mirror of
https://github.com/Doctorado-ML/FImdlp.git
synced 2025-08-17 08:25:51 +00:00
Compare commits
55 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
a7098a907e | ||
6e17548563
|
|||
dd42e186d5
|
|||
3a100bbba7
|
|||
17a66858f8
|
|||
3ed491cd34
|
|||
878cd379ee
|
|||
25d341aee5
|
|||
fa8c4a221d
|
|||
947d54202d
|
|||
d04cb389c0
|
|||
0768d68a36
|
|||
e44bca0420
|
|||
c2294613df
|
|||
1069fc8ff4
|
|||
95bc29c7f2
|
|||
da9db322da
|
|||
e3c329b2e5
|
|||
7368dd9ff4
|
|||
b5c6a49e19
|
|||
c2a0d33604
|
|||
e6a56e3140
|
|||
ccce9725b3
|
|||
aa55d3a340
|
|||
900cccf76b
|
|||
f65efe3dfd
|
|||
e9d19d41da
|
|||
6450ccb9bd
|
|||
5d2f32bb0e
|
|||
|
8249e55b0c | ||
40871f128d
|
|||
718c9d0e63
|
|||
e0b7cae9a0
|
|||
31d79a77fa
|
|||
2d495293bb
|
|||
9899781640
|
|||
f20496203e
|
|||
cf09d92ccc
|
|||
1186e4ad53
|
|||
7913f5151e
|
|||
050b923631
|
|||
29fc88cecc
|
|||
16b31ec293
|
|||
ca7d158ac8
|
|||
|
34cd54f77e
|
||
70bf03155c
|
|||
77b571af71
|
|||
ff7a91a7ec
|
|||
621c19d00c
|
|||
|
790da5cc60 | ||
2775698063
|
|||
9db16d9d3c
|
|||
edd464311f
|
|||
fe32ed4b2a
|
|||
1d95311a7d
|
6
.github/workflows/main.yml
vendored
6
.github/workflows/main.yml
vendored
@@ -20,14 +20,14 @@ jobs:
|
||||
with:
|
||||
submodules: recursive
|
||||
- name: Set up Python ${{ matrix.python }}
|
||||
uses: actions/setup-python@v2
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
pip install -q --upgrade pip
|
||||
pip install -q scikit-learn cython
|
||||
pip install -q --upgrade codecov coverage black flake8 codacy-coverage
|
||||
pip install -q coverage black flake8 codacy-coverage
|
||||
- name: Build and install
|
||||
run: |
|
||||
make install
|
||||
@@ -40,7 +40,7 @@ jobs:
|
||||
coverage run -m unittest discover -v -s src
|
||||
coverage xml
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v1
|
||||
uses: codecov/codecov-action@v3
|
||||
with:
|
||||
token: ${{ secrets.CODECOV_TOKEN }}
|
||||
files: ./coverage.xml
|
||||
|
10
.gitignore
vendored
10
.gitignore
vendored
@@ -33,8 +33,8 @@ MANIFEST
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer log2s
|
||||
pip-log2.txt
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
@@ -56,7 +56,7 @@ coverage.xml
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log2
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
@@ -134,4 +134,6 @@ cmake-build-debug
|
||||
cmake-build-debug/**
|
||||
**/lcoverage/**
|
||||
**/x/*
|
||||
**/*.so
|
||||
**/*.so
|
||||
**/CMakeFiles
|
||||
wheelhouse
|
||||
|
5
MANIFEST.in
Normal file
5
MANIFEST.in
Normal file
@@ -0,0 +1,5 @@
|
||||
include src/cppmdlp/CPPFImdlp.h
|
||||
include src/cppmdlp/typesFImdlp.h
|
||||
include src/cppmdlp/Metrics.h
|
||||
include src/fimdlp/Factorize.h
|
||||
include src/fimdlp/ArffFiles.h
|
6
Makefile
6
Makefile
@@ -37,6 +37,12 @@ install: ## Build extension
|
||||
audit: ## Audit pip
|
||||
pip-audit
|
||||
|
||||
version:
|
||||
@echo "Current Python version .: $(shell python --version)"
|
||||
@echo "Current FImdlp version .: $(shell python -c "from fimdlp import _version; print(_version.__version__)")"
|
||||
@echo "Current mdlp version ...: $(shell python -c "from fimdlp.cppfimdlp import CFImdlp; print(CFImdlp().get_version().decode())")"
|
||||
@echo "Installed FImdlp version: $(shell pip show fimdlp | grep Version | cut -d' ' -f2)"
|
||||
|
||||
help: ## Show help message
|
||||
@IFS=$$'\n' ; \
|
||||
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
|
||||
|
19
README.md
19
README.md
@@ -3,14 +3,14 @@
|
||||
[](https://github.com/Doctorado-ML/FImdlp/actions/workflows/codeql.yml)
|
||||
[](https://www.codacy.com/gh/Doctorado-ML/FImdlp/dashboard?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/FImdlp&utm_campaign=Badge_Grade)
|
||||
[](https://codecov.io/gh/Doctorado-ML/FImdlp)
|
||||
[](https://img.shields.io/pypi/v/FImdlp?color=g)
|
||||
[](https://pypi.org/project/FImdlp)
|
||||

|
||||
|
||||
Discretization algorithm based on the paper by Usama M. Fayyad and Keki B. Irani
|
||||
|
||||
```
|
||||
|
||||
Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI-95), pages 1022-1027, Montreal, Canada, August 1995.
