2023-06-29 20:00:41 +00:00
|
|
|
#include <iostream>
|
|
|
|
#include <string>
|
|
|
|
#include <torch/torch.h>
|
|
|
|
#include "ArffFiles.h"
|
|
|
|
#include "Network.h"
|
2023-06-30 00:46:06 +00:00
|
|
|
#include "CPPFImdlp.h"
|
|
|
|
|
2023-06-29 20:00:41 +00:00
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
2023-06-30 00:46:06 +00:00
|
|
|
vector<mdlp::labels_t> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y)
|
|
|
|
{
|
|
|
|
vector<mdlp::labels_t>Xd;
|
2023-06-30 19:24:12 +00:00
|
|
|
|
2023-06-30 00:46:06 +00:00
|
|
|
auto fimdlp = mdlp::CPPFImdlp();
|
|
|
|
for (int i = 0; i < X.size(); i++) {
|
|
|
|
fimdlp.fit(X[i], y);
|
2023-06-30 19:24:12 +00:00
|
|
|
mdlp::labels_t& xd = fimdlp.transform(X[i]);
|
|
|
|
cout << "X[" << i << "]: ";
|
|
|
|
auto mm = minmax_element(xd.begin(), xd.end());
|
|
|
|
cout << *mm.first << " " << *mm.second << endl;
|
|
|
|
Xd.push_back(xd);
|
2023-06-30 00:46:06 +00:00
|
|
|
}
|
|
|
|
return Xd;
|
|
|
|
}
|
|
|
|
|
2023-06-29 20:00:41 +00:00
|
|
|
int main()
|
|
|
|
{
|
|
|
|
auto handler = ArffFiles();
|
2023-07-01 00:33:26 +00:00
|
|
|
handler.load("data/iris.arff");
|
2023-06-30 00:46:06 +00:00
|
|
|
// Get Dataset X, y
|
|
|
|
vector<mdlp::samples_t>& X = handler.getX();
|
|
|
|
mdlp::labels_t& y = handler.getY();
|
|
|
|
// Get className & Features
|
2023-06-29 20:00:41 +00:00
|
|
|
auto className = handler.getClassName();
|
2023-06-30 00:46:06 +00:00
|
|
|
vector<string> features;
|
2023-06-29 20:00:41 +00:00
|
|
|
for (auto feature : handler.getAttributes()) {
|
2023-06-30 00:46:06 +00:00
|
|
|
features.push_back(feature.first);
|
2023-06-29 20:00:41 +00:00
|
|
|
}
|
2023-06-30 00:46:06 +00:00
|
|
|
// Discretize Dataset
|
2023-06-30 19:24:12 +00:00
|
|
|
vector<mdlp::labels_t> Xd = discretize(X, y);
|
2023-06-30 00:46:06 +00:00
|
|
|
// Build Network
|
|
|
|
auto network = bayesnet::Network();
|
|
|
|
network.fit(Xd, y, features, className);
|
2023-06-29 20:00:41 +00:00
|
|
|
cout << "Hello, Bayesian Networks!" << endl;
|
|
|
|
cout << "Nodes:" << endl;
|
|
|
|
for (auto [name, item] : network.getNodes()) {
|
2023-06-30 00:46:06 +00:00
|
|
|
cout << "*" << item->getName() << " -> " << item->getNumStates() << endl;
|
2023-06-29 20:00:41 +00:00
|
|
|
cout << "-Parents:" << endl;
|
|
|
|
for (auto parent : item->getParents()) {
|
|
|
|
cout << " " << parent->getName() << endl;
|
|
|
|
}
|
|
|
|
cout << "-Children:" << endl;
|
|
|
|
for (auto child : item->getChildren()) {
|
|
|
|
cout << " " << child->getName() << endl;
|
|
|
|
}
|
|
|
|
}
|
2023-06-29 21:53:33 +00:00
|
|
|
cout << "Root: " << network.getRoot()->getName() << endl;
|
|
|
|
network.setRoot(className);
|
|
|
|
cout << "Now Root should be class: " << network.getRoot()->getName() << endl;
|
2023-06-30 19:24:12 +00:00
|
|
|
cout << "CPDs:" << endl;
|
|
|
|
auto nodes = network.getNodes();
|
|
|
|
auto classNode = nodes[className];
|
|
|
|
for (auto it = nodes.begin(); it != nodes.end(); it++) {
|
|
|
|
cout << "* Name: " << it->first << " " << it->second->getName() << " -> " << it->second->getNumStates() << endl;
|
|
|
|
cout << "Parents: ";
|
|
|
|
for (auto parent : it->second->getParents()) {
|
|
|
|
cout << parent->getName() << " -> " << parent->getNumStates() << ", ";
|
|
|
|
}
|
|
|
|
cout << endl;
|
|
|
|
auto cpd = it->second->getCPT();
|
|
|
|
cout << cpd << endl;
|
|
|
|
}
|
2023-06-30 00:46:06 +00:00
|
|
|
cout << "PyTorch version: " << TORCH_VERSION << endl;
|
2023-06-29 20:00:41 +00:00
|
|
|
return 0;
|
|
|
|
}
|