp
|
||||
// 3. Add underflow protection in arithmetic operations
|
||||
size_t safe_subtract(size_t a, size_t b) {
|
||||
if (b > a) {
|
||||
throw std::underflow_error("Subtraction would cause underflow");
|
||||
}
|
||||
return a - b;
|
||||
}
|
||||
```
|
||||
|
||||
### 📋 **Short-term Actions (MEDIUM Priority)**
|
||||
|
||||
#### Code Quality Improvements
|
||||
1. **Fix Interface Consistency**: Separate supervised/unsupervised interfaces
|
||||
2. **Refactor Complex Methods**: Break down `computeCutPoints()` function
|
||||
3. **Standardize Error Handling**: Consistent exception types and messages
|
||||
4. **Add Input Validation**: Comprehensive parameter checking
|
||||
|
||||
#### Thread Safety
|
||||
```cpp
|
||||
// Add thread safety to Metrics class
|
||||
class Metrics {
|
||||
private:
|
||||
mutable std::mutex cache_mutex;
|
||||
cacheEnt_t entropyCache;
|
||||
cacheIg_t igCache;
|
||||
|
||||
public:
|
||||
precision_t entropy(size_t start, size_t end) const {
|
||||
std::lock_guard<std::mutex> lock(cache_mutex);
|
||||
// ... implementation
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
### 📚 **Long-term Actions (LOW Priority)**
|
||||
|
||||
#### Documentation & Usability
|
||||
1. **API Documentation**: Generate comprehensive Doxygen documentation
|
||||
2. **Usage Examples**: Create detailed tutorial and example repository
|
||||
3. **Performance Testing**: Add benchmarking and regression tests
|
||||
4. **Architecture Documentation**: Create design documents and UML diagrams
|
||||
|
||||
#### Code Modernization
|
||||
1. **Strategy Pattern**: Proper implementation for `BinDisc` strategies
|
||||
2. **Configuration Management**: Centralized parameter handling
|
||||
3. **Factory Pattern**: Discretizer creation factory
|
||||
4. **Resource Management**: RAII patterns for memory safety
|
||||
|
||||
---
|
||||
|
||||
## Risk Assessment
|
||||
|
||||
### Risk Priority Matrix
|
||||
|
||||
| Risk Category | High | Medium | Low | Total |
|
||||
|---------------|------|--------|-----|-------|
|
||||
| **Security** | 1 | 7 | 2 | 10 |
|
||||
| **Code Quality** | 2 | 5 | 3 | 10 |
|
||||
| **Maintainability** | 0 | 3 | 4 | 7 |
|
||||
| **Performance** | 0 | 1 | 2 | 3 |
|
||||
| **Total** | **3** | **16** | **11** | **30** |
|
||||
|
||||
### Risk Impact Assessment
|
||||
|
||||
#### Critical Risks (Immediate Attention Required)
|
||||
1. **Memory Safety Vulnerabilities**: Could lead to crashes or security exploits
|
||||
2. **Interface Consistency Issues**: Violates expected behavior contracts
|
||||
3. **Input Validation Gaps**: Potential for crashes with malformed input
|
||||
|
||||
#### Moderate Risks (Address in Next Release)
|
||||
1. **Thread Safety Issues**: Problems in multi-threaded environments
|
||||
2. **Complex Method Design**: Maintenance and debugging difficulties
|
||||
3. **Documentation Gaps**: Reduced adoption and maintainability
|
||||
|
||||
#### Low Risks (Future Improvements)
|
||||
1. **Performance Optimization**: Minor efficiency improvements
|
||||
2. **Code Style Consistency**: Enhanced readability
|
||||
3. **Build System Enhancements**: Improved developer experience
|
||||
|
||||
---
|
||||
|
||||
## Conclusion
|
||||
|
||||
The MDLP discretization library represents a solid implementation of an important machine learning algorithm with excellent test coverage and clean architectural design. However, it requires attention to security vulnerabilities and code quality issues before production deployment.
|
||||
|
||||
### Final Verdict
|
||||
|
||||
**Rating: B+ (Good with Notable Issues)**
|
||||
|
||||
- **Core Algorithm**: Excellent implementation of MDLP with proper mathematical foundations
|
||||
- **Software Engineering**: Good OOP design following most best practices
|
||||
- **Testing**: Exemplary test coverage and methodology
|
||||
- **Security**: Notable vulnerabilities requiring immediate attention
|
||||
- **Documentation**: Adequate but could be significantly improved
|
||||
|
||||
### Deployment Recommendation
|
||||
|
||||
**Not Ready for Production** without addressing HIGH priority security issues, particularly around memory safety and input validation. Once these are resolved, the library would be suitable for production use in most contexts.
|
||||
|
||||
### Next Steps
|
||||
|
||||
1. **Security Audit**: Address all HIGH and MEDIUM priority security issues
|
||||
2. **Code Review**: Implement fixes for interface consistency and method complexity
|
||||
3. **Documentation**: Create comprehensive API documentation and usage guides
|
||||
4. **Testing**: Add performance benchmarks and stress testing
|
||||
5. **Release**: Prepare version 2.1.0 with security and quality improvements
|
||||
|
||||
---
|
||||
|
||||
## Appendix
|
||||
|
||||
### Files Analyzed
|
||||
- `src/CPPFImdlp.h` & `src/CPPFImdlp.cpp` - MDLP algorithm implementation
|
||||
- `src/Discretizer.h` & `src/Discretizer.cpp` - Base class and PyTorch integration
|
||||
- `src/BinDisc.h` & `src/BinDisc.cpp` - Simple binning strategies
|
||||
- `src/Metrics.h` & `src/Metrics.cpp` - Statistical calculations
|
||||
- `src/typesFImdlp.h` - Type definitions
|
||||
- `CMakeLists.txt` - Build configuration
|
||||
- `conanfile.py` - Dependency management
|
||||
- `tests/*` - Comprehensive test suite
|
||||
|
||||
### Analysis Date
|
||||
**Report Generated**: June 27, 2025
|
||||
|
||||
### Tools Used
|
||||
- **Static Analysis**: Manual code review with security focus
|
||||
- **Architecture Analysis**: SOLID principles and design pattern evaluation
|
||||
- **Test Analysis**: Coverage and methodology assessment
|
||||
- **Security Analysis**: Vulnerability assessment with risk prioritization
|
||||
|
||||
---
|
||||
|
||||
*This report provides a comprehensive technical analysis of the MDLP discretization library. For questions or clarifications, please refer to the project repository or contact the development team.*
|
16
conandata.yml
Normal file
16
conandata.yml
Normal file
@@ -0,0 +1,16 @@
|
||||
sources:
|
||||
"2.1.0":
|
||||
url: "https://github.com/rmontanana/mdlp/archive/refs/tags/v2.1.0.tar.gz"
|
||||
sha256: "placeholder_sha256_hash"
|
||||
"2.0.1":
|
||||
url: "https://github.com/rmontanana/mdlp/archive/refs/tags/v2.0.1.tar.gz"
|
||||
sha256: "placeholder_sha256_hash"
|
||||
"2.0.0":
|
||||
url: "https://github.com/rmontanana/mdlp/archive/refs/tags/v2.0.0.tar.gz"
|
||||
sha256: "placeholder_sha256_hash"
|
||||
|
||||
patches:
|
||||
"2.1.0":
|
||||
- patch_file: "patches/001-cmake-fix.patch"
|
||||
patch_description: "Fix CMake configuration for Conan compatibility"
|
||||
patch_type: "portability"
|
111
conanfile.py
Normal file
111
conanfile.py
Normal file
@@ -0,0 +1,111 @@
|
||||
import os
|
||||
import re
|
||||
from conan import ConanFile
|
||||
from conan.tools.cmake import CMakeToolchain, CMake, cmake_layout, CMakeDeps
|
||||
from conan.tools.files import load, copy
|
||||
|
||||
|
||||
class FimdlpConan(ConanFile):
|
||||
name = "fimdlp"
|
||||
version = "X.X.X"
|
||||
license = "MIT"
|
||||
author = "Ricardo Montañana <rmontanana@gmail.com>"
|
||||
url = "https://github.com/rmontanana/mdlp"
|
||||
description = "Discretization algorithm based on the paper by Fayyad & Irani Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning."
|
||||
topics = ("machine-learning", "discretization", "mdlp", "classification")
|
||||
|
||||
# Package configuration
|
||||
settings = "os", "compiler", "build_type", "arch"
|
||||
options = {
|
||||
"shared": [True, False],
|
||||
"fPIC": [True, False],
|
||||
"enable_testing": [True, False],
|
||||
"enable_sample": [True, False],
|
||||
}
|
||||
default_options = {
|
||||
"shared": False,
|
||||
"fPIC": True,
|
||||
"enable_testing": False,
|
||||
"enable_sample": False,
|
||||
}
|
||||
|
||||
# Sources are located in the same place as this recipe, copy them to the recipe
|
||||
exports_sources = "CMakeLists.txt", "src/*", "sample/*", "tests/*", "config/*", "fimdlpConfig.cmake.in"
|
||||
|
||||
def set_version(self):
|
||||
content = load(self, "CMakeLists.txt")
|
||||
version_pattern = re.compile(r'project\s*\([^\)]*VERSION\s+([0-9]+\.[0-9]+\.[0-9]+)', re.IGNORECASE | re.DOTALL)
|
||||
match = version_pattern.search(content)
|
||||
if match:
|
||||
self.version = match.group(1)
|
||||
else:
|
||||
raise Exception("Version not found in CMakeLists.txt")
|
||||
|
||||
def config_options(self):
|
||||
if self.settings.os == "Windows":
|
||||
self.options.rm_safe("fPIC")
|
||||
|
||||
def configure(self):
|
||||
if self.options.shared:
|
||||
self.options.rm_safe("fPIC")
|
||||
|
||||
def requirements(self):
|
||||
# PyTorch dependency for tensor operations
|
||||
self.requires("libtorch/2.7.1")
|
||||
|
||||
def build_requirements(self):
|
||||
self.requires("arff-files/1.2.1") # for tests and sample
|
||||
if self.options.enable_testing:
|
||||
self.test_requires("gtest/1.16.0")
|
||||
|
||||
def layout(self):
|
||||
cmake_layout(self)
|
||||
|
||||
def generate(self):
|
||||
# Generate CMake configuration files
|
||||
deps = CMakeDeps(self)
|
||||
deps.generate()
|
||||
|
||||
tc = CMakeToolchain(self)
|
||||
# Set CMake variables based on options
|
||||
tc.variables["ENABLE_TESTING"] = self.options.enable_testing
|
||||
tc.variables["ENABLE_SAMPLE"] = self.options.enable_sample
|
||||
tc.variables["BUILD_SHARED_LIBS"] = self.options.shared
|
||||
tc.generate()
|
||||
|
||||
def build(self):
|
||||
cmake = CMake(self)
|
||||
cmake.configure()
|
||||
cmake.build()
|
||||
|
||||
# Run tests if enabled
|
||||
if self.options.enable_testing:
|
||||
cmake.test()
|
||||
|
||||
def package(self):
|
||||
# Install using CMake
|
||||
cmake = CMake(self)
|
||||
cmake.install()
|
||||
|
||||
# Copy license file
|
||||
copy(self, "LICENSE", src=self.source_folder, dst=os.path.join(self.package_folder, "licenses"))
|
||||
|
||||
def package_info(self):
|
||||
# Library configuration
|
||||
self.cpp_info.libs = ["fimdlp"]
|
||||
self.cpp_info.includedirs = ["include"]
|
||||
|
||||
# CMake package configuration
|
||||
self.cpp_info.set_property("cmake_file_name", "fimdlp")
|
||||
self.cpp_info.set_property("cmake_target_name", "fimdlp::fimdlp")
|
||||
|
||||
# Compiler features
|
||||
self.cpp_info.cppstd = "17"
|
||||
|
||||
# System libraries (if needed)
|
||||
if self.settings.os in ["Linux", "FreeBSD"]:
|
||||
self.cpp_info.system_libs.append("m") # Math library
|
||||
self.cpp_info.system_libs.append("pthread") # Threading
|
||||
|
||||
# Build information for consumers
|
||||
self.cpp_info.builddirs = ["lib/cmake/fimdlp"]
|
4
config/CMakeLists.txt
Normal file
4
config/CMakeLists.txt
Normal file
@@ -0,0 +1,4 @@
|
||||
configure_file(
|
||||
"config.h.in"
|
||||
"${CMAKE_BINARY_DIR}/configured_files/include/config.h" ESCAPE_QUOTES
|
||||
)
|
13
config/config.h.in
Normal file
13
config/config.h.in
Normal file
@@ -0,0 +1,13 @@
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
|
||||
#define PROJECT_VERSION_MAJOR @PROJECT_VERSION_MAJOR @
|
||||
#define PROJECT_VERSION_MINOR @PROJECT_VERSION_MINOR @
|
||||
#define PROJECT_VERSION_PATCH @PROJECT_VERSION_PATCH @
|
||||
|
||||
static constexpr std::string_view project_mdlp_name = "@PROJECT_NAME@";
|
||||
static constexpr std::string_view project_mdlp_version = "@PROJECT_VERSION@";
|
||||
static constexpr std::string_view project_mdlp_description = "@PROJECT_DESCRIPTION@";
|
||||
static constexpr std::string_view git_mdlp_sha = "@GIT_SHA@";
|
2
fimdlpConfig.cmake.in
Normal file
2
fimdlpConfig.cmake.in
Normal file
@@ -0,0 +1,2 @@
|
||||
@PACKAGE_INIT@
|
||||
include("${CMAKE_CURRENT_LIST_DIR}/fimdlpTargets.cmake")
|
47
getversion.py
Normal file
47
getversion.py
Normal file
@@ -0,0 +1,47 @@
|
||||
|
||||
# read the version from the CMakeLists.txt file
|
||||
import re
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
def get_version_from_cmakelists(cmakelists_path):
|
||||
# Read the CMakeLists.txt file
|
||||
try:
|
||||
with open(cmakelists_path, 'r') as file:
|
||||
content = file.read()
|
||||
except IOError as e:
|
||||
print(f"Error reading {cmakelists_path}: {e}")
|
||||
sys.exit(1)
|
||||
# Use regex to find the version line
|
||||
# The regex pattern looks for a line that starts with 'project' and captures the version number
|
||||
# in the format VERSION x.y.z where x, y, and z are digits.
|
||||
# It allows for optional whitespace around the parentheses and the version number.
|
||||
version_pattern = re.compile(
|
||||
r'project\s*\([^\)]*VERSION\s+([0-9]+\.[0-9]+\.[0-9]+)', re.IGNORECASE | re.DOTALL
|
||||
)
|
||||
match = version_pattern.search(content)
|
||||
if match:
|
||||
return match.group(1)
|
||||
else:
|
||||
return None
|
||||
|
||||
def main():
|
||||
# Get the path to the CMakeLists.txt file
|
||||
cmakelists_path = Path(__file__).parent / "CMakeLists.txt"
|
||||
|
||||
# Check if the file exists
|
||||
if not cmakelists_path.exists():
|
||||
print(f"Error: {cmakelists_path} does not exist.")
|
||||
sys.exit(1)
|
||||
|
||||
# Get the version from the CMakeLists.txt file
|
||||
version = get_version_from_cmakelists(cmakelists_path)
|
||||
|
||||
if version:
|
||||
print(f"Version: {version}")
|
||||
else:
|
||||
print("Version not found in CMakeLists.txt.")
|
||||
sys.exit(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
21
sample/.vscode/launch.json
vendored
21
sample/.vscode/launch.json
vendored
@@ -1,21 +0,0 @@
|
||||
{
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"name": "lldb puro",
|
||||
"type": "cppdbg",
|
||||
// "targetArchitecture": "arm64",
|
||||
"request": "launch",
|
||||
"program": "${workspaceRoot}/build/sample",
|
||||
"args": [
|
||||
"-f",
|
||||
"iris"
|
||||
],
|
||||
"stopAtEntry": false,
|
||||
"cwd": "${workspaceRoot}/build/",
|
||||
"environment": [],
|
||||
"externalConsole": false,
|
||||
"MIMode": "lldb"
|
||||
},
|
||||
]
|
||||
}
|
@@ -1,5 +1,12 @@
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
|
||||
set(CMAKE_BUILD_TYPE Debug)
|
||||
find_package(arff-files REQUIRED)
|
||||
|
||||
add_executable(sample sample.cpp ../tests/ArffFiles.cpp ../Metrics.cpp ../CPPFImdlp.cpp)
|
||||
include_directories(
|
||||
${fimdlp_SOURCE_DIR}/src
|
||||
${CMAKE_BINARY_DIR}/configured_files/include
|
||||
${arff-files_INCLUDE_DIRS}
|
||||
)
|
||||
|
||||
add_executable(sample sample.cpp)
|
||||
target_link_libraries(sample PRIVATE fimdlp torch::torch arff-files::arff-files)
|
||||
|
@@ -1,3 +1,9 @@
|
||||
// ****************************************************************
|
||||
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX - FileType: SOURCE
|
||||
// SPDX - License - Identifier: MIT
|
||||
// ****************************************************************
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <iomanip>
|
||||
@@ -5,13 +11,13 @@
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
#include <getopt.h>
|
||||
#include "../CPPFImdlp.h"
|
||||
#include "../tests/ArffFiles.h"
|
||||
#include <torch/torch.h>
|
||||
#include <ArffFiles.hpp>
|
||||
#include "Discretizer.h"
|
||||
#include "CPPFImdlp.h"
|
||||
#include "BinDisc.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace mdlp;
|
||||
|
||||
const string PATH = "../../tests/datasets/";
|
||||
const string PATH = "tests/datasets/";
|
||||
|
||||
/* print a description of all supported options */
|
||||
void usage(const char* path)
|
||||
@@ -20,17 +26,17 @@ void usage(const char* path)
|
||||
const char* basename = strrchr(path, '/');
|
||||
basename = basename ? basename + 1 : path;
|
||||
|
||||
cout << "usage: " << basename << "[OPTION]" << endl;
|
||||
cout << " -h, --help\t\t Print this help and exit." << endl;
|
||||
cout
|
||||
std::cout << "usage: " << basename << "[OPTION]" << std::endl;
|
||||
std::cout << " -h, --help\t\t Print this help and exit." << std::endl;
|
||||
std::cout
|
||||
<< " -f, --file[=FILENAME]\t {all, diabetes, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors, test}."
|
||||
<< endl;
|
||||
cout << " -p, --path[=FILENAME]\t folder where the arff dataset is located, default " << PATH << endl;
|
||||
cout << " -m, --max_depth=INT\t max_depth pased to discretizer. Default = MAX_INT" << endl;
|
||||
cout
|
||||
<< std::endl;
|
||||
std::cout << " -p, --path[=FILENAME]\t folder where the arff dataset is located, default " << PATH << std::endl;
|
||||
std::cout << " -m, --max_depth=INT\t max_depth pased to discretizer. Default = MAX_INT" << std::endl;
|
||||
std::cout
|
||||
<< " -c, --max_cutpoints=FLOAT\t percentage of lines expressed in decimal or integer number or cut points. Default = 0 -> any"
|
||||
<< endl;
|
||||
cout << " -n, --min_length=INT\t interval min_length pased to discretizer. Default = 3" << endl;
|
||||
<< std::endl;
|
||||
std::cout << " -n, --min_length=INT\t interval min_length pased to discretizer. Default = 3" << std::endl;
|
||||
}
|
||||
|
||||
tuple<string, string, int, int, float> parse_arguments(int argc, char** argv)
|
||||
@@ -96,56 +102,79 @@ void process_file(const string& path, const string& file_name, bool class_last,
|
||||
file.load(path + file_name + ".arff", class_last);
|
||||
const auto attributes = file.getAttributes();
|
||||
const auto items = file.getSize();
|
||||
cout << "Number of lines: " << items << endl;
|
||||
cout << "Attributes: " << endl;
|
||||
std::cout << "Number of lines: " << items << std::endl;
|
||||
std::cout << "Attributes: " << std::endl;
|
||||
for (auto attribute : attributes) {
|
||||
cout << "Name: " << get<0>(attribute) << " Type: " << get<1>(attribute) << endl;
|
||||
std::cout << "Name: " << get<0>(attribute) << " Type: " << get<1>(attribute) << std::endl;
|
||||
}
|
||||
cout << "Class name: " << file.getClassName() << endl;
|
||||
cout << "Class type: " << file.getClassType() << endl;
|
||||
cout << "Data: " << endl;
|
||||
vector<samples_t>& X = file.getX();
|
||||
labels_t& y = file.getY();
|
||||
std::cout << "Class name: " << file.getClassName() << std::endl;
|
||||
std::cout << "Class type: " << file.getClassType() << std::endl;
|
||||
std::cout << "Data: " << std::endl;
|
||||
std::vector<mdlp::samples_t>& X = file.getX();
|
||||
mdlp::labels_t& y = file.getY();
|
||||
for (int i = 0; i < 5; i++) {
|
||||
for (auto feature : X) {
|
||||
cout << fixed << setprecision(1) << feature[i] << " ";
|
||||
std::cout << fixed << setprecision(1) << feature[i] << " ";
|
||||
}
|
||||
cout << y[i] << endl;
|
||||
std::cout << y[i] << std::endl;
|
||||
}
|
||||
auto test = mdlp::CPPFImdlp(min_length, max_depth, max_cutpoints);
|
||||
size_t total = 0;
|
||||
for (auto i = 0; i < attributes.size(); i++) {
|
||||
auto min_max = minmax_element(X[i].begin(), X[i].end());
|
||||
cout << "Cut points for feature " << get<0>(attributes[i]) << ": [" << setprecision(3);
|
||||
std::cout << "Cut points for feature " << get<0>(attributes[i]) << ": [" << setprecision(3);
|
||||
test.fit(X[i], y);
|
||||
auto cut_points = test.getCutPoints();
|
||||
for (auto item : cut_points) {
|
||||
cout << item;
|
||||
std::cout << item;
|
||||
if (item != cut_points.back())
|
||||
cout << ", ";
|
||||
std::cout << ", ";
|
||||
}
|
||||
total += test.getCutPoints().size();
|
||||
cout << "]" << endl;
|
||||
cout << "Min: " << *min_max.first << " Max: " << *min_max.second << endl;
|
||||
cout << "--------------------------" << endl;
|
||||
std::cout << "]" << std::endl;
|
||||
std::cout << "Min: " << *min_max.first << " Max: " << *min_max.second << std::endl;
|
||||
std::cout << "--------------------------" << std::endl;
|
||||
}
|
||||
std::cout << "Total cut points ...: " << total << std::endl;
|
||||
std::cout << "Total feature states: " << total + attributes.size() << std::endl;
|
||||
std::cout << "Version ............: " << test.version() << std::endl;
|
||||
std::cout << "Transformed data (vector)..: " << std::endl;
|
||||
test.fit(X[0], y);
|
||||
auto data = test.transform(X[0]);
|
||||
for (int i = 130; i < 135; i++) {
|
||||
std::cout << std::fixed << std::setprecision(1) << X[0][i] << " " << data[i] << std::endl;
|
||||
}
|
||||
auto Xt = torch::tensor(X[0], torch::kFloat32);
|
||||
auto yt = torch::tensor(y, torch::kInt32);
|
||||
//test.fit_t(Xt, yt);
|
||||
auto result = test.fit_transform_t(Xt, yt);
|
||||
std::cout << "Transformed data (torch)...: " << std::endl;
|
||||
for (int i = 130; i < 135; i++) {
|
||||
std::cout << std::fixed << std::setprecision(1) << Xt[i].item<mdlp::precision_t>() << " " << result[i].item<int>() << std::endl;
|
||||
}
|
||||
auto disc = mdlp::BinDisc(3);
|
||||
auto res_v = disc.fit_transform(X[0], y);
|
||||
disc.fit_t(Xt, yt);
|
||||
auto res_t = disc.transform_t(Xt);
|
||||
std::cout << "Transformed data (BinDisc)...: " << std::endl;
|
||||
for (int i = 130; i < 135; i++) {
|
||||
std::cout << std::fixed << std::setprecision(1) << Xt[i].item<mdlp::precision_t>() << " " << res_v[i] << " " << res_t[i].item<int>() << std::endl;
|
||||
}
|
||||
cout << "Total cut points ...: " << total << endl;
|
||||
cout << "Total feature states: " << total + attributes.size() << endl;
|
||||
}
|
||||
|
||||
void process_all_files(const map<string, bool>& datasets, const string& path, int max_depth, int min_length,
|
||||
float max_cutpoints)
|
||||
{
|
||||
cout << "Results: " << "Max_depth: " << max_depth << " Min_length: " << min_length << " Max_cutpoints: "
|
||||
<< max_cutpoints << endl << endl;
|
||||
std::cout << "Results: " << "Max_depth: " << max_depth << " Min_length: " << min_length << " Max_cutpoints: "
|
||||
<< max_cutpoints << std::endl << std::endl;
|
||||
printf("%-20s %4s %4s\n", "Dataset", "Feat", "Cuts Time(ms)");
|
||||
printf("==================== ==== ==== ========\n");
|
||||
for (const auto& dataset : datasets) {
|
||||
ArffFiles file;
|
||||
file.load(path + dataset.first + ".arff", dataset.second);
|
||||
auto attributes = file.getAttributes();
|
||||
vector<samples_t>& X = file.getX();
|
||||
labels_t& y = file.getY();
|
||||
std::vector<mdlp::samples_t>& X = file.getX();
|
||||
mdlp::labels_t& y = file.getY();
|
||||
size_t timing = 0;
|
||||
size_t cut_points = 0;
|
||||
for (auto i = 0; i < attributes.size(); i++) {
|
||||
@@ -163,7 +192,7 @@ void process_all_files(const map<string, bool>& datasets, const string& path, in
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
map<string, bool> datasets = {
|
||||
std::map<std::string, bool> datasets = {
|
||||
{"diabetes", true},
|
||||
{"glass", true},
|
||||
{"iris", true},
|
||||
@@ -173,14 +202,14 @@ int main(int argc, char** argv)
|
||||
{"mfeat-factors", true},
|
||||
{"test", true}
|
||||
};
|
||||
string file_name;
|
||||
string path;
|
||||
std::string file_name;
|
||||
std::string path;
|
||||
int max_depth;
|
||||
int min_length;
|
||||
float max_cutpoints;
|
||||
tie(file_name, path, max_depth, min_length, max_cutpoints) = parse_arguments(argc, argv);
|
||||
if (datasets.find(file_name) == datasets.end() && file_name != "all") {
|
||||
cout << "Invalid file name: " << file_name << endl;
|
||||
std::cout << "Invalid file name: " << file_name << std::endl;
|
||||
usage(argv[0]);
|
||||
exit(1);
|
||||
}
|
||||
@@ -188,10 +217,10 @@ int main(int argc, char** argv)
|
||||
process_all_files(datasets, path, max_depth, min_length, max_cutpoints);
|
||||
else {
|
||||
process_file(path, file_name, datasets[file_name], max_depth, min_length, max_cutpoints);
|
||||
cout << "File name ....: " << file_name << endl;
|
||||
cout << "Max depth ....: " << max_depth << endl;
|
||||
cout << "Min length ...: " << min_length << endl;
|
||||
cout << "Max cutpoints : " << max_cutpoints << endl;
|
||||
std::cout << "File name ....: " << file_name << std::endl;
|
||||
std::cout << "Max depth ....: " << max_depth << std::endl;
|
||||
std::cout << "Min length ...: " << min_length << std::endl;
|
||||
std::cout << "Max cutpoints : " << max_cutpoints << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
25
scripts/build_conan.sh
Executable file
25
scripts/build_conan.sh
Executable file
@@ -0,0 +1,25 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Build script for fimdlp using Conan
|
||||
set -e
|
||||
|
||||
echo "Building fimdlp with Conan..."
