mirror of
https://github.com/rmontanana/mdlp.git
synced 2025-08-15 07:25:56 +00:00
Fix conan (#10)
* Fix debug conan build target * Add viewcoverage and fix coverage generation * Add more tests to cover new integrity checks * Add tests to accomplish 100% * Fix conan-create makefile target
This commit is contained in:
committed by
GitHub
parent
c1759ba1ce
commit
6d8b55a808
3
.gitignore
vendored
3
.gitignore
vendored
@@ -39,4 +39,5 @@ build_release
|
||||
.idea
|
||||
cmake-*
|
||||
**/CMakeFiles
|
||||
**/gcovr-report
|
||||
**/gcovr-report
|
||||
CMakeUserPresets.json
|
||||
|
@@ -10,12 +10,11 @@ set(CMAKE_CXX_STANDARD 17)
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
|
||||
# Find dependencies
|
||||
find_package(Torch REQUIRED)
|
||||
find_package(Torch CONFIG REQUIRED)
|
||||
|
||||
# Options
|
||||
# -------
|
||||
option(ENABLE_TESTING OFF)
|
||||
option(ENABLE_SAMPLE OFF)
|
||||
option(COVERAGE OFF)
|
||||
|
||||
add_subdirectory(config)
|
||||
@@ -26,21 +25,24 @@ if (NOT ${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-default-inline")
|
||||
endif()
|
||||
|
||||
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
|
||||
message(STATUS "Debug mode")
|
||||
else()
|
||||
message(STATUS "Release mode")
|
||||
endif()
|
||||
|
||||
if (ENABLE_TESTING)
|
||||
message("Debug mode")
|
||||
|
||||
message(STATUS "Testing is enabled")
|
||||
enable_testing()
|
||||
set(CODE_COVERAGE ON)
|
||||
set(GCC_COVERAGE_LINK_FLAGS "${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||
add_subdirectory(tests)
|
||||
else()
|
||||
message("Release mode")
|
||||
message(STATUS "Testing is disabled")
|
||||
endif()
|
||||
|
||||
if (ENABLE_SAMPLE)
|
||||
message("Building sample")
|
||||
add_subdirectory(sample)
|
||||
endif()
|
||||
message(STATUS "Building sample")
|
||||
add_subdirectory(sample)
|
||||
|
||||
include_directories(
|
||||
${fimdlp_SOURCE_DIR}/src
|
||||
@@ -62,11 +64,10 @@ write_basic_package_version_file(
|
||||
install(TARGETS fimdlp
|
||||
EXPORT fimdlpTargets
|
||||
ARCHIVE DESTINATION lib
|
||||
LIBRARY DESTINATION lib
|
||||
CONFIGURATIONS Release)
|
||||
LIBRARY DESTINATION lib)
|
||||
|
||||
install(DIRECTORY src/ DESTINATION include/fimdlp FILES_MATCHING CONFIGURATIONS Release PATTERN "*.h")
|
||||
install(FILES ${CMAKE_BINARY_DIR}/configured_files/include/config.h DESTINATION include/fimdlp CONFIGURATIONS Release)
|
||||
install(DIRECTORY src/ DESTINATION include/fimdlp FILES_MATCHING PATTERN "*.h")
|
||||
install(FILES ${CMAKE_BINARY_DIR}/configured_files/include/config.h DESTINATION include/fimdlp)
|
||||
|
||||
install(EXPORT fimdlpTargets
|
||||
FILE fimdlpTargets.cmake
|
||||
|
@@ -1,11 +0,0 @@
|
||||
{
|
||||
"version": 4,
|
||||
"vendor": {
|
||||
"conan": {}
|
||||
},
|
||||
"include": [
|
||||
"build_release/build/Release/generators/CMakePresets.json",
|
||||
"build_debug/build/Debug/generators/CMakePresets.json",
|
||||
"build/Release/generators/CMakePresets.json"
|
||||
]
|
||||
}
|
58
Makefile
58
Makefile
@@ -1,28 +1,34 @@
|
||||
SHELL := /bin/bash
|
||||
.DEFAULT_GOAL := build
|
||||
.PHONY: build install test
|
||||
.DEFAULT_GOAL := release
|
||||
.PHONY: debug release install test conan-create viewcoverage
|
||||
lcov := lcov
|
||||
|
||||
f_debug = build_debug
|
||||
f_release = build_release
|
||||
genhtml = genhtml
|
||||
docscdir = docs
|
||||
|
||||
build: ## Build the project for Release
|
||||
@echo ">>> Building the project for Release..."
