BayesNet/sample/sample.cc

225 lines
6.8 KiB
C++
Raw Normal View History

2023-06-29 20:00:41 +00:00
#include <iostream>
#include <string>
#include <torch/torch.h>
2023-07-06 09:59:48 +00:00
#include <thread>
#include <getopt.h>
2023-06-29 20:00:41 +00:00
#include "ArffFiles.h"
#include "Network.h"
2023-07-20 16:55:56 +00:00
#include "BayesMetrics.h"
2023-06-30 00:46:06 +00:00
#include "CPPFImdlp.h"
2023-07-13 01:15:42 +00:00
#include "KDB.h"
2023-07-14 23:59:30 +00:00
#include "SPODE.h"
#include "AODE.h"
#include "TAN.h"
2023-06-30 00:46:06 +00:00
2023-06-29 20:00:41 +00:00
using namespace std;
const string PATH = "data/";
/* print a description of all supported options */
void usage(const char* path)
{
/* take only the last portion of the path */
const char* basename = strrchr(path, '/');
basename = basename ? basename + 1 : path;
cout << "usage: " << basename << "[OPTION]" << endl;
cout << " -h, --help\t\t Print this help and exit." << endl;
cout
<< " -f, --file[=FILENAME]\t {diabetes, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}."
<< endl;
cout << " -p, --path[=FILENAME]\t folder where the data files are located, default " << PATH << endl;
2023-07-17 20:51:15 +00:00
cout << " -m, --model={AODE, KDB, SPODE, TAN}\t " << endl;
}
tuple<string, string, string> parse_arguments(int argc, char** argv)
{
string file_name;
2023-07-17 20:51:15 +00:00
string model_name;
string path = PATH;
const vector<struct option> long_options = {
{"help", no_argument, nullptr, 'h'},
{"file", required_argument, nullptr, 'f'},
{"path", required_argument, nullptr, 'p'},
2023-07-17 20:51:15 +00:00
{"model", required_argument, nullptr, 'm'},
{nullptr, no_argument, nullptr, 0}
};
while (true) {
2023-07-17 20:51:15 +00:00
const auto c = getopt_long(argc, argv, "hf:p:m:", long_options.data(), nullptr);
if (c == -1)
break;
switch (c) {
case 'h':
usage(argv[0]);
exit(0);
case 'f':
file_name = string(optarg);
break;
2023-07-17 20:51:15 +00:00
case 'm':
model_name = string(optarg);
break;
case 'p':
path = optarg;
if (path.back() != '/')
path += '/';
break;
case '?':
usage(argv[0]);
exit(1);
default:
abort();
}
}
if (file_name.empty()) {
usage(argv[0]);
exit(1);
}
2023-07-17 20:51:15 +00:00
return make_tuple(file_name, path, model_name);
}
inline constexpr auto hash_conv(const std::string_view sv)
{
unsigned long hash{ 5381 };
for (unsigned char c : sv) {
hash = ((hash << 5) + hash) ^ c;
}
2023-07-17 20:51:15 +00:00
return hash;
}
2023-07-17 20:51:15 +00:00
inline constexpr auto operator"" _sh(const char* str, size_t len)
{
return hash_conv(std::string_view{ str, len });
}
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
2023-06-30 00:46:06 +00:00
{
vector<mdlp::labels_t>Xd;
map<string, int> maxes;
2023-06-30 19:24:12 +00:00
2023-06-30 00:46:06 +00:00
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
2023-06-30 19:24:12 +00:00
mdlp::labels_t& xd = fimdlp.transform(X[i]);
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
2023-06-30 19:24:12 +00:00
Xd.push_back(xd);
2023-06-30 00:46:06 +00:00
}
return { Xd, maxes };
2023-06-30 00:46:06 +00:00
}
bool file_exists(const std::string& name)
{
if (FILE* file = fopen(name.c_str(), "r")) {
fclose(file);
return true;
} else {
return false;
}
}
2023-07-17 20:51:15 +00:00
tuple<string, string, string> get_options(int argc, char** argv)
{
map<string, bool> datasets = {
{"diabetes", true},
{"ecoli", true},
{"glass", true},
{"iris", true},
{"kdd_JapaneseVowels", false},
{"letter", true},
{"liver-disorders", true},
{"mfeat-factors", true},
};
2023-07-17 20:51:15 +00:00
vector <string> models = { "AODE", "KDB", "SPODE", "TAN" };
string file_name;
string path;
2023-07-17 20:51:15 +00:00
string model_name;
tie(file_name, path, model_name) = parse_arguments(argc, argv);
2023-07-05 17:09:59 +00:00
if (datasets.find(file_name) == datasets.end()) {
cout << "Invalid file name: " << file_name << endl;
usage(argv[0]);
exit(1);
}
2023-07-17 20:51:15 +00:00
if (!file_exists(path + file_name + ".arff")) {
cout << "Data File " << path + file_name + ".arff" << " does not exist" << endl;
usage(argv[0]);
exit(1);
}
2023-07-17 20:51:15 +00:00
if (find(models.begin(), models.end(), model_name) == models.end()) {
cout << "Invalid model name: " << model_name << endl;
usage(argv[0]);
exit(1);
}
2023-07-17 20:51:15 +00:00
return { file_name, path, model_name };
}
int main(int argc, char** argv)
{
2023-07-17 20:51:15 +00:00
string file_name, path, model_name;
tie(file_name, path, model_name) = get_options(argc, argv);
auto handler = ArffFiles();
2023-07-17 20:51:15 +00:00
handler.load(path + file_name + ".arff");
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
for (auto feature : handler.getAttributes()) {
features.push_back(feature.first);
}
// Discretize Dataset
vector<mdlp::labels_t> Xd;
map<string, int> maxes;
tie(Xd, maxes) = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
2023-07-13 01:15:42 +00:00
map<string, vector<int>> states;
for (auto feature : features) {
states[feature] = vector<int>(maxes[feature]);
}
states[className] = vector<int>(
maxes[className]);
2023-07-17 20:51:15 +00:00
double score;
vector<string> lines;
vector<string> graph;
2023-07-15 23:20:47 +00:00
auto kdb = bayesnet::KDB(2);
auto aode = bayesnet::AODE();
2023-07-17 20:51:15 +00:00
auto spode = bayesnet::SPODE(2);
auto tan = bayesnet::TAN();
2023-07-17 20:51:15 +00:00
switch (hash_conv(model_name)) {
case "AODE"_sh:
aode.fit(Xd, y, features, className, states);
lines = aode.show();
score = aode.score(Xd, y);
graph = aode.graph();
break;
case "KDB"_sh:
kdb.fit(Xd, y, features, className, states);
lines = kdb.show();
score = kdb.score(Xd, y);
graph = kdb.graph();
break;
case "SPODE"_sh:
spode.fit(Xd, y, features, className, states);
lines = spode.show();
score = spode.score(Xd, y);
graph = spode.graph();
break;
case "TAN"_sh:
tan.fit(Xd, y, features, className, states);
lines = tan.show();
score = tan.score(Xd, y);
graph = tan.graph();
break;
}
for (auto line : lines) {
cout << line << endl;
}
2023-07-17 20:51:15 +00:00
cout << "Score: " << score << endl;
auto dot_file = model_name + "_" + file_name;
ofstream file(dot_file + ".dot");
file << graph;
2023-07-15 23:20:47 +00:00
file.close();
2023-07-17 20:51:15 +00:00
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
2023-06-29 20:00:41 +00:00
return 0;
}