BayesNet/Network.cc

143 lines
5.1 KiB
C++

#include "Network.h"
namespace bayesnet {
Network::Network() : laplaceSmoothing(1), root(nullptr) {}
Network::Network(int smoothing) : laplaceSmoothing(smoothing), root(nullptr) {}
Network::~Network()
{
for (auto& pair : nodes) {
delete pair.second;
}
}
void Network::addNode(string name, int numStates)
{
nodes[name] = new Node(name, numStates);
if (root == nullptr) {
root = nodes[name];
}
}
void Network::setRoot(string name)
{
if (nodes.find(name) == nodes.end()) {
throw invalid_argument("Node " + name + " does not exist");
}
root = nodes[name];
}
Node* Network::getRoot()
{
return root;
}
bool Network::isCyclic(const string& nodeId, unordered_set<string>& visited, unordered_set<string>& recStack)
{
if (visited.find(nodeId) == visited.end()) // if node hasn't been visited yet
{
visited.insert(nodeId);
recStack.insert(nodeId);
for (Node* child : nodes[nodeId]->getChildren()) {
if (visited.find(child->getName()) == visited.end() && isCyclic(child->getName(), visited, recStack))
return true;
else if (recStack.find(child->getName()) != recStack.end())
return true;
}
}
recStack.erase(nodeId); // remove node from recursion stack before function ends
return false;
}
void Network::addEdge(const string parent, const string child)
{
if (nodes.find(parent) == nodes.end()) {
throw invalid_argument("Parent node " + parent + " does not exist");
}
if (nodes.find(child) == nodes.end()) {
throw invalid_argument("Child node " + child + " does not exist");
}
// Temporarily add edge to check for cycles
nodes[parent]->addChild(nodes[child]);
nodes[child]->addParent(nodes[parent]);
// temporarily add edge
unordered_set<string> visited;
unordered_set<string> recStack;
if (isCyclic(nodes[child]->getName(), visited, recStack)) // if adding this edge forms a cycle
{
// remove edge
nodes[parent]->removeChild(nodes[child]);
nodes[child]->removeParent(nodes[parent]);
throw invalid_argument("Adding this edge forms a cycle in the graph.");
}
}
map<string, Node*>& Network::getNodes()
{
return nodes;
}
void Network::buildNetwork(const vector<vector<int>>& dataset, const vector<int>& labels, const vector<string>& featureNames, const string& className)
{
// Add features as nodes to the network
for (int i = 0; i < featureNames.size(); ++i) {
addNode(featureNames[i], *max_element(dataset[i].begin(), dataset[i].end()) + 1);
}
// Add class as node to the network
addNode(className, *max_element(labels.begin(), labels.end()) + 1);
// Add edges from class to features => naive Bayes
for (auto feature : featureNames) {
addEdge(className, feature);
}
}
void Network::fit(const vector<vector<int>>& dataset, const vector<int>& labels, const vector<string>& featureNames, const string& className)
{
buildNetwork(dataset, labels, featureNames, className);
//estimateParameters(dataset);
// auto jointCounts = [](const vector<vector<int>>& data, const vector<int>& indices, int numStates) {
// int size = indices.size();
// vector<int64_t> sizes(size, numStates);
// torch::Tensor counts = torch::zeros(sizes, torch::kLong);
// for (const auto& row : data) {
// int idx = 0;
// for (int i = 0; i < size; ++i) {
// idx = idx * numStates + row[indices[i]];
// }
// counts.view({ -1 }).add_(idx, 1);
// }
// return counts;
// };
// auto marginalCounts = [](const torch::Tensor& jointCounts) {
// return jointCounts.sum(-1);
// };
// for (auto& pair : nodes) {
// Node* node = pair.second;
// vector<int> indices;
// for (const auto& parent : node->getParents()) {
// indices.push_back(nodes[parent->getName()]->getId());
// }
// indices.push_back(node->getId());
// for (auto& child : node->getChildren()) {
// torch::Tensor counts = jointCounts(dataset, indices, node->getNumStates()) + laplaceSmoothing;
// torch::Tensor parentCounts = marginalCounts(counts);
// parentCounts = parentCounts.unsqueeze(-1);
// torch::Tensor cpt = counts.to(torch::kDouble) / parentCounts.to(torch::kDouble);
// setCPD(node->getCPDKey(child), cpt);
// }
// }
}
torch::Tensor& Network::getCPD(const string& key)
{
return cpds[key];
}
void Network::setCPD(const string& key, const torch::Tensor& cpt)
{
cpds[key] = cpt;
}
}