|
||||
@if [ -d $(f_release) ]; then rm -fr $(f_release); fi
|
||||
@conan install . --build=missing -of $(f_release) -s build_type=Release --profile:build=default --profile:host=default
|
||||
cmake -S . -B $(f_release) -DCMAKE_TOOLCHAIN_FILE=$(f_release)/build/Release/generators/conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release -DENABLE_TESTING=OFF -DENABLE_SAMPLE=OFF
|
||||
@cmake --build $(f_release) -j 8
|
||||
define build_target
|
||||
@echo ">>> Building the project for $(1)..."
|
||||
@if [ -d $(2) ]; then rm -fr $(2); fi
|
||||
@conan install . --build=missing -of $(2) -s build_type=$(1)
|
||||
@cmake -S . -B $(2) -DCMAKE_TOOLCHAIN_FILE=$(2)/build/$(1)/generators/conan_toolchain.cmake -DCMAKE_BUILD_TYPE=$(1) -D$(3)
|
||||
@cmake --build $(2) --config $(1) -j 8
|
||||
endef
|
||||
|
||||
debug: ## Build Debug version of the library
|
||||
@$(call build_target,"Debug","$(f_debug)", "ENABLE_TESTING=ON")
|
||||
|
||||
release: ## Build Release version of the library
|
||||
@$(call build_target,"Release","$(f_release)", "ENABLE_TESTING=OFF")
|
||||
|
||||
install: ## Install the project
|
||||
@echo ">>> Installing the project..."
|
||||
@cmake --build build_release --target install -j 8
|
||||
@cmake --build $(f_release) --target install -j 8
|
||||
|
||||
test: ## Build Debug version and run tests
|
||||
@echo ">>> Building Debug version and running tests..."
|
||||
@if [ -d $(f_debug) ]; then rm -fr $(f_debug); fi
|
||||
@conan install . --build=missing -of $(f_debug) -s build_type=Debug
|
||||
@cmake -B $(f_debug) -S . -DCMAKE_BUILD_TYPE=Debug -DCMAKE_TOOLCHAIN_FILE=$(f_debug)/build/Debug/generators/conan_toolchain.cmake -DENABLE_TESTING=ON -DENABLE_SAMPLE=ON
|
||||
@cmake --build $(f_debug) -j 8
|
||||
@$(MAKE) debug;
|
||||
@cp -r tests/datasets $(f_debug)/tests/datasets
|
||||
@cd $(f_debug)/tests && ctest --output-on-failure -j 8
|
||||
@cd $(f_debug)/tests && $(lcov) --capture --directory ../ --demangle-cpp --ignore-errors source,source --ignore-errors mismatch --output-file coverage.info >/dev/null 2>&1; \
|
||||
@@ -30,7 +36,8 @@ test: ## Build Debug version and run tests
|
||||
$(lcov) --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'gtest/*' --output-file coverage.info >/dev/null 2>&1;
|
||||
$(lcov) --remove coverage.info 'gtest/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info '*/.conan2/*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1;
|
||||
@genhtml $(f_debug)/tests/coverage.info --demangle-cpp --output-directory $(f_debug)/tests/coverage --title "Discretizer mdlp Coverage Report" -s -k -f --legend
|
||||
@echo "* Coverage report is generated at $(f_debug)/tests/coverage/index.html"
|
||||
@which python || (echo ">>> Please install python"; exit 1)
|
||||
@@ -39,4 +46,25 @@ test: ## Build Debug version and run tests
|
||||
exit 1; \
|
||||
fi
|
||||
@echo ">>> Updating coverage badge..."
