BayesNet/sample/main.cc

308 lines
10 KiB
C++
Raw Normal View History

2023-06-29 20:00:41 +00:00
#include <iostream>
#include <string>
#include <torch/torch.h>
2023-07-06 09:59:48 +00:00
#include <thread>
#include <getopt.h>
2023-06-29 20:00:41 +00:00
#include "ArffFiles.h"
#include "Network.h"
#include "Metrics.hpp"
2023-06-30 00:46:06 +00:00
#include "CPPFImdlp.h"
2023-07-13 01:15:42 +00:00
#include "KDB.h"
2023-07-14 23:59:30 +00:00
#include "SPODE.h"
#include "AODE.h"
#include "TAN.h"
2023-06-30 00:46:06 +00:00
2023-06-29 20:00:41 +00:00
using namespace std;
const string PATH = "data/";
/* print a description of all supported options */
void usage(const char* path)
{
/* take only the last portion of the path */
const char* basename = strrchr(path, '/');
basename = basename ? basename + 1 : path;
cout << "usage: " << basename << "[OPTION]" << endl;
cout << " -h, --help\t\t Print this help and exit." << endl;
cout
<< " -f, --file[=FILENAME]\t {diabetes, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}."
<< endl;
cout << " -p, --path[=FILENAME]\t folder where the data files are located, default " << PATH << endl;
cout << " -n, --net=[FILENAME]\t default=file parameter value" << endl;
}
tuple<string, string, string> parse_arguments(int argc, char** argv)
{
string file_name;
string network_name;
string path = PATH;
const vector<struct option> long_options = {
{"help", no_argument, nullptr, 'h'},
{"file", required_argument, nullptr, 'f'},
{"path", required_argument, nullptr, 'p'},
{"net", required_argument, nullptr, 'n'},
{nullptr, no_argument, nullptr, 0}
};
while (true) {
const auto c = getopt_long(argc, argv, "hf:p:n:", long_options.data(), nullptr);
if (c == -1)
break;
switch (c) {
case 'h':
usage(argv[0]);
exit(0);
case 'f':
file_name = string(optarg);
break;
case 'n':
network_name = string(optarg);
break;
case 'p':
path = optarg;
if (path.back() != '/')
path += '/';
break;
case '?':
usage(argv[0]);
exit(1);
default:
abort();
}
}
if (file_name.empty()) {
usage(argv[0]);
exit(1);
}
if (network_name.empty()) {
network_name = file_name;
}
return make_tuple(file_name, path, network_name);
}
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
2023-06-30 00:46:06 +00:00
{
vector<mdlp::labels_t>Xd;
map<string, int> maxes;
2023-06-30 19:24:12 +00:00
2023-06-30 00:46:06 +00:00
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
2023-06-30 19:24:12 +00:00
mdlp::labels_t& xd = fimdlp.transform(X[i]);
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
2023-06-30 19:24:12 +00:00
Xd.push_back(xd);
2023-06-30 00:46:06 +00:00
}
return { Xd, maxes };
2023-06-30 00:46:06 +00:00
}
void showNodesInfo(bayesnet::Network& network, string className)
2023-06-29 20:00:41 +00:00
{
cout << "Nodes:" << endl;
for (auto& node : network.getNodes()) {
auto name = node.first;
cout << "*" << node.second->getName() << " States -> " << node.second->getNumStates() << endl;
2023-07-05 17:09:59 +00:00
cout << "-Parents:";
for (auto parent : node.second->getParents()) {
2023-07-05 17:09:59 +00:00
cout << " " << parent->getName();
2023-06-29 20:00:41 +00:00
}
2023-07-05 17:09:59 +00:00
cout << endl;
cout << "-Children:";
for (auto child : node.second->getChildren()) {
2023-07-05 17:09:59 +00:00
cout << " " << child->getName();
2023-06-29 20:00:41 +00:00
}
2023-07-05 17:09:59 +00:00
cout << endl;
2023-06-29 20:00:41 +00:00
}
}
void showCPDS(bayesnet::Network& network)
{
2023-06-30 19:24:12 +00:00
cout << "CPDs:" << endl;
auto& nodes = network.getNodes();
2023-06-30 19:24:12 +00:00
for (auto it = nodes.begin(); it != nodes.end(); it++) {
cout << "* Name: " << it->first << " " << it->second->getName() << " -> " << it->second->getNumStates() << endl;
cout << "Parents: ";
for (auto parent : it->second->getParents()) {
cout << parent->getName() << " -> " << parent->getNumStates() << ", ";
}
cout << endl;
auto cpd = it->second->getCPT();
cout << cpd << endl;
}
}
bool file_exists(const std::string& name)
{
if (FILE* file = fopen(name.c_str(), "r")) {
fclose(file);
return true;
} else {
return false;
}
}
pair<string, string> get_options(int argc, char** argv)
{
map<string, bool> datasets = {
{"diabetes", true},
{"ecoli", true},
{"glass", true},
{"iris", true},
{"kdd_JapaneseVowels", false},
{"letter", true},
{"liver-disorders", true},
{"mfeat-factors", true},
};
string file_name;
string path;
string network_name;
tie(file_name, path, network_name) = parse_arguments(argc, argv);
2023-07-05 17:09:59 +00:00
if (datasets.find(file_name) == datasets.end()) {
cout << "Invalid file name: " << file_name << endl;
usage(argv[0]);
exit(1);
}
file_name = path + file_name + ".arff";
if (!file_exists(file_name)) {
