Make fit build the network

This commit is contained in:
Ricardo Montañana Gómez 2023-06-30 02:46:06 +02:00
parent 31c22898de
commit 0a31aa2ff1
Signed by: rmontanana
GPG Key ID: 46064262FD9A7ADE
13 changed files with 580 additions and 82 deletions

16
.vscode/launch.json vendored
View File

@ -1,7 +1,4 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
@ -20,6 +17,19 @@
"program": "${workspaceFolder}/a.out",
"args": [],
"cwd": "${workspaceFolder}"
},
{
"name": "Build & debug active file",
"type": "cppdbg",
"request": "launch",
"program": "${workspaceFolder}/build/bayesnet",
"args": [],
"stopAtEntry": false,
"cwd": "${workspaceFolder}",
"environment": [],
"externalConsole": false,
"MIMode": "lldb",
"preLaunchTask": "CMake: build"
}
]
}

View File

@ -81,7 +81,12 @@
"*.toml": "toml",
"utility": "cpp",
"__verbose_abort": "cpp",
"bit": "cpp"
"bit": "cpp",
"random": "cpp",
"*.tcc": "cpp",
"functional": "cpp",
"iterator": "cpp",
"memory_resource": "cpp"
},
"cmake.configureOnOpen": false,
"C_Cpp.default.configurationProvider": "ms-vscode.cmake-tools"

49
.vscode/tasks.json vendored
View File

@ -1,16 +1,37 @@
{
"version": "2.0.0",
"tasks": [
{
"type": "cmake",
"label": "CMake: build",
"command": "build",
"targets": [
"all"
],
"group": "build",
"problemMatcher": [],
"detail": "CMake template build task"
}
]
"version": "2.0.0",
"tasks": [
{
"type": "cmake",
"label": "CMake: build",
"command": "build",
"targets": [
"all"
],
"group": "build",
"problemMatcher": [],
"detail": "CMake template build task"
},
{
"type": "cppbuild",
"label": "C/C++: clang build active file",
"command": "/usr/bin/clang",
"args": [
"-fcolor-diagnostics",
"-fansi-escape-codes",
"-g",
"${file}",
"-o",
"${fileDirname}/${fileBasenameNoExtension}"
],
"options": {
"cwd": "${fileDirname}"
},
"problemMatcher": [
"$gcc"
],
"group": "build",
"detail": "Task generated by Debugger."
}
]
}

View File

@ -11,6 +11,5 @@ set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
# add_library(BayesNet Node.cc Network.cc)
# add_executable(BayesNet main.cc Node.cc Network.cc ArffFiles.cc)
add_executable(BayesNet main.cc ArffFiles.cc Node.cc Network.cc)
add_executable(BayesNet main.cc ArffFiles.cc Node.cc Network.cc CPPFImdlp.cpp Metrics.cpp)
target_link_libraries(BayesNet "${TORCH_LIBRARIES}")