|
||||
@env python update_coverage.py $(f_debug)/tests
|
||||
@env python update_coverage.py $(f_debug)/tests
|
||||
@echo ">>> Done"
|
||||
|
||||
viewcoverage: ## View the html coverage report
|
||||
@which $(genhtml) >/dev/null || (echo ">>> Please install lcov (genhtml not found)"; exit 1)
|
||||
@if [ ! -d $(docscdir)/coverage ]; then mkdir -p $(docscdir)/coverage; fi
|
||||
@if [ ! -f $(f_debug)/tests/coverage.info ]; then \
|
||||
echo ">>> No coverage.info file found. Run make coverage first!"; \
|
||||
exit 1; \
|
||||
fi
|
||||
@$(genhtml) $(f_debug)/tests/coverage.info --demangle-cpp --output-directory $(docscdir)/coverage --title "FImdlp Coverage Report" -s -k -f --legend >/dev/null 2>&1;
|
||||
@xdg-open $(docscdir)/coverage/index.html || open $(docscdir)/coverage/index.html 2>/dev/null
|
||||
@echo ">>> Done";
|
||||
|
||||
conan-create: ## Create the conan package
|
||||
@echo ">>> Creating the conan package..."
|
||||
conan create . --build=missing -tf "" -s:a build_type=Release
|
||||
conan create . --build=missing -tf "" -s:a build_type=Debug -o "&:enable_testing=False"
|
||||
@echo ">>> Done"
|
||||
|
||||
|
||||
|
||||
|
@@ -1,101 +0,0 @@
|
||||
# This is the CMakeCache file.
|
||||
# For build in directory: /home/rmontanana/Code/mdlp/build_conan
|
||||
# It was generated by CMake: /usr/bin/cmake
|
||||
# You can edit this file to change values found and used by cmake.
|
||||
# If you do not want to change any of the values, simply exit the editor.
|
||||
# If you do want to change a value, simply edit, save, and exit the editor.
|
||||
# The syntax for the file is as follows:
|
||||
# KEY:TYPE=VALUE
|
||||
# KEY is the name of a variable in the cache.
|
||||
# TYPE is a hint to GUIs for the type of VALUE, DO NOT EDIT TYPE!.
|
||||
# VALUE is the current value for the KEY.
|
||||
|
||||
########################
|
||||
# EXTERNAL cache entries
|
||||
########################
|
||||
|
||||
//No help, variable specified on the command line.
|
||||
CMAKE_BUILD_TYPE:UNINITIALIZED=Release
|
||||
|
||||
//Value Computed by CMake.
|
||||
CMAKE_FIND_PACKAGE_REDIRECTS_DIR:STATIC=/home/rmontanana/Code/mdlp/build_conan/CMakeFiles/pkgRedirects
|
||||
|
||||
//Value Computed by CMake
|
||||
CMAKE_PROJECT_DESCRIPTION:STATIC=Discretization algorithm based on the paper by Fayyad & Irani Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning.
|
||||
|
||||
//Value Computed by CMake
|
||||
CMAKE_PROJECT_HOMEPAGE_URL:STATIC=https://github.com/rmontanana/mdlp
|
||||
|
||||
//Value Computed by CMake
|
||||
CMAKE_PROJECT_NAME:STATIC=fimdlp
|
||||
|
||||
//Value Computed by CMake
|
||||
CMAKE_PROJECT_VERSION:STATIC=2.1.0
|
||||
|
||||
//Value Computed by CMake
|
||||
CMAKE_PROJECT_VERSION_MAJOR:STATIC=2
|
||||
|
||||
//Value Computed by CMake
|
||||
CMAKE_PROJECT_VERSION_MINOR:STATIC=1
|
||||
|
||||
//Value Computed by CMake
|
||||
CMAKE_PROJECT_VERSION_PATCH:STATIC=0
|
||||
|
||||
//Value Computed by CMake
|
||||
CMAKE_PROJECT_VERSION_TWEAK:STATIC=
|
||||
|
||||
//No help, variable specified on the command line.