|
||||
|
||||
# Clean previous builds
|
||||
rm -rf build_conan
|
||||
|
||||
# Install dependencies and build
|
||||
conan install . --output-folder=build_conan --build=missing --profile:build=default --profile:host=default
|
||||
|
||||
# Build the project
|
||||
cd build_conan
|
||||
cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release
|
||||
cmake --build .
|
||||
|
||||
echo "Build completed successfully!"
|
||||
|
||||
# Run tests if requested
|
||||
if [ "$1" = "--test" ]; then
|
||||
echo "Running tests..."
|
||||
ctest --output-on-failure
|
||||
fi
|
33
scripts/create_package.sh
Executable file
33
scripts/create_package.sh
Executable file
@@ -0,0 +1,33 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Script to create and upload fimdlp Conan package
|
||||
set -e
|
||||
|
||||
PACKAGE_NAME="fimdlp"
|
||||
PACKAGE_VERSION="2.1.0"
|
||||
REMOTE_NAME="cimmeria"
|
||||
|
||||
echo "Creating Conan package for $PACKAGE_NAME/$PACKAGE_VERSION..."
|
||||
|
||||
# Create the package
|
||||
conan create . --profile:build=default --profile:host=default
|
||||
|
||||
echo "Package created successfully!"
|
||||
|
||||
# Test the package
|
||||
echo "Testing package..."
|
||||
conan test test_package $PACKAGE_NAME/$PACKAGE_VERSION@ --profile:build=default --profile:host=default
|
||||
|
||||
echo "Package tested successfully!"
|
||||
|
||||
# Upload to Cimmeria (if remote is configured)
|
||||
if conan remote list | grep -q "$REMOTE_NAME"; then
|
||||
echo "Uploading package to $REMOTE_NAME..."
|
||||
conan upload $PACKAGE_NAME/$PACKAGE_VERSION --remote=$REMOTE_NAME --all
|
||||
echo "Package uploaded to $REMOTE_NAME successfully!"
|
||||
else
|
||||
echo "Remote '$REMOTE_NAME' not configured. To upload the package:"
|
||||
echo "1. Add the remote: conan remote add $REMOTE_NAME <cimmeria-url>"
|
||||
echo "2. Login: conan remote login $REMOTE_NAME <username>"
|
||||
echo "3. Upload: conan upload $PACKAGE_NAME/$PACKAGE_VERSION --remote=$REMOTE_NAME --all"
|
||||
fi
|
@@ -3,7 +3,7 @@ sonar.organization=rmontanana
|
||||
|
||||
# This is the name and version displayed in the SonarCloud UI.
|
||||
sonar.projectName=mdlp
|
||||
sonar.projectVersion=1.1.3
|
||||
sonar.projectVersion=2.0.1
|
||||
# sonar.test.exclusions=tests/**
|
||||
# sonar.tests=tests/
|
||||
# sonar.coverage.exclusions=tests/**,sample/**
|
||||
|
125
src/BinDisc.cpp
Normal file
125
src/BinDisc.cpp
Normal file
@@ -0,0 +1,125 @@
|
||||
// ****************************************************************
|
||||
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX - FileType: SOURCE
|
||||
// SPDX - License - Identifier: MIT
|
||||
// ****************************************************************
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include "BinDisc.h"
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
namespace mdlp {
|
||||
|
||||
BinDisc::BinDisc(int n_bins, strategy_t strategy) :
|
||||
Discretizer(), n_bins{ n_bins }, strategy{ strategy }
|
||||
{
|
||||
if (n_bins < 3) {
|
||||
throw std::invalid_argument("n_bins must be greater than 2");
|
||||
}
|
||||
}
|
||||
BinDisc::~BinDisc() = default;
|
||||
void BinDisc::fit(samples_t& X)
|
||||
{
|
||||
// Input validation
|
||||
if (X.empty()) {
|
||||
throw std::invalid_argument("Input data X cannot be empty");
|
||||
}
|
||||
if (X.size() < static_cast<size_t>(n_bins)) {
|
||||
throw std::invalid_argument("Input data size must be at least equal to n_bins");
|
||||
}
|
||||
|
||||
cutPoints.clear();
|
||||
if (strategy == strategy_t::QUANTILE) {
|
||||
direction = bound_dir_t::RIGHT;
|
||||
fit_quantile(X);
|
||||
} else if (strategy == strategy_t::UNIFORM) {
|
||||
direction = bound_dir_t::RIGHT;
|
||||
fit_uniform(X);
|
||||
}
|
||||
}
|
||||
void BinDisc::fit(samples_t& X, labels_t& y)
|
||||
{
|
||||
if (X.empty()) {
|
||||
throw std::invalid_argument("X cannot be empty");
|
||||
}
|
||||
|
||||
// BinDisc is inherently unsupervised, but we validate inputs for consistency
|
||||
// Note: y parameter is validated but not used in binning strategy
|
||||
fit(X);
|
||||
}
|
||||
std::vector<precision_t> BinDisc::linspace(precision_t start, precision_t end, int num)
|
||||
{
|
||||
// Input validation
|
||||
if (num < 2) {
|
||||
throw std::invalid_argument("Number of points must be at least 2 for linspace");
|
||||
}
|
||||
if (std::isnan(start) || std::isnan(end)) {
|
||||
throw std::invalid_argument("Start and end values cannot be NaN");
|
||||
}
|
||||
if (std::isinf(start) || std::isinf(end)) {
|
||||
throw std::invalid_argument("Start and end values cannot be infinite");
|
||||
}
|
||||
|
||||
if (start == end) {
|
||||
return { start, end };
|
||||
}
|
||||
precision_t delta = (end - start) / static_cast<precision_t>(num - 1);
|
||||
std::vector<precision_t> linspc;
|
||||
for (size_t i = 0; i < num; ++i) {
|
||||
precision_t val = start + delta * static_cast<precision_t>(i);
|
||||
linspc.push_back(val);
|
||||
}
|
||||
return linspc;
|
||||
}
|
||||
size_t clip(const size_t n, const size_t lower, const size_t upper)
|
||||
{
|
||||
return std::max(lower, std::min(n, upper));
|
||||
}
|
||||
std::vector<precision_t> BinDisc::percentile(samples_t& data, const std::vector<precision_t>& percentiles)
|
||||
{
|
||||
// Input validation
|
||||
if (data.empty()) {
|
||||
throw std::invalid_argument("Data cannot be empty for percentile calculation");
|
||||
}
|
||||
if (percentiles.empty()) {
|
||||
throw std::invalid_argument("Percentiles cannot be empty");
|
||||
}
|
||||
|
||||
// Implementation taken from https://dpilger26.github.io/NumCpp/doxygen/html/percentile_8hpp_source.html
|
||||
std::vector<precision_t> results;
|
||||
bool first = true;
|
||||
results.reserve(percentiles.size());
|
||||
for (auto percentile : percentiles) {
|
||||
const auto i = static_cast<size_t>(std::floor(static_cast<precision_t>(data.size() - 1) * percentile / 100.));
|
||||
const auto indexLower = clip(i, 0, data.size() - 2);
|
||||
const precision_t percentI = static_cast<precision_t>(indexLower) / static_cast<precision_t>(data.size() - 1);
|
||||
const precision_t fraction =
|
||||
(percentile / 100.0 - percentI) /
|
||||
(static_cast<precision_t>(indexLower + 1) / static_cast<precision_t>(data.size() - 1) - percentI);
|
||||
if (const auto value = data[indexLower] + (data[indexLower + 1] - data[indexLower]) * fraction; value != results.back() || first) // first needed as results.back() return is undefined for empty vectors
|
||||
results.push_back(value);
|
||||
first = false;
|
||||
}
|
||||
return results;
|
||||
}
|
||||
void BinDisc::fit_quantile(const samples_t& X)
|
||||
{
|
||||
auto quantiles = linspace(0.0, 100.0, n_bins + 1);
|
||||
auto data = X;
|
||||
std::sort(data.begin(), data.end());
|
||||
if (data.front() == data.back() || data.size() == 1) {
|
||||
// if X is constant, pass any two given points that shall be ignored in transform
|
||||
cutPoints.push_back(data.front());
|
||||
cutPoints.push_back(data.front());
|
||||
return;
|
||||
}
|
||||
cutPoints = percentile(data, quantiles);
|
||||
}
|
||||
void BinDisc::fit_uniform(const samples_t& X)
|
||||
{
|
||||
auto [vmin, vmax] = std::minmax_element(X.begin(), X.end());
|
||||
cutPoints = linspace(*vmin, *vmax, n_bins + 1);
|
||||
}
|
||||
}
|
@@ -1,3 +1,9 @@
|
||||
// ****************************************************************
|
||||
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX - FileType: SOURCE
|
||||
// SPDX - License - Identifier: MIT
|
||||
// ****************************************************************
|
||||
|
||||
#ifndef BINDISC_H
|
||||
#define BINDISC_H
|
||||
|
||||
@@ -6,7 +12,6 @@
|
||||
#include <string>
|
||||
|
||||
namespace mdlp {
|
||||
|
||||
enum class strategy_t {
|
||||
UNIFORM,
|
||||
QUANTILE
|
||||
@@ -18,10 +23,12 @@ namespace mdlp {
|
||||
// y is included for compatibility with the Discretizer interface
|
||||
void fit(samples_t& X_, labels_t& y) override;
|
||||
void fit(samples_t& X);
|
||||
protected:
|
||||
std::vector<precision_t> linspace(precision_t start, precision_t end, int num);
|
||||
std::vector<precision_t> percentile(samples_t& data, const std::vector<precision_t>& percentiles);
|
||||
private:
|
||||
void fit_uniform(samples_t&);
|
||||
void fit_quantile(samples_t&);
|
||||
void normalizeCutPoints();
|
||||
void fit_uniform(const samples_t&);
|
||||
void fit_quantile(const samples_t&);
|
||||
int n_bins;
|
||||
strategy_t strategy;
|
||||
};
|
@@ -1,7 +1,14 @@
|
||||
// ****************************************************************
|
||||
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX - FileType: SOURCE
|
||||
// SPDX - License - Identifier: MIT
|
||||
// ****************************************************************
|
||||
|
||||
#include <numeric>
|
||||
#include <algorithm>
|
||||
#include <set>
|
||||
#include <cmath>
|
||||
#include <stdexcept>
|
||||
#include "CPPFImdlp.h"
|
||||
|
||||
namespace mdlp {
|
||||
@@ -12,6 +19,18 @@ namespace mdlp {
|
||||
max_depth(max_depth_),
|
||||
proposed_cuts(proposed)
|
||||
{
|
||||
// Input validation for constructor parameters
|
||||
if (min_length_ < 3) {
|
||||
throw std::invalid_argument("min_length must be greater than 2");
|
||||
}
|
||||
if (max_depth_ < 1) {
|
||||
throw std::invalid_argument("max_depth must be greater than 0");
|
||||
}
|
||||
if (proposed < 0.0f) {
|
||||
throw std::invalid_argument("proposed_cuts must be non-negative");
|
||||
}
|
||||
|
||||
direction = bound_dir_t::RIGHT;
|
||||
}
|
||||
|
||||
size_t CPPFImdlp::compute_max_num_cut_points() const
|
||||
@@ -20,12 +39,12 @@ namespace mdlp {
|
||||
if (proposed_cuts == 0) {
|
||||
return numeric_limits<size_t>::max();
|
||||
}
|
||||
if (proposed_cuts < 0 || proposed_cuts > static_cast<float>(X.size())) {
|
||||
if (proposed_cuts > static_cast<precision_t>(X.size())) {
|
||||
throw invalid_argument("wrong proposed num_cuts value");
|
||||
}
|
||||
if (proposed_cuts < 1)
|
||||
return static_cast<size_t>(round(static_cast<float>(X.size()) * proposed_cuts));
|
||||
return static_cast<size_t>(proposed_cuts);
|
||||
return static_cast<size_t>(round(static_cast<precision_t>(X.size()) * proposed_cuts));
|
||||
return static_cast<size_t>(proposed_cuts); // The 2 extra cutpoints should not be considered here as this parameter is considered before they are added
|
||||
}
|
||||
|
||||
void CPPFImdlp::fit(samples_t& X_, labels_t& y_)
|
||||
@@ -37,17 +56,11 @@ namespace mdlp {
|
||||
discretizedData.clear();
|
||||
cutPoints.clear();
|
||||
if (X.size() != y.size()) {
|
||||
throw invalid_argument("X and y must have the same size");
|
||||
throw std::invalid_argument("X and y must have the same size: " + std::to_string(X.size()) + " != " + std::to_string(y.size()));
|
||||
}
|
||||
if (X.empty() || y.empty()) {
|
||||
throw invalid_argument("X and y must have at least one element");
|
||||
}
|
||||
if (min_length < 3) {
|
||||
throw invalid_argument("min_length must be greater than 2");
|
||||
}
|
||||
if (max_depth < 1) {
|
||||
throw invalid_argument("max_depth must be greater than 0");
|
||||
}
|
||||
indices = sortIndices(X_, y_);
|
||||
metrics.setData(y, indices);
|
||||
computeCutPoints(0, X.size(), 1);
|
||||
@@ -58,6 +71,10 @@ namespace mdlp {
|
||||
resizeCutPoints();
|
||||
}
|
||||
}
|
||||
// Insert first & last X value to the cutpoints as them shall be ignored in transform
|
||||
auto [vmin, vmax] = std::minmax_element(X.begin(), X.end());
|
||||
cutPoints.push_back(*vmax);
|
||||
cutPoints.insert(cutPoints.begin(), *vmin);
|
||||
}
|
||||
|
||||
pair<precision_t, size_t> CPPFImdlp::valueCutPoint(size_t start, size_t cut, size_t end)
|
||||
@@ -70,26 +87,33 @@ namespace mdlp {
|
||||
precision_t previous;
|
||||
precision_t actual;
|
||||
precision_t next;
|
||||
previous = X[indices[idxPrev]];
|
||||
actual = X[indices[cut]];
|
||||
next = X[indices[idxNext]];
|
||||
previous = safe_X_access(idxPrev);
|
||||
actual = safe_X_access(cut);
|
||||
next = safe_X_access(idxNext);
|
||||
// definition 2 of the paper => X[t-1] < X[t]
|
||||
// get the first equal value of X in the interval
|
||||
while (idxPrev > start && actual == previous) {
|
||||
previous = X[indices[--idxPrev]];
|
||||
--idxPrev;
|
||||
previous = safe_X_access(idxPrev);
|
||||
}
|
||||
backWall = idxPrev == start && actual == previous;
|
||||
// get the last equal value of X in the interval
|
||||
while (idxNext < end - 1 && actual == next) {
|
||||
next = X[indices[++idxNext]];
|
||||
++idxNext;
|
||||
next = safe_X_access(idxNext);
|
||||
}
|
||||
// # of duplicates before cutpoint
|
||||
n = cut - 1 - idxPrev;
|
||||
n = safe_subtract(safe_subtract(cut, 1), idxPrev);
|
||||
// # of duplicates after cutpoint
|
||||
m = idxNext - cut - 1;
|
||||
// Decide which values to use
|
||||
cut = cut + (backWall ? m + 1 : -n);
|
||||
actual = X[indices[cut]];
|
||||
if (backWall) {
|
||||
m = int(idxNext - cut - 1) < 0 ? 0 : m; // Ensure m right
|
||||
cut = cut + m + 1;
|
||||
} else {
|
||||
cut = safe_subtract(cut, n);
|
||||
}
|
||||
actual = safe_X_access(cut);
|
||||
return { (actual + previous) / 2, cut };
|
||||
}
|
||||
|
||||
@@ -98,7 +122,7 @@ namespace mdlp {
|
||||
size_t cut;
|
||||
pair<precision_t, size_t> result;
|
||||
// Check if the interval length and the depth are Ok
|
||||
if (end - start < min_length || depth_ > max_depth)
|
||||
if (end < start || safe_subtract(end, start) < min_length || depth_ > max_depth)
|
||||
return;
|
||||
depth = depth_ > depth ? depth_ : depth;
|
||||
cut = getCandidate(start, end);
|
||||
@@ -118,14 +142,14 @@ namespace mdlp {
|
||||
/* Definition 1: A binary discretization for A is determined by selecting the cut point TA for which
|
||||
E(A, TA; S) is minimal amongst all the candidate cut points. */
|
||||
size_t candidate = numeric_limits<size_t>::max();
|
||||
size_t elements = end - start;
|
||||
size_t elements = safe_subtract(end, start);
|
||||
bool sameValues = true;
|
||||
precision_t entropy_left;
|
||||
precision_t entropy_right;
|
||||
precision_t minEntropy;
|
||||
// Check if all the values of the variable in the interval are the same
|
||||
for (size_t idx = start + 1; idx < end; idx++) {
|
||||
if (X[indices[idx]] != X[indices[start]]) {
|
||||
if (safe_X_access(idx) != safe_X_access(start)) {
|
||||
sameValues = false;
|
||||
break;
|
||||
}
|
||||
@@ -135,7 +159,7 @@ namespace mdlp {
|
||||
minEntropy = metrics.entropy(start, end);
|
||||
for (size_t idx = start + 1; idx < end; idx++) {
|
||||
// Cutpoints are always on boundaries (definition 2)
|
||||
if (y[indices[idx]] == y[indices[idx - 1]])
|
||||
if (safe_y_access(idx) == safe_y_access(idx - 1))
|
||||
continue;
|
||||
entropy_left = precision_t(idx - start) / static_cast<precision_t>(elements) * metrics.entropy(start, idx);
|
||||
entropy_right = precision_t(end - idx) / static_cast<precision_t>(elements) * metrics.entropy(idx, end);
|
||||
@@ -157,7 +181,7 @@ namespace mdlp {
|
||||
precision_t ent;
|
||||
precision_t ent1;
|
||||
precision_t ent2;
|
||||
auto N = precision_t(end - start);
|
||||
auto N = precision_t(safe_subtract(end, start));
|
||||
k = metrics.computeNumClasses(start, end);
|
||||
k1 = metrics.computeNumClasses(start, cut);
|
||||
k2 = metrics.computeNumClasses(cut, end);
|
||||
@@ -177,6 +201,9 @@ namespace mdlp {
|
||||
indices_t idx(X_.size());
|
||||
std::iota(idx.begin(), idx.end(), 0);
|
||||
stable_sort(idx.begin(), idx.end(), [&X_, &y_](size_t i1, size_t i2) {
|
||||
if (i1 >= X_.size() || i2 >= X_.size() || i1 >= y_.size() || i2 >= y_.size()) {
|
||||
throw std::out_of_range("Index out of bounds in sort comparison");
|
||||
}
|
||||
if (X_[i1] == X_[i2])
|
||||
return y_[i1] < y_[i2];
|
||||
else
|
||||
@@ -195,7 +222,7 @@ namespace mdlp {
|
||||
size_t end;
|
||||
for (size_t idx = 0; idx < cutPoints.size(); idx++) {
|
||||
end = begin;
|
||||
while (X[indices[end]] < cutPoints[idx] && end < X.size())
|
||||
while (end < indices.size() && safe_X_access(end) < cutPoints[idx] && end < X.size())
|
||||
end++;
|
||||
entropy = metrics.entropy(begin, end);
|
||||
if (entropy > maxEntropy) {
|
73
src/CPPFImdlp.h
Normal file
73
src/CPPFImdlp.h
Normal file
@@ -0,0 +1,73 @@
|
||||
// ****************************************************************
|
||||
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX - FileType: SOURCE
|
||||
// SPDX - License - Identifier: MIT
|
||||
// ****************************************************************
|
||||
|
||||
#ifndef CPPFIMDLP_H
|
||||
#define CPPFIMDLP_H
|
||||
|
||||
#include "typesFImdlp.h"
|
||||
#include <limits>
|
||||
#include <utility>
|
||||
#include <string>
|
||||
#include "Metrics.h"
|
||||
#include "Discretizer.h"
|
||||
|
||||
namespace mdlp {
|
||||
class CPPFImdlp : public Discretizer {
|
||||
public:
|
||||
CPPFImdlp() = default;
|
||||
CPPFImdlp(size_t min_length_, int max_depth_, float proposed);
|
||||
virtual ~CPPFImdlp() = default;
|
||||
void fit(samples_t& X_, labels_t& y_) override;
|
||||
inline int get_depth() const { return depth; };
|
||||
protected:
|
||||
size_t min_length = 3;
|
||||
int depth = 0;
|
||||
int max_depth = numeric_limits<int>::max();
|
||||
float proposed_cuts = 0;
|
||||
indices_t indices = indices_t();
|
||||
samples_t X = samples_t();
|
||||
labels_t y = labels_t();
|
||||
Metrics metrics = Metrics(y, indices);
|
||||
size_t num_cut_points = numeric_limits<size_t>::max();
|
||||
static indices_t sortIndices(samples_t&, labels_t&);
|
||||
void computeCutPoints(size_t, size_t, int);
|
||||
void resizeCutPoints();
|
||||
bool mdlp(size_t, size_t, size_t);
|
||||
size_t getCandidate(size_t, size_t);
|
||||
size_t compute_max_num_cut_points() const;
|
||||
pair<precision_t, size_t> valueCutPoint(size_t, size_t, size_t);
|
||||
inline precision_t safe_X_access(size_t idx) const
|
||||
{
|
||||
if (idx >= indices.size()) {
|
||||
throw std::out_of_range("Index out of bounds for indices array");
|
||||
}
|
||||
size_t real_idx = indices[idx];
|
||||
if (real_idx >= X.size()) {
|
||||
throw std::out_of_range("Index out of bounds for X array");
|
||||
}
|
||||
return X[real_idx];
|
||||
}
|
||||
inline label_t safe_y_access(size_t idx) const
|
||||
{
|
||||
if (idx >= indices.size()) {
|
||||
throw std::out_of_range("Index out of bounds for indices array");
|
||||
}
|
||||
size_t real_idx = indices[idx];
|
||||
if (real_idx >= y.size()) {
|
||||
throw std::out_of_range("Index out of bounds for y array");
|
||||
}
|
||||
return y[real_idx];
|
||||
}
|
||||
inline size_t safe_subtract(size_t a, size_t b) const
|
||||
{
|
||||
if (b > a) {
|
||||
throw std::underflow_error("Subtraction would cause underflow");
|
||||
}
|
||||
return a - b;
|
||||
}
|
||||
};
|
||||
}
|
||||
#endif
|
107
src/Discretizer.cpp
Normal file
107
src/Discretizer.cpp
Normal file
@@ -0,0 +1,107 @@
|
||||