220
CPPFImdlp.cpp Normal file
View File

@ -0,0 +1,220 @@
#include <numeric>
#include <algorithm>
#include <set>
#include <cmath>
#include "CPPFImdlp.h"
#include "Metrics.h"
namespace mdlp {
CPPFImdlp::CPPFImdlp(size_t min_length_, int max_depth_, float proposed) : min_length(min_length_),
max_depth(max_depth_),
proposed_cuts(proposed)
{
}
CPPFImdlp::CPPFImdlp() = default;
CPPFImdlp::~CPPFImdlp() = default;
size_t CPPFImdlp::compute_max_num_cut_points() const
{
// Set the actual maximum number of cut points as a number or as a percentage of the number of samples
if (proposed_cuts == 0) {
return numeric_limits<size_t>::max();
}
if (proposed_cuts < 0 || proposed_cuts > static_cast<float>(X.size())) {
throw invalid_argument("wrong proposed num_cuts value");
}
if (proposed_cuts < 1)
return static_cast<size_t>(round(static_cast<float>(X.size()) * proposed_cuts));
return static_cast<size_t>(proposed_cuts);
}
void CPPFImdlp::fit(samples_t& X_, labels_t& y_)
{
X = X_;
y = y_;
num_cut_points = compute_max_num_cut_points();
depth = 0;
cutPoints.clear();
if (X.size() != y.size()) {
throw invalid_argument("X and y must have the same size");
}
if (X.empty() || y.empty()) {
throw invalid_argument("X and y must have at least one element");
}
if (min_length < 3) {
throw invalid_argument("min_length must be greater than 2");
}
if (max_depth < 1) {
throw invalid_argument("max_depth must be greater than 0");
}
indices = sortIndices(X_, y_);
metrics.setData(y, indices);
computeCutPoints(0, X.size(), 1);
sort(cutPoints.begin(), cutPoints.end());
if (num_cut_points > 0) {
// Select the best (with lower entropy) cut points
while (cutPoints.size() > num_cut_points) {
resizeCutPoints();
}
}
}
pair<precision_t, size_t> CPPFImdlp::valueCutPoint(size_t start, size_t cut, size_t end)
{
size_t n;
size_t m;
size_t idxPrev = cut - 1 >= start ? cut - 1 : cut;
size_t idxNext = cut + 1 < end ? cut + 1 : cut;
bool backWall; // true if duplicates reach beginning of the interval
precision_t previous;
precision_t actual;
precision_t next;
previous = X[indices[idxPrev]];
actual = X[indices[cut]];
next = X[indices[idxNext]];
// definition 2 of the paper => X[t-1] < X[t]
// get the first equal value of X in the interval
while (idxPrev > start && actual == previous) {
previous = X[indices[--idxPrev]];
}
backWall = idxPrev == start && actual == previous;
// get the last equal value of X in the interval
while (idxNext < end - 1 && actual == next) {
next = X[indices[++idxNext]];
}
// # of duplicates before cutpoint
n = cut - 1 - idxPrev;
// # of duplicates after cutpoint
m = idxNext - cut - 1;
// Decide which values to use
cut = cut + (backWall ? m + 1 : -n);
actual = X[indices[cut]];
return { (actual + previous) / 2, cut };
}
void CPPFImdlp::computeCutPoints(size_t start, size_t end, int depth_)
{
size_t cut;
pair<precision_t, size_t> result;
// Check if the interval length and the depth are Ok
if (end - start < min_length || depth_ > max_depth)
return;
depth = depth_ > depth ? depth_ : depth;
cut = getCandidate(start, end);
if (cut == numeric_limits<size_t>::max())
return;
if (mdlp(start, cut, end)) {
result = valueCutPoint(start, cut, end);
cut = result.second;
cutPoints.push_back(result.first);
computeCutPoints(start, cut, depth_ + 1);
computeCutPoints(cut, end, depth_ + 1);
}
}
size_t CPPFImdlp::getCandidate(size_t start, size_t end)
{
/* Definition 1: A binary discretization for A is determined by selecting the cut point TA for which
E(A, TA; S) is minimal amongst all the candidate cut points. */
size_t candidate = numeric_limits<size_t>::max();
size_t elements = end - start;
bool sameValues = true;
precision_t entropy_left;
precision_t entropy_right;
precision_t minEntropy;
// Check if all the values of the variable in the interval are the same
for (size_t idx = start + 1; idx < end; idx++) {
if (X[indices[idx]] != X[indices[start]]) {
sameValues = false;
break;
}
}
if (sameValues)
return candidate;
minEntropy = metrics.entropy(start, end);
for (size_t idx = start + 1; idx < end; idx++) {
// Cutpoints are always on boundaries (definition 2)
if (y[indices[idx]] == y[indices[idx - 1]])
continue;
entropy_left = precision_t(idx - start) / static_cast<precision_t>(elements) * metrics.entropy(start, idx);
entropy_right = precision_t(end - idx) / static_cast<precision_t>(elements) * metrics.entropy(idx, end);
if (entropy_left + entropy_right < minEntropy) {
minEntropy = entropy_left + entropy_right;
candidate = idx;
}
}
return candidate;
}
bool CPPFImdlp::mdlp(size_t start, size_t cut, size_t end)
{
int k;
int k1;
int k2;
precision_t ig;
precision_t delta;
precision_t ent;
precision_t ent1;
precision_t ent2;
auto N = precision_t(end - start);
k = metrics.computeNumClasses(start, end);
k1 = metrics.computeNumClasses(start, cut);
k2 = metrics.computeNumClasses(cut, end);
ent = metrics.entropy(start, end);
ent1 = metrics.entropy(start, cut);
ent2 = metrics.entropy(cut, end);
ig = metrics.informationGain(start, cut, end);
delta = static_cast<precision_t>(log2(pow(3, precision_t(k)) - 2) -
(precision_t(k) * ent - precision_t(k1) * ent1 - precision_t(k2) * ent2));
precision_t term = 1 / N * (log2(N - 1) + delta);
return ig > term;
}
// Argsort from https://stackoverflow.com/questions/1577475/c-sorting-and-keeping-track-of-indexes
indices_t CPPFImdlp::sortIndices(samples_t& X_, labels_t& y_)
{
indices_t idx(X_.size());
iota(idx.begin(), idx.end(), 0);
stable_sort(idx.begin(), idx.end(), [&X_, &y_](size_t i1, size_t i2) {
if (X_[i1] == X_[i2])
return y_[i1] < y_[i2];
else
return X_[i1] < X_[i2];
});
return idx;
}
void CPPFImdlp::resizeCutPoints()
{
//Compute entropy of each of the whole cutpoint set and discards the biggest value
precision_t maxEntropy = 0;
precision_t entropy;
size_t maxEntropyIdx = 0;
size_t begin = 0;
size_t end;
for (size_t idx = 0; idx < cutPoints.size(); idx++) {
end = begin;
while (X[indices[end]] < cutPoints[idx] && end < X.size())
end++;
entropy = metrics.entropy(begin, end);
if (entropy > maxEntropy) {
maxEntropy = entropy;
maxEntropyIdx = idx;
}
begin = end;
}
cutPoints.erase(cutPoints.begin() + static_cast<long>(maxEntropyIdx));
}
labels_t& CPPFImdlp::transform(const samples_t& data)
{
discretizedData.reserve(data.size());
for (const precision_t& item : data) {
auto upper = upper_bound(cutPoints.begin(), cutPoints.end(), item);
discretizedData.push_back(upper - cutPoints.begin());
}
return discretizedData;
}
}