|
||||
CMAKE_TOOLCHAIN_FILE:UNINITIALIZED=conan_toolchain.cmake
|
||||
|
||||
//Value Computed by CMake
|
||||
fimdlp_BINARY_DIR:STATIC=/home/rmontanana/Code/mdlp/build_conan
|
||||
|
||||
//Value Computed by CMake
|
||||
fimdlp_IS_TOP_LEVEL:STATIC=ON
|
||||
|
||||
//Value Computed by CMake
|
||||
fimdlp_SOURCE_DIR:STATIC=/home/rmontanana/Code/mdlp
|
||||
|
||||
|
||||
########################
|
||||
# INTERNAL cache entries
|
||||
########################
|
||||
|
||||
//This is the directory where this CMakeCache.txt was created
|
||||
CMAKE_CACHEFILE_DIR:INTERNAL=/home/rmontanana/Code/mdlp/build_conan
|
||||
//Major version of cmake used to create the current loaded cache
|
||||
CMAKE_CACHE_MAJOR_VERSION:INTERNAL=3
|
||||
//Minor version of cmake used to create the current loaded cache
|
||||
CMAKE_CACHE_MINOR_VERSION:INTERNAL=30
|
||||
//Patch version of cmake used to create the current loaded cache
|
||||
CMAKE_CACHE_PATCH_VERSION:INTERNAL=8
|
||||
//Path to CMake executable.
|
||||
CMAKE_COMMAND:INTERNAL=/usr/bin/cmake
|
||||
//Path to cpack program executable.
|
||||
CMAKE_CPACK_COMMAND:INTERNAL=/usr/bin/cpack
|
||||
//Path to ctest program executable.
|
||||
CMAKE_CTEST_COMMAND:INTERNAL=/usr/bin/ctest
|
||||
//Path to cache edit program executable.
|
||||
CMAKE_EDIT_COMMAND:INTERNAL=/usr/bin/ccmake
|
||||
//Name of external makefile project generator.
|
||||
CMAKE_EXTRA_GENERATOR:INTERNAL=
|
||||
//Name of generator.
|
||||
CMAKE_GENERATOR:INTERNAL=Unix Makefiles
|
||||
//Generator instance identifier.
|
||||
CMAKE_GENERATOR_INSTANCE:INTERNAL=
|
||||
//Name of generator platform.
|
||||
CMAKE_GENERATOR_PLATFORM:INTERNAL=
|
||||
//Name of generator toolset.
|
||||
CMAKE_GENERATOR_TOOLSET:INTERNAL=
|
||||
//Source directory with the top level CMakeLists.txt file for this
|
||||
// project
|
||||
CMAKE_HOME_DIRECTORY:INTERNAL=/home/rmontanana/Code/mdlp
|
||||
//number of local generators
|
||||
CMAKE_NUMBER_OF_MAKEFILES:INTERNAL=1
|
||||
//Platform information initialized
|
||||
CMAKE_PLATFORM_INFO_INITIALIZED:INTERNAL=1
|
||||
//Path to CMake installation.
|
||||
CMAKE_ROOT:INTERNAL=/usr/share/cmake
|
||||
//uname command
|
||||
CMAKE_UNAME:INTERNAL=/usr/bin/uname
|
||||
|
@@ -1,14 +1,10 @@
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
|
||||
set(CMAKE_BUILD_TYPE Debug)
|
||||
|
||||
find_package(arff-files REQUIRED)
|
||||
|
||||
include_directories(
|
||||
${fimdlp_SOURCE_DIR}/src
|
||||
${fimdlp_SOURCE_DIR}/tests/lib/Files
|
||||
${CMAKE_BINARY_DIR}/configured_files/include
|
||||
${libtorch_INCLUDE_DIRS_RELEASE}
|
||||
${arff-files_INCLUDE_DIRS}
|
||||
)
|
||||
|
||||
|
@@ -49,7 +49,7 @@ namespace mdlp {
|
||||
// Note: y parameter is validated but not used in binning strategy
|
||||
fit(X);
|
||||
}
|
||||
std::vector<precision_t> linspace(precision_t start, precision_t end, int num)
|
||||
std::vector<precision_t> BinDisc::linspace(precision_t start, precision_t end, int num)
|
||||
{
|
||||
// Input validation
|
||||
if (num < 2) {
|
||||
@@ -77,7 +77,7 @@ namespace mdlp {
|
||||
{
|
||||
return std::max(lower, std::min(n, upper));
|
||||
}
|
||||
std::vector<precision_t> percentile(samples_t& data, const std::vector<precision_t>& percentiles)
|
||||
std::vector<precision_t> BinDisc::percentile(samples_t& data, const std::vector<precision_t>& percentiles)
|
||||
{
|
||||
// Input validation
|
||||
if (data.empty()) {
|
||||
|
@@ -23,6 +23,9 @@ namespace mdlp {
|
||||
// y is included for compatibility with the Discretizer interface
|
||||
void fit(samples_t& X_, labels_t& y) override;
|
||||
void fit(samples_t& X);
|
||||
protected:
|
||||
std::vector<precision_t> linspace(precision_t start, precision_t end, int num);
|
||||
std::vector<precision_t> percentile(samples_t& data, const std::vector<precision_t>& percentiles);
|
||||
private:
|
||||
void fit_uniform(const samples_t&);
|
||||
