Add Makefile & tests

This commit is contained in:
Ricardo Montañana Gómez 2023-07-17 22:51:15 +02:00
parent f530e69dae
commit ca72a34131
Signed by: rmontanana
GPG Key ID: 46064262FD9A7ADE
10 changed files with 303 additions and 365 deletions

View File

@ -1,14 +1,52 @@
cmake_minimum_required(VERSION 3.20)
project(BayesNet)
project(BayesNet
VERSION 0.1.0
DESCRIPTION "Bayesian Network and basic classifiers Library."
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
LANGUAGES CXX
)
find_package(Torch REQUIRED)
if (POLICY CMP0135)
cmake_policy(SET CMP0135 NEW)
endif ()
# Global CMake variables
# ----------------------
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
# Options
# -------
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
option(ENABLE_TESTING "Unit testing build" ON)
option(CODE_COVERAGE "Collect coverage from test library" ON)
set(CMAKE_BUILD_TYPE "Debug")
# Subdirectories
# --------------
add_subdirectory(config)
add_subdirectory(src)
add_subdirectory(sample)
add_subdirectory(sample)
# Testing
# -------
if (ENABLE_TESTING)
enable_testing()
#if (CODE_COVERAGE)
SET(GCC_COVERAGE_COMPILE_FLAGS "-fprofile-arcs -ftest-coverage")
SET(GCC_COVERAGE_LINK_FLAGS "--coverage")
#endif (CODE_COVERAGE)
find_package(Catch2 3 REQUIRED)
include(CTest)
include(Catch)
add_subdirectory(tests)
endif (ENABLE_TESTING)

57
Makefile Normal file
View File

@ -0,0 +1,57 @@
SHELL := /bin/bash
.DEFAULT_GOAL := help
.PHONY: coverage setup help build test
setup: ## Install dependencies for tests and coverage
@if [ "$(shell uname)" = "Darwin" ]; then \
brew install gcovr; \
brew install lcov; \
fi
@if [ "$(shell uname)" = "Linux" ]; then \
pip install gcovr; \
fi
dependency: ## Create a dependency graph diagram of the project (build/dependency.png)
cd build && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
build: ## Build the project
@echo ">>> Building BayesNet ...";
@if [ -d ./build ]; then rm -rf ./build; fi
@mkdir build;
cmake -S . -B build; \
cd build; \
make; \
@echo ">>> Done";
test: ## Run tests
@echo "* Running tests...";
find . -name "*.gcda" -print0 | xargs -0 rm
@cd build; \
cmake --build . --target unit_tests ;
@cd build/tests; \
./unit_tests;
coverage: ## Run tests and generate coverage report (build/index.html)
@echo "*Building tests...";
find . -name "*.gcda" -print0 | xargs -0 rm
@cd build; \
cmake --build . --target unit_tests ;
gcovr ;
help: ## Show help message
@IFS=$$'\n' ; \
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
printf "%s\n\n" "Usage: make [task]"; \
printf "%-20s %s\n" "task" "help" ; \
printf "%-20s %s\n" "------" "----" ; \
for help_line in $${help_lines[@]}; do \
IFS=$$':' ; \
help_split=($$help_line) ; \
help_command=`echo $${help_split[0]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \
help_info=`echo $${help_split[2]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \
printf '\033[36m'; \
printf "%-20s %s" $$help_command ; \
printf '\033[0m'; \
printf "%s\n" $$help_info; \
done

4
config/CMakeLists.txt Normal file
View File

@ -0,0 +1,4 @@
configure_file(
"config.h.in"
"${CMAKE_BINARY_DIR}/configured_files/include/config.h" ESCAPE_QUOTES
)

13
config/config.h.in Normal file
View File

@ -0,0 +1,13 @@
#pragma once
#include <string>
#include <string_view>
#define PROJECT_VERSION_MAJOR @PROJECT_VERSION_MAJOR @
#define PROJECT_VERSION_MINOR @PROJECT_VERSION_MINOR @
#define PROJECT_VERSION_PATCH @PROJECT_VERSION_PATCH @
static constexpr std::string_view project_name = " @PROJECT_NAME@ ";
static constexpr std::string_view project_version = "@PROJECT_VERSION@";
static constexpr std::string_view project_description = "@PROJECT_DESCRIPTION@";
static constexpr std::string_view git_sha = "@GIT_SHA@";