45
CPPFImdlp.h Normal file
View File

@ -0,0 +1,45 @@
#ifndef CPPFIMDLP_H
#define CPPFIMDLP_H
#include "typesFImdlp.h"
#include "Metrics.h"
#include <limits>
#include <utility>
#include <string>
namespace mdlp {
class CPPFImdlp {
protected:
size_t min_length = 3;
int depth = 0;
int max_depth = numeric_limits<int>::max();
float proposed_cuts = 0;
indices_t indices = indices_t();
samples_t X = samples_t();
labels_t y = labels_t();
Metrics metrics = Metrics(y, indices);
cutPoints_t cutPoints;
size_t num_cut_points = numeric_limits<size_t>::max();
labels_t discretizedData = labels_t();
static indices_t sortIndices(samples_t&, labels_t&);
void computeCutPoints(size_t, size_t, int);
void resizeCutPoints();
bool mdlp(size_t, size_t, size_t);
size_t getCandidate(size_t, size_t);
size_t compute_max_num_cut_points() const;
pair<precision_t, size_t> valueCutPoint(size_t, size_t, size_t);
public:
CPPFImdlp();
CPPFImdlp(size_t, int, float);
~CPPFImdlp();
void fit(samples_t&, labels_t&);
inline cutPoints_t getCutPoints() const { return cutPoints; };
labels_t& transform(const samples_t&);
inline int get_depth() const { return depth; };
static inline string version() { return "1.1.2"; };
};
}
#endif