void fit_quantile(const samples_t&);
|
||||
|
@@ -39,8 +39,8 @@ namespace mdlp {
|
||||
size_t getCandidate(size_t, size_t);
|
||||
size_t compute_max_num_cut_points() const;
|
||||
pair<precision_t, size_t> valueCutPoint(size_t, size_t, size_t);
|
||||
private:
|
||||
inline precision_t safe_X_access(size_t idx) const {
|
||||
inline precision_t safe_X_access(size_t idx) const
|
||||
{
|
||||
if (idx >= indices.size()) {
|
||||
throw std::out_of_range("Index out of bounds for indices array");
|
||||
}
|
||||
@@ -50,7 +50,8 @@ namespace mdlp {
|
||||
}
|
||||
return X[real_idx];
|
||||
}
|
||||
inline label_t safe_y_access(size_t idx) const {
|
||||
inline label_t safe_y_access(size_t idx) const
|
||||
{
|
||||
if (idx >= indices.size()) {
|
||||
throw std::out_of_range("Index out of bounds for indices array");
|
||||
}
|
||||
@@ -60,7 +61,8 @@ namespace mdlp {
|
||||
}
|
||||
return y[real_idx];
|
||||
}
|
||||
inline size_t safe_subtract(size_t a, size_t b) const {
|
||||
inline size_t safe_subtract(size_t a, size_t b) const
|
||||
{
|
||||
if (b > a) {
|
||||
throw std::underflow_error("Subtraction would cause underflow");
|
||||
}
|
||||
|
@@ -17,7 +17,7 @@ namespace mdlp {
|
||||
if (cutPoints.size() < 2) {
|
||||
throw std::runtime_error("Discretizer not fitted yet or no valid cut points found");
|
||||
}
|
||||
|
||||
|
||||
discretizedData.clear();
|
||||
discretizedData.reserve(data.size());
|
||||
// CutPoints always have at least two items
|
||||
@@ -40,9 +40,6 @@ namespace mdlp {
|
||||
void Discretizer::fit_t(const torch::Tensor& X_, const torch::Tensor& y_)
|
||||
{
|
||||
// Validate tensor properties for security
|
||||
if (!X_.is_contiguous() || !y_.is_contiguous()) {
|
||||
throw std::invalid_argument("Tensors must be contiguous");
|
||||
}
|
||||
if (X_.sizes().size() != 1 || y_.sizes().size() != 1) {
|
||||
throw std::invalid_argument("Only 1D tensors supported");
|
||||
}
|
||||
@@ -58,7 +55,7 @@ namespace mdlp {
|
||||
if (X_.numel() == 0) {
|
||||
throw std::invalid_argument("Tensors cannot be empty");
|
||||
}
|
||||
|
||||
|
||||
auto num_elements = X_.numel();
|
||||
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
||||
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
|
||||
@@ -67,9 +64,6 @@ namespace mdlp {
|
||||
torch::Tensor Discretizer::transform_t(const torch::Tensor& X_)
|
||||
{
|
||||
// Validate tensor properties for security
|
||||
if (!X_.is_contiguous()) {
|
||||
throw std::invalid_argument("Tensor must be contiguous");
|
||||
}
|
||||
if (X_.sizes().size() != 1) {
|
||||
throw std::invalid_argument("Only 1D tensors supported");
|
||||
}
|
||||
@@ -79,7 +73,7 @@ namespace mdlp {
|
||||
if (X_.numel() == 0) {
|
||||
throw std::invalid_argument("Tensor cannot be empty");
|
||||
}
|
||||
|
||||
|
||||
auto num_elements = X_.numel();
|
||||
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
||||
auto result = transform(X);
|
||||
@@ -88,9 +82,6 @@ namespace mdlp {
|
||||
torch::Tensor Discretizer::fit_transform_t(const torch::Tensor& X_, const torch::Tensor& y_)
|
||||
{
|
||||
// Validate tensor properties for security
|
||||
if (!X_.is_contiguous() || !y_.is_contiguous()) {
|
||||
throw std::invalid_argument("Tensors must be contiguous");
|
||||
}
|
||||
if (X_.sizes().size() != 1 || y_.sizes().size() != 1) {
|
||||
throw std::invalid_argument("Only 1D tensors supported");
|
||||
}
|
||||
@@ -106,7 +97,7 @@ namespace mdlp {
|
||||
if (X_.numel() == 0) {
|
||||
throw std::invalid_argument("Tensors cannot be empty");
|
||||
}
|
||||
|
||||
|
||||
auto num_elements = X_.numel();
|
||||
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
||||
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
|
||||
|
@@ -4,6 +4,7 @@
|
||||
"conan": {}
|
||||
},
|
||||
"include": [
|
||||
"build/gcc-14-x86_64-gnu17-release/generators/CMakePresets.json"
|
||||