// ****************************************************************
|
||||
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX - FileType: SOURCE
|
||||
// SPDX - License - Identifier: MIT
|
||||
// ****************************************************************
|
||||
|
||||
#include "Discretizer.h"
|
||||
|
||||
namespace mdlp {
|
||||
|
||||
labels_t& Discretizer::transform(const samples_t& data)
|
||||
{
|
||||
// Input validation
|
||||
if (data.empty()) {
|
||||
throw std::invalid_argument("Data for transformation cannot be empty");
|
||||
}
|
||||
if (cutPoints.size() < 2) {
|
||||
throw std::runtime_error("Discretizer not fitted yet or no valid cut points found");
|
||||
}
|
||||
|
||||
discretizedData.clear();
|
||||
discretizedData.reserve(data.size());
|
||||
// CutPoints always have at least two items
|
||||
// Have to ignore first and last cut points provided
|
||||
auto first = cutPoints.begin() + 1;
|
||||
auto last = cutPoints.end() - 1;
|
||||
auto bound = direction == bound_dir_t::LEFT ? std::lower_bound<std::vector<precision_t>::iterator, precision_t> : std::upper_bound<std::vector<precision_t>::iterator, precision_t>;
|
||||
for (const precision_t& item : data) {
|
||||
auto pos = bound(first, last, item);
|
||||
auto number = pos - first;
|
||||
discretizedData.push_back(static_cast<label_t>(number));
|
||||
}
|
||||
return discretizedData;
|
||||
}
|
||||
labels_t& Discretizer::fit_transform(samples_t& X_, labels_t& y_)
|
||||
{
|
||||
fit(X_, y_);
|
||||
return transform(X_);
|
||||
}
|
||||
void Discretizer::fit_t(const torch::Tensor& X_, const torch::Tensor& y_)
|
||||
{
|
||||
// Validate tensor properties for security
|
||||
if (X_.sizes().size() != 1 || y_.sizes().size() != 1) {
|
||||
throw std::invalid_argument("Only 1D tensors supported");
|
||||
}
|
||||
if (X_.dtype() != torch::kFloat32) {
|
||||
throw std::invalid_argument("X tensor must be Float32 type");
|
||||
}
|
||||
if (y_.dtype() != torch::kInt32) {
|
||||
throw std::invalid_argument("y tensor must be Int32 type");
|
||||
}
|
||||
if (X_.numel() != y_.numel()) {
|
||||
throw std::invalid_argument("X and y tensors must have same number of elements");
|
||||
}
|
||||
if (X_.numel() == 0) {
|
||||
throw std::invalid_argument("Tensors cannot be empty");
|
||||
}
|
||||
|
||||
auto num_elements = X_.numel();
|
||||
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
||||
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
|
||||
fit(X, y);
|
||||
}
|
||||
torch::Tensor Discretizer::transform_t(const torch::Tensor& X_)
|
||||
{
|
||||
// Validate tensor properties for security
|
||||
if (X_.sizes().size() != 1) {
|
||||
throw std::invalid_argument("Only 1D tensors supported");
|
||||
}
|
||||
if (X_.dtype() != torch::kFloat32) {
|
||||
throw std::invalid_argument("X tensor must be Float32 type");
|
||||
}
|
||||
if (X_.numel() == 0) {
|
||||
throw std::invalid_argument("Tensor cannot be empty");
|
||||
}
|
||||
|
||||
auto num_elements = X_.numel();
|
||||
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
||||
auto result = transform(X);
|
||||
return torch::tensor(result, torch_label_t);
|
||||
}
|
||||
torch::Tensor Discretizer::fit_transform_t(const torch::Tensor& X_, const torch::Tensor& y_)
|
||||
{
|
||||
// Validate tensor properties for security
|
||||
if (X_.sizes().size() != 1 || y_.sizes().size() != 1) {
|
||||
throw std::invalid_argument("Only 1D tensors supported");
|
||||
}
|
||||
if (X_.dtype() != torch::kFloat32) {
|
||||
throw std::invalid_argument("X tensor must be Float32 type");
|
||||
}
|
||||
if (y_.dtype() != torch::kInt32) {
|
||||
throw std::invalid_argument("y tensor must be Int32 type");
|
||||
}
|
||||
if (X_.numel() != y_.numel()) {
|
||||
throw std::invalid_argument("X and y tensors must have same number of elements");
|
||||
}
|
||||
if (X_.numel() == 0) {
|
||||
throw std::invalid_argument("Tensors cannot be empty");
|
||||
}
|
||||
|
||||
auto num_elements = X_.numel();
|
||||
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
||||
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
|
||||
auto result = fit_transform(X, y);
|
||||
return torch::tensor(result, torch_label_t);
|
||||
}
|
||||
}
|
40
src/Discretizer.h
Normal file
40
src/Discretizer.h
Normal file
@@ -0,0 +1,40 @@
|
||||
// ****************************************************************
|
||||
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX - FileType: SOURCE
|
||||
// SPDX - License - Identifier: MIT
|
||||
// ****************************************************************
|
||||
|
||||
#ifndef DISCRETIZER_H
|
||||
#define DISCRETIZER_H
|
||||
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include "typesFImdlp.h"
|
||||
#include <torch/torch.h>
|
||||
#include "config.h"
|
||||
|
||||
namespace mdlp {
|
||||
enum class bound_dir_t {
|
||||
LEFT,
|
||||
RIGHT
|
||||
};
|
||||
const auto torch_label_t = torch::kInt32;
|
||||
class Discretizer {
|
||||
public:
|
||||
Discretizer() = default;
|
||||
virtual ~Discretizer() = default;
|
||||
inline cutPoints_t getCutPoints() const { return cutPoints; };
|
||||
virtual void fit(samples_t& X_, labels_t& y_) = 0;
|
||||
labels_t& transform(const samples_t& data);
|
||||
labels_t& fit_transform(samples_t& X_, labels_t& y_);
|
||||
void fit_t(const torch::Tensor& X_, const torch::Tensor& y_);
|
||||
torch::Tensor transform_t(const torch::Tensor& X_);
|
||||
torch::Tensor fit_transform_t(const torch::Tensor& X_, const torch::Tensor& y_);
|
||||
static inline std::string version() { return { project_mdlp_version.begin(), project_mdlp_version.end() }; };
|
||||
protected:
|
||||
labels_t discretizedData = labels_t();
|
||||
cutPoints_t cutPoints; // At least two cutpoints must be provided, the first and the last will be ignored in transform
|
||||
bound_dir_t direction; // used in transform
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -1,11 +1,17 @@
|
||||
// ****************************************************************
|
||||
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX - FileType: SOURCE
|
||||
// SPDX - License - Identifier: MIT
|
||||
// ****************************************************************
|
||||
|
||||
#include "Metrics.h"
|
||||
#include <set>
|
||||
#include <cmath>
|
||||
|
||||
using namespace std;
|
||||
namespace mdlp {
|
||||
Metrics::Metrics(labels_t& y_, indices_t& indices_): y(y_), indices(indices_),
|
||||
numClasses(computeNumClasses(0, indices.size()))
|
||||
Metrics::Metrics(labels_t& y_, indices_t& indices_) : y(y_), indices(indices_),
|
||||
numClasses(computeNumClasses(0, indices_.size()))
|
||||
{
|
||||
}
|
||||
|
||||
@@ -20,6 +26,7 @@ namespace mdlp {
|
||||
|
||||
void Metrics::setData(const labels_t& y_, const indices_t& indices_)
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(cache_mutex);
|
||||
indices = indices_;
|
||||
y = y_;
|
||||
numClasses = computeNumClasses(0, indices.size());
|
||||
@@ -29,15 +36,23 @@ namespace mdlp {
|
||||
|
||||
precision_t Metrics::entropy(size_t start, size_t end)
|
||||
{
|
||||
if (end - start < 2)
|
||||
return 0;
|
||||
|
||||
// Check cache first with read lock
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(cache_mutex);
|
||||
if (entropyCache.find({ start, end }) != entropyCache.end()) {
|
||||
return entropyCache[{start, end}];
|
||||
}
|
||||
}
|
||||
|
||||
// Compute entropy outside of lock
|
||||
precision_t p;
|
||||
precision_t ventropy = 0;
|
||||
int nElements = 0;
|
||||
labels_t counts(numClasses + 1, 0);
|
||||
if (end - start < 2)
|
||||
return 0;
|
||||
if (entropyCache.find({ start, end }) != entropyCache.end()) {
|
||||
return entropyCache[{start, end}];
|
||||
}
|
||||
|
||||
for (auto i = &indices[start]; i != &indices[end]; ++i) {
|
||||
counts[y[*i]]++;
|
||||
nElements++;
|
||||
@@ -48,12 +63,27 @@ namespace mdlp {
|
||||
ventropy -= p * log2(p);
|
||||
}
|
||||
}
|
||||
entropyCache[{start, end}] = ventropy;
|
||||
|
||||
// Update cache with write lock
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(cache_mutex);
|
||||
entropyCache[{start, end}] = ventropy;
|
||||
}
|
||||
|
||||
return ventropy;
|
||||
}
|
||||
|
||||
precision_t Metrics::informationGain(size_t start, size_t cut, size_t end)
|
||||
{
|
||||
// Check cache first with read lock
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(cache_mutex);
|
||||
if (igCache.find(make_tuple(start, cut, end)) != igCache.end()) {
|
||||
return igCache[make_tuple(start, cut, end)];
|
||||
}
|
||||
}
|
||||
|
||||
// Compute information gain outside of lock
|
||||
precision_t iGain;
|
||||
precision_t entropyInterval;
|
||||
precision_t entropyLeft;
|
||||
@@ -61,9 +91,7 @@ namespace mdlp {
|
||||
size_t nElementsLeft = cut - start;
|
||||
size_t nElementsRight = end - cut;
|
||||
size_t nElements = end - start;
|
||||
if (igCache.find(make_tuple(start, cut, end)) != igCache.end()) {
|
||||
return igCache[make_tuple(start, cut, end)];
|
||||
}
|
||||
|
||||
entropyInterval = entropy(start, end);
|
||||
entropyLeft = entropy(start, cut);
|
||||
entropyRight = entropy(cut, end);
|
||||
@@ -71,7 +99,13 @@ namespace mdlp {
|
||||
(static_cast<precision_t>(nElementsLeft) * entropyLeft +
|
||||
static_cast<precision_t>(nElementsRight) * entropyRight) /
|
||||
static_cast<precision_t>(nElements);
|
||||
igCache[make_tuple(start, cut, end)] = iGain;
|
||||
|
||||
// Update cache with write lock
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(cache_mutex);
|
||||
igCache[make_tuple(start, cut, end)] = iGain;
|
||||
}
|
||||
|
||||
return iGain;
|
||||
}
|
||||
|
@@ -1,7 +1,14 @@
|
||||
// ****************************************************************
|
||||
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX - FileType: SOURCE
|
||||
// SPDX - License - Identifier: MIT
|
||||
// ****************************************************************
|
||||
|
||||
#ifndef CCMETRICS_H
|
||||
#define CCMETRICS_H
|
||||
|
||||
#include "typesFImdlp.h"
|
||||
#include <mutex>
|
||||
|
||||
namespace mdlp {
|
||||
class Metrics {
|
||||
@@ -9,6 +16,7 @@ namespace mdlp {
|
||||
labels_t& y;
|
||||
indices_t& indices;
|
||||
int numClasses;
|
||||
mutable std::mutex cache_mutex;
|
||||
cacheEnt_t entropyCache = cacheEnt_t();
|
||||
cacheIg_t igCache = cacheIg_t();
|
||||
public:
|
@@ -1,3 +1,9 @@
|
||||
// ****************************************************************
|
||||
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX - FileType: SOURCE
|
||||
// SPDX - License - Identifier: MIT
|
||||
// ****************************************************************
|
||||
|
||||
#ifndef TYPES_H
|
||||
#define TYPES_H
|
||||
|
||||
@@ -8,8 +14,9 @@
|
||||
using namespace std;
|
||||
namespace mdlp {
|
||||
typedef float precision_t;
|
||||
typedef int label_t;
|
||||
typedef std::vector<precision_t> samples_t;
|
||||
typedef std::vector<int> labels_t;
|
||||
typedef std::vector<label_t> labels_t;
|
||||
typedef std::vector<size_t> indices_t;
|
||||
typedef std::vector<precision_t> cutPoints_t;
|
||||
typedef std::map<std::pair<int, int>, precision_t> cacheEnt_t;
|
9
test_consumer/CMakeLists.txt
Normal file
9
test_consumer/CMakeLists.txt
Normal file
@@ -0,0 +1,9 @@
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
project(test_fimdlp)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
|
||||
find_package(fimdlp REQUIRED)
|
||||
|
||||
add_executable(test_fimdlp test_fimdlp.cpp)
|
||||
target_link_libraries(test_fimdlp fimdlp::fimdlp)
|
9
test_consumer/CMakeUserPresets.json
Normal file
9
test_consumer/CMakeUserPresets.json
Normal file
@@ -0,0 +1,9 @@
|
||||
{
|
||||
"version": 4,
|
||||
"vendor": {
|
||||
"conan": {}
|
||||
},
|
||||
"include": [
|
||||
"build/Release/generators/CMakePresets.json"
|
||||
]
|
||||
}
|
9
test_consumer/conanfile.txt
Normal file
9
test_consumer/conanfile.txt
Normal file
@@ -0,0 +1,9 @@
|
||||
[requires]
|
||||
fimdlp/2.0.1
|
||||
|
||||
[generators]
|
||||
CMakeDeps
|
||||
CMakeToolchain
|
||||
|
||||
[layout]
|
||||
cmake_layout
|
39
test_consumer/test_fimdlp.cpp
Normal file
39
test_consumer/test_fimdlp.cpp
Normal file
@@ -0,0 +1,39 @@
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <fimdlp/CPPFImdlp.h>
|
||||
#include <fimdlp/BinDisc.h>
|
||||
|
||||
int main() {
|
||||
std::cout << "Testing FIMDLP package..." << std::endl;
|
||||
|
||||
// Test data - simple continuous values with binary classification
|
||||
mdlp::samples_t data = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0};
|
||||
mdlp::labels_t labels = {0, 0, 0, 1, 1, 0, 1, 1, 1, 1};
|
||||
|
||||
std::cout << "Created test data with " << data.size() << " samples" << std::endl;
|
||||
|
||||
// Test MDLP discretizer
|
||||
mdlp::CPPFImdlp discretizer;
|
||||
discretizer.fit(data, labels);
|
||||
|
||||
auto cut_points = discretizer.getCutPoints();
|
||||
std::cout << "MDLP found " << cut_points.size() << " cut points" << std::endl;
|
||||
|
||||
for (size_t i = 0; i < cut_points.size(); ++i) {
|
||||
std::cout << "Cut point " << i << ": " << cut_points[i] << std::endl;
|
||||
}
|
||||
|
||||
// Test BinDisc discretizer
|
||||
mdlp::BinDisc bin_discretizer(3, mdlp::strategy_t::UNIFORM); // 3 bins, uniform strategy
|
||||
bin_discretizer.fit(data, labels);
|
||||
|
||||
auto bin_cut_points = bin_discretizer.getCutPoints();
|
||||
std::cout << "BinDisc found " << bin_cut_points.size() << " cut points" << std::endl;
|
||||
|
||||
for (size_t i = 0; i < bin_cut_points.size(); ++i) {
|
||||
std::cout << "Bin cut point " << i << ": " << bin_cut_points[i] << std::endl;
|
||||
}
|
||||
|
||||
std::cout << "FIMDLP package test completed successfully!" << std::endl;
|
||||
return 0;
|
||||
}
|
9
test_package/CMakeLists.txt
Normal file
9
test_package/CMakeLists.txt
Normal file
@@ -0,0 +1,9 @@
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
project(test_fimdlp)
|
||||
|
||||
find_package(fimdlp REQUIRED)
|
||||
find_package(Torch REQUIRED)
|
||||
|
||||
add_executable(test_fimdlp src/test_fimdlp.cpp)
|
||||
target_link_libraries(test_fimdlp fimdlp::fimdlp torch::torch)
|
||||
target_compile_features(test_fimdlp PRIVATE cxx_std_17)
|
10
test_package/CMakeUserPresets.json
Normal file
10
test_package/CMakeUserPresets.json
Normal file
@@ -0,0 +1,10 @@
|
||||
{
|
||||
"version": 4,
|
||||
"vendor": {
|
||||
"conan": {}
|
||||
},
|
||||
"include": [
|
||||
"build/gcc-14-x86_64-gnu17-release/generators/CMakePresets.json",
|
||||
"build/gcc-14-x86_64-gnu17-debug/generators/CMakePresets.json"
|
||||
]
|
||||
}
|
28
test_package/conanfile.py
Normal file
28
test_package/conanfile.py
Normal file
@@ -0,0 +1,28 @@
|
||||
import os
|
||||
from conan import ConanFile
|
||||
from conan.tools.cmake import CMake, cmake_layout
|
||||
from conan.tools.build import can_run
|
||||
|
||||
|
||||
class FimdlpTestConan(ConanFile):
|
||||
settings = "os", "compiler", "build_type", "arch"
|
||||
# VirtualBuildEnv and VirtualRunEnv can be avoided if "tools.env:CONAN_RUN_TESTS" is false
|
||||
generators = "CMakeDeps", "CMakeToolchain", "VirtualRunEnv"
|
||||
apply_env = False # avoid the default VirtualBuildEnv from the base class
|
||||
test_type = "explicit"
|
||||
|
||||
def requirements(self):
|
||||
self.requires(self.tested_reference_str)
|
||||
|
||||
def layout(self):
|
||||
cmake_layout(self)
|
||||
|
||||
def build(self):
|
||||
cmake = CMake(self)
|
||||
cmake.configure()
|
||||
cmake.build()
|
||||
|
||||
def test(self):
|
||||
if can_run(self):
|
||||
cmd = os.path.join(self.cpp.build.bindir, "test_fimdlp")
|
||||
self.run(cmd, env="conanrun")
|
27
test_package/src/test_fimdlp.cpp
Normal file
27
test_package/src/test_fimdlp.cpp
Normal file
@@ -0,0 +1,27 @@
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <fimdlp/CPPFImdlp.h>
|
||||
#include <fimdlp/Metrics.h>
|
||||
|
||||
int main() {
|
||||
std::cout << "Testing fimdlp library..." << std::endl;
|
||||
|
||||
// Simple test of the library
|
||||
try {
|
||||
// Test Metrics class
|
||||
Metrics metrics;
|
||||
std::vector<int> labels = {0, 0, 1, 1, 0, 1};
|
||||
double entropy = metrics.entropy(labels);
|
||||
std::cout << "Entropy calculated: " << entropy << std::endl;
|
||||
|
||||
// Test CPPFImdlp creation
|
||||
CPPFImdlp discretizer;
|
||||
std::cout << "CPPFImdlp instance created successfully" << std::endl;
|
||||
|
||||
std::cout << "fimdlp library test completed successfully!" << std::endl;
|
||||
return 0;
|
||||
} catch (const std::exception& e) {
|
||||
std::cerr << "Error testing fimdlp library: " << e.what() << std::endl;
|
||||
return 1;
|
||||
}
|
||||
}
|
@@ -1,132 +0,0 @@
|
||||
#include "ArffFiles.h"
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <map>
|
||||
|
||||
using namespace std;
|
||||
|
||||
ArffFiles::ArffFiles() = default;
|
||||
|
||||
vector<string> ArffFiles::getLines() const
|
||||
{
|
||||
return lines;
|
||||
}
|
||||
|
||||
unsigned long int ArffFiles::getSize() const
|
||||
{
|
||||
return lines.size();
|
||||
}
|
||||
|
||||
vector<pair<string, string>> ArffFiles::getAttributes() const
|
||||
{
|
||||
return attributes;
|
||||
}
|
||||
|
||||
string ArffFiles::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
|
||||
string ArffFiles::getClassType() const
|
||||
{
|
||||
return classType;
|
||||
}
|
||||
|
||||
vector<mdlp::samples_t>& ArffFiles::getX()
|
||||
{
|
||||
return X;
|
||||
}
|
||||
|
||||
vector<int>& ArffFiles::getY()
|
||||
{
|
||||
return y;
|
||||
}
|
||||
|
||||
void ArffFiles::load(const string& fileName, bool classLast)
|
||||
{
|
||||
ifstream file(fileName);
|
||||
if (!file.is_open()) {
|
||||
throw invalid_argument("Unable to open file");
|
||||
}
|
||||
string line;
|
||||
string keyword;
|
||||
string attribute;
|
||||
string type;
|
||||
string type_w;
|
||||
while (getline(file, line)) {
|
||||
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
|
||||
continue;
|
||||
}
|
||||
if (line.find("@attribute") != string::npos || line.find("@ATTRIBUTE") != string::npos) {
|
||||
stringstream ss(line);
|
||||
ss >> keyword >> attribute;
|
||||
type = "";
|
||||
while (ss >> type_w)
|
||||
type += type_w + " ";
|
||||
attributes.emplace_back(trim(attribute), trim(type));
|
||||
continue;
|
||||
}
|
||||
if (line[0] == '@') {
|
||||
continue;
|
||||
}
|
||||
lines.push_back(line);
|
||||
}
|
||||
file.close();
|
||||
if (attributes.empty())
|
||||
throw invalid_argument("No attributes found");
|
||||
if (classLast) {
|
||||
className = get<0>(attributes.back());
|
||||
classType = get<1>(attributes.back());
|
||||
attributes.pop_back();
|
||||
} else {
|
||||
className = get<0>(attributes.front());
|
||||
classType = get<1>(attributes.front());
|
||||
attributes.erase(attributes.begin());
|
||||
}
|
||||
generateDataset(classLast);
|
||||
|
||||
}
|
||||
|
||||
void ArffFiles::generateDataset(bool classLast)
|
||||
{
|
||||
X = vector<mdlp::samples_t>(attributes.size(), mdlp::samples_t(lines.size()));