|
||||
```
|
||||
|
||||
|
||||
## Installation
|
||||
|
||||
@@ -24,8 +24,8 @@ git clone --recurse-submodules https://github.com/doctorado-ml/FImdlp.git
|
||||
|
||||
```bash
|
||||
pip install -e .
|
||||
python samples/sample.py iris --original
|
||||
python samples/sample.py iris --proposal
|
||||
python samples/sample.py iris
|
||||
python samples/sample.py iris -c 2
|
||||
python samples/sample.py -h # for more options
|
||||
```
|
||||
|
||||
@@ -33,9 +33,12 @@ python samples/sample.py -h # for more options
|
||||
|
||||
```bash
|
||||
cd samples
|
||||
mkdir build
|
||||
cmake -B build
|
||||
cd build
|
||||
cmake ..
|
||||
make
|
||||
./sample iris
|
||||
./sample -f iris -c 2
|
||||
./sample -h
|
||||
```
|
||||
|
||||
### Based on
|
||||
[https://github.com/rmontanana/mdlp](https://github.com/rmontanana/mdlp)
|
@@ -18,10 +18,10 @@ authors = [
|
||||
{ name = "Ricardo Montañana", email = "ricardo.montanana@alu.uclm.es" },
|
||||
]
|
||||
dynamic = ['version']
|
||||
dependencies = ["numpy", "joblib"]
|
||||
dependencies = ["numpy", "joblib", "scikit-learn"]
|
||||
requires-python = ">=3.9"
|
||||
classifiers = [
|
||||
"Development Status :: 3 - Alpha",
|
||||
"Development Status :: 4 - Beta",
|
||||
"Intended Audience :: Science/Research",
|
||||
"Intended Audience :: Developers",
|
||||
"Topic :: Software Development",
|
||||
@@ -33,14 +33,16 @@ classifiers = [
|
||||
"Programming Language :: Python",
|
||||
"Programming Language :: Python :: 3.9",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
"Programming Language :: Python :: 3.11",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
Home = "https://github.com/doctorado-ml/FImdlp"
|
||||
Base = "https://github.com/rmontanana/mdlp"
|
||||
|
||||
[tool.black]
|
||||
line-length = 79
|
||||
target_version = ['py39', 'py310']
|
||||
target_version = ['py39', 'py310', 'py311']
|
||||
include = '\.pyi?$'
|
||||
exclude = '''
|
||||
/(
|
||||
|
@@ -1,117 +0,0 @@
|
||||
#include "ArffFiles.h"
|
||||
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <map>
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
|
||||
ArffFiles::ArffFiles()
|
||||
{
|
||||
}
|
||||
vector<string> ArffFiles::getLines()
|
||||
{
|
||||
return lines;
|
||||
}
|
||||
unsigned long int ArffFiles::getSize()
|
||||
{
|
||||
return lines.size();
|
||||
}
|
||||
vector<tuple<string, string>> ArffFiles::getAttributes()
|
||||
{
|
||||
return attributes;
|
||||
}
|
||||
string ArffFiles::getClassName()
|
||||
{
|
||||
return className;
|
||||
}
|
||||
string ArffFiles::getClassType()
|
||||
{
|
||||
return classType;
|
||||
}
|
||||
vector<vector<float>>& ArffFiles::getX()
|
||||
{
|
||||
return X;
|
||||
}
|
||||
vector<int>& ArffFiles::getY()
|
||||
{
|
||||
return y;
|
||||
}
|
||||
void ArffFiles::load(string fileName, bool classLast)
|
||||
{
|
||||
ifstream file(fileName);
|
||||
string keyword, attribute, type;
|
||||
if (file.is_open()) {
|
||||
string line;
|
||||
while (getline(file, line)) {
|
||||
if (line[0] == '%' || line.empty() || line == "\r" || line == " ") {
|
||||
continue;
|
||||
}
|
||||
if (line.find("@attribute") != string::npos || line.find("@ATTRIBUTE") != string::npos) {
|
||||
stringstream ss(line);
|
||||
ss >> keyword >> attribute >> type;
|
||||
attributes.push_back(make_tuple(attribute, type));
|
||||
continue;
|
||||
}
|
||||
if (line[0] == '@') {
|
||||
continue;
|
||||
}
|
||||
lines.push_back(line);
|
||||
}
|
||||
file.close();
|
||||
if (attributes.empty())
|
||||
throw invalid_argument("No attributes found");
|
||||
if (classLast) {
|
||||
className = get<0>(attributes.back());
|
||||
classType = get<1>(attributes.back());
|
||||
attributes.pop_back();
|
||||
} else {
|
||||
className = get<0>(attributes.front());
|
||||