"build/gcc-14-x86_64-gnu17-release/generators/CMakePresets.json",
|
||||
"build/gcc-14-x86_64-gnu17-debug/generators/CMakePresets.json"
|
||||
]
|
||||
}
|
@@ -11,6 +11,16 @@
|
||||
#include <ArffFiles.hpp>
|
||||
#include "BinDisc.h"
|
||||
#include "Experiments.hpp"
|
||||
#include <cmath>
|
||||
|
||||
#define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \
|
||||
try { \
|
||||
stmt; \
|
||||
} catch (const etype& ex) { \
|
||||
EXPECT_EQ(whatstring, std::string(ex.what())); \
|
||||
throw; \
|
||||
} \
|
||||
, etype)
|
||||
|
||||
namespace mdlp {
|
||||
const float margin = 1e-4;
|
||||
@@ -400,4 +410,64 @@ namespace mdlp {
|
||||
}
|
||||
// std::cout << "* Number of experiments tested: " << num << std::endl;
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, FitDataSizeTooSmall)
|
||||
{
|
||||
// Test when data size is smaller than n_bins
|
||||
samples_t X = { 1.0, 2.0 }; // Only 2 elements for 3 bins
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X), std::invalid_argument, "Input data size must be at least equal to n_bins");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3Q, FitDataSizeTooSmall)
|
||||
{
|
||||
// Test when data size is smaller than n_bins
|
||||
samples_t X = { 1.0, 2.0 }; // Only 2 elements for 3 bins
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X), std::invalid_argument, "Input data size must be at least equal to n_bins");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, FitWithYEmptyX)
|
||||
{
|
||||
// Test fit(X, y) with empty X
|
||||
samples_t X = {};
|
||||
labels_t y = { 1, 2, 3 };
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X, y), std::invalid_argument, "X cannot be empty");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, LinspaceInvalidNumPoints)
|
||||
{
|
||||
// Test linspace with num < 2
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, 1.0f, 1), std::invalid_argument, "Number of points must be at least 2 for linspace");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, LinspaceNaNValues)
|
||||
{
|
||||
// Test linspace with NaN values
|
||||
float nan_val = std::numeric_limits<float>::quiet_NaN();
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(nan_val, 1.0f, 3), std::invalid_argument, "Start and end values cannot be NaN");
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, nan_val, 3), std::invalid_argument, "Start and end values cannot be NaN");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, LinspaceInfiniteValues)
|
||||
{
|
||||
// Test linspace with infinite values
|
||||
float inf_val = std::numeric_limits<float>::infinity();
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(inf_val, 1.0f, 3), std::invalid_argument, "Start and end values cannot be infinite");
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, inf_val, 3), std::invalid_argument, "Start and end values cannot be infinite");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, PercentileEmptyData)
|
||||
{
|
||||
// Test percentile with empty data
|
||||
samples_t empty_data = {};
|
||||
std::vector<precision_t> percentiles = { 25.0f, 50.0f, 75.0f };
|
||||
EXPECT_THROW_WITH_MESSAGE(percentile(empty_data, percentiles), std::invalid_argument, "Data cannot be empty for percentile calculation");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, PercentileEmptyPercentiles)
|
||||
{
|
||||
// Test percentile with empty percentiles
|
||||
samples_t data = { 1.0f, 2.0f, 3.0f };
|
||||
std::vector<precision_t> empty_percentiles = {};
|
||||
EXPECT_THROW_WITH_MESSAGE(percentile(data, empty_percentiles), std::invalid_argument, "Percentiles cannot be empty");
|
||||
}
|
||||
}
|
||||
|
@@ -1,6 +1,7 @@
|
||||
|
||||
find_package(arff-files REQUIRED)
|
||||
find_package(GTest REQUIRED)
|
||||
find_package(Torch CONFIG REQUIRED)
|
||||
|
||||
include_directories(
|
||||
${libtorch_INCLUDE_DIRS_DEBUG}
|
||||
|
@@ -13,6 +13,15 @@
|
||||