|
||||
auto yy = vector<string>(lines.size(), "");
|
||||
int labelIndex = classLast ? static_cast<int>(attributes.size()) : 0;
|
||||
for (size_t i = 0; i < lines.size(); i++) {
|
||||
stringstream ss(lines[i]);
|
||||
string value;
|
||||
int pos = 0;
|
||||
int xIndex = 0;
|
||||
while (getline(ss, value, ',')) {
|
||||
if (pos++ == labelIndex) {
|
||||
yy[i] = value;
|
||||
} else {
|
||||
X[xIndex++][i] = stof(value);
|
||||
}
|
||||
}
|
||||
}
|
||||
y = factorize(yy);
|
||||
}
|
||||
|
||||
string ArffFiles::trim(const string& source)
|
||||
{
|
||||
string s(source);
|
||||
s.erase(0, s.find_first_not_of(" '\n\r\t"));
|
||||
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
|
||||
return s;
|
||||
}
|
||||
|
||||
vector<int> ArffFiles::factorize(const vector<string>& labels_t)
|
||||
{
|
||||
vector<int> yy;
|
||||
yy.reserve(labels_t.size());
|
||||
map<string, int> labelMap;
|
||||
int i = 0;
|
||||
for (const string& label : labels_t) {
|
||||
if (labelMap.find(label) == labelMap.end()) {
|
||||
labelMap[label] = i++;
|
||||
}
|
||||
yy.push_back(labelMap[label]);
|
||||
}
|
||||
return yy;
|
||||
}
|
@@ -1,35 +0,0 @@
|
||||
#ifndef ARFFFILES_H
|
||||
#define ARFFFILES_H
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "../typesFImdlp.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
class ArffFiles {
|
||||
private:
|
||||
vector<string> lines;
|
||||
vector<pair<string, string>> attributes;
|
||||
string className;
|
||||
string classType;
|
||||
vector<mdlp::samples_t> X;
|
||||
vector<int> y;
|
||||
|
||||
void generateDataset(bool);
|
||||
|
||||
public:
|
||||
ArffFiles();
|
||||
void load(const string&, bool = true);
|
||||
vector<string> getLines() const;
|
||||
unsigned long int getSize() const;
|
||||
string getClassName() const;
|
||||
string getClassType() const;
|
||||
static string trim(const string&);
|
||||
vector<mdlp::samples_t>& getX();
|
||||
vector<int>& getY();
|
||||
vector<pair<string, string>> getAttributes() const;
|
||||
static vector<int> factorize(const vector<string>& labels_t);
|
||||
};
|
||||
|
||||
#endif
|
@@ -1,21 +1,38 @@
|
||||
// ****************************************************************
|
||||
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX - FileType: SOURCE
|
||||
// SPDX - License - Identifier: MIT
|
||||
// ****************************************************************
|
||||
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include "gtest/gtest.h"
|
||||
#include "ArffFiles.h"
|
||||
#include "../BinDisc.h"
|
||||
#include <ArffFiles.hpp>
|
||||
#include "BinDisc.h"
|
||||
#include "Experiments.hpp"
|
||||
#include <cmath>
|
||||
|
||||
#define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \
|
||||
try { \
|
||||
stmt; \
|
||||
} catch (const etype& ex) { \
|
||||
EXPECT_EQ(whatstring, std::string(ex.what())); \
|
||||
throw; \
|
||||
} \
|
||||
, etype)
|
||||
|
||||
namespace mdlp {
|
||||
const float margin = 1e-4;
|
||||
static std::string set_data_path()
|
||||
{
|
||||
std::string path = "../datasets/";
|
||||
std::string path = "datasets/";
|
||||
std::ifstream file(path + "iris.arff");
|
||||
if (file.is_open()) {
|
||||
file.close();
|
||||
return path;
|
||||
}
|
||||
return "../../tests/datasets/";
|
||||
return "tests/datasets/";
|
||||
}
|
||||
const std::string data_path = set_data_path();
|
||||
class TestBinDisc3U : public BinDisc, public testing::Test {
|
||||
@@ -40,10 +57,11 @@ namespace mdlp {
|
||||
auto y = labels_t();
|
||||
fit(X, y);
|
||||
auto cuts = getCutPoints();
|
||||
ASSERT_EQ(3, cuts.size());
|
||||
EXPECT_NEAR(3.66667, cuts.at(0), margin);
|
||||
EXPECT_NEAR(6.33333, cuts.at(1), margin);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts.at(2));
|
||||
ASSERT_EQ(4, cuts.size());
|
||||
EXPECT_NEAR(1, cuts.at(0), margin);
|
||||
EXPECT_NEAR(3.66667, cuts.at(1), margin);
|
||||
EXPECT_NEAR(6.33333, cuts.at(2), margin);
|
||||
EXPECT_NEAR(9.0, cuts.at(3), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -53,10 +71,11 @@ namespace mdlp {
|
||||
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
ASSERT_EQ(3, cuts.size());
|
||||
EXPECT_NEAR(3.666667, cuts[0], margin);
|
||||
EXPECT_NEAR(6.333333, cuts[1], margin);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
|
||||
ASSERT_EQ(4, cuts.size());
|
||||
EXPECT_NEAR(1, cuts[0], margin);
|
||||
EXPECT_NEAR(3.666667, cuts[1], margin);
|
||||
EXPECT_NEAR(6.333333, cuts[2], margin);
|
||||
EXPECT_NEAR(9, cuts[3], margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -66,10 +85,11 @@ namespace mdlp {
|
||||
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 };
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
ASSERT_EQ(3, cuts.size());
|
||||
EXPECT_EQ(4.0, cuts[0]);
|
||||
EXPECT_EQ(7.0, cuts[1]);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
|
||||
ASSERT_EQ(4, cuts.size());
|
||||
EXPECT_NEAR(1, cuts.at(0), margin);
|
||||
EXPECT_NEAR(4.0, cuts.at(1), margin);
|
||||
EXPECT_NEAR(7.0, cuts.at(2), margin);
|
||||
EXPECT_NEAR(10.0, cuts.at(3), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 2 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -79,10 +99,11 @@ namespace mdlp {
|
||||
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 };
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
ASSERT_EQ(3, cuts.size());
|
||||
EXPECT_EQ(4, cuts[0]);
|
||||
EXPECT_EQ(7, cuts[1]);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
|
||||
ASSERT_EQ(4, cuts.size());
|
||||
EXPECT_NEAR(1, cuts.at(0), margin);
|
||||
EXPECT_NEAR(4.0, cuts.at(1), margin);
|
||||
EXPECT_NEAR(7.0, cuts.at(2), margin);
|
||||
EXPECT_NEAR(10.0, cuts.at(3), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 2 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -92,10 +113,11 @@ namespace mdlp {
|
||||
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 };
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
ASSERT_EQ(3, cuts.size());
|
||||
EXPECT_NEAR(4.33333, cuts[0], margin);
|
||||
EXPECT_NEAR(7.66667, cuts[1], margin);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
|
||||
ASSERT_EQ(4, cuts.size());
|
||||
EXPECT_NEAR(1, cuts.at(0), margin);
|
||||
EXPECT_NEAR(4.33333, cuts.at(1), margin);
|
||||
EXPECT_NEAR(7.66667, cuts.at(2), margin);
|
||||
EXPECT_NEAR(11.0, cuts.at(3), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -105,10 +127,11 @@ namespace mdlp {
|
||||
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 };
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
ASSERT_EQ(3, cuts.size());
|
||||
EXPECT_NEAR(4.33333, cuts[0], margin);
|
||||
EXPECT_NEAR(7.66667, cuts[1], margin);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
|
||||
ASSERT_EQ(4, cuts.size());
|
||||
EXPECT_NEAR(1, cuts.at(0), margin);
|
||||
EXPECT_NEAR(4.33333, cuts.at(1), margin);
|
||||
EXPECT_NEAR(7.66667, cuts.at(2), margin);
|
||||
EXPECT_NEAR(11.0, cuts.at(3), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -118,8 +141,9 @@ namespace mdlp {
|
||||
samples_t X = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
ASSERT_EQ(1, cuts.size());
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[0]);
|
||||
ASSERT_EQ(2, cuts.size());
|
||||
EXPECT_NEAR(1, cuts.at(0), margin);
|
||||
EXPECT_NEAR(1, cuts.at(1), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 0, 0, 0, 0, 0, 0 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -129,8 +153,9 @@ namespace mdlp {
|
||||
samples_t X = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
EXPECT_EQ(1, cuts.size());
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[0]);
|
||||
ASSERT_EQ(2, cuts.size());
|
||||
EXPECT_NEAR(1, cuts.at(0), margin);
|
||||
EXPECT_NEAR(1, cuts.at(1), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 0, 0, 0, 0, 0, 0 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -138,18 +163,12 @@ namespace mdlp {
|
||||
TEST_F(TestBinDisc3U, EmptyUniform)
|
||||
{
|
||||
samples_t X = {};
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
EXPECT_EQ(1, cuts.size());
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[0]);
|
||||
EXPECT_THROW(fit(X), std::invalid_argument);
|
||||
}
|
||||
TEST_F(TestBinDisc3Q, EmptyQuantile)
|
||||
{
|
||||
samples_t X = {};
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
EXPECT_EQ(1, cuts.size());
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[0]);
|
||||
EXPECT_THROW(fit(X), std::invalid_argument);
|
||||
}
|
||||
TEST(TestBinDisc3, ExceptionNumberBins)
|
||||
{
|
||||
@@ -160,10 +179,11 @@ namespace mdlp {
|
||||
samples_t X = { 3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0 };
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
ASSERT_EQ(3, cuts.size());
|
||||
EXPECT_NEAR(1.66667, cuts[0], margin);
|
||||
EXPECT_NEAR(2.33333, cuts[1], margin);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
|
||||
ASSERT_EQ(4, cuts.size());
|
||||
EXPECT_NEAR(1, cuts.at(0), margin);
|
||||
EXPECT_NEAR(1.66667, cuts.at(1), margin);
|
||||
EXPECT_NEAR(2.33333, cuts.at(2), margin);
|
||||
EXPECT_NEAR(3.0, cuts.at(3), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 2, 0, 0, 2, 0, 0, 2, 0, 0 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -174,9 +194,10 @@ namespace mdlp {
|
||||
samples_t X = { 3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0 };
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
EXPECT_EQ(2, cuts.size());
|
||||
EXPECT_NEAR(1.66667, cuts[0], margin);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[1]);
|
||||
ASSERT_EQ(3, cuts.size());
|
||||
EXPECT_NEAR(1, cuts.at(0), margin);
|
||||
EXPECT_NEAR(1.66667, cuts.at(1), margin);
|
||||
EXPECT_NEAR(3.0, cuts.at(2), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 1, 0, 0, 1, 0, 0, 1, 0, 0 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -187,11 +208,12 @@ namespace mdlp {
|
||||
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 };
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
EXPECT_EQ(4, cuts.size());
|
||||
ASSERT_EQ(3.75, cuts[0]);
|
||||
EXPECT_EQ(6.5, cuts[1]);
|
||||
EXPECT_EQ(9.25, cuts[2]);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
|
||||
ASSERT_EQ(5, cuts.size());
|
||||
EXPECT_NEAR(1.0, cuts.at(0), margin);
|
||||
EXPECT_NEAR(3.75, cuts.at(1), margin);
|
||||
EXPECT_NEAR(6.5, cuts.at(2), margin);
|
||||
EXPECT_NEAR(9.25, cuts.at(3), margin);
|
||||
EXPECT_NEAR(12.0, cuts.at(4), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -201,11 +223,12 @@ namespace mdlp {
|
||||
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 };
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
EXPECT_EQ(4, cuts.size());
|
||||
ASSERT_EQ(3.75, cuts[0]);
|
||||
EXPECT_EQ(6.5, cuts[1]);
|
||||
EXPECT_EQ(9.25, cuts[2]);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
|
||||
ASSERT_EQ(5, cuts.size());
|
||||
EXPECT_NEAR(1.0, cuts.at(0), margin);
|
||||
EXPECT_NEAR(3.75, cuts.at(1), margin);
|
||||
EXPECT_NEAR(6.5, cuts.at(2), margin);
|
||||
EXPECT_NEAR(9.25, cuts.at(3), margin);
|
||||
EXPECT_NEAR(12.0, cuts.at(4), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -215,11 +238,12 @@ namespace mdlp {
|
||||
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0 };
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
EXPECT_EQ(4, cuts.size());
|
||||
EXPECT_EQ(4.0, cuts[0]);
|
||||
EXPECT_EQ(7.0, cuts[1]);
|
||||
EXPECT_EQ(10.0, cuts[2]);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
|
||||
ASSERT_EQ(5, cuts.size());
|
||||
EXPECT_NEAR(1.0, cuts.at(0), margin);
|
||||
EXPECT_NEAR(4.0, cuts.at(1), margin);
|
||||
EXPECT_NEAR(7.0, cuts.at(2), margin);
|
||||
EXPECT_NEAR(10.0, cuts.at(3), margin);
|
||||
EXPECT_NEAR(13.0, cuts.at(4), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -229,11 +253,12 @@ namespace mdlp {
|
||||
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0 };
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
EXPECT_EQ(4, cuts.size());
|
||||
EXPECT_EQ(4.0, cuts[0]);
|
||||
EXPECT_EQ(7.0, cuts[1]);
|
||||
EXPECT_EQ(10.0, cuts[2]);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
|
||||
ASSERT_EQ(5, cuts.size());
|
||||
EXPECT_NEAR(1.0, cuts.at(0), margin);
|
||||
EXPECT_NEAR(4.0, cuts.at(1), margin);
|
||||
EXPECT_NEAR(7.0, cuts.at(2), margin);
|
||||
EXPECT_NEAR(10.0, cuts.at(3), margin);
|
||||
EXPECT_NEAR(13.0, cuts.at(4), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -243,11 +268,12 @@ namespace mdlp {
|
||||
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0 };
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
EXPECT_EQ(4, cuts.size());
|
||||
EXPECT_EQ(4.25, cuts[0]);
|
||||
EXPECT_EQ(7.5, cuts[1]);
|
||||
EXPECT_EQ(10.75, cuts[2]);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
|
||||
ASSERT_EQ(5, cuts.size());
|
||||
EXPECT_NEAR(1.0, cuts.at(0), margin);
|
||||
EXPECT_NEAR(4.25, cuts.at(1), margin);
|
||||
EXPECT_NEAR(7.5, cuts.at(2), margin);
|
||||
EXPECT_NEAR(10.75, cuts.at(3), margin);
|
||||
EXPECT_NEAR(14.0, cuts.at(4), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -257,11 +283,12 @@ namespace mdlp {
|
||||
samples_t X = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0 };
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
EXPECT_EQ(4, cuts.size());
|
||||
EXPECT_EQ(4.25, cuts[0]);
|
||||
EXPECT_EQ(7.5, cuts[1]);
|
||||
EXPECT_EQ(10.75, cuts[2]);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
|
||||
ASSERT_EQ(5, cuts.size());
|
||||
EXPECT_NEAR(1.0, cuts.at(0), margin);
|
||||
EXPECT_NEAR(4.25, cuts.at(1), margin);
|
||||
EXPECT_NEAR(7.5, cuts.at(2), margin);
|
||||
EXPECT_NEAR(10.75, cuts.at(3), margin);
|
||||
EXPECT_NEAR(14.0, cuts.at(4), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -271,11 +298,12 @@ namespace mdlp {
|
||||
samples_t X = { 15.0, 8.0, 12.0, 14.0, 6.0, 1.0, 13.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0 };
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
EXPECT_EQ(4, cuts.size());
|
||||
EXPECT_EQ(4.5, cuts[0]);
|
||||
EXPECT_EQ(8, cuts[1]);
|
||||
EXPECT_EQ(11.5, cuts[2]);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
|
||||
ASSERT_EQ(5, cuts.size());
|
||||
EXPECT_NEAR(1.0, cuts.at(0), margin);
|
||||
EXPECT_NEAR(4.5, cuts.at(1), margin);
|
||||
EXPECT_NEAR(8, cuts.at(2), margin);
|
||||
EXPECT_NEAR(11.5, cuts.at(3), margin);
|
||||
EXPECT_NEAR(15.0, cuts.at(4), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 3, 2, 3, 3, 1, 0, 3, 2, 2, 2, 1, 0, 0, 1, 0 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -285,11 +313,12 @@ namespace mdlp {
|
||||
samples_t X = { 15.0, 13.0, 12.0, 14.0, 6.0, 1.0, 8.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0 };
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
EXPECT_EQ(4, cuts.size());
|
||||
EXPECT_EQ(4.5, cuts[0]);
|
||||
EXPECT_EQ(8, cuts[1]);
|
||||
EXPECT_EQ(11.5, cuts[2]);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
|
||||
ASSERT_EQ(5, cuts.size());
|
||||
EXPECT_NEAR(1.0, cuts.at(0), margin);
|
||||
EXPECT_NEAR(4.5, cuts.at(1), margin);
|
||||
EXPECT_NEAR(8, cuts.at(2), margin);
|
||||
EXPECT_NEAR(11.5, cuts.at(3), margin);
|
||||
EXPECT_NEAR(15.0, cuts.at(4), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 3, 3, 3, 3, 1, 0, 2, 2, 2, 2, 1, 0, 0, 1, 0 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -300,11 +329,12 @@ namespace mdlp {
|
||||
// 0 1 2 3 4 5 6 7 8 9
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
EXPECT_EQ(4, cuts.size());
|
||||
EXPECT_EQ(1.0, cuts[0]);
|
||||
EXPECT_EQ(2.0, cuts[1]);
|
||||
ASSERT_EQ(3.0, cuts[2]);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[3]);
|
||||
ASSERT_EQ(5, cuts.size());
|
||||
EXPECT_NEAR(0.0, cuts.at(0), margin);
|
||||
EXPECT_NEAR(1.0, cuts.at(1), margin);
|
||||
EXPECT_NEAR(2.0, cuts.at(2), margin);
|
||||
EXPECT_NEAR(3.0, cuts.at(3), margin);
|
||||
EXPECT_NEAR(4.0, cuts.at(4), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 0, 1, 1, 1, 2, 2, 3, 3, 3, 3 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
@@ -315,32 +345,129 @@ namespace mdlp {
|
||||
// 0 1 2 3 4 5 6 7 8 9
|
||||
fit(X);
|
||||
auto cuts = getCutPoints();
|
||||
ASSERT_EQ(3, cuts.size());
|
||||
EXPECT_EQ(2.0, cuts[0]);
|
||||
ASSERT_EQ(3.0, cuts[1]);
|
||||
EXPECT_EQ(numeric_limits<float>::max(), cuts[2]);
|
||||
ASSERT_EQ(5, cuts.size());
|
||||
EXPECT_NEAR(0.0, cuts.at(0), margin);
|
||||
EXPECT_NEAR(1.0, cuts.at(1), margin);
|
||||
EXPECT_NEAR(2.0, cuts.at(2), margin);
|
||||
EXPECT_NEAR(3.0, cuts.at(3), margin);
|
||||
EXPECT_NEAR(4.0, cuts.at(4), margin);
|
||||
auto labels = transform(X);
|
||||
labels_t expected = { 0, 0, 0, 0, 1, 1, 2, 2, 2, 2 };
|
||||
labels_t expected = { 0, 1, 1, 1, 2, 2, 3, 3, 3, 3 };
|
||||
EXPECT_EQ(expected, labels);
|
||||
}
|
||||
TEST_F(TestBinDisc4U, irisUniform)
|
||||
TEST(TestBinDiscGeneric, Fileset)
|
||||
{
|
||||
ArffFiles file;
|
||||
file.load(data_path + "iris.arff", true);
|
||||
vector<samples_t>& X = file.getX();
|
||||
fit(X[0]);
|
||||
auto Xt = transform(X[0]);
|
||||
labels_t expected = { 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 2, 2, 1, 2, 1, 2, 0, 2, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 2, 1, 3, 2, 2, 3, 0, 3, 2, 3, 2, 2, 2, 1, 1, 2, 2, 3, 3, 1, 2, 1, 3, 2, 2, 3, 2, 1, 2, 3, 3, 3, 2, 2, 1, 3, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 };
|
||||
EXPECT_EQ(expected, Xt);
|
||||
Experiments exps(data_path + "tests.txt");
|
||||
int num = 0;
|
||||
while (exps.is_next()) {
|
||||
++num;
|
||||
Experiment exp = exps.next();
|
||||
BinDisc disc(exp.n_bins_, exp.strategy_[0] == 'Q' ? strategy_t::QUANTILE : strategy_t::UNIFORM);
|
||||
std::vector<precision_t> test;
|
||||
if (exp.type_ == experiment_t::RANGE) {
|
||||
for (float i = exp.from_; i < exp.to_; i += exp.step_) {
|
||||
test.push_back(i);
|
||||
}
|
||||
} else {
|
||||
test = exp.dataset_;
|
||||
}
|
||||
// show_vector(test, "Test");
|
||||
auto empty = std::vector<int>();
|
||||
auto Xt = disc.fit_transform(test, empty);
|
||||
auto cuts = disc.getCutPoints();
|
||||
EXPECT_EQ(exp.discretized_data_.size(), Xt.size());
|
||||
auto flag = false;
|
||||
size_t n_errors = 0;
|
||||
if (num < 40) {
|
||||
//
|
||||
// Check discretization of only the first 40 tests as after we cannot ensure the same codification due to precision problems
|
||||
//
|
||||
for (int i = 0; i < exp.discretized_data_.size(); ++i) {
|
||||
if (exp.discretized_data_.at(i) != Xt.at(i)) {
|
||||
if (!flag) {
|
||||
if (exp.type_ == experiment_t::RANGE)
|
||||
std::cout << "+Exp #: " << num << " From: " << exp.from_ << " To: " << exp.to_ << " Step: " << exp.step_ << " Bins: " << exp.n_bins_ << " Strategy: " << exp.strategy_ << std::endl;
|
||||
else {
|
||||
std::cout << "+Exp #: " << num << " strategy: " << exp.strategy_ << " " << " n_bins: " << exp.n_bins_ << " ";
|
||||
show_vector(exp.dataset_, "Dataset");
|
||||
}
|
||||
show_vector(cuts, "Cuts");
|
||||
std::cout << "Error at " << i << " test[i]=" << test.at(i) << " Expected: " << exp.discretized_data_.at(i) << " Got: " << Xt.at(i) << std::endl;
|
||||
flag = true;
|
||||
EXPECT_EQ(exp.discretized_data_.at(i), Xt.at(i));
|
||||
}
|
||||
n_errors++;
|
||||
}
|
||||
}
|
||||
if (flag) {
|
||||
std::cout << "*** Found " << n_errors << " mistakes in this experiment dataset" << std::endl;
|
||||
}
|
||||
}
|
||||
EXPECT_EQ(exp.cutpoints_.size(), cuts.size());
|
||||
for (int i = 0; i < exp.cutpoints_.size(); ++i) {
|
||||
EXPECT_NEAR(exp.cutpoints_.at(i), cuts.at(i), margin);
|
||||
}
|
||||
}
|
||||
// std::cout << "* Number of experiments tested: " << num << std::endl;
|
||||
}
|
||||
TEST_F(TestBinDisc4Q, irisQuantile)
|
||||
|
||||
TEST_F(TestBinDisc3U, FitDataSizeTooSmall)
|
||||
{
|
||||
ArffFiles file;
|
||||
file.load(data_path + "iris.arff", true);
|
||||
vector<samples_t>& X = file.getX();
|
||||
fit(X[0]);
|
||||
auto Xt = transform(X[0]);
|
||||
labels_t expected = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 3, 3, 1, 3, 1, 2, 0, 3, 1, 0, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 1, 2, 2, 3, 2, 3, 3, 0, 3, 3, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 2, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2 };
|
||||
EXPECT_EQ(expected, Xt);
|
||||
// Test when data size is smaller than n_bins
|
||||
samples_t X = { 1.0, 2.0 }; // Only 2 elements for 3 bins
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X), std::invalid_argument, "Input data size must be at least equal to n_bins");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3Q, FitDataSizeTooSmall)
|
||||
{
|
||||
// Test when data size is smaller than n_bins
|
||||
samples_t X = { 1.0, 2.0 }; // Only 2 elements for 3 bins
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X), std::invalid_argument, "Input data size must be at least equal to n_bins");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, FitWithYEmptyX)
|
||||
{
|
||||
// Test fit(X, y) with empty X
|
||||
samples_t X = {};
|
||||
labels_t y = { 1, 2, 3 };
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X, y), std::invalid_argument, "X cannot be empty");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, LinspaceInvalidNumPoints)
|
||||
{
|
||||
// Test linspace with num < 2
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, 1.0f, 1), std::invalid_argument, "Number of points must be at least 2 for linspace");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, LinspaceNaNValues)
|
||||
{
|
||||
// Test linspace with NaN values
|
||||
float nan_val = std::numeric_limits<float>::quiet_NaN();
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(nan_val, 1.0f, 3), std::invalid_argument, "Start and end values cannot be NaN");
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, nan_val, 3), std::invalid_argument, "Start and end values cannot be NaN");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, LinspaceInfiniteValues)
|
||||
{
|
||||
// Test linspace with infinite values
|
||||
float inf_val = std::numeric_limits<float>::infinity();
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(inf_val, 1.0f, 3), std::invalid_argument, "Start and end values cannot be infinite");
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, inf_val, 3), std::invalid_argument, "Start and end values cannot be infinite");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, PercentileEmptyData)
|
||||
{
|
||||
// Test percentile with empty data
|
||||
samples_t empty_data = {};
|
||||
std::vector<precision_t> percentiles = { 25.0f, 50.0f, 75.0f };
|
||||
EXPECT_THROW_WITH_MESSAGE(percentile(empty_data, percentiles), std::invalid_argument, "Data cannot be empty for percentile calculation");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, PercentileEmptyPercentiles)
|
||||
{
|
||||
// Test percentile with empty percentiles
|
||||
samples_t data = { 1.0f, 2.0f, 3.0f };
|
||||
std::vector<precision_t> empty_percentiles = {};
|
||||
EXPECT_THROW_WITH_MESSAGE(percentile(data, empty_percentiles), std::invalid_argument, "Percentiles cannot be empty");
|
||||
}
|
||||
}
|
||||
|
@@ -1,37 +1,34 @@
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
include(FetchContent)
|
||||
|
||||
include_directories(${GTEST_INCLUDE_DIRS})
|
||||
find_package(arff-files REQUIRED)
|
||||
find_package(GTest REQUIRED)
|
||||
find_package(Torch CONFIG REQUIRED)
|
||||
|
||||
|
||||
FetchContent_Declare(
|
||||
googletest
|
||||
URL https://github.com/google/googletest/archive/03597a01ee50ed33e9dfd640b249b4be3799d395.zip
|
||||
include_directories(
|
||||
${libtorch_INCLUDE_DIRS_DEBUG}
|
||||
${fimdlp_SOURCE_DIR}/src
|
||||
${arff-files_INCLUDE_DIRS}
|
||||
${CMAKE_BINARY_DIR}/configured_files/include
|
||||
)
|
||||
# For Windows: Prevent overriding the parent project's compiler/linker settings
|
||||
set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)
|
||||
FetchContent_MakeAvailable(googletest)
|
||||
|
||||
enable_testing()
|
||||
|
||||
add_executable(Metrics_unittest ../Metrics.cpp Metrics_unittest.cpp)
|
||||
add_executable(Metrics_unittest ${fimdlp_SOURCE_DIR}/src/Metrics.cpp Metrics_unittest.cpp)
|
||||
target_link_libraries(Metrics_unittest GTest::gtest_main)
|
||||
target_compile_options(Metrics_unittest PRIVATE --coverage)
|
||||
target_link_options(Metrics_unittest PRIVATE --coverage)
|
||||
|
||||
add_executable(FImdlp_unittest ../CPPFImdlp.cpp ArffFiles.cpp ../Metrics.cpp FImdlp_unittest.cpp)
|
||||
target_link_libraries(FImdlp_unittest GTest::gtest_main)
|
||||
add_executable(FImdlp_unittest FImdlp_unittest.cpp
|
||||
${fimdlp_SOURCE_DIR}/src/CPPFImdlp.cpp ${fimdlp_SOURCE_DIR}/src/Metrics.cpp ${fimdlp_SOURCE_DIR}/src/Discretizer.cpp)
|
||||
target_link_libraries(FImdlp_unittest GTest::gtest_main torch::torch)
|
||||
target_compile_options(FImdlp_unittest PRIVATE --coverage)
|
||||
target_link_options(FImdlp_unittest PRIVATE --coverage)
|
||||
|
||||
add_executable(BinDisc_unittest ../BinDisc.cpp ArffFiles.cpp BinDisc_unittest.cpp)
|
||||
target_link_libraries(BinDisc_unittest GTest::gtest_main)
|
||||
add_executable(BinDisc_unittest BinDisc_unittest.cpp ${fimdlp_SOURCE_DIR}/src/BinDisc.cpp ${fimdlp_SOURCE_DIR}/src/Discretizer.cpp)
|
||||
target_link_libraries(BinDisc_unittest GTest::gtest_main torch::torch)
|
||||
target_compile_options(BinDisc_unittest PRIVATE --coverage)
|
||||
target_link_options(BinDisc_unittest PRIVATE --coverage)
|
||||
|
||||
add_executable(Discretizer_unittest ../BinDisc.cpp ../CPPFImdlp.cpp ArffFiles.cpp ../Metrics.cpp Discretizer_unittest.cpp)
|
||||
target_link_libraries(Discretizer_unittest GTest::gtest_main)
|
||||
add_executable(Discretizer_unittest Discretizer_unittest.cpp
|
||||
${fimdlp_SOURCE_DIR}/src/BinDisc.cpp ${fimdlp_SOURCE_DIR}/src/CPPFImdlp.cpp ${fimdlp_SOURCE_DIR}/src/Metrics.cpp ${fimdlp_SOURCE_DIR}/src/Discretizer.cpp )
|
||||
target_link_libraries(Discretizer_unittest GTest::gtest_main torch::torch)
|
||||
target_compile_options(Discretizer_unittest PRIVATE --coverage)
|
||||
target_link_options(Discretizer_unittest PRIVATE --coverage)
|
||||
|
||||
|
@@ -1,26 +1,48 @@
|
||||
// ****************************************************************
|
||||
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX - FileType: SOURCE
|
||||
// SPDX - License - Identifier: MIT
|
||||
// ****************************************************************
|
||||
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <ArffFiles.hpp>
|
||||
#include "gtest/gtest.h"
|
||||
#include "ArffFiles.h"
|
||||
#include "../Discretizer.h"
|
||||
#include "../BinDisc.h"
|
||||
#include "../CPPFImdlp.h"
|
||||
#include "Discretizer.h"
|
||||
#include "BinDisc.h"
|
||||
#include "CPPFImdlp.h"
|
||||
|
||||
#define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \
|
||||
try { \
|
||||
stmt; \
|
||||
} catch (const etype& ex) { \
|
||||
EXPECT_EQ(whatstring, std::string(ex.what())); \
|
||||
throw; \
|
||||
} \
|
||||
, etype)
|
||||
|
||||
namespace mdlp {
|
||||
const float margin = 1e-4;
|
||||
static std::string set_data_path()
|
||||
{
|
||||
std::string path = "../datasets/";
|
||||
std::string path = "tests/datasets/";
|
||||
std::ifstream file(path + "iris.arff");
|
||||
if (file.is_open()) {
|
||||
file.close();
|
||||
return path;
|
||||
}
|
||||
return "../../tests/datasets/";
|
||||
return "datasets/";
|
||||
}
|
||||
const std::string data_path = set_data_path();
|
||||
|
||||
const labels_t iris_quantile = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 3, 3, 1, 3, 1, 2, 0, 3, 1, 0, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 1, 2, 2, 3, 2, 3, 3, 0, 3, 3, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 2, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2 };
|
||||
TEST(Discretizer, Version)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
auto version = disc->version();
|
||||
delete disc;
|
||||
EXPECT_EQ("2.1.1", version);
|
||||
}
|
||||
TEST(Discretizer, BinIrisUniform)
|
||||
{
|
||||
ArffFiles file;
|
||||
@@ -43,12 +65,198 @@ namespace mdlp {
|
||||
auto y = labels_t();
|
||||
disc->fit(X[0], y);
|
||||
auto Xt = disc->transform(X[0]);
|
||||
labels_t expected = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 3, 3, 1, 3, 1, 2, 0, 3, 1, 0, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 1, 2, 2, 3, 2, 3, 3, 0, 3, 3, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 2, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2 };
|
||||
delete disc;
|
||||
EXPECT_EQ(expected, Xt);
|
||||
EXPECT_EQ(iris_quantile, Xt);
|
||||
}
|
||||
|
||||
TEST(Discretizer, BinIrisQuantileTorch)
|
||||
{
|
||||
ArffFiles file;
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::QUANTILE);
|
||||
file.load(data_path + "iris.arff", true);
|
||||
auto X = file.getX();
|
||||
auto y = file.getY();
|
||||
auto X_torch = torch::tensor(X[0], torch::kFloat32);
|
||||
auto yt = torch::tensor(y, torch::kInt32);
|
||||
disc->fit_t(X_torch, yt);
|
||||
torch::Tensor Xt = disc->transform_t(X_torch);
|
||||
delete disc;
|
||||
EXPECT_EQ(iris_quantile.size(), Xt.size(0));
|
||||
for (int i = 0; i < iris_quantile.size(); ++i) {
|
||||
EXPECT_EQ(iris_quantile.at(i), Xt[i].item<int>());
|
||||
}
|
||||
}
|
||||
TEST(Discretizer, BinIrisQuantileTorchFit_transform)
|
||||
{
|
||||
ArffFiles file;
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::QUANTILE);
|
||||
file.load(data_path + "iris.arff", true);
|
||||
auto X = file.getX();
|
||||
auto y = file.getY();
|
||||
auto X_torch = torch::tensor(X[0], torch::kFloat32);
|
||||
auto yt = torch::tensor(y, torch::kInt32);
|
||||
torch::Tensor Xt = disc->fit_transform_t(X_torch, yt);
|
||||
delete disc;
|
||||
EXPECT_EQ(iris_quantile.size(), Xt.size(0));
|
||||
for (int i = 0; i < iris_quantile.size(); ++i) {
|
||||
EXPECT_EQ(iris_quantile.at(i), Xt[i].item<int>());
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Discretizer, FImdlpIris)
|
||||
{
|
||||
auto labelsq = {
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
1,
|
||||
3,
|
||||
1,
|
||||
2,
|
||||
0,
|
||||
3,
|
||||
1,
|
||||
0,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
3,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
3,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
3,
|
||||
2,
|
||||
3,
|
||||
3,
|
||||
0,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
1,
|
||||
2,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
2,
|
||||
3,
|
||||
1,
|
||||
3,
|
||||
2,
|
||||
3,
|
||||
3,
|
||||
2,
|
||||
2,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
2,
|
||||
2,
|
||||
3,
|
||||
2,
|
||||
3,
|
||||
2,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
2,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
2,
|
||||
3,
|
||||
2,
|
||||
2,
|
||||
};
|
||||
labels_t expected = {
|
||||
5, 3, 4, 4, 5, 5, 5, 5, 2, 4, 5, 5, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5,
|
||||
5, 4, 5, 3, 5, 5, 5, 4, 4, 5, 5, 5, 4, 4, 5, 4, 3, 5, 5, 0, 4, 5,
|
||||
@@ -71,4 +279,110 @@ namespace mdlp {
|
||||
EXPECT_EQ(computed[i], expected[i]);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Discretizer, TransformEmptyData)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
samples_t empty_data = {};
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform(empty_data), std::invalid_argument, "Data for transformation cannot be empty");
|
||||
delete disc;
|
||||
}
|
||||
|
||||
TEST(Discretizer, TransformNotFitted)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
samples_t data = { 1.0f, 2.0f, 3.0f };
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform(data), std::runtime_error, "Discretizer not fitted yet or no valid cut points found");
|
||||
delete disc;
|
||||
}
|
||||
|
||||
TEST(Discretizer, TensorValidationFit)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
|
||||
auto X = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
|
||||
auto y = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
|
||||
// Test non-1D tensors
|
||||
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_2d, y), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
auto y_2d = torch::tensor({ {1, 2}, {3, 4} }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_2d), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
// Test wrong tensor types
|
||||
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_int, y), std::invalid_argument, "X tensor must be Float32 type");
|
||||
|
||||
auto y_float = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_float), std::invalid_argument, "y tensor must be Int32 type");
|
||||
|
||||
// Test mismatched sizes
|
||||
auto y_short = torch::tensor({ 1, 2 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_short), std::invalid_argument, "X and y tensors must have same number of elements");
|
||||
|
||||
// Test empty tensors
|
||||
auto X_empty = torch::tensor({}, torch::kFloat32);
|
||||
auto y_empty = torch::tensor({}, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_empty, y_empty), std::invalid_argument, "Tensors cannot be empty");
|
||||
|
||||
delete disc;
|
||||
}
|
||||
|
||||
TEST(Discretizer, TensorValidationTransform)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
|
||||
// First fit with valid data
|
||||
auto X_fit = torch::tensor({ 1.0f, 2.0f, 3.0f, 4.0f }, torch::kFloat32);
|
||||
auto y_fit = torch::tensor({ 1, 2, 3, 4 }, torch::kInt32);
|
||||
disc->fit_t(X_fit, y_fit);
|
||||
|
||||
// Test non-1D tensor
|
||||
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_2d), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
// Test wrong tensor type
|
||||
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_int), std::invalid_argument, "X tensor must be Float32 type");
|
||||
|
||||
// Test empty tensor
|
||||
auto X_empty = torch::tensor({}, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_empty), std::invalid_argument, "Tensor cannot be empty");
|
||||
|
||||
delete disc;
|
||||
}
|
||||
|
||||
TEST(Discretizer, TensorValidationFitTransform)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
|
||||
auto X = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
|
||||
auto y = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
|
||||
// Test non-1D tensors
|
||||
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_2d, y), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
auto y_2d = torch::tensor({ {1, 2}, {3, 4} }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_2d), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
// Test wrong tensor types
|
||||
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_int, y), std::invalid_argument, "X tensor must be Float32 type");
|
||||
|
||||
auto y_float = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_float), std::invalid_argument, "y tensor must be Int32 type");
|
||||
|
||||
// Test mismatched sizes
|
||||
auto y_short = torch::tensor({ 1, 2 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_short), std::invalid_argument, "X and y tensors must have same number of elements");
|
||||
|
||||
// Test empty tensors
|
||||
auto X_empty = torch::tensor({}, torch::kFloat32);
|
||||
auto y_empty = torch::tensor({}, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_empty, y_empty), std::invalid_argument, "Tensors cannot be empty");
|
||||
|
||||
delete disc;
|
||||
}
|
||||
}
|
||||
|
139
tests/Experiments.hpp
Normal file
139
tests/Experiments.hpp
Normal file
@@ -0,0 +1,139 @@
|
||||
// ****************************************************************
|
||||
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX - FileType: SOURCE
|
||||
// SPDX - License - Identifier: MIT
|
||||
// ****************************************************************
|
||||
|
||||
#ifndef EXPERIMENTS_HPP
|
||||
#define EXPERIMENTS_HPP
|
||||
#include<sstream>
|
||||
#include<iostream>
|
||||
#include<string>
|
||||
#include<fstream>
|
||||
#include<vector>
|
||||
#include<tuple>
|
||||
#include "typesFImdlp.h"
|
||||
|
||||
template <typename T>
|
||||
void show_vector(const std::vector<T>& data, std::string title)
|
||||
{
|
||||
std::cout << title << ": ";
|
||||
std::string sep = "";
|
||||
for (const auto& d : data) {
|
||||
std::cout << sep << d;
|
||||
sep = ", ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
enum class experiment_t {
|
||||
RANGE,
|
||||
VECTOR
|
||||
};
|
||||
class Experiment {
|
||||
public:
|
||||
Experiment(float from_, float to_, float step_, int n_bins, std::string strategy, std::vector<int> data_discretized, std::vector<mdlp::precision_t> cutpoints) :
|
||||
from_{ from_ }, to_{ to_ }, step_{ step_ }, n_bins_{ n_bins }, strategy_{ strategy }, discretized_data_{ data_discretized }, cutpoints_{ cutpoints }, type_{ experiment_t::RANGE }
|
||||
{
|
||||
validate_strategy();
|
||||
|
||||
}
|
||||
Experiment(std::vector<mdlp::precision_t> dataset, int n_bins, std::string strategy, std::vector<int> data_discretized, std::vector<mdlp::precision_t> cutpoints) :
|
||||
n_bins_{ n_bins }, strategy_{ strategy }, dataset_{ dataset }, discretized_data_{ data_discretized }, cutpoints_{ cutpoints }, type_{ experiment_t::VECTOR }
|
||||
{
|
||||
validate_strategy();
|
||||
}
|
||||
void validate_strategy()
|
||||
{
|
||||
if (strategy_ != "Q" && strategy_ != "U") {
|
||||
throw std::invalid_argument("Invalid strategy " + strategy_);
|
||||
}
|
||||
}
|
||||
float from_;
|
||||
float to_;
|
||||
float step_;
|
||||
int n_bins_;
|
||||
std::string strategy_;
|
||||
std::vector<mdlp::precision_t> dataset_;
|
||||
std::vector<int> discretized_data_;
|
||||
std::vector<mdlp::precision_t> cutpoints_;
|
||||
experiment_t type_;
|
||||
};
|
||||
class Experiments {
|
||||
public:
|
||||
Experiments(const std::string filename) : filename{ filename }
|
||||
{
|
||||
test_file.open(filename);
|
||||
if (!test_file.is_open()) {
|
||||
throw std::runtime_error("File " + filename + " not found");
|
||||
}
|
||||
exp_end = false;
|
||||
}
|
||||
~Experiments()
|
||||
{
|
||||
test_file.close();
|
||||
}
|
||||
bool end() const
|
||||
{
|
||||
return exp_end;
|
||||
}
|
||||
bool is_next()
|
||||
{
|
||||
while (std::getline(test_file, line) && line[0] == '#');
|
||||
if (test_file.eof()) {
|
||||
exp_end = true;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
Experiment next()
|
||||
{
|
||||
return parse_experiment(line);
|
||||
}
|
||||
private:
|
||||
std::tuple<float, float, float, int, std::string> parse_header(const std::string& line)
|
||||
{
|
||||
std::istringstream iss(line);
|
||||
std::string from_, to_, step_, n_bins, strategy;
|
||||
iss >> from_ >> to_ >> step_ >> n_bins >> strategy;
|
||||
return { std::stof(from_), std::stof(to_), std::stof(step_), std::stoi(n_bins), strategy };
|
||||
}
|
||||
template <typename T>
|
||||
std::vector<T> parse_vector(const std::string& line)
|
||||
{
|
||||
std::istringstream iss(line);
|
||||
std::vector<T> data;
|
||||
std::string d;
|
||||
while (iss >> d) {
|
||||
data.push_back(std::is_same<T, float>::value ? std::stof(d) : std::stoi(d));
|
||||
}
|
||||
return data;
|
||||
}
|
||||
Experiment parse_experiment(std::string& line)
|
||||
{
|
||||
// Read experiment lines
|
||||
std::string experiment, data, cuts, strategy;
|
||||
std::getline(test_file, experiment);
|
||||
std::getline(test_file, data);
|
||||
std::getline(test_file, cuts);
|
||||
// split data into variables
|
||||
float from_, to_, step_;
|
||||
int n_bins;
|
||||
std::vector<mdlp::precision_t> dataset;
|
||||
auto data_discretized = parse_vector<int>(data);
|
||||
auto cutpoints = parse_vector<mdlp::precision_t>(cuts);
|
||||
if (line == "RANGE") {
|
||||
tie(from_, to_, step_, n_bins, strategy) = parse_header(experiment);
|
||||
return Experiment{ from_, to_, step_, n_bins, strategy, data_discretized, cutpoints };
|
||||
}
|
||||
strategy = experiment.substr(0, 1);
|
||||
n_bins = std::stoi(experiment.substr(1, 1));
|
||||
data = experiment.substr(3, experiment.size() - 4);
|
||||
dataset = parse_vector<mdlp::precision_t>(data);
|
||||
return Experiment(dataset, n_bins, strategy, data_discretized, cutpoints);
|
||||
}
|
||||
std::ifstream test_file;
|
||||
std::string filename;
|
||||
std::string line;
|
||||
bool exp_end;
|
||||
};
|
||||
#endif
|
@@ -1,9 +1,15 @@
|
||||
#include "gtest/gtest.h"
|
||||
#include "../Metrics.h"
|
||||
#include "../CPPFImdlp.h"
|
||||
// ****************************************************************
|
||||
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX - FileType: SOURCE
|
||||
// SPDX - License - Identifier: MIT
|
||||
// ****************************************************************
|
||||
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include "ArffFiles.h"
|
||||
#include <ArffFiles.hpp>
|
||||
#include "gtest/gtest.h"
|
||||
#include "Metrics.h"
|
||||
#include "CPPFImdlp.h"
|
||||
|
||||
#define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \
|
||||
try { \
|
||||
@@ -34,13 +40,13 @@ namespace mdlp {
|
||||
|
||||
static string set_data_path()
|
||||
{
|
||||
string path = "../datasets/";
|
||||
string path = "datasets/";
|
||||
ifstream file(path + "iris.arff");
|
||||
if (file.is_open()) {
|
||||
file.close();
|
||||
return path;
|
||||
}
|
||||
return "../../tests/datasets/";
|
||||
return "tests/datasets/";
|
||||
}
|
||||
|
||||
void checkSortedVector()
|
||||
@@ -58,7 +64,7 @@ namespace mdlp {
|
||||
{
|
||||
EXPECT_EQ(computed.size(), expected.size());
|
||||
for (unsigned long i = 0; i < computed.size(); i++) {
|
||||
cout << "(" << computed[i] << ", " << expected[i] << ") ";
|
||||
// cout << "(" << computed[i] << ", " << expected[i] << ") ";
|
||||
EXPECT_NEAR(computed[i], expected[i], precision);
|
||||
}
|
||||
}
|
||||
@@ -70,7 +76,7 @@ namespace mdlp {
|
||||
X = X_;
|
||||
y = y_;
|
||||
indices = sortIndices(X, y);
|
||||
cout << "* " << title << endl;
|
||||
// cout << "* " << title << endl;
|
||||
result = valueCutPoint(0, cut, 10);
|
||||
EXPECT_NEAR(result.first, midPoint, precision);
|
||||
EXPECT_EQ(result.second, limit);
|
||||
@@ -89,9 +95,9 @@ namespace mdlp {
|
||||
test.fit(X[feature], y);
|
||||
EXPECT_EQ(test.get_depth(), depths[feature]);
|
||||
auto computed = test.getCutPoints();
|
||||
cout << "Feature " << feature << ": ";
|
||||
// cout << "Feature " << feature << ": ";
|
||||
checkCutPoints(computed, expected[feature]);
|
||||
cout << endl;
|
||||
// cout << endl;
|
||||
}
|
||||
}
|
||||
};
|
||||
@@ -107,38 +113,39 @@ namespace mdlp {
|
||||
{
|
||||
X = { 1, 2, 3 };
|
||||
y = { 1, 2 };
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X, y), invalid_argument, "X and y must have the same size");
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X, y), invalid_argument, "X and y must have the same size: " + std::to_string(X.size()) + " != " + std::to_string(y.size()));
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, FitErrorMinLengtMaxDepth)
|
||||
TEST_F(TestFImdlp, FitErrorMinLength)
|
||||
{
|
||||
auto testLength = CPPFImdlp(2, 10, 0);
|
||||
auto testDepth = CPPFImdlp(3, 0, 0);
|
||||
X = { 1, 2, 3 };
|
||||
y = { 1, 2, 3 };
|
||||
EXPECT_THROW_WITH_MESSAGE(testLength.fit(X, y), invalid_argument, "min_length must be greater than 2");
|
||||
EXPECT_THROW_WITH_MESSAGE(testDepth.fit(X, y), invalid_argument, "max_depth must be greater than 0");
|
||||
EXPECT_THROW_WITH_MESSAGE(CPPFImdlp(2, 10, 0), invalid_argument, "min_length must be greater than 2");
|
||||
}
|
||||
TEST_F(TestFImdlp, FitErrorMaxDepth)
|
||||
{
|
||||
EXPECT_THROW_WITH_MESSAGE(CPPFImdlp(3, 0, 0), invalid_argument, "max_depth must be greater than 0");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, JoinFit)
|
||||
{
|
||||
samples_t X_ = { 1, 2, 2, 3, 4, 2, 3 };
|
||||
labels_t y_ = { 0, 0, 1, 2, 3, 4, 5 };
|
||||
cutPoints_t expected = { 1.5f, 2.5f };
|
||||
cutPoints_t expected = { 1.0, 1.5f, 2.5f, 4.0 };
|
||||
fit(X_, y_);
|
||||
auto computed = getCutPoints();
|
||||
EXPECT_EQ(computed.size(), expected.size());
|
||||
checkCutPoints(computed, expected);
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, FitErrorMinCutPoints)
|
||||
{
|
||||
EXPECT_THROW_WITH_MESSAGE(CPPFImdlp(3, 10, -1), invalid_argument, "proposed_cuts must be non-negative");
|
||||
}
|
||||
TEST_F(TestFImdlp, FitErrorMaxCutPoints)
|
||||
{
|
||||
auto testmin = CPPFImdlp(2, 10, -1);
|
||||
auto testmax = CPPFImdlp(3, 0, 200);
|
||||
X = { 1, 2, 3 };
|
||||
y = { 1, 2, 3 };
|
||||
EXPECT_THROW_WITH_MESSAGE(testmin.fit(X, y), invalid_argument, "wrong proposed num_cuts value");
|
||||
EXPECT_THROW_WITH_MESSAGE(testmax.fit(X, y), invalid_argument, "wrong proposed num_cuts value");
|
||||
auto test = CPPFImdlp(3, 1, 8);
|
||||
samples_t X_ = { 1, 2, 2, 3, 4, 2, 3 };
|
||||
labels_t y_ = { 0, 0, 1, 2, 3, 4, 5 };
|
||||
EXPECT_THROW_WITH_MESSAGE(test.fit(X_, y_), invalid_argument, "wrong proposed num_cuts value");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SortIndices)
|
||||
@@ -160,6 +167,15 @@ namespace mdlp {
|
||||
indices = { 1, 2, 0 };
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SortIndicesOutOfBounds)
|
||||
{
|
||||
// Test for out of bounds exception in sortIndices
|
||||
samples_t X_long = { 1.0f, 2.0f, 3.0f };
|
||||
labels_t y_short = { 1, 2 };
|
||||
EXPECT_THROW_WITH_MESSAGE(sortIndices(X_long, y_short), std::out_of_range, "Index out of bounds in sort comparison");
|
||||
}
|
||||
|
||||
|
||||
TEST_F(TestFImdlp, TestShortDatasets)
|
||||
{
|
||||
vector<precision_t> computed;
|
||||
@@ -167,29 +183,31 @@ namespace mdlp {
|
||||
y = { 1 };
|
||||
fit(X, y);
|
||||
computed = getCutPoints();
|
||||
EXPECT_EQ(computed.size(), 0);
|
||||
EXPECT_EQ(computed.size(), 2);
|
||||
X = { 1, 3 };
|
||||
y = { 1, 2 };
|
||||
fit(X, y);
|
||||
computed = getCutPoints();
|
||||
EXPECT_EQ(computed.size(), 0);
|
||||
EXPECT_EQ(computed.size(), 2);
|
||||
X = { 2, 4 };
|
||||
y = { 1, 2 };
|
||||
fit(X, y);
|
||||
computed = getCutPoints();
|
||||
EXPECT_EQ(computed.size(), 0);
|
||||
EXPECT_EQ(computed.size(), 2);
|
||||
X = { 1, 2, 3 };
|
||||
y = { 1, 2, 2 };
|
||||
fit(X, y);
|
||||
computed = getCutPoints();
|
||||
EXPECT_EQ(computed.size(), 1);
|
||||
EXPECT_NEAR(computed[0], 1.5, precision);
|
||||
EXPECT_EQ(computed.size(), 3);
|
||||
EXPECT_NEAR(computed[0], 1, precision);
|
||||
EXPECT_NEAR(computed[1], 1.5, precision);
|
||||
EXPECT_NEAR(computed[2], 3, precision);
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, TestArtificialDataset)
|
||||
{
|
||||
fit(X, y);
|
||||
cutPoints_t expected = { 5.05f };
|
||||
cutPoints_t expected = { 4.7, 5.05, 6.0 };
|
||||
vector<precision_t> computed = getCutPoints();
|
||||
EXPECT_EQ(computed.size(), expected.size());
|
||||
for (unsigned long i = 0; i < computed.size(); i++) {
|
||||
@@ -200,10 +218,10 @@ namespace mdlp {
|
||||
TEST_F(TestFImdlp, TestIris)
|
||||
{
|
||||
vector<cutPoints_t> expected = {
|
||||
{5.45f, 5.75f},
|
||||
{2.75f, 2.85f, 2.95f, 3.05f, 3.35f},
|
||||
{2.45f, 4.75f, 5.05f},
|
||||
{0.8f, 1.75f}
|
||||
{4.3, 5.45f, 5.75f, 7.9},
|
||||
{2, 2.75f, 2.85f, 2.95f, 3.05f, 3.35f, 4.4},
|
||||
{1, 2.45f, 4.75f, 5.05f, 6.9},
|
||||
{0.1, 0.8f, 1.75f, 2.5}
|
||||
};
|
||||
vector<int> depths = { 3, 5, 4, 3 };
|
||||
auto test = CPPFImdlp();
|
||||
@@ -213,7 +231,7 @@ namespace mdlp {
|
||||
TEST_F(TestFImdlp, ComputeCutPointsGCase)
|
||||
{
|
||||
cutPoints_t expected;
|
||||
expected = { 1.5 };
|
||||
expected = { 0, 1.5, 2 };
|
||||
samples_t X_ = { 0, 1, 2, 2, 2 };
|
||||
labels_t y_ = { 1, 1, 1, 2, 2 };
|
||||
fit(X_, y_);
|
||||
@@ -247,10 +265,10 @@ namespace mdlp {
|
||||
// Set max_depth to 1
|
||||
auto test = CPPFImdlp(3, 1, 0);
|
||||
vector<cutPoints_t> expected = {
|
||||
{5.45f},
|
||||
{3.35f},
|
||||
{2.45f},
|
||||
{0.8f}
|
||||
{4.3, 5.45f, 7.9},
|
||||
{2, 3.35f, 4.4},
|
||||
{1, 2.45f, 6.9},
|
||||
{0.1, 0.8f, 2.5}
|
||||
};
|
||||
vector<int> depths = { 1, 1, 1, 1 };
|
||||
test_dataset(test, "iris", expected, depths);
|
||||
@@ -261,10 +279,10 @@ namespace mdlp {
|
||||
auto test = CPPFImdlp(75, 100, 0);
|
||||
// Set min_length to 75
|
||||
vector<cutPoints_t> expected = {
|
||||
{5.45f, 5.75f},
|
||||
{2.85f, 3.35f},
|
||||
{2.45f, 4.75f},
|
||||
{0.8f, 1.75f}
|
||||
{4.3, 5.45f, 5.75f, 7.9},
|
||||
{2, 2.85f, 3.35f, 4.4},
|
||||
{1, 2.45f, 4.75f, 6.9},
|
||||
{0.1, 0.8f, 1.75f, 2.5}
|
||||
};
|
||||
vector<int> depths = { 3, 2, 2, 2 };
|
||||
test_dataset(test, "iris", expected, depths);
|
||||
@@ -275,10 +293,10 @@ namespace mdlp {
|
||||
// Set min_length to 75
|
||||
auto test = CPPFImdlp(75, 2, 0);
|
||||
vector<cutPoints_t> expected = {
|
||||
{5.45f, 5.75f},
|
||||
{2.85f, 3.35f},
|
||||
{2.45f, 4.75f},
|
||||
{0.8f, 1.75f}
|
||||
{4.3, 5.45f, 5.75f, 7.9},
|
||||
{2, 2.85f, 3.35f, 4.4},
|
||||
{1, 2.45f, 4.75f, 6.9},
|
||||
{0.1, 0.8f, 1.75f, 2.5}
|
||||
};
|
||||
vector<int> depths = { 2, 2, 2, 2 };
|
||||
test_dataset(test, "iris", expected, depths);
|
||||
@@ -289,10 +307,10 @@ namespace mdlp {
|
||||
// Set min_length to 75
|
||||
auto test = CPPFImdlp(75, 2, 1);
|
||||
vector<cutPoints_t> expected = {
|
||||
{5.45f},
|
||||
{2.85f},
|
||||
{2.45f},
|
||||
{0.8f}
|
||||
{4.3, 5.45f, 7.9},
|
||||
{2, 2.85f, 4.4},
|
||||
{1, 2.45f, 6.9},
|
||||
{0.1, 0.8f, 2.5}
|
||||
};
|
||||
vector<int> depths = { 2, 2, 2, 2 };
|
||||
test_dataset(test, "iris", expected, depths);
|
||||
@@ -304,10 +322,10 @@ namespace mdlp {
|
||||
// Set min_length to 75
|
||||
auto test = CPPFImdlp(75, 2, 0.2f);
|
||||
vector<cutPoints_t> expected = {
|
||||
{5.45f, 5.75f},
|
||||
{2.85f, 3.35f},
|
||||
{2.45f, 4.75f},
|
||||
{0.8f, 1.75f}
|
||||
{4.3, 5.45f, 5.75f, 7.9},
|
||||
{2, 2.85f, 3.35f, 4.4},
|
||||
{1, 2.45f, 4.75f, 6.9},
|
||||
{0.1, 0.8f, 1.75f, 2.5}
|
||||
};
|
||||
vector<int> depths = { 2, 2, 2, 2 };
|
||||
test_dataset(test, "iris", expected, depths);
|
||||
@@ -327,7 +345,6 @@ namespace mdlp {
|
||||
computed = compute_max_num_cut_points();
|
||||
ASSERT_EQ(expected, computed);
|
||||
}
|
||||
|
||||
}
|
||||
TEST_F(TestFImdlp, TransformTest)
|
||||
{
|
||||
@@ -350,5 +367,61 @@ namespace mdlp {
|
||||
for (unsigned long i = 0; i < computed.size(); i++) {
|
||||
EXPECT_EQ(computed[i], expected[i]);
|
||||
}
|
||||
auto computed_ft = fit_transform(X[1], y);
|
||||
EXPECT_EQ(computed_ft.size(), expected.size());
|
||||
for (unsigned long i = 0; i < computed_ft.size(); i++) {
|
||||
EXPECT_EQ(computed_ft[i], expected[i]);
|
||||
}
|
||||
}
|
||||
TEST_F(TestFImdlp, SafeXAccessIndexOutOfBounds)
|
||||
{
|
||||
// Test safe_X_access with index out of bounds for indices array
|
||||
X = { 1.0f, 2.0f, 3.0f };
|
||||
y = { 1, 2, 3 };
|
||||
indices = { 0, 1 }; // shorter than expected
|
||||
|
||||
// This should trigger the first exception in safe_X_access (idx >= indices.size())
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_X_access(2), std::out_of_range, "Index out of bounds for indices array");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SafeXAccessXOutOfBounds)
|
||||
{
|
||||
// Test safe_X_access with real_idx out of bounds for X array
|
||||
X = { 1.0f, 2.0f }; // shorter array
|
||||
y = { 1, 2, 3 };
|
||||
indices = { 0, 1, 5 }; // indices[2] = 5 is out of bounds for X
|
||||
|
||||
// This should trigger the second exception in safe_X_access (real_idx >= X.size())
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_X_access(2), std::out_of_range, "Index out of bounds for X array");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SafeYAccessIndexOutOfBounds)
|
||||
{
|
||||
// Test safe_y_access with index out of bounds for indices array
|
||||
X = { 1.0f, 2.0f, 3.0f };
|
||||
y = { 1, 2, 3 };
|
||||
indices = { 0, 1 }; // shorter than expected
|
||||
|
||||
// This should trigger the first exception in safe_y_access (idx >= indices.size())
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_y_access(2), std::out_of_range, "Index out of bounds for indices array");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SafeYAccessYOutOfBounds)
|
||||
{
|
||||
// Test safe_y_access with real_idx out of bounds for y array
|
||||
X = { 1.0f, 2.0f, 3.0f };
|
||||
y = { 1, 2 }; // shorter array
|
||||
indices = { 0, 1, 5 }; // indices[2] = 5 is out of bounds for y
|
||||
|
||||
// This should trigger the second exception in safe_y_access (real_idx >= y.size())
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_y_access(2), std::out_of_range, "Index out of bounds for y array");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SafeSubtractUnderflow)
|
||||
{
|
||||
// Test safe_subtract with underflow condition (b > a)
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_subtract(3, 5), std::underflow_error, "Subtraction would cause underflow");
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
@@ -1,14 +1,20 @@
|
||||
// ****************************************************************
|
||||
// SPDX - FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX - FileType: SOURCE
|
||||
// SPDX - License - Identifier: MIT
|
||||
// ****************************************************************
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
#include "../Metrics.h"
|
||||
#include "Metrics.h"
|
||||
|
||||
namespace mdlp {
|
||||
class TestMetrics: public Metrics, public testing::Test {
|
||||
class TestMetrics : public Metrics, public testing::Test {
|
||||
public:
|
||||
labels_t y_ = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 };
|
||||
indices_t indices_ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
|
||||
precision_t precision = 0.000001f;
|
||||
precision_t precision = 1e-6;
|
||||
|
||||
TestMetrics(): Metrics(y_, indices_) {};
|
||||
TestMetrics() : Metrics(y_, indices_) {};
|
||||
|
||||
void SetUp() override
|
||||
{
|
||||
|
222
tests/datasets/tests.txt
Normal file
222
tests/datasets/tests.txt
Normal file
@@ -0,0 +1,222 @@
|
||||
#
|
||||
# from, to, step, #bins, Q/U
|
||||
# discretized data
|
||||
# cut points
|
||||
#
|
||||
#
|
||||
# Range experiments
|
||||
#
|
||||
RANGE
|
||||
0, 100, 1, 4, Q
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
|
||||
0.0, 24.75, 49.5, 74.25, 99.0
|
||||
RANGE
|
||||
0, 50, 1, 4, Q
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
|
||||
0.0, 12.25, 24.5, 36.75, 49.0
|
||||
RANGE
|
||||
0, 100, 1, 3, Q
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
|
||||
0.0, 33.0, 66.0, 99.0
|
||||
RANGE
|
||||
0, 50, 1, 3, Q
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
|
||||
0.0, 16.33333, 32.66667, 49.0
|
||||
RANGE
|
||||
0, 10, 1, 3, Q
|
||||
0, 0, 0, 1, 1, 1, 2, 2, 2, 2
|
||||
0.0, 3.0, 6.0, 9.0
|
||||
RANGE
|
||||
0, 100, 1, 4, U
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
|
||||
0.0, 24.75, 49.5, 74.25, 99.0
|
||||
RANGE
|
||||
0, 50, 1, 4, U
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
|
||||
0.0, 12.25, 24.5, 36.75, 49.0
|
||||
RANGE
|
||||
0, 100, 1, 3, U
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
|
||||
0.0, 33.0, 66.0, 99.0
|
||||
RANGE
|
||||
0, 50, 1, 3, U
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
|
||||
0.0, 16.33333, 32.66667, 49.0
|
||||
RANGE
|
||||
0, 10, 1, 3, U
|
||||
0, 0, 0, 1, 1, 1, 2, 2, 2, 2
|
||||
0.0, 3.0, 6.0, 9.0
|
||||
RANGE
|
||||
1, 10, 1, 3, Q
|
||||
0, 0, 0, 1, 1, 1, 2, 2, 2
|
||||
1.0, 3.66667, 6.33333, 9.0
|
||||
RANGE
|
||||
1, 10, 1, 3, U
|
||||
0, 0, 0, 1, 1, 1, 2, 2, 2
|
||||
1.0, 3.66667, 6.33333, 9.0
|
||||
RANGE
|
||||
1, 11, 1, 3, Q
|
||||
0, 0, 0, 1, 1, 1, 2, 2, 2, 2
|
||||
1.0, 4.0, 7.0, 10.0
|
||||
RANGE
|
||||
1, 11, 1, 3, U
|
||||
0, 0, 0, 1, 1, 1, 2, 2, 2, 2
|
||||
1.0, 4.0, 7.0, 10.0
|
||||
RANGE
|
||||
1, 12, 1, 3, Q
|
||||
0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2
|
||||
1.0, 4.33333, 7.66667, 11.0
|
||||
RANGE
|
||||
1, 12, 1, 3, U
|
||||
0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2
|
||||
1.0, 4.33333, 7.66667, 11.0
|
||||
RANGE
|
||||
1, 13, 1, 3, Q
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2
|
||||
1.0, 4.66667, 8.33333, 12.0
|
||||
RANGE
|
||||
1, 13, 1, 3, U
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2
|
||||
1.0, 4.66667, 8.33333, 12.0
|
||||
RANGE
|
||||
1, 14, 1, 3, Q
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
|
||||
1.0, 5.0, 9.0, 13.0
|
||||
RANGE
|
||||
1, 14, 1, 3, U
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
|
||||
1.0, 5.0, 9.0, 13.0
|
||||
RANGE
|
||||
1, 15, 1, 3, Q
|
||||
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
|
||||
1.0, 5.33333, 9.66667, 14.0
|
||||
RANGE
|
||||
1, 15, 1, 3, U
|
||||
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
|
||||
1.0, 5.33333, 9.66667, 14.0
|
||||
#
|
||||
# Vector experiments
|
||||
#
|
||||
VECTOR
|
||||
Q3[3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0]
|
||||
1, 0, 0, 1, 0, 0, 1, 0, 0
|
||||
1.0, 1.66667, 3.0
|
||||
VECTOR
|
||||
U3[3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0]
|
||||
2, 0, 0, 2, 0, 0, 2, 0, 0
|
||||
1.0, 1.66667, 2.33333, 3.0
|
||||
VECTOR
|
||||
Q3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0]