78
Metrics.cpp Normal file
View File

@ -0,0 +1,78 @@
#include "Metrics.h"
#include <set>
#include <cmath>
using namespace std;
namespace mdlp {
Metrics::Metrics(labels_t& y_, indices_t& indices_): y(y_), indices(indices_),
numClasses(computeNumClasses(0, indices.size()))
{
}
int Metrics::computeNumClasses(size_t start, size_t end)
{
set<int> nClasses;
for (auto i = start; i < end; ++i) {
nClasses.insert(y[indices[i]]);
}
return static_cast<int>(nClasses.size());
}
void Metrics::setData(const labels_t& y_, const indices_t& indices_)
{
indices = indices_;
y = y_;
numClasses = computeNumClasses(0, indices.size());
entropyCache.clear();
igCache.clear();
}
precision_t Metrics::entropy(size_t start, size_t end)
{
precision_t p;
precision_t ventropy = 0;
int nElements = 0;
labels_t counts(numClasses + 1, 0);
if (end - start < 2)
return 0;
if (entropyCache.find({ start, end }) != entropyCache.end()) {
return entropyCache[{start, end}];
}
for (auto i = &indices[start]; i != &indices[end]; ++i) {
counts[y[*i]]++;
nElements++;
}
for (auto count : counts) {
if (count > 0) {
p = static_cast<precision_t>(count) / static_cast<precision_t>(nElements);
ventropy -= p * log2(p);
}
}
entropyCache[{start, end}] = ventropy;
return ventropy;
}
precision_t Metrics::informationGain(size_t start, size_t cut, size_t end)
{
precision_t iGain;
precision_t entropyInterval;
precision_t entropyLeft;
precision_t entropyRight;
size_t nElementsLeft = cut - start;
size_t nElementsRight = end - cut;
size_t nElements = end - start;
if (igCache.find(make_tuple(start, cut, end)) != igCache.end()) {
return igCache[make_tuple(start, cut, end)];
}
entropyInterval = entropy(start, end);
entropyLeft = entropy(start, cut);
entropyRight = entropy(cut, end);
iGain = entropyInterval -
(static_cast<precision_t>(nElementsLeft) * entropyLeft +
static_cast<precision_t>(nElementsRight) * entropyRight) /
static_cast<precision_t>(nElements);
igCache[make_tuple(start, cut, end)] = iGain;
return iGain;
}
}

22
Metrics.h Normal file
View File

@ -0,0 +1,22 @@
#ifndef CCMETRICS_H
#define CCMETRICS_H
#include "typesFImdlp.h"
namespace mdlp {
class Metrics {
protected:
labels_t& y;
indices_t& indices;
int numClasses;
cacheEnt_t entropyCache = cacheEnt_t();
cacheIg_t igCache = cacheIg_t();
public:
Metrics(labels_t&, indices_t&);
void setData(const labels_t&, const indices_t&);
int computeNumClasses(size_t, size_t);
precision_t entropy(size_t, size_t);
precision_t informationGain(size_t, size_t, size_t);
};
}
#endif

View File

@ -1,5 +1,7 @@
#include "Network.h"
namespace bayesnet {
Network::Network() : laplaceSmoothing(1), root(nullptr) {}
Network::Network(int smoothing) : laplaceSmoothing(smoothing), root(nullptr) {}
Network::~Network()
{
for (auto& pair : nodes) {
@ -70,46 +72,62 @@ namespace bayesnet {
{
return nodes;
}
void Network::fit(const vector<vector<int>>& dataset, const int smoothing)
void Network::buildNetwork(const vector<vector<int>>& dataset, const vector<int>& labels, const vector<string>& featureNames, const string& className)
{
auto jointCounts = [](const vector<vector<int>>& data, const vector<int>& indices, int numStates) {
int size = indices.size();
vector<int64_t> sizes(size, numStates);
torch::Tensor counts = torch::zeros(sizes, torch::kLong);
for (const auto& row : data) {
int idx = 0;
for (int i = 0; i < size; ++i) {
idx = idx * numStates + row[indices[i]];
}
counts.view({ -1 }).add_(idx, 1);
}
return counts;
};
auto marginalCounts = [](const torch::Tensor& jointCounts) {
return jointCounts.sum(-1);
};
for (auto& pair : nodes) {
Node* node = pair.second;
vector<int> indices;
for (const auto& parent : node->getParents()) {
indices.push_back(nodes[parent->getName()]->getId());
}
indices.push_back(node->getId());
for (auto& child : node->getChildren()) {
torch::Tensor counts = jointCounts(dataset, indices, node->getNumStates()) + smoothing;
torch::Tensor parentCounts = marginalCounts(counts);
parentCounts = parentCounts.unsqueeze(-1);
torch::Tensor cpt = counts.to(torch::kDouble) / parentCounts.to(torch::kDouble);
setCPD(node->getCPDKey(child), cpt);
}
// Add features as nodes to the network
for (int i = 0; i < featureNames.size(); ++i) {
addNode(featureNames[i], *max_element(dataset[i].begin(), dataset[i].end()) + 1);
}
// Add class as node to the network
addNode(className, *max_element(labels.begin(), labels.end()) + 1);
// Add edges from class to features => naive Bayes
for (auto feature : featureNames) {
addEdge(className, feature);
}
}
void Network::fit(const vector<vector<int>>& dataset, const vector<int>& labels, const vector<string>& featureNames, const string& className)
{
buildNetwork(dataset, labels, featureNames, className);
//estimateParameters(dataset);
// auto jointCounts = [](const vector<vector<int>>& data, const vector<int>& indices, int numStates) {
// int size = indices.size();
// vector<int64_t> sizes(size, numStates);
// torch::Tensor counts = torch::zeros(sizes, torch::kLong);
// for (const auto& row : data) {
// int idx = 0;
// for (int i = 0; i < size; ++i) {
// idx = idx * numStates + row[indices[i]];
// }
// counts.view({ -1 }).add_(idx, 1);
// }
// return counts;
// };
// auto marginalCounts = [](const torch::Tensor& jointCounts) {
// return jointCounts.sum(-1);
// };
// for (auto& pair : nodes) {
// Node* node = pair.second;
// vector<int> indices;
// for (const auto& parent : node->getParents()) {
// indices.push_back(nodes[parent->getName()]->getId());
// }
// indices.push_back(node->getId());
// for (auto& child : node->getChildren()) {
// torch::Tensor counts = jointCounts(dataset, indices, node->getNumStates()) + laplaceSmoothing;
// torch::Tensor parentCounts = marginalCounts(counts);
// parentCounts = parentCounts.unsqueeze(-1);
// torch::Tensor cpt = counts.to(torch::kDouble) / parentCounts.to(torch::kDouble);
// setCPD(node->getCPDKey(child), cpt);
// }
// }
}
torch::Tensor& Network::getCPD(const string& key)

View File

@ -8,14 +8,18 @@ namespace bayesnet {
private:
map<string, Node*> nodes;
map<string, torch::Tensor> cpds; // Map from CPD key to CPD tensor
Node* root = nullptr;
Node* root;
int laplaceSmoothing;
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
public:
Network();
Network(int);
~Network();
void addNode(string, int);
void addEdge(const string, const string);
map<string, Node*>& getNodes();
void fit(const vector<vector<int>>&, const int);
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&);
void buildNetwork(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&);
torch::Tensor& getCPD(const string&);
void setCPD(const string&, const torch::Tensor&);
void setRoot(string);