#include "BinDisc.h"
|
||||
#include "CPPFImdlp.h"
|
||||
|
||||
#define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \
|
||||
try { \
|
||||
stmt; \
|
||||
} catch (const etype& ex) { \
|
||||
EXPECT_EQ(whatstring, std::string(ex.what())); \
|
||||
throw; \
|
||||
} \
|
||||
, etype)
|
||||
|
||||
namespace mdlp {
|
||||
const float margin = 1e-4;
|
||||
static std::string set_data_path()
|
||||
@@ -270,4 +279,110 @@ namespace mdlp {
|
||||
EXPECT_EQ(computed[i], expected[i]);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Discretizer, TransformEmptyData)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
samples_t empty_data = {};
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform(empty_data), std::invalid_argument, "Data for transformation cannot be empty");
|
||||
delete disc;
|
||||
}
|
||||
|
||||
TEST(Discretizer, TransformNotFitted)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
samples_t data = { 1.0f, 2.0f, 3.0f };
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform(data), std::runtime_error, "Discretizer not fitted yet or no valid cut points found");
|
||||
delete disc;
|
||||
}
|
||||
|
||||
TEST(Discretizer, TensorValidationFit)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
|
||||
auto X = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
|
||||
auto y = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
|
||||
// Test non-1D tensors
|
||||
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_2d, y), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
auto y_2d = torch::tensor({ {1, 2}, {3, 4} }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_2d), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
// Test wrong tensor types
|
||||
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_int, y), std::invalid_argument, "X tensor must be Float32 type");
|
||||
|
||||
auto y_float = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_float), std::invalid_argument, "y tensor must be Int32 type");
|
||||
|
||||
// Test mismatched sizes
|
||||
auto y_short = torch::tensor({ 1, 2 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_short), std::invalid_argument, "X and y tensors must have same number of elements");
|
||||
|
||||
// Test empty tensors
|
||||
auto X_empty = torch::tensor({}, torch::kFloat32);
|
||||
auto y_empty = torch::tensor({}, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_empty, y_empty), std::invalid_argument, "Tensors cannot be empty");
|
||||
|
||||
delete disc;
|
||||
}
|
||||
|
||||
TEST(Discretizer, TensorValidationTransform)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
|
||||
// First fit with valid data
|
||||
auto X_fit = torch::tensor({ 1.0f, 2.0f, 3.0f, 4.0f }, torch::kFloat32);
|
||||
auto y_fit = torch::tensor({ 1, 2, 3, 4 }, torch::kInt32);
|
||||
disc->fit_t(X_fit, y_fit);
|
||||
|
||||
// Test non-1D tensor
|
||||
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_2d), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
// Test wrong tensor type
|
||||
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_int), std::invalid_argument, "X tensor must be Float32 type");
|
||||
|
||||
// Test empty tensor
|
||||
auto X_empty = torch::tensor({}, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_empty), std::invalid_argument, "Tensor cannot be empty");
|
||||
|
||||
delete disc;
|
||||
}
|
||||
|
||||
TEST(Discretizer, TensorValidationFitTransform)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
|
||||
auto X = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
|
||||
auto y = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
|
||||
// Test non-1D tensors
|
||||
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_2d, y), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
auto y_2d = torch::tensor({ {1, 2}, {3, 4} }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_2d), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