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2
|
||||
1.0, 4.66667, 8.33333, 12.0
|
||||
VECTOR
|
||||
U3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0]
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2
|
||||
1.0, 4.66667, 8.33333, 12.0
|
||||
VECTOR
|
||||
Q3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0]
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
|
||||
1.0, 5.0, 9.0, 13.0
|
||||
VECTOR
|
||||
U3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0]
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
|
||||
1.0, 5.0, 9.0, 13.0
|
||||
VECTOR
|
||||
Q3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0]
|
||||
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
|
||||
1.0, 5.33333, 9.66667, 14.0
|
||||
VECTOR
|
||||
U3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0]
|
||||
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2
|
||||
1.0, 5.33333, 9.66667, 14.0
|
||||
VECTOR
|
||||
Q3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0]
|
||||
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2
|
||||
1.0, 5.66667, 10.33333, 15.0
|
||||
VECTOR
|
||||
U3[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0]
|
||||
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2
|
||||
1.0, 5.66667, 10.33333, 15.0
|
||||
VECTOR
|
||||
Q3[15.0, 8.0, 12.0, 14.0, 6.0, 1.0, 13.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0]
|
||||
2, 1, 2, 2, 1, 0, 2, 2, 1, 1, 1, 0, 0, 0, 0
|
||||
1.0, 5.66667, 10.33333, 15.0
|
||||
VECTOR
|
||||
U3[15.0, 8.0, 12.0, 14.0, 6.0, 1.0, 13.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0]
|
||||
2, 1, 2, 2, 1, 0, 2, 2, 1, 1, 1, 0, 0, 0, 0
|
||||
1.0, 5.66667, 10.33333, 15.0
|
||||
VECTOR
|
||||
Q3[0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 3.0, 4.0]
|
||||
0, 1, 1, 1, 1, 1, 2, 2, 2, 2
|
||||
0.0, 1.0, 3.0, 4.0
|
||||
VECTOR
|
||||
U3[0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 3.0, 4.0]
|
||||
0, 0, 0, 0, 1, 1, 2, 2, 2, 2
|
||||
0.0, 1.33333, 2.66667, 4.0
|
||||
#
|
||||
# Vector experiments with iris
|
||||
#
|
||||
VECTOR
|
||||
Q3[5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.8, 4.8, 4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5.0, 5.0, 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5.0, 5.5, 4.9, 4.4, 5.1, 5.0, 4.5, 4.4, 5.0, 5.1, 4.8, 5.1, 4.6, 5.3, 5.0, 7.0, 6.4, 6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5.0, 5.9, 6.0, 6.1, 5.6, 6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7, 6.0, 5.7, 5.5, 5.5, 5.8, 6.0, 5.4, 6.0, 6.7, 6.3, 5.6, 5.5, 5.5, 6.1, 5.8, 5.0, 5.6, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3, 6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5, 7.7, 7.7, 6.0, 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2, 7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6.0, 6.9, 6.7, 6.9, 5.8, 6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9]
|
||||
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 2, 1, 2, 0, 2, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1
|
||||
4.3, 5.4, 6.3, 7.9
|
||||
VECTOR
|
||||
U3[5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.8, 4.8, 4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5.0, 5.0, 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5.0, 5.5, 4.9, 4.4, 5.1, 5.0, 4.5, 4.4, 5.0, 5.1, 4.8, 5.1, 4.6, 5.3, 5.0, 7.0, 6.4, 6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5.0, 5.9, 6.0, 6.1, 5.6, 6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7, 6.0, 5.7, 5.5, 5.5, 5.8, 6.0, 5.4, 6.0, 6.7, 6.3, 5.6, 5.5, 5.5, 6.1, 5.8, 5.0, 5.6, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3, 6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5, 7.7, 7.7, 6.0, 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2, 7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6.0, 6.9, 6.7, 6.9, 5.8, 6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9]
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 0, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1
|
||||
4.3, 5.5, 6.7, 7.9
|
||||
VECTOR
|
||||
Q4[5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.8, 4.8, 4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5.0, 5.0, 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5.0, 5.5, 4.9, 4.4, 5.1, 5.0, 4.5, 4.4, 5.0, 5.1, 4.8, 5.1, 4.6, 5.3, 5.0, 7.0, 6.4, 6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5.0, 5.9, 6.0, 6.1, 5.6, 6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7, 6.0, 5.7, 5.5, 5.5, 5.8, 6.0, 5.4, 6.0, 6.7, 6.3, 5.6, 5.5, 5.5, 6.1, 5.8, 5.0, 5.6, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3, 6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5, 7.7, 7.7, 6.0, 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2, 7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6.0, 6.9, 6.7, 6.9, 5.8, 6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9]
|
||||
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 3, 3, 1, 3, 1, 2, 0, 3, 1, 0, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 1, 2, 2, 3, 2, 3, 3, 0, 3, 3, 3, 3, 3, 3, 1, 2, 3, 3, 3, 3, 2, 3, 1, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2
|
||||
4.3, 5.1, 5.8, 6.4, 7.9
|
||||
VECTOR
|
||||
U4[5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.8, 4.8, 4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5.0, 5.0, 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5.0, 5.5, 4.9, 4.4, 5.1, 5.0, 4.5, 4.4, 5.0, 5.1, 4.8, 5.1, 4.6, 5.3, 5.0, 7.0, 6.4, 6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5.0, 5.9, 6.0, 6.1, 5.6, 6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7, 6.0, 5.7, 5.5, 5.5, 5.8, 6.0, 5.4, 6.0, 6.7, 6.3, 5.6, 5.5, 5.5, 6.1, 5.8, 5.0, 5.6, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3, 6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5, 7.7, 7.7, 6.0, 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2, 7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6.0, 6.9, 6.7, 6.9, 5.8, 6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9]
|
||||
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 2, 2, 1, 2, 1, 2, 0, 2, 1, 0, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 0, 1, 1, 1, 2, 0, 1, 2, 1, 3, 2, 2, 3, 0, 3, 2, 3, 2, 2, 2, 1, 1, 2, 2, 3, 3, 1, 2, 1, 3, 2, 2, 3, 2, 2, 2, 3, 3, 3, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
|
||||
4.3, 5.2, 6.1, 7.0, 7.9
|
||||
VECTOR
|
||||
Q3[3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.4, 3.0, 3.0, 4.0, 4.4, 3.9, 3.5, 3.8, 3.8, 3.4, 3.7, 3.6, 3.3, 3.4, 3.0, 3.4, 3.5, 3.4, 3.2, 3.1, 3.4, 4.1, 4.2, 3.1, 3.2, 3.5, 3.6, 3.0, 3.4, 3.5, 2.3, 3.2, 3.5, 3.8, 3.0, 3.8, 3.2, 3.7, 3.3, 3.2, 3.2, 3.1, 2.3, 2.8, 2.8, 3.3, 2.4, 2.9, 2.7, 2.0, 3.0, 2.2, 2.9, 2.9, 3.1, 3.0, 2.7, 2.2, 2.5, 3.2, 2.8, 2.5, 2.8, 2.9, 3.0, 2.8, 3.0, 2.9, 2.6, 2.4, 2.4, 2.7, 2.7, 3.0, 3.4, 3.1, 2.3, 3.0, 2.5, 2.6, 3.0, 2.6, 2.3, 2.7, 3.0, 2.9, 2.9, 2.5, 2.8, 3.3, 2.7, 3.0, 2.9, 3.0, 3.0, 2.5, 2.9, 2.5, 3.6, 3.2, 2.7, 3.0, 2.5, 2.8, 3.2, 3.0, 3.8, 2.6, 2.2, 3.2, 2.8, 2.8, 2.7, 3.3, 3.2, 2.8, 3.0, 2.8, 3.0, 2.8, 3.8, 2.8, 2.8, 2.6, 3.0, 3.4, 3.1, 3.0, 3.1, 3.1, 3.1, 2.7, 3.2, 3.3, 3.0, 2.5, 3.0, 3.4, 3.0]
|
||||
2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 0, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 2, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 1, 1, 1, 1, 0, 1, 0, 2, 2, 0, 1, 0, 0, 2, 1, 2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 2, 1, 1, 1, 1, 1, 0, 2, 2, 1, 0, 1, 2, 1
|
||||
2.0, 2.9, 3.2, 4.4
|
||||
VECTOR
|
||||
U3[3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.4, 3.0, 3.0, 4.0, 4.4, 3.9, 3.5, 3.8, 3.8, 3.4, 3.7, 3.6, 3.3, 3.4, 3.0, 3.4, 3.5, 3.4, 3.2, 3.1, 3.4, 4.1, 4.2, 3.1, 3.2, 3.5, 3.6, 3.0, 3.4, 3.5, 2.3, 3.2, 3.5, 3.8, 3.0, 3.8, 3.2, 3.7, 3.3, 3.2, 3.2, 3.1, 2.3, 2.8, 2.8, 3.3, 2.4, 2.9, 2.7, 2.0, 3.0, 2.2, 2.9, 2.9, 3.1, 3.0, 2.7, 2.2, 2.5, 3.2, 2.8, 2.5, 2.8, 2.9, 3.0, 2.8, 3.0, 2.9, 2.6, 2.4, 2.4, 2.7, 2.7, 3.0, 3.4, 3.1, 2.3, 3.0, 2.5, 2.6, 3.0, 2.6, 2.3, 2.7, 3.0, 2.9, 2.9, 2.5, 2.8, 3.3, 2.7, 3.0, 2.9, 3.0, 3.0, 2.5, 2.9, 2.5, 3.6, 3.2, 2.7, 3.0, 2.5, 2.8, 3.2, 3.0, 3.8, 2.6, 2.2, 3.2, 2.8, 2.8, 2.7, 3.3, 3.2, 2.8, 3.0, 2.8, 3.0, 2.8, 3.8, 2.8, 2.8, 2.6, 3.0, 3.4, 3.1, 3.0, 3.1, 3.1, 3.1, 2.7, 3.2, 3.3, 3.0, 2.5, 3.0, 3.4, 3.0]
|
||||
1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 2, 1, 0, 1, 0, 1, 1, 1, 2, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1
|
||||
2.0, 2.8, 3.6, 4.4
|
||||
VECTOR
|
||||
Q4[3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.4, 3.0, 3.0, 4.0, 4.4, 3.9, 3.5, 3.8, 3.8, 3.4, 3.7, 3.6, 3.3, 3.4, 3.0, 3.4, 3.5, 3.4, 3.2, 3.1, 3.4, 4.1, 4.2, 3.1, 3.2, 3.5, 3.6, 3.0, 3.4, 3.5, 2.3, 3.2, 3.5, 3.8, 3.0, 3.8, 3.2, 3.7, 3.3, 3.2, 3.2, 3.1, 2.3, 2.8, 2.8, 3.3, 2.4, 2.9, 2.7, 2.0, 3.0, 2.2, 2.9, 2.9, 3.1, 3.0, 2.7, 2.2, 2.5, 3.2, 2.8, 2.5, 2.8, 2.9, 3.0, 2.8, 3.0, 2.9, 2.6, 2.4, 2.4, 2.7, 2.7, 3.0, 3.4, 3.1, 2.3, 3.0, 2.5, 2.6, 3.0, 2.6, 2.3, 2.7, 3.0, 2.9, 2.9, 2.5, 2.8, 3.3, 2.7, 3.0, 2.9, 3.0, 3.0, 2.5, 2.9, 2.5, 3.6, 3.2, 2.7, 3.0, 2.5, 2.8, 3.2, 3.0, 3.8, 2.6, 2.2, 3.2, 2.8, 2.8, 2.7, 3.3, 3.2, 2.8, 3.0, 2.8, 3.0, 2.8, 3.8, 2.8, 2.8, 2.6, 3.0, 3.4, 3.1, 3.0, 3.1, 3.1, 3.1, 2.7, 3.2, 3.3, 3.0, 2.5, 3.0, 3.4, 3.0]
|
||||
3, 2, 2, 2, 3, 3, 3, 3, 1, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3, 0, 2, 3, 3, 2, 3, 2, 3, 3, 2, 2, 2, 0, 1, 1, 3, 0, 1, 0, 0, 2, 0, 1, 1, 2, 2, 0, 0, 0, 2, 1, 0, 1, 1, 2, 1, 2, 1, 0, 0, 0, 0, 0, 2, 3, 2, 0, 2, 0, 0, 2, 0, 0, 0, 2, 1, 1, 0, 1, 3, 0, 2, 1, 2, 2, 0, 1, 0, 3, 2, 0, 2, 0, 1, 2, 2, 3, 0, 0, 2, 1, 1, 0, 3, 2, 1, 2, 1, 2, 1, 3, 1, 1, 0, 2, 3, 2, 2, 2, 2, 2, 0, 2, 3, 2, 0, 2, 3, 2
|
||||
2.0, 2.8, 3.0, 3.3, 4.4
|
||||
VECTOR
|
||||
U4[3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.4, 3.0, 3.0, 4.0, 4.4, 3.9, 3.5, 3.8, 3.8, 3.4, 3.7, 3.6, 3.3, 3.4, 3.0, 3.4, 3.5, 3.4, 3.2, 3.1, 3.4, 4.1, 4.2, 3.1, 3.2, 3.5, 3.6, 3.0, 3.4, 3.5, 2.3, 3.2, 3.5, 3.8, 3.0, 3.8, 3.2, 3.7, 3.3, 3.2, 3.2, 3.1, 2.3, 2.8, 2.8, 3.3, 2.4, 2.9, 2.7, 2.0, 3.0, 2.2, 2.9, 2.9, 3.1, 3.0, 2.7, 2.2, 2.5, 3.2, 2.8, 2.5, 2.8, 2.9, 3.0, 2.8, 3.0, 2.9, 2.6, 2.4, 2.4, 2.7, 2.7, 3.0, 3.4, 3.1, 2.3, 3.0, 2.5, 2.6, 3.0, 2.6, 2.3, 2.7, 3.0, 2.9, 2.9, 2.5, 2.8, 3.3, 2.7, 3.0, 2.9, 3.0, 3.0, 2.5, 2.9, 2.5, 3.6, 3.2, 2.7, 3.0, 2.5, 2.8, 3.2, 3.0, 3.8, 2.6, 2.2, 3.2, 2.8, 2.8, 2.7, 3.3, 3.2, 2.8, 3.0, 2.8, 3.0, 2.8, 3.8, 2.8, 2.8, 2.6, 3.0, 3.4, 3.1, 3.0, 3.1, 3.1, 3.1, 2.7, 3.2, 3.3, 3.0, 2.5, 3.0, 3.4, 3.0]
|
||||
2, 1, 2, 1, 2, 3, 2, 2, 1, 1, 2, 2, 1, 1, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 3, 3, 1, 2, 2, 2, 1, 2, 2, 0, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 1, 0, 1, 1, 2, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 2, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 0, 1, 0, 2, 2, 1, 1, 0, 1, 2, 1, 3, 1, 0, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 2, 1
|
||||
2.0, 2.6, 3.2, 3.8, 4.4
|
||||
VECTOR
|
||||
Q3[1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4, 1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1.0, 1.7, 1.9, 1.6, 1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 1.2, 1.3, 1.4, 1.3, 1.5, 1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4, 4.7, 4.5, 4.9, 4.0, 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4.0, 4.7, 3.6, 4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4.0, 4.9, 4.7, 4.3, 4.4, 4.8, 5.0, 4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4.0, 4.4, 4.6, 4.0, 3.3, 4.2, 4.2, 4.2, 4.3, 3.0, 4.1, 6.0, 5.1, 5.9, 5.6, 5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.3, 5.5, 5.0, 5.1, 5.3, 5.5, 6.7, 6.9, 5.0, 5.7, 4.9, 6.7, 4.9, 5.7, 6.0, 4.8, 4.9, 5.6, 5.8, 6.1, 6.4, 5.6, 5.1, 5.6, 6.1, 5.6, 5.5, 4.8, 5.4, 5.6, 5.1, 5.1, 5.9, 5.7, 5.2, 5.0, 5.2, 5.4, 5.1]
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
|
||||
1.0, 2.63333, 4.9, 6.9
|
||||
VECTOR
|
||||
U3[1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4, 1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1.0, 1.7, 1.9, 1.6, 1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 1.2, 1.3, 1.4, 1.3, 1.5, 1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4, 4.7, 4.5, 4.9, 4.0, 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4.0, 4.7, 3.6, 4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4.0, 4.9, 4.7, 4.3, 4.4, 4.8, 5.0, 4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4.0, 4.4, 4.6, 4.0, 3.3, 4.2, 4.2, 4.2, 4.3, 3.0, 4.1, 6.0, 5.1, 5.9, 5.6, 5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.3, 5.5, 5.0, 5.1, 5.3, 5.5, 6.7, 6.9, 5.0, 5.7, 4.9, 6.7, 4.9, 5.7, 6.0, 4.8, 4.9, 5.6, 5.8, 6.1, 6.4, 5.6, 5.1, 5.6, 6.1, 5.6, 5.5, 4.8, 5.4, 5.6, 5.1, 5.1, 5.9, 5.7, 5.2, 5.0, 5.2, 5.4, 5.1]
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
|
||||
1.0, 2.96667, 4.93333, 6.9
|
||||
VECTOR
|
||||
Q4[1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4, 1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1.0, 1.7, 1.9, 1.6, 1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 1.2, 1.3, 1.4, 1.3, 1.5, 1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4, 4.7, 4.5, 4.9, 4.0, 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4.0, 4.7, 3.6, 4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4.0, 4.9, 4.7, 4.3, 4.4, 4.8, 5.0, 4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4.0, 4.4, 4.6, 4.0, 3.3, 4.2, 4.2, 4.2, 4.3, 3.0, 4.1, 6.0, 5.1, 5.9, 5.6, 5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.3, 5.5, 5.0, 5.1, 5.3, 5.5, 6.7, 6.9, 5.0, 5.7, 4.9, 6.7, 4.9, 5.7, 6.0, 4.8, 4.9, 5.6, 5.8, 6.1, 6.4, 5.6, 5.1, 5.6, 6.1, 5.6, 5.5, 4.8, 5.4, 5.6, 5.1, 5.1, 5.9, 5.7, 5.2, 5.0, 5.2, 5.4, 5.1]
|
||||
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 3, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3
|
||||
1.0, 1.6, 4.35, 5.1, 6.9
|
||||
VECTOR
|
||||
U4[1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4, 1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1.0, 1.7, 1.9, 1.6, 1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 1.2, 1.3, 1.4, 1.3, 1.5, 1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4, 4.7, 4.5, 4.9, 4.0, 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4.0, 4.7, 3.6, 4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4.0, 4.9, 4.7, 4.3, 4.4, 4.8, 5.0, 4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4.0, 4.4, 4.6, 4.0, 3.3, 4.2, 4.2, 4.2, 4.3, 3.0, 4.1, 6.0, 5.1, 5.9, 5.6, 5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.3, 5.5, 5.0, 5.1, 5.3, 5.5, 6.7, 6.9, 5.0, 5.7, 4.9, 6.7, 4.9, 5.7, 6.0, 4.8, 4.9, 5.6, 5.8, 6.1, 6.4, 5.6, 5.1, 5.6, 6.1, 5.6, 5.5, 4.8, 5.4, 5.6, 5.1, 5.1, 5.9, 5.7, 5.2, 5.0, 5.2, 5.4, 5.1]
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2, 2, 3, 2, 2, 2, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2
|
||||
1.0, 2.475, 3.95, 5.425, 6.9
|
||||
VECTOR
|
||||
Q3[0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.2, 0.1, 0.1, 0.2, 0.4, 0.4, 0.3, 0.3, 0.3, 0.2, 0.4, 0.2, 0.5, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.2, 0.4, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.2, 0.2, 0.3, 0.3, 0.2, 0.6, 0.4, 0.3, 0.2, 0.2, 0.2, 0.2, 1.4, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6, 1.0, 1.3, 1.4, 1.0, 1.5, 1.0, 1.4, 1.3, 1.4, 1.5, 1.0, 1.5, 1.1, 1.8, 1.3, 1.5, 1.2, 1.3, 1.4, 1.4, 1.7, 1.5, 1.0, 1.1, 1.0, 1.2, 1.6, 1.5, 1.6, 1.5, 1.3, 1.3, 1.3, 1.2, 1.4, 1.2, 1.0, 1.3, 1.2, 1.3, 1.3, 1.1, 1.3, 2.5, 1.9, 2.1, 1.8, 2.2, 2.1, 1.7, 1.8, 1.8, 2.5, 2.0, 1.9, 2.1, 2.0, 2.4, 2.3, 1.8, 2.2, 2.3, 1.5, 2.3, 2.0, 2.0, 1.8, 2.1, 1.8, 1.8, 1.8, 2.1, 1.6, 1.9, 2.0, 2.2, 1.5, 1.4, 2.3, 2.4, 1.8, 1.8, 2.1, 2.4, 2.3, 1.9, 2.3, 2.5, 2.3, 1.9, 2.0, 2.3, 1.8]
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
|
||||
0.1, 0.86667, 1.6, 2.5
|
||||
VECTOR
|
||||
U3[0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.2, 0.1, 0.1, 0.2, 0.4, 0.4, 0.3, 0.3, 0.3, 0.2, 0.4, 0.2, 0.5, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.2, 0.4, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.2, 0.2, 0.3, 0.3, 0.2, 0.6, 0.4, 0.3, 0.2, 0.2, 0.2, 0.2, 1.4, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6, 1.0, 1.3, 1.4, 1.0, 1.5, 1.0, 1.4, 1.3, 1.4, 1.5, 1.0, 1.5, 1.1, 1.8, 1.3, 1.5, 1.2, 1.3, 1.4, 1.4, 1.7, 1.5, 1.0, 1.1, 1.0, 1.2, 1.6, 1.5, 1.6, 1.5, 1.3, 1.3, 1.3, 1.2, 1.4, 1.2, 1.0, 1.3, 1.2, 1.3, 1.3, 1.1, 1.3, 2.5, 1.9, 2.1, 1.8, 2.2, 2.1, 1.7, 1.8, 1.8, 2.5, 2.0, 1.9, 2.1, 2.0, 2.4, 2.3, 1.8, 2.2, 2.3, 1.5, 2.3, 2.0, 2.0, 1.8, 2.1, 1.8, 1.8, 1.8, 2.1, 1.6, 1.9, 2.0, 2.2, 1.5, 1.4, 2.3, 2.4, 1.8, 1.8, 2.1, 2.4, 2.3, 1.9, 2.3, 2.5, 2.3, 1.9, 2.0, 2.3, 1.8]
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
|
||||
0.1, 0.9, 1.7, 2.5
|
||||
VECTOR
|
||||
Q4[0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.2, 0.1, 0.1, 0.2, 0.4, 0.4, 0.3, 0.3, 0.3, 0.2, 0.4, 0.2, 0.5, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.2, 0.4, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.2, 0.2, 0.3, 0.3, 0.2, 0.6, 0.4, 0.3, 0.2, 0.2, 0.2, 0.2, 1.4, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6, 1.0, 1.3, 1.4, 1.0, 1.5, 1.0, 1.4, 1.3, 1.4, 1.5, 1.0, 1.5, 1.1, 1.8, 1.3, 1.5, 1.2, 1.3, 1.4, 1.4, 1.7, 1.5, 1.0, 1.1, 1.0, 1.2, 1.6, 1.5, 1.6, 1.5, 1.3, 1.3, 1.3, 1.2, 1.4, 1.2, 1.0, 1.3, 1.2, 1.3, 1.3, 1.1, 1.3, 2.5, 1.9, 2.1, 1.8, 2.2, 2.1, 1.7, 1.8, 1.8, 2.5, 2.0, 1.9, 2.1, 2.0, 2.4, 2.3, 1.8, 2.2, 2.3, 1.5, 2.3, 2.0, 2.0, 1.8, 2.1, 1.8, 1.8, 1.8, 2.1, 1.6, 1.9, 2.0, 2.2, 1.5, 1.4, 2.3, 2.4, 1.8, 1.8, 2.1, 2.4, 2.3, 1.9, 2.3, 2.5, 2.3, 1.9, 2.0, 2.3, 1.8]
|
||||
0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
|
||||
0.1, 0.3, 1.3, 1.8, 2.5
|
||||
VECTOR
|
||||
U4[0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.2, 0.1, 0.1, 0.2, 0.4, 0.4, 0.3, 0.3, 0.3, 0.2, 0.4, 0.2, 0.5, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.2, 0.4, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.2, 0.2, 0.3, 0.3, 0.2, 0.6, 0.4, 0.3, 0.2, 0.2, 0.2, 0.2, 1.4, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6, 1.0, 1.3, 1.4, 1.0, 1.5, 1.0, 1.4, 1.3, 1.4, 1.5, 1.0, 1.5, 1.1, 1.8, 1.3, 1.5, 1.2, 1.3, 1.4, 1.4, 1.7, 1.5, 1.0, 1.1, 1.0, 1.2, 1.6, 1.5, 1.6, 1.5, 1.3, 1.3, 1.3, 1.2, 1.4, 1.2, 1.0, 1.3, 1.2, 1.3, 1.3, 1.1, 1.3, 2.5, 1.9, 2.1, 1.8, 2.2, 2.1, 1.7, 1.8, 1.8, 2.5, 2.0, 1.9, 2.1, 2.0, 2.4, 2.3, 1.8, 2.2, 2.3, 1.5, 2.3, 2.0, 2.0, 1.8, 2.1, 1.8, 1.8, 1.8, 2.1, 1.6, 1.9, 2.0, 2.2, 1.5, 1.4, 2.3, 2.4, 1.8, 1.8, 2.1, 2.4, 2.3, 1.9, 2.3, 2.5, 2.3, 1.9, 2.0, 2.3, 1.8]
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 3, 3, 3, 2, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2
|
||||
0.1, 0.7, 1.3, 1.9, 2.5
|
18
tests/test
18
tests/test
@@ -1,18 +0,0 @@
|
||||
#!/bin/bash
|
||||
if [ -d build ] ; then
|
||||
rm -fr build
|
||||
fi
|
||||
if [ -d gcovr-report ] ; then
|
||||
rm -fr gcovr-report
|
||||
fi
|
||||
cmake -S . -B build -Wno-dev -DCMAKE_BUILD_TYPE=Debug -DCMAKE_CXX_FLAGS="--coverage" -DCMAKE_C_FLAGS="--coverage"
|
||||
cmake --build build
|
||||
cd build
|
||||
ctest --output-on-failure
|
||||
cd ..
|
||||
mkdir gcovr-report
|
||||
#lcov --capture --directory ./ --output-file lcoverage/main_coverage.info
|
||||
#lcov --remove lcoverage/main_coverage.info 'v1/*' '/Applications/*' '*/tests/*' --output-file lcoverage/main_coverage.info -q
|
||||
#lcov --list lcoverage/main_coverage.info
|
||||
cd ..
|
||||
gcovr --gcov-filter "CPPFImdlp.cpp" --gcov-filter "Metrics.cpp" --gcov-filter "BinDisc.cpp" --gcov-filter "Discretizer.h" --txt --sonarqube=tests/gcovr-report/coverage.xml --exclude-noncode-lines
|
@@ -1,412 +0,0 @@
|
||||
from scipy.io.arff import loadarff
|
||||
from sklearn.preprocessing import KBinsDiscretizer
|
||||
|
||||
|
||||
def test(clf, X, expected, title):
|
||||
X = [[x] for x in X]
|
||||
clf.fit(X)
|
||||
computed = [int(x[0]) for x in clf.transform(X)]
|
||||
print(f"{title}")
|
||||
print(f"{computed=}")
|
||||
print(f"{expected=}")
|
||||
assert computed == expected
|
||||
print("-" * 80)
|
||||
|
||||
|
||||
# Test Uniform Strategy
|
||||
clf3u = KBinsDiscretizer(
|
||||
n_bins=3, encode="ordinal", strategy="uniform", subsample=200_000
|
||||
)
|
||||
clf3q = KBinsDiscretizer(
|
||||
n_bins=3, encode="ordinal", strategy="quantile", subsample=200_000
|
||||
)
|
||||
clf4u = KBinsDiscretizer(
|
||||
n_bins=4, encode="ordinal", strategy="uniform", subsample=200_000
|
||||
)
|
||||
clf4q = KBinsDiscretizer(
|
||||
n_bins=4, encode="ordinal", strategy="quantile", subsample=200_000
|
||||
)
|
||||
#
|
||||
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
|
||||
labels = [0, 0, 0, 1, 1, 1, 2, 2, 2]
|
||||
test(clf3u, X, labels, title="Easy3BinsUniform")
|
||||
test(clf3q, X, labels, title="Easy3BinsQuantile")
|
||||
#
|
||||
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
|
||||
labels = [0, 0, 0, 1, 1, 1, 2, 2, 2, 2]
|
||||
# En C++ se obtiene el mismo resultado en ambos, no como aquí
|
||||
labels2 = [0, 0, 0, 1, 1, 1, 1, 2, 2, 2]
|
||||
test(clf3u, X, labels, title="X10BinsUniform")
|
||||
test(clf3q, X, labels2, title="X10BinsQuantile")
|
||||
#
|
||||
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0]
|
||||
labels = [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2]
|
||||
# En C++ se obtiene el mismo resultado en ambos, no como aquí
|
||||
# labels2 = [0, 0, 0, 1, 1, 1, 1, 2, 2, 2]
|
||||
test(clf3u, X, labels, title="X11BinsUniform")
|
||||
test(clf3q, X, labels, title="X11BinsQuantile")
|
||||
#
|
||||
X = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
|
||||
labels = [0, 0, 0, 0, 0, 0]
|
||||
test(clf3u, X, labels, title="ConstantUniform")
|
||||
test(clf3q, X, labels, title="ConstantQuantile")
|
||||
#
|
||||
X = [3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0]
|
||||
labels = [2, 0, 0, 2, 0, 0, 2, 0, 0]
|
||||
labels2 = [1, 0, 0, 1, 0, 0, 1, 0, 0] # igual que en C++
|
||||
test(clf3u, X, labels, title="EasyRepeatedUniform")
|
||||
test(clf3q, X, labels2, title="EasyRepeatedQuantile")
|
||||
#
|
||||
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0]
|
||||
labels = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]
|
||||
test(clf4u, X, labels, title="Easy4BinsUniform")
|
||||
test(clf4q, X, labels, title="Easy4BinsQuantile")
|
||||
#
|
||||
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0]
|
||||
labels = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3]
|
||||
test(clf4u, X, labels, title="X13BinsUniform")
|
||||
test(clf4q, X, labels, title="X13BinsQuantile")
|
||||
#
|
||||
X = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0]
|
||||
labels = [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3]
|
||||
test(clf4u, X, labels, title="X14BinsUniform")
|
||||
test(clf4q, X, labels, title="X14BinsQuantile")
|
||||
#
|
||||
X1 = [15.0, 8.0, 12.0, 14.0, 6.0, 1.0, 13.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0]
|
||||
X2 = [15.0, 13.0, 12.0, 14.0, 6.0, 1.0, 8.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0]
|
||||
labels1 = [3, 2, 3, 3, 1, 0, 3, 2, 2, 2, 1, 0, 0, 1, 0]
|
||||
labels2 = [3, 3, 3, 3, 1, 0, 2, 2, 2, 2, 1, 0, 0, 1, 0]
|
||||
test(clf4u, X1, labels1, title="X15BinsUniform")
|
||||
test(clf4q, X2, labels2, title="X15BinsQuantile")
|
||||
#
|
||||
X = [0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 3.0, 4.0]
|
||||
labels = [0, 1, 1, 1, 2, 2, 3, 3, 3, 3]
|
||||
test(clf4u, X, labels, title="RepeatedValuesUniform")
|
||||
test(clf4q, X, labels, title="RepeatedValuesQuantile")
|
||||
|
||||
print(f"Uniform {clf4u.bin_edges_=}")
|
||||
print(f"Quaintile {clf4q.bin_edges_=}")
|
||||
print("-" * 80)
|
||||
#
|
||||
data, meta = loadarff("tests/datasets/iris.arff")
|
||||
|
||||
labelsu = [
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
3,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
0,
|
||||
2,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
2,
|
||||
1,
|
||||
3,
|
||||
2,
|
||||
2,
|
||||
3,
|
||||
0,
|
||||
3,
|
||||
2,
|
||||
3,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
3,
|
||||
3,
|
||||
1,
|
||||
2,
|
||||
1,
|
||||
3,
|
||||
2,
|
||||
2,
|
||||
3,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
3,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
]
|
||||
labelsq = [
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
1,
|
||||
3,
|
||||
1,
|
||||
2,
|
||||
0,
|
||||
3,
|
||||
1,
|
||||
0,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
3,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
2,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
1,
|
||||
2,
|
||||
3,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
0,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
1,
|
||||
1,
|
||||
2,
|
||||
2,
|
||||
3,
|
||||
2,
|
||||
3,
|
||||
3,
|
||||
0,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
1,
|
||||
2,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
2,
|
||||
3,
|
||||
1,
|
||||
3,
|
||||
2,
|
||||
3,
|
||||
3,
|
||||
2,
|
||||
2,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
2,
|
||||
2,
|
||||
3,
|
||||
2,
|
||||
3,
|
||||
2,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
2,
|
||||
3,
|
||||
3,
|
||||
3,
|
||||
2,
|
||||
3,
|
||||
2,
|
||||
2,
|
||||
]
|
||||
# test(clf4u, data["sepallength"], labelsu, title="IrisUniform")
|
||||
# test(clf4q, data["sepallength"], labelsq, title="IrisQuantile")
|
||||
sepallength = [[x] for x in data["sepallength"]]
|
||||
clf4u.fit(sepallength)
|
||||
clf4q.fit(sepallength)
|
||||
computedu = clf4u.transform(sepallength)
|
||||
computedq = clf4q.transform(sepallength)
|
||||
wrongu = 0
|
||||
wrongq = 0
|
||||
for i in range(len(labelsu)):
|
||||
if labelsu[i] != computedu[i]:
|
||||
wrongu += 1
|
||||
if labelsq[i] != computedq[i]:
|
||||
wrongq += 1
|
||||
print(f"Iris sepallength diff. between BinDisc & sklearn::KBins Uniform ={wrongu:3d}")
|
||||
print(f"Iris sepallength diff. between BinDisc & sklearn::KBins Quantile ={wrongq:3d}")
|
71
tests/tests_do.py
Normal file
71
tests/tests_do.py
Normal file
@@ -0,0 +1,71 @@
|
||||
# ***************************************************************
|
||||
# SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
# SPDX-FileType: SOURCE
|
||||
# SPDX-License-Identifier: MIT
|
||||
# ***************************************************************
|
||||
|
||||
import json
|
||||
from sklearn.preprocessing import KBinsDiscretizer
|
||||
|
||||
with open("datasets/tests.txt") as f:
|
||||
data = f.readlines()
|
||||
|
||||
data = [x.strip() for x in data if x[0] != "#"]
|
||||
|
||||
errors = False
|
||||
for i in range(0, len(data), 4):
|
||||
experiment_type = data[i]
|
||||
print("Experiment:", data[i + 1])
|
||||
if experiment_type == "RANGE":
|
||||
range_data = data[i + 1]
|
||||
from_, to_, step_, n_bins_, strategy_ = range_data.split(",")
|
||||
X = [[float(x)] for x in range(int(from_), int(to_), int(step_))]
|
||||
else:
|
||||
strategy_ = data[i + 1][0]
|
||||
n_bins_ = data[i + 1][1]
|
||||
vector = data[i + 1][2:]
|
||||
X = [[float(x)] for x in json.loads(vector)]
|
||||
|
||||
strategy = "quantile" if strategy_.strip() == "Q" else "uniform"
|
||||
disc = KBinsDiscretizer(
|
||||
n_bins=int(n_bins_),
|
||||
encode="ordinal",
|
||||
strategy=strategy,
|
||||
)
|
||||
expected_data = data[i + 2]
|
||||
cuts_data = data[i + 3]
|
||||
disc.fit(X)
|
||||
#
|
||||
# Normalize the cutpoints to remove numerical errors such as 33.0000000001
|
||||
# instead of 33
|
||||
#
|
||||
for j in range(len(disc.bin_edges_[0])):
|
||||
disc.bin_edges_[0][j] = round(disc.bin_edges_[0][j], 5)
|
||||
result = disc.transform(X)
|
||||
result = [int(x) for x in result.flatten()]
|
||||
expected = [int(x) for x in expected_data.split(",")]
|
||||
#
|
||||
# Check the Results
|
||||
#
|
||||
assert len(result) == len(expected)
|
||||
for j in range(len(result)):
|
||||
if result[j] != expected[j]:
|
||||
print("* Error at", j, "Expected=", expected[j], "Result=", result[j])
|
||||
errors = True
|
||||
expected_cuts = disc.bin_edges_[0]
|
||||
computed_cuts = [float(x) for x in cuts_data.split(",")]
|
||||
assert len(expected_cuts) == len(computed_cuts)
|
||||
for j in range(len(expected_cuts)):
|
||||
if round(expected_cuts[j], 5) != computed_cuts[j]:
|
||||
print(
|
||||
"* Error at",
|
||||
j,
|
||||
"Expected=",
|
||||
expected_cuts[j],
|
||||
"Result=",
|
||||
computed_cuts[j],
|
||||
)
|
||||
errors = True
|
||||
if errors:
|
||||
raise Exception("There were errors!")
|
||||
print("*** All tests run succesfully! ***")
|
209
tests/tests_generate.ipynb
Normal file
209
tests/tests_generate.ipynb
Normal file
@@ -0,0 +1,209 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.preprocessing import KBinsDiscretizer\n",
|
||||
"from sklearn.datasets import load_iris"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"experiments_range = [\n",
|
||||
" [0, 100, 1, 4, \"Q\"],\n",
|
||||
" [0, 50, 1, 4, \"Q\"],\n",
|
||||
" [0, 100, 1, 3, \"Q\"],\n",
|
||||
" [0, 50, 1, 3, \"Q\"],\n",
|
||||
" [0, 10, 1, 3, \"Q\"],\n",
|
||||
" [0, 100, 1, 4, \"U\"],\n",
|
||||
" [0, 50, 1, 4, \"U\"],\n",
|
||||
" [0, 100, 1, 3, \"U\"],\n",
|
||||
" [0, 50, 1, 3, \"U\"],\n",
|
||||
"# \n",
|
||||
" [0, 10, 1, 3, \"U\"],\n",
|
||||
" [1, 10, 1, 3, \"Q\"],\n",
|
||||
" [1, 10, 1, 3, \"U\"],\n",
|
||||
" [1, 11, 1, 3, \"Q\"],\n",
|
||||
" [1, 11, 1, 3, \"U\"],\n",
|
||||
" [1, 12, 1, 3, \"Q\"],\n",
|
||||
" [1, 12, 1, 3, \"U\"],\n",
|
||||
" [1, 13, 1, 3, \"Q\"],\n",
|
||||
" [1, 13, 1, 3, \"U\"],\n",
|
||||
" [1, 14, 1, 3, \"Q\"],\n",
|
||||
" [1, 14, 1, 3, \"U\"],\n",
|
||||
" [1, 15, 1, 3, \"Q\"],\n",
|
||||
" [1, 15, 1, 3, \"U\"]\n",
|
||||
"]\n",
|
||||
"experiments_vectors = [\n",
|
||||
" (3, [3.0, 1.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 1.0]),\n",
|
||||
" (3, [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0]),\n",
|
||||
" (3, [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0]),\n",
|
||||
" (3, [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0]),\n",
|
||||
" (3, [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0]),\n",
|
||||
" (3, [15.0, 8.0, 12.0, 14.0, 6.0, 1.0, 13.0, 11.0, 10.0, 9.0, 7.0, 4.0, 3.0, 5.0, 2.0]),\n",
|
||||
" (3, [0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 3.0, 4.0])\n",
|
||||
"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/home/rmontanana/miniconda3/lib/python3.11/site-packages/sklearn/preprocessing/_discretization.py:307: UserWarning: Bins whose width are too small (i.e., <= 1e-8) in feature 0 are removed. Consider decreasing the number of bins.\n",
|
||||
" warnings.warn(\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"def write_lists(file, data, cuts):\n",
|
||||
" sep = \"\"\n",
|
||||
" for res in data:\n",
|
||||
" file.write(f\"{sep}{int(res):d}\")\n",
|
||||
" sep= \", \"\n",
|
||||
" file.write(\"\\n\")\n",
|
||||
" sep = \"\"\n",
|
||||
" for res in cuts:\n",
|
||||
" file.write(sep + str(round(res,5)))\n",
|
||||
" sep = \", \"\n",
|
||||
" file.write(\"\\n\")\n",
|
||||
"\n",
|
||||
"def normalize_cuts(cuts):\n",
|
||||
" #\n",
|
||||
" # Normalize the cutpoints to remove numerical errors such as 33.0000000001\n",
|
||||
" # instead of 33\n",
|
||||
" #\n",
|
||||
" for k in range(cuts.shape[0]):\n",
|
||||
" for i in range(len(cuts[k])):\n",
|
||||
" cuts[k][i] = round(cuts[k][i], 5)\n",
|
||||
"\n",
|
||||
"with open(\"datasets/tests.txt\", \"w\") as file:\n",
|
||||
" file.write(\"#\\n\")\n",
|
||||
" file.write(\"# from, to, step, #bins, Q/U\\n\")\n",
|
||||
" file.write(\"# discretized data\\n\")\n",
|
||||
" file.write(\"# cut points\\n\")\n",
|
||||
" file.write(\"#\\n\")\n",
|
||||
" #\n",
|
||||
" # Range experiments\n",
|
||||
" #\n",
|
||||
" file.write(\"#\\n\")\n",
|
||||
" file.write(\"# Range experiments\\n\")\n",
|
||||
" file.write(\"#\\n\")\n",
|
||||
" for experiment in experiments_range:\n",
|
||||
" file.write(\"RANGE\\n\")\n",
|
||||
" (from_, to_, step_, bins_, strategy) = experiment\n",
|
||||
" disc = KBinsDiscretizer(n_bins=bins_, encode='ordinal', strategy='quantile' if strategy.strip() == \"Q\" else 'uniform')\n",
|
||||
" data = [[x] for x in range(from_, to_, step_)]\n",
|
||||
" disc.fit(data)\n",
|
||||
" normalize_cuts(disc.bin_edges_)\n",
|
||||
" result = disc.transform(data)\n",
|
||||
" file.write(f\"{from_}, {to_}, {step_}, {bins_}, {strategy}\\n\")\n",
|
||||
" write_lists(file, result, disc.bin_edges_[0])\n",
|
||||
" #\n",
|
||||
" # Vector experiments\n",
|
||||
" #\n",
|
||||
" file.write(\"#\\n\")\n",
|
||||
" file.write(\"# Vector experiments\\n\")\n",
|
||||
" file.write(\"#\\n\")\n",
|
||||
" for n_bins, experiment in experiments_vectors:\n",
|
||||
" for strategy in [\"Q\", \"U\"]:\n",
|
||||
" file.write(\"VECTOR\\n\")\n",
|
||||
" file.write(f\"{strategy}{n_bins}{experiment}\\n\")\n",
|
||||
" disc = KBinsDiscretizer(\n",
|
||||
" n_bins=n_bins,\n",
|
||||
" encode=\"ordinal\",\n",
|
||||
" \n",
|
||||
" strategy=\"quantile\" if strategy.strip() == \"Q\" else \"uniform\",\n",
|
||||
" )\n",
|
||||
" data = [[x] for x in experiment]\n",
|
||||
" disc.fit(data)\n",
|
||||
" normalize_cuts(disc.bin_edges_)\n",
|
||||
" result = disc.transform(data)\n",
|
||||
" write_lists(file, result, disc.bin_edges_[0])\n",
|
||||
" #\n",
|
||||
" # Vector experiments iris\n",
|
||||
" #\n",
|
||||
" file.write(\"#\\n\");\n",
|
||||
" file.write(\"# Vector experiments with iris\\n\");\n",
|
||||
" file.write(\"#\\n\");\n",
|
||||
" X, y = load_iris(return_X_y=True)\n",
|
||||
" for i in range(X.shape[1]):\n",
|
||||
" for n_bins in [3, 4]:\n",
|
||||
" for strategy in [\"Q\", \"U\"]:\n",
|
||||
" file.write(\"VECTOR\\n\")\n",
|
||||
" experiment = X[:, i]\n",
|
||||
" file.write(f\"{strategy}{n_bins}{experiment.tolist()}\\n\")\n",
|
||||
" disc = KBinsDiscretizer(\n",
|
||||
" n_bins=n_bins,\n",
|
||||
" encode=\"ordinal\",\n",
|
||||
" strategy=\"quantile\" if strategy.strip() == \"Q\" else \"uniform\")\n",
|
||||
" data = [[x] for x in experiment]\n",
|
||||
" disc.fit(data)\n",
|
||||
" normalize_cuts(disc.bin_edges_)\n",
|
||||
" result = disc.transform(data)\n",
|
||||
" write_lists(file, result, disc.bin_edges_[0])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Cut points: [array([ 0., 33., 66., 99.])]\n",
|
||||
"Mistaken transformed data disc.transform([[33]]) = [[0.]]\n",
|
||||
"Reason of the mistake the cutpoint has decimals (double): 33.00000000000001\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"#\n",
|
||||
"# Proving the mistakes due to floating point precision\n",
|
||||
"#\n",
|
||||
"from sklearn.preprocessing import KBinsDiscretizer\n",
|
||||
"\n",
|
||||
"data = [[x] for x in range(100)]\n",
|
||||
"disc = KBinsDiscretizer(n_bins=3, encode=\"ordinal\", strategy=\"quantile\")\n",
|
||||
"disc.fit(data)\n",
|
||||
"print(\"Cut points: \", disc.bin_edges_)\n",
|
||||
"print(\"Mistaken transformed data disc.transform([[33]]) =\", disc.transform([[33]]))\n",
|
||||
"print(\"Reason of the mistake the cutpoint has decimals (double): \", disc.bin_edges_[0][1])"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "base",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.1.undefined"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
38
update_coverage.py
Normal file
38
update_coverage.py
Normal file
@@ -0,0 +1,38 @@
|
||||
# ***************************************************************
|
||||
# SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
# SPDX-FileType: SOURCE
|
||||
# SPDX-License-Identifier: MIT
|
||||
# ***************************************************************
|
||||
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
readme_file = "README.md"
|
||||
print("Updating coverage...")
|
||||
# Generate badge line
|
||||
output = subprocess.check_output(
|
||||
"lcov --summary " + sys.argv[1] + "/coverage.info",
|
||||
shell=True,
|
||||
)
|
||||
value = output.decode("utf-8").strip()
|
||||
percentage = 0
|
||||
for line in value.splitlines():
|
||||
if "lines" in line:
|
||||
percentage = float(line.split(":")[1].split("%")[0])
|
||||
break
|
||||
print(f"Coverage: {percentage}%")
|
||||
if percentage < 90:
|
||||
print("⛔Coverage is less than 90%. I won't update the badge.")
|
||||
sys.exit(1)
|
||||
percentage_label = str(percentage).replace(".", ",")
|
||||
coverage_line = f"[](html/index.html)"
|
||||
# Update README.md
|
||||
with open(readme_file, "r") as f:
|
||||
lines = f.readlines()
|
||||
with open(readme_file, "w") as f:
|
||||
for line in lines:
|
||||
if "img.shields.io/badge/Coverage" in line:
|
||||
f.write(coverage_line + "\n")
|
||||
else:
|
||||
f.write(line)
|
||||
print(f"✅Coverage updated with value: {percentage}")
|
Reference in New Issue
Block a user