View File

@ -1,6 +1,4 @@
include_directories(${BayesNet_SOURCE_DIR}/src)
link_directories(${MyProject_SOURCE_DIR}/src)
add_executable(main main.cc ArffFiles.cc CPPFImdlp.cpp Metrics.cpp)
add_executable(test test.cc)
target_link_libraries(main BayesNet "${TORCH_LIBRARIES}")
target_link_libraries(test "${TORCH_LIBRARIES}")
target_link_libraries(main BayesNet "${TORCH_LIBRARIES}")

View File

@ -30,23 +30,23 @@ void usage(const char* path)
<< " -f, --file[=FILENAME]\t {diabetes, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}."
<< endl;
cout << " -p, --path[=FILENAME]\t folder where the data files are located, default " << PATH << endl;
cout << " -n, --net=[FILENAME]\t default=file parameter value" << endl;
cout << " -m, --model={AODE, KDB, SPODE, TAN}\t " << endl;
}
tuple<string, string, string> parse_arguments(int argc, char** argv)
{
string file_name;
string network_name;
string model_name;
string path = PATH;
const vector<struct option> long_options = {
{"help", no_argument, nullptr, 'h'},
{"file", required_argument, nullptr, 'f'},
{"path", required_argument, nullptr, 'p'},
{"net", required_argument, nullptr, 'n'},
{"model", required_argument, nullptr, 'm'},
{nullptr, no_argument, nullptr, 0}
};
while (true) {
const auto c = getopt_long(argc, argv, "hf:p:n:", long_options.data(), nullptr);
const auto c = getopt_long(argc, argv, "hf:p:m:", long_options.data(), nullptr);
if (c == -1)
break;
switch (c) {
@ -56,8 +56,8 @@ tuple<string, string, string> parse_arguments(int argc, char** argv)
case 'f':
file_name = string(optarg);
break;
case 'n':
network_name = string(optarg);
case 'm':
model_name = string(optarg);
break;
case 'p':
path = optarg;
@ -75,12 +75,22 @@ tuple<string, string, string> parse_arguments(int argc, char** argv)
usage(argv[0]);
exit(1);
}
if (network_name.empty()) {
network_name = file_name;
}
return make_tuple(file_name, path, network_name);
return make_tuple(file_name, path, model_name);
}
inline constexpr auto hash_conv(const std::string_view sv)
{
unsigned long hash{ 5381 };
for (unsigned char c : sv) {
hash = ((hash << 5) + hash) ^ c;
}
return hash;
}
inline constexpr auto operator"" _sh(const char* str, size_t len)
{
return hash_conv(std::string_view{ str, len });
}
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
{
@ -96,39 +106,6 @@ pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t
}
return { Xd, maxes };
}
void showNodesInfo(bayesnet::Network& network, string className)
{
cout << "Nodes:" << endl;
for (auto& node : network.getNodes()) {
auto name = node.first;
cout << "*" << node.second->getName() << " States -> " << node.second->getNumStates() << endl;
cout << "-Parents:";
for (auto parent : node.second->getParents()) {
cout << " " << parent->getName();
}
cout << endl;
cout << "-Children:";
for (auto child : node.second->getChildren()) {
cout << " " << child->getName();
}
cout << endl;
}
}
void showCPDS(bayesnet::Network& network)
{
cout << "CPDs:" << endl;
auto& nodes = network.getNodes();
for (auto it = nodes.begin(); it != nodes.end(); it++) {
cout << "* Name: " << it->first << " " << it->second->getName() << " -> " << it->second->getNumStates() << endl;
cout << "Parents: ";
for (auto parent : it->second->getParents()) {
cout << parent->getName() << " -> " << parent->getNumStates() << ", ";
}
cout << endl;