// Test wrong tensor types
|
||||
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_int, y), std::invalid_argument, "X tensor must be Float32 type");
|
||||
|
||||
auto y_float = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_float), std::invalid_argument, "y tensor must be Int32 type");
|
||||
|
||||
// Test mismatched sizes
|
||||
auto y_short = torch::tensor({ 1, 2 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_short), std::invalid_argument, "X and y tensors must have same number of elements");
|
||||
|
||||
// Test empty tensors
|
||||
auto X_empty = torch::tensor({}, torch::kFloat32);
|
||||
auto y_empty = torch::tensor({}, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_empty, y_empty), std::invalid_argument, "Tensors cannot be empty");
|
||||
|
||||
delete disc;
|
||||
}
|
||||
}
|
||||
|
@@ -167,6 +167,15 @@ namespace mdlp {
|
||||
indices = { 1, 2, 0 };
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SortIndicesOutOfBounds)
|
||||
{
|
||||
// Test for out of bounds exception in sortIndices
|
||||
samples_t X_long = { 1.0f, 2.0f, 3.0f };
|
||||
labels_t y_short = { 1, 2 };
|
||||
EXPECT_THROW_WITH_MESSAGE(sortIndices(X_long, y_short), std::out_of_range, "Index out of bounds in sort comparison");
|
||||
}
|
||||
|
||||
|
||||
TEST_F(TestFImdlp, TestShortDatasets)
|
||||
{
|
||||
vector<precision_t> computed;
|
||||
@@ -364,4 +373,55 @@ namespace mdlp {
|
||||
EXPECT_EQ(computed_ft[i], expected[i]);
|
||||
}
|
||||
}
|
||||
TEST_F(TestFImdlp, SafeXAccessIndexOutOfBounds)
|
||||
{
|
||||
// Test safe_X_access with index out of bounds for indices array
|
||||
X = { 1.0f, 2.0f, 3.0f };
|
||||
y = { 1, 2, 3 };
|
||||
indices = { 0, 1 }; // shorter than expected
|
||||
|
||||
// This should trigger the first exception in safe_X_access (idx >= indices.size())
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_X_access(2), std::out_of_range, "Index out of bounds for indices array");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SafeXAccessXOutOfBounds)
|
||||
{
|
||||
// Test safe_X_access with real_idx out of bounds for X array
|
||||
X = { 1.0f, 2.0f }; // shorter array
|
||||
y = { 1, 2, 3 };
|
||||
indices = { 0, 1, 5 }; // indices[2] = 5 is out of bounds for X
|
||||
|
||||
// This should trigger the second exception in safe_X_access (real_idx >= X.size())
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_X_access(2), std::out_of_range, "Index out of bounds for X array");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SafeYAccessIndexOutOfBounds)
|
||||
{
|
||||
// Test safe_y_access with index out of bounds for indices array
|
||||
X = { 1.0f, 2.0f, 3.0f };
|
||||
y = { 1, 2, 3 };
|
||||
indices = { 0, 1 }; // shorter than expected
|
||||
|
||||
// This should trigger the first exception in safe_y_access (idx >= indices.size())
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_y_access(2), std::out_of_range, "Index out of bounds for indices array");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SafeYAccessYOutOfBounds)
|
||||
{
|
||||
// Test safe_y_access with real_idx out of bounds for y array
|
||||
X = { 1.0f, 2.0f, 3.0f };
|
||||
y = { 1, 2 }; // shorter array
|
||||
indices = { 0, 1, 5 }; // indices[2] = 5 is out of bounds for y
|
||||
|
||||
// This should trigger the second exception in safe_y_access (real_idx >= y.size())
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_y_access(2), std::out_of_range, "Index out of bounds for y array");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SafeSubtractUnderflow)
|
||||
{
|
||||
// Test safe_subtract with underflow condition (b > a)
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_subtract(3, 5), std::underflow_error, "Subtraction would cause underflow");
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
Reference in New Issue
Block a user