cout << "Data File " << file_name << " does not exist" << endl;
usage(argv[0]);
exit(1);
}
network_name = path + network_name + ".net";
if (!file_exists(network_name)) {
cout << "Network File " << network_name << " does not exist" << endl;
usage(argv[0]);
exit(1);
}
return { file_name, network_name };
}
void build_network(bayesnet::Network& network, string network_name, map<string, int> maxes)
{
ifstream file(network_name);
string line;
while (getline(file, line)) {
2023-07-01 22:48:24 +00:00
if (line[0] == '#') {
continue;
}
istringstream iss(line);
string parent, child;
if (!(iss >> parent >> child)) {
break;
}
network.addNode(parent, maxes[parent]);
network.addNode(child, maxes[child]);
network.addEdge(parent, child);
}
file.close();
}
int main(int argc, char** argv)
{
string file_name, network_name;
tie(file_name, network_name) = get_options(argc, argv);
auto handler = ArffFiles();
handler.load(file_name);
// Get Dataset X, y
vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
vector<string> features;
for (auto feature : handler.getAttributes()) {
features.push_back(feature.first);
}
// Discretize Dataset
vector<mdlp::labels_t> Xd;
map<string, int> maxes;
tie(Xd, maxes) = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
cout << "Features: ";
for (auto feature : features) {
cout << "[" << feature << "] ";
}
cout << endl;
cout << "Class name: " << className << endl;
// Build Network
2023-07-13 14:59:06 +00:00
// auto network = bayesnet::Network(1.0);
// build_network(network, network_name, maxes);
// network.fit(Xd, y, features, className);
// cout << "Hello, Bayesian Networks!" << endl;
// showNodesInfo(network, className);
// //showCPDS(network);
// cout << "Score: " << network.score(Xd, y) << endl;
// cout << "PyTorch version: " << TORCH_VERSION << endl;
// cout << "BayesNet version: " << network.version() << endl;
// unsigned int nthreads = std::thread::hardware_concurrency();
// cout << "Computer has " << nthreads << " cores." << endl;
// cout << "****************** First ******************" << endl;
// auto metrics = bayesnet::Metrics(network.getSamples(), features, className, network.getClassNumStates());
// cout << "conditionalEdgeWeight " << endl;
// auto conditional = metrics.conditionalEdgeWeights();
// cout << conditional << endl;
// long m = features.size() + 1;
// auto matrix = torch::from_blob(conditional.data(), { m, m });
// cout << matrix << endl;
// cout << "****************** Second ******************" << endl;
// auto metrics2 = bayesnet::Metrics(Xd, y, features, className, network.getClassNumStates());
// cout << "conditionalEdgeWeight " << endl;
// auto conditional2 = metrics2.conditionalEdgeWeights();
// cout << conditional2 << endl;
// long m2 = features.size() + 1;
// auto matrix2 = torch::from_blob(conditional2.data(), { m, m });
// cout << matrix2 << endl;
2023-07-14 23:59:30 +00:00
cout << "****************** Preparing ******************" << endl;
2023-07-13 01:15:42 +00:00
map<string, vector<int>> states;
for (auto feature : features) {
states[feature] = vector<int>(maxes[feature]);
}
states[className] = vector<int>(
maxes[className]);
2023-07-15 23:20:47 +00:00
cout << "****************** KDB ******************" << endl;
auto kdb = bayesnet::KDB(2);
kdb.fit(Xd, y, features, className, states);
for (auto line : kdb.show()) {
cout << line << endl;
}
cout << "Score: " << kdb.score(Xd, y) << endl;
ofstream file("kdb.dot");
file << kdb.graph();
file.close();
cout << "****************** KDB ******************" << endl;
cout << "****************** SPODE ******************" << endl;
auto spode = bayesnet::SPODE(2);
spode.fit(Xd, y, features, className, states);
for (auto line : spode.show()) {
cout << line << endl;
}
cout << "Score: " << spode.score(Xd, y) << endl;
file.open("spode.dot");
file << spode.graph();
file.close();
cout << "****************** SPODE ******************" << endl;
cout << "****************** AODE ******************" << endl;
auto aode = bayesnet::AODE();
aode.fit(Xd, y, features, className, states);
for (auto line : aode.show()) {
cout << line << endl;
}
cout << "Score: " << aode.score(Xd, y) << endl;
file.open("aode.dot");
for (auto line : aode.graph())
file << line;
file.close();
cout << "****************** AODE ******************" << endl;
cout << "****************** TAN ******************" << endl;
auto tan = bayesnet::TAN();
tan.fit(Xd, y, features, className, states);
for (auto line : tan.show()) {
cout << line << endl;
}
cout << "Score: " << tan.score(Xd, y) << endl;
2023-07-15 23:20:47 +00:00
file.open("tan.dot");
file << tan.graph();
file.close();
cout << "****************** TAN ******************" << endl;
2023-06-29 20:00:41 +00:00
return 0;
}