auto cpd = it->second->getCPT();
cout << cpd << endl;
}
}
bool file_exists(const std::string& name)
{
@ -140,7 +117,7 @@ bool file_exists(const std::string& name)
}
}
pair<string, string> get_options(int argc, char** argv)
tuple<string, string, string> get_options(int argc, char** argv)
{
map<string, bool> datasets = {
{"diabetes", true},
@ -152,58 +129,35 @@ pair<string, string> get_options(int argc, char** argv)
{"liver-disorders", true},
{"mfeat-factors", true},
};
vector <string> models = { "AODE", "KDB", "SPODE", "TAN" };
string file_name;
string path;
string network_name;
tie(file_name, path, network_name) = parse_arguments(argc, argv);
string model_name;
tie(file_name, path, model_name) = parse_arguments(argc, argv);
if (datasets.find(file_name) == datasets.end()) {
cout << "Invalid file name: " << file_name << endl;
usage(argv[0]);
exit(1);
}
file_name = path + file_name + ".arff";
if (!file_exists(file_name)) {
cout << "Data File " << file_name << " does not exist" << endl;
if (!file_exists(path + file_name + ".arff")) {
cout << "Data File " << path + file_name + ".arff" << " does not exist" << endl;
usage(argv[0]);
exit(1);
}
network_name = path + network_name + ".net";
if (!file_exists(network_name)) {
cout << "Network File " << network_name << " does not exist" << endl;
if (find(models.begin(), models.end(), model_name) == models.end()) {
cout << "Invalid model name: " << model_name << endl;
usage(argv[0]);
exit(1);
}
return { file_name, network_name };
return { file_name, path, model_name };
}
void build_network(bayesnet::Network& network, string network_name, map<string, int> maxes)
{
ifstream file(network_name);
string line;
while (getline(file, line)) {
if (line[0] == '#') {
continue;
}
istringstream iss(line);
string parent, child;
if (!(iss >> parent >> child)) {
break;
}
network.addNode(parent, maxes[parent]);
network.addNode(child, maxes[child]);
network.addEdge(parent, child);
}
file.close();
}
int main(int argc, char** argv)
{
string file_name, network_name;
tie(file_name, network_name) = get_options(argc, argv);
string file_name, path, model_name;
tie(file_name, path, model_name) = get_options(argc, argv);
auto handler = ArffFiles();
handler.load(file_name);
handler.load(path + file_name + ".arff");
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
@ -218,91 +172,54 @@ int main(int argc, char** argv)
map<string, int> maxes;
tie(Xd, maxes) = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
cout << "Features: ";
for (auto feature : features) {
cout << "[" << feature << "] ";
}
cout << endl;
cout << "Class name: " << className << endl;
// Build Network
// auto network = bayesnet::Network(1.0);
// build_network(network, network_name, maxes);
// network.fit(Xd, y, features, className);
// cout << "Hello, Bayesian Networks!" << endl;
// showNodesInfo(network, className);
// //showCPDS(network);
// cout << "Score: " << network.score(Xd, y) << endl;
// cout << "PyTorch version: " << TORCH_VERSION << endl;
// cout << "BayesNet version: " << network.version() << endl;
// unsigned int nthreads = std::thread::hardware_concurrency();
// cout << "Computer has " << nthreads << " cores." << endl;
// cout << "****************** First ******************" << endl;
// auto metrics = bayesnet::Metrics(network.getSamples(), features, className, network.getClassNumStates());
// cout << "conditionalEdgeWeight " << endl;
// auto conditional = metrics.conditionalEdgeWeights();
// cout << conditional << endl;
// long m = features.size() + 1;
// auto matrix = torch::from_blob(conditional.data(), { m, m });
// cout << matrix << endl;
// cout << "****************** Second ******************" << endl;
// auto metrics2 = bayesnet::Metrics(Xd, y, features, className, network.getClassNumStates());
// cout << "conditionalEdgeWeight " << endl;
// auto conditional2 = metrics2.conditionalEdgeWeights();
// cout << conditional2 << endl;
// long m2 = features.size() + 1;
// auto matrix2 = torch::from_blob(conditional2.data(), { m, m });
// cout << matrix2 << endl;
cout << "****************** Preparing ******************" << endl;
map<string, vector<int>> states;
for (auto feature : features) {
states[feature] = vector<int>(maxes[feature]);
}
states[className] = vector<int>(
maxes[className]);
cout << "****************** KDB ******************" << endl;
double score;
vector<string> lines;
vector<string> graph;
auto kdb = bayesnet::KDB(2);
kdb.fit(Xd, y, features, className, states);
for (auto line : kdb.show()) {
cout << line << endl;
}
cout << "Score: " << kdb.score(Xd, y) << endl;
ofstream file("kdb.dot");
file << kdb.graph();
file.close();
cout << "****************** KDB ******************" << endl;
cout << "****************** SPODE ******************" << endl;
auto spode = bayesnet::SPODE(2);
spode.fit(Xd, y, features, className, states);
for (auto line : spode.show()) {
cout << line << endl;
}
cout << "Score: " << spode.score(Xd, y) << endl;
file.open("spode.dot");
file << spode.graph();
file.close();
cout << "****************** SPODE ******************" << endl;
cout << "****************** AODE ******************" << endl;
auto aode = bayesnet::AODE();
aode.fit(Xd, y, features, className, states);
for (auto line : aode.show()) {
cout << line << endl;
}
cout << "Score: " << aode.score(Xd, y) << endl;
file.open("aode.dot");
for (auto line : aode.graph())
file << line;
file.close();
cout << "****************** AODE ******************" << endl;
cout << "****************** TAN ******************" << endl;
auto spode = bayesnet::SPODE(2);
auto tan = bayesnet::TAN();
tan.fit(Xd, y, features, className, states);
for (auto line : tan.show()) {
switch (hash_conv(model_name)) {
case "AODE"_sh:
aode.fit(Xd, y, features, className, states);
lines = aode.show();
score = aode.score(Xd, y);
graph = aode.graph();
break;
case "KDB"_sh:
kdb.fit(Xd, y, features, className, states);
lines = kdb.show();
score = kdb.score(Xd, y);
graph = kdb.graph();
break;
case "SPODE"_sh:
spode.fit(Xd, y, features, className, states);
lines = spode.show();
score = spode.score(Xd, y);
graph = spode.graph();
break;
case "TAN"_sh:
tan.fit(Xd, y, features, className, states);
lines = tan.show();
score = tan.score(Xd, y);
graph = tan.graph();
break;
}
for (auto line : lines) {
cout << line << endl;
}
cout << "Score: " << tan.score(Xd, y) << endl;
file.open("tan.dot");
file << tan.graph();
cout << "Score: " << score << endl;
auto dot_file = model_name + "_" + file_name;
ofstream file(dot_file + ".dot");
file << graph;
file.close();
cout << "****************** TAN ******************" << endl;
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
return 0;
}

View File

@ -1,208 +0,0 @@
// #include <torch/torch.h>
// int main()
// {
// torch::Tensor t = torch::rand({ 5, 5 });
// // Print original tensor
// std::cout << t << std::endl;
// // New value
// torch::Tensor new_val = torch::tensor(10.0f);
// // Indices for the cell you want to update
// auto index_i = torch::tensor({ 2 });
// auto index_j = torch::tensor({ 3 });
// // Update cell
// t.index_put_({ index_i, index_j }, new_val);
// // Print updated tensor
// std::cout << t << std::endl;
// }
#include <torch/torch.h>
#include <iostream>
#include <vector>
#include <string>
using namespace std;
double entropy(torch::Tensor feature)
{
torch::Tensor counts = feature.bincount();
int totalWeight = counts.sum().item<int>();
torch::Tensor probs = counts.to(torch::kFloat) / totalWeight;
torch::Tensor logProbs = torch::log2(probs);
torch::Tensor entropy = -probs * logProbs;
return entropy.sum().item<double>();
}
// H(Y|X) = sum_{x in X} p(x) H(Y|X=x)
double conditionalEntropy(torch::Tensor firstFeature, torch::Tensor secondFeature)
{
int numSamples = firstFeature.sizes()[0];
torch::Tensor featureCounts = secondFeature.bincount();
unordered_map<int, unordered_map<int, double>> jointCounts;
double totalWeight = 0;
for (auto i = 0; i < numSamples; i++) {
jointCounts[secondFeature[i].item<int>()][firstFeature[i].item<int>()] += 1;
totalWeight += 1;
}
if (totalWeight == 0)
throw invalid_argument("Total weight should not be zero");
double entropy = 0;
for (int value = 0; value < featureCounts.sizes()[0]; ++value) {
double p_f = featureCounts[value].item<double>() / totalWeight;
double entropy_f = 0;
for (auto& [label, jointCount] : jointCounts[value]) {
double p_l_f = jointCount / featureCounts[value].item<double>();
if (p_l_f > 0) {
entropy_f -= p_l_f * log2(p_l_f);
} else {
entropy_f = 0;
}
}
entropy += p_f * entropy_f;
}
return entropy;
}
// I(X;Y) = H(Y) - H(Y|X)
double mutualInformation(torch::Tensor firstFeature, torch::Tensor secondFeature)
{
return entropy(firstFeature) - conditionalEntropy(firstFeature, secondFeature);
}
double entropy2(torch::Tensor feature)
{
return torch::special::entr(feature).sum().item<double>();
}
int main()
{
//int i = 3, j = 1, k = 2; // Indices for the cell you want to update
// Print original tensor
// torch::Tensor t = torch::tensor({ {1, 2, 3}, {4, 5, 6} }); // 3D tensor for this example
// auto variables = vector<string>{ "A", "B" };
// auto cardinalities = vector<int>{ 5, 4 };
// torch::Tensor values = torch::rand({ 5, 4 });
// auto candidate = "B";
// vector<string> newVariables;
// vector<int> newCardinalities;
// for (int i = 0; i < variables.size(); i++) {
// if (variables[i] != candidate) {
// newVariables.push_back(variables[i]);
// newCardinalities.push_back(cardinalities[i]);
// }
// }
// torch::Tensor newValues = values.sum(1);
// cout << "original values" << endl;
// cout << values << endl;
// cout << "newValues" << endl;
// cout << newValues << endl;
// cout << "newVariables" << endl;
// for (auto& variable : newVariables) {
// cout << variable << endl;
// }
// cout << "newCardinalities" << endl;
// for (auto& cardinality : newCardinalities) {
// cout << cardinality << endl;
// }
// auto row2 = values.index({ torch::tensor(1) }); //
// cout << "row2" << endl;
// cout << row2 << endl;
// auto col2 = values.index({ "...", 1 });
// cout << "col2" << endl;
// cout << col2 << endl;
// auto col_last = values.index({ "...", -1 });
// cout << "col_last" << endl;
// cout << col_last << endl;
// values.index_put_({ "...", -1 }, torch::tensor({ 1,2,3,4,5 }));
// cout << "col_last" << endl;
// cout << col_last << endl;
// auto slice2 = values.index({ torch::indexing::Slice(1, torch::indexing::None) });
// cout << "slice2" << endl;
// cout << slice2 << endl;
// auto mask = values.index({ "...", -1 }) % 2 == 0;
// auto filter = values.index({ mask, 2 }); // Filter values
// cout << "filter" << endl;
// cout << filter << endl;
// torch::Tensor dataset = torch::tensor({ {1,0,0,1},{1,1,1,2},{0,0,0,1},{1,0,2,0},{0,0,3,0} });
// cout << "dataset" << endl;
// cout << dataset << endl;
// cout << "entropy(dataset.indices('...', 2))" << endl;
// cout << dataset.index({ "...", 2 }) << endl;
// cout << "*********************************" << endl;
// for (int i = 0; i < 4; i++) {
// cout << "datset(" << i << ")" << endl;
// cout << dataset.index({ "...", i }) << endl;
// cout << "entropy(" << i << ")" << endl;
// cout << entropy(dataset.index({ "...", i })) << endl;
// }
// cout << "......................................" << endl;
// //cout << entropy2(dataset.index({ "...", 2 }));
// cout << "conditional entropy 0 2" << endl;
// cout << conditionalEntropy(dataset.index({ "...", 0 }), dataset.index({ "...", 2 })) << endl;
// cout << "mutualInformation(dataset.index({ '...', 0 }), dataset.index({ '...', 2 }))" << endl;
// cout << mutualInformation(dataset.index({ "...", 0 }), dataset.index({ "...", 2 })) << endl;
// auto test = torch::tensor({ .1, .2, .3 }, torch::kFloat);
// auto result = torch::zeros({ 3, 3 }, torch::kFloat);
// result.index_put_({ indices }, test);
// cout << "indices" << endl;
// cout << indices << endl;
// cout << "result" << endl;
// cout << result << endl;
// cout << "Test" << endl;
// cout << torch::triu(test.reshape(3, 3), torch::kFloat)) << endl;
// Create a 3x3 tensor with zeros
torch::Tensor tensor_3x3 = torch::zeros({ 3, 3 }, torch::kFloat);
// Create a 1D tensor with the three elements you want to set in the upper corner
torch::Tensor tensor_1d = torch::tensor({ 10, 11, 12 }, torch::kFloat);
// Set the upper corner of the 3x3 tensor
auto indices = torch::triu_indices(3, 3, 1);
for (auto i = 0; i < tensor_1d.sizes()[0]; ++i) {
auto x = indices[0][i];
auto y = indices[1][i];
tensor_3x3[x][y] = tensor_1d[i];
tensor_3x3[y][x] = tensor_1d[i];
}
// Print the resulting 3x3 tensor
std::cout << tensor_3x3 << std::endl;
vector<int> v = { 1,2,3,4,5 };
torch::Tensor t = torch::tensor(v);
cout << t << endl;
// std::cout << t << std::endl;
// std::cout << "sum(0)" << std::endl;
// std::cout << t.sum(0) << std::endl;
// std::cout << "sum(1)" << std::endl;
// std::cout << t.sum(1) << std::endl;
// std::cout << "Normalized" << std::endl;
// std::cout << t / t.sum(0) << std::endl;
// New value
// torch::Tensor new_val = torch::tensor(10.0f);
// // Indices for the cell you want to update
// std::vector<torch::Tensor> indices;
// indices.push_back(torch::tensor(i)); // Replace i with your index for the 1st dimension
// indices.push_back(torch::tensor(j)); // Replace j with your index for the 2nd dimension
// indices.push_back(torch::tensor(k)); // Replace k with your index for the 3rd dimension
// //torch::ArrayRef<at::indexing::TensorIndex> indices_ref(indices);
// // Update cell
// //torch::Tensor result = torch::stack(indices);
// //torch::List<c10::optional<torch::Tensor>> indices_list = { torch::tensor(i), torch::tensor(j), torch::tensor(k) };
// torch::List<c10::optional<torch::Tensor>> indices_list;
// indices_list.push_back(torch::tensor(i));
// indices_list.push_back(torch::tensor(j));
// indices_list.push_back(torch::tensor(k));
// //t.index_put_({ torch::tensor(i), torch::tensor(j), torch::tensor(k) }, new_val);
// t.index_put_(indices_list, new_val);
// // Print updated tensor
// std::cout << t << std::endl;
}