classType = get<1>(attributes.front());
|
||||
attributes.erase(attributes.begin());
|
||||
}
|
||||
generateDataset(classLast);
|
||||
} else
|
||||
throw invalid_argument("Unable to open file");
|
||||
}
|
||||
void ArffFiles::generateDataset(bool classLast)
|
||||
{
|
||||
X = vector<vector<float>>(attributes.size(), vector<float>(lines.size()));
|
||||
vector<string> yy = vector<string>(lines.size(), "");
|
||||
int labelIndex = classLast ? attributes.size() : 0;
|
||||
for (int i = 0; i < lines.size(); i++) {
|
||||
stringstream ss(lines[i]);
|
||||
string value;
|
||||
int pos = 0, xIndex = 0;
|
||||
while (getline(ss, value, ',')) {
|
||||
if (pos++ == labelIndex) {
|
||||
yy[i] = value;
|
||||
} else {
|
||||
X[xIndex++][i] = stof(value);
|
||||
}
|
||||
}
|
||||
}
|
||||
y = factorize(yy);
|
||||
}
|
||||
string ArffFiles::trim(const string& source)
|
||||
{
|
||||
string s(source);
|
||||
s.erase(0, s.find_first_not_of(" \n\r\t"));
|
||||
s.erase(s.find_last_not_of(" \n\r\t") + 1);
|
||||
return s;
|
||||
}
|
||||
vector<int> ArffFiles::factorize(const vector<string>& labels_t)
|
||||
{
|
||||
vector<int> yy;
|
||||
yy.reserve(labels_t.size());
|
||||
map<string, int> labelMap;
|
||||
int i = 0;
|
||||
for (string label : labels_t) {
|
||||
if (labelMap.find(label) == labelMap.end()) {
|
||||
labelMap[label] = i++;
|
||||
}
|
||||
yy.push_back(labelMap[label]);
|
||||
}
|
||||
return yy;
|
||||
}
|
@@ -1,28 +0,0 @@
|
||||
#ifndef ARFFFILES_H
|
||||
#define ARFFFILES_H
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <tuple>
|
||||
using namespace std;
|
||||
class ArffFiles {
|
||||
private:
|
||||
vector<string> lines;
|
||||
vector<tuple<string, string>> attributes;
|
||||
string className, classType;
|
||||
vector<vector<float>> X;
|
||||
vector<int> y;
|
||||
void generateDataset(bool);
|
||||
public:
|
||||
ArffFiles();
|
||||
void load(string, bool = true);
|
||||
vector<string> getLines();
|
||||
unsigned long int getSize();
|
||||
string getClassName();
|
||||
string getClassType();
|
||||
string trim(const string&);
|
||||
vector<vector<float>>& getX();
|
||||
vector<int>& getY();
|
||||
vector<tuple<string, string>> getAttributes();
|
||||
vector<int> factorize(const vector<string>& labels_t);
|
||||
};
|
||||
#endif
|
@@ -1,6 +1,7 @@
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
project(main)
|
||||
project(sample)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 14)
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
set(CMAKE_BUILD_TYPE Debug)
|
||||
|
||||
add_executable(sample sample.cpp ArffFiles.cpp ../src/cppmdlp/Metrics.cpp ../src/cppmdlp/CPPFImdlp.cpp)
|
||||
add_executable(sample sample.cpp ../src/cppmdlp/tests/ArffFiles.cpp ../src/cppmdlp/Metrics.cpp ../src/cppmdlp/CPPFImdlp.cpp)
|
||||
|
@@ -1,30 +1,101 @@
|
||||
#include "ArffFiles.h"
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <iomanip>
|
||||
#include <chrono>
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
#include <getopt.h>
|
||||
#include "../src/cppmdlp/CPPFImdlp.h"
|
||||
#include "../src/cppmdlp/tests/ArffFiles.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace mdlp;
|
||||
|
||||
int main(int argc, char** argv)
|
||||
const string PATH = "../../src/cppmdlp/tests/datasets/";
|
||||
|
||||
/* print a description of all supported options */
|
||||
void usage(const char* path)
|
||||
{
|
||||
/* take only the last portion of the path */
|
||||
const char* basename = strrchr(path, '/');
|
||||
basename = basename ? basename + 1 : path;
|
||||
|
||||
cout << "usage: " << basename << "[OPTION]" << endl;
|
||||
cout << " -h, --help\t\t Print this help and exit." << endl;
|
||||
cout
|
||||
<< " -f, --file[=FILENAME]\t {all, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors, test}."