54
main copy.cc Normal file
View File

@ -0,0 +1,54 @@
#include <iostream>
#include <string>
#include <torch/torch.h>
#include "ArffFiles.h"
#include "Network.h"
using namespace std;
int main()
{
auto handler = ArffFiles();
handler.load("iris.arff");
auto X = handler.getX();
auto y = handler.getY();
auto className = handler.getClassName();
vector<pair<string, string>> edges = { {className, "sepallength"}, {className, "sepalwidth"}, {className, "petallength"}, {className, "petalwidth"} };
auto network = bayesnet::Network();
// Add nodes to the network
for (auto feature : handler.getAttributes()) {
cout << "Adding feature: " << feature.first << endl;
network.addNode(feature.first, 7);
}
network.addNode(className, 3);
for (auto item : edges) {
network.addEdge(item.first, item.second);
}
cout << "Hello, Bayesian Networks!" << endl;
torch::Tensor tensor = torch::eye(3);
cout << "Now I'll add a cycle" << endl;
try {
network.addEdge("petallength", className);
}
catch (invalid_argument& e) {
cout << e.what() << endl;
}
cout << tensor << std::endl;
cout << "Nodes:" << endl;
for (auto [name, item] : network.getNodes()) {
cout << "*" << item->getName() << endl;
cout << "-Parents:" << endl;
for (auto parent : item->getParents()) {
cout << " " << parent->getName() << endl;
}
cout << "-Children:" << endl;
for (auto child : item->getChildren()) {
cout << " " << child->getName() << endl;
}
}
cout << "Root: " << network.getRoot()->getName() << endl;
network.setRoot(className);
cout << "Now Root should be class: " << network.getRoot()->getName() << endl;
cout << "PyTorch version: " << TORCH_VERSION << endl;
return 0;
}

48
main.cc
View File

@ -3,40 +3,44 @@
#include <torch/torch.h>
#include "ArffFiles.h"
#include "Network.h"
#include "CPPFImdlp.h"
using namespace std;
vector<mdlp::labels_t> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y)
{
vector<mdlp::labels_t>Xd;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
Xd.push_back(fimdlp.transform(X[i]));
}
return Xd;
}
int main()
{
auto handler = ArffFiles();
handler.load("iris.arff");
auto X = handler.getX();
auto y = handler.getY();
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
vector<pair<string, string>> edges = { {className, "sepallength"}, {className, "sepalwidth"}, {className, "petallength"}, {className, "petalwidth"} };
auto network = bayesnet::Network();
// Add nodes to the network
vector<string> features;
for (auto feature : handler.getAttributes()) {
cout << "Adding feature: " << feature.first << endl;
network.addNode(feature.first, 7);
}
network.addNode(className, 3);
for (auto item : edges) {
network.addEdge(item.first, item.second);
features.push_back(feature.first);
}
// Discretize Dataset
vector<mdlp::labels_t> Xd = discretize(X, y);;
// Build Network
auto network = bayesnet::Network();
network.fit(Xd, y, features, className);
cout << "Hello, Bayesian Networks!" << endl;
torch::Tensor tensor = torch::eye(3);
cout << "Now I'll add a cycle" << endl;
try {
network.addEdge("petallength", className);
}
catch (invalid_argument& e) {
cout << e.what() << endl;
}
cout << tensor << std::endl;
cout << "Nodes:" << endl;
for (auto [name, item] : network.getNodes()) {
cout << "*" << item->getName() << endl;
cout << "*" << item->getName() << " -> " << item->getNumStates() << endl;
cout << "-Parents:" << endl;
for (auto parent : item->getParents()) {
cout << " " << parent->getName() << endl;
@ -49,6 +53,6 @@ int main()
cout << "Root: " << network.getRoot()->getName() << endl;
network.setRoot(className);
cout << "Now Root should be class: " << network.getRoot()->getName() << endl;
cout << "PyTorch version: " << TORCH_VERSION << endl;
return 0;
}

18
typesFImdlp.h Normal file
View File

@ -0,0 +1,18 @@
#ifndef TYPES_H
#define TYPES_H
#include <vector>
#include <map>
#include <stdexcept>
using namespace std;
namespace mdlp {
typedef float precision_t;
typedef vector<precision_t> samples_t;
typedef vector<int> labels_t;
typedef vector<size_t> indices_t;
typedef vector<precision_t> cutPoints_t;
typedef map<pair<int, int>, precision_t> cacheEnt_t;
typedef map<tuple<int, int, int>, precision_t> cacheIg_t;
}
#endif