12
tests/CMakeLists.txt Normal file
View File

@ -0,0 +1,12 @@
if(ENABLE_TESTING)
set(TEST_MAIN "unit_tests")
include_directories(src)
SET(GCC_COVERAGE_COMPILE_FLAGS "-fprofile-arcs -ftest-coverage --coverage")
SET(GCC_COVERAGE_LINK_FLAGS "--coverage")
set(TEST_SOURCES main.cc ../sample/ArffFiles.cc ../sample/CPPFImdlp.cpp ../sample/Metrics.cpp
../src/utils.cc ../src/Network.cc ../src/Node.cc ../src/Metrics.cc ../src/BaseClassifier.cc ../src/KDB.cc
../src/TAN.cc ../src/SPODE.cc ../src/Ensemble.cc ../src/AODE.cc ../src/Mst.cc)
add_executable(${TEST_MAIN} ${TEST_SOURCES})
target_link_libraries(${TEST_MAIN} PUBLIC "${TORCH_LIBRARIES}" Catch2::Catch2WithMain)
add_test(NAME ${TEST_MAIN} COMMAND ${TEST_MAIN})
endif(ENABLE_TESTING)

102
tests/main.cc Normal file
View File

@ -0,0 +1,102 @@
#define CATCH_CONFIG_MAIN // This tells Catch to provide a main() - only do
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include <catch2/generators/catch_generators.hpp>
#include <vector>
#include <map>
#include <string>
#include <torch/torch.h>
#include "../sample/ArffFiles.h"
#include "../sample/CPPFImdlp.h"
#include "../src/KDB.h"
#include "../src/TAN.h"
#include "../src/SPODE.h"
#include "../src/AODE.h"
const string PATH = "data/";
using namespace std;
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
{
vector<mdlp::labels_t>Xd;
map<string, int> maxes;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
Xd.push_back(xd);
}
return { Xd, maxes };
}
TEST_CASE("Test Bayesian Classifiers score", "[BayesNet]")
{
auto path = "../../data/";
map <pair<string, string>, float> scores = {
{{"diabetes", "AODE"}, 0.811198}, {{"diabetes", "KDB"}, 0.852865}, {{"diabetes", "SPODE"}, 0.802083}, {{"diabetes", "TAN"}, 0.821615},
{{"ecoli", "AODE"}, 0.889881}, {{"ecoli", "KDB"}, 0.889881}, {{"ecoli", "SPODE"}, 0.880952}, {{"ecoli", "TAN"}, 0.892857},
{{"glass", "AODE"}, 0.78972}, {{"glass", "KDB"}, 0.827103}, {{"glass", "SPODE"}, 0.775701}, {{"glass", "TAN"}, 0.827103},
{{"iris", "AODE"}, 0.973333}, {{"iris", "KDB"}, 0.973333}, {{"iris", "SPODE"}, 0.973333}, {{"iris", "TAN"}, 0.973333}
};
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
auto handler = ArffFiles();
handler.load(path + static_cast<string>(file_name) + ".arff");
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
for (auto feature : handler.getAttributes()) {
features.push_back(feature.first);
}
// Discretize Dataset
vector<mdlp::labels_t> Xd;
map<string, int> maxes;
tie(Xd, maxes) = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
map<string, vector<int>> states;
for (auto feature : features) {
states[feature] = vector<int>(maxes[feature]);
}
states[className] = vector<int>(maxes[className]);
SECTION("Test TAN classifier (" + file_name + ")")
{
auto clf = bayesnet::TAN();
clf.fit(Xd, y, features, className, states);
auto score = clf.score(Xd, y);
//scores[{file_name, "TAN"}] = score;
REQUIRE(score == Catch::Approx(scores[{file_name, "TAN"}]).epsilon(1e-6));
}
SECTION("Test KDB classifier (" + file_name + ")")
{
auto clf = bayesnet::KDB(2);
clf.fit(Xd, y, features, className, states);
auto score = clf.score(Xd, y);
//scores[{file_name, "KDB"}] = score;
REQUIRE(score == Catch::Approx(scores[{file_name, "KDB"
}]).epsilon(1e-6));
}
SECTION("Test SPODE classifier (" + file_name + ")")
{
auto clf = bayesnet::SPODE(1);
clf.fit(Xd, y, features, className, states);
auto score = clf.score(Xd, y);
// scores[{file_name, "SPODE"}] = score;
REQUIRE(score == Catch::Approx(scores[{file_name, "SPODE"}]).epsilon(1e-6));
}
SECTION("Test AODE classifier (" + file_name + ")")
{
auto clf = bayesnet::AODE();
clf.fit(Xd, y, features, className, states);
auto score = clf.score(Xd, y);
// scores[{file_name, "AODE"}] = score;
REQUIRE(score == Catch::Approx(scores[{file_name, "AODE"}]).epsilon(1e-6));
}
// for (auto scores : scores) {
// cout << "{{\"" << scores.first.first << "\", \"" << scores.first.second << "\"}, " << scores.second << "}, ";
// }
}

5
x.cfg Normal file
View File

@ -0,0 +1,5 @@
filter = src/
exclude = external/
exclude = tests/
print-summary = yes
sort-percentage = yes