|
||||
<< endl;
|
||||
cout << " -p, --path[=FILENAME]\t folder where the arff dataset is located, default " << PATH << endl;
|
||||
cout << " -m, --max_depth=INT\t max_depth pased to discretizer. Default = MAX_INT" << endl;
|
||||
cout
|
||||
<< " -c, --max_cutpoints=FLOAT\t percentage of lines expressed in decimal or integer number or cut points. Default = 0 -> any"
|
||||
<< endl;
|
||||
cout << " -n, --min_length=INT\t interval min_length pased to discretizer. Default = 3" << endl;
|
||||
}
|
||||
|
||||
tuple<string, string, int, int, float> parse_arguments(int argc, char** argv)
|
||||
{
|
||||
string file_name;
|
||||
string path = PATH;
|
||||
int max_depth = numeric_limits<int>::max();
|
||||
int min_length = 3;
|
||||
float max_cutpoints = 0;
|
||||
const vector<struct option> long_options = {
|
||||
{"help", no_argument, nullptr, 'h'},
|
||||
{"file", required_argument, nullptr, 'f'},
|
||||
{"path", required_argument, nullptr, 'p'},
|
||||
{"max_depth", required_argument, nullptr, 'm'},
|
||||
{"max_cutpoints", required_argument, nullptr, 'c'},
|
||||
{"min_length", required_argument, nullptr, 'n'},
|
||||
{nullptr, no_argument, nullptr, 0}
|
||||
};
|
||||
while (true) {
|
||||
const auto c = getopt_long(argc, argv, "hf:p:m:c:n:", long_options.data(), nullptr);
|
||||
if (c == -1)
|
||||
break;
|
||||
switch (c) {
|
||||
case 'h':
|
||||
usage(argv[0]);
|
||||
exit(0);
|
||||
case 'f':
|
||||
file_name = string(optarg);
|
||||
break;
|
||||
case 'm':
|
||||
max_depth = stoi(optarg);
|
||||
break;
|
||||
case 'n':
|
||||
min_length = stoi(optarg);
|
||||
break;
|
||||
case 'c':
|
||||
max_cutpoints = stof(optarg);
|
||||
break;
|
||||
case 'p':
|
||||
path = optarg;
|
||||
if (path.back() != '/')
|
||||
path += '/';
|
||||
break;
|
||||
case '?':
|
||||
usage(argv[0]);
|
||||
exit(1);
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
}
|
||||
if (file_name.empty()) {
|
||||
usage(argv[0]);
|
||||
exit(1);
|
||||
}
|
||||
return make_tuple(file_name, path, max_depth, min_length, max_cutpoints);
|
||||
}
|
||||
|
||||
void process_file(const string& path, const string& file_name, bool class_last, int max_depth, int min_length,
|
||||
float max_cutpoints)
|
||||
{
|
||||
ArffFiles file;
|
||||
vector<string> lines;
|
||||
string path = "../../src/cppmdlp/tests/datasets/";
|
||||
map<string, bool > datasets = {
|
||||
{"mfeat-factors", true},
|
||||
{"iris", true},
|
||||
{"letter", true},
|
||||
{"kdd_JapaneseVowels", false}
|
||||
};
|
||||
if (argc != 2 || datasets.find(argv[1]) == datasets.end()) {
|
||||
cout << "Usage: " << argv[0] << " {mfeat-factors, iris, letter, kdd_JapaneseVowels}" << endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
file.load(path + argv[1] + ".arff", datasets[argv[1]]);
|
||||
auto attributes = file.getAttributes();
|
||||
int items = file.getSize();
|
||||
file.load(path + file_name + ".arff", class_last);
|
||||
const auto attributes = file.getAttributes();
|
||||
const auto items = file.getSize();
|
||||
cout << "Number of lines: " << items << endl;
|
||||
cout << "Attributes: " << endl;
|
||||
for (auto attribute : attributes) {
|
||||
@@ -33,22 +104,93 @@ int main(int argc, char** argv)
|
||||
cout << "Class name: " << file.getClassName() << endl;
|
||||
cout << "Class type: " << file.getClassType() << endl;
|
||||
cout << "Data: " << endl;
|
||||
vector<vector<float>>& X = file.getX();
|
||||
vector<int>& y = file.getY();
|
||||
for (int i = 0; i < 50; i++) {
|
||||
vector<samples_t>& X = file.getX();
|
||||
labels_t& y = file.getY();
|
||||
for (int i = 0; i < 5; i++) {
|
||||
for (auto feature : X) {
|
||||
cout << fixed << setprecision(1) << feature[i] << " ";
|
||||
}
|
||||
cout << y[i] << endl;
|
||||
}
|
||||
mdlp::CPPFImdlp test = mdlp::CPPFImdlp(false);
|
||||
auto test = mdlp::CPPFImdlp(min_length, max_depth, max_cutpoints);
|
||||
size_t total = 0;
|
||||
for (auto i = 0; i < attributes.size(); i++) {
|
||||
cout << "Cut points for " << get<0>(attributes[i]) << endl;
|
||||
cout << "--------------------------" << setprecision(3) << endl;
|
||||
auto min_max = minmax_element(X[i].begin(), X[i].end());
|
||||
cout << "Cut points for feature " << get<0>(attributes[i]) << ": [" << setprecision(3);
|
||||
test.fit(X[i], y);
|
||||
for (auto item : test.getCutPoints()) {
|
||||
cout << item << endl;
|
||||
auto cut_points = test.getCutPoints();
|
||||
for (auto item : cut_points) {
|
||||
cout << item;
|
||||
if (item != cut_points.back())
|
||||
cout << ", ";
|
||||
}
|
||||
total += test.getCutPoints().size();
|
||||
cout << "]" << endl;
|
||||
cout << "Min: " << *min_max.first << " Max: " << *min_max.second << endl;
|
||||
cout << "--------------------------" << endl;
|
||||
}
|
||||
cout << "Total cut points ...: " << total << endl;
|
||||
cout << "Total feature states: " << total + attributes.size() << endl;
|
||||
}
|
||||
|
||||
void process_all_files(const map<string, bool>& datasets, const string& path, int max_depth, int min_length,
|
||||
float max_cutpoints)
|
||||
{
|
||||
cout << "Results: " << "Max_depth: " << max_depth << " Min_length: " << min_length << " Max_cutpoints: "
|
||||
<< max_cutpoints << endl << endl;
|
||||
printf("%-20s %4s %4s\n", "Dataset", "Feat", "Cuts Time(ms)");
|
||||
printf("==================== ==== ==== ========\n");
|
||||
for (const auto& dataset : datasets) {
|
||||
ArffFiles file;
|
||||
file.load(path + dataset.first + ".arff", dataset.second);
|
||||
auto attributes = file.getAttributes();
|
||||
vector<samples_t>& X = file.getX();
|
||||
labels_t& y = file.getY();
|
||||
size_t timing = 0;
|
||||
size_t cut_points = 0;
|
||||
for (auto i = 0; i < attributes.size(); i++) {
|
||||
auto test = mdlp::CPPFImdlp(min_length, max_depth, max_cutpoints);
|
||||
std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now();
|
||||
test.fit(X[i], y);
|
||||
std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now();
|
||||
timing += std::chrono::duration_cast<std::chrono::milliseconds>(end - begin).count();
|
||||
cut_points += test.getCutPoints().size();
|
||||
}
|
||||
printf("%-20s %4lu %4zu %8zu\n", dataset.first.c_str(), attributes.size(), cut_points, timing);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
map<string, bool> datasets = {
|
||||
{"glass", true},
|
||||
{"iris", true},
|
||||
{"kdd_JapaneseVowels", false},
|
||||
{"letter", true},
|
||||
{"liver-disorders", true},
|
||||
{"mfeat-factors", true},
|
||||
{"test", true}
|
||||
};
|
||||
string file_name;
|
||||
string path;
|
||||
int max_depth;
|
||||
int min_length;
|
||||
float max_cutpoints;
|
||||
tie(file_name, path, max_depth, min_length, max_cutpoints) = parse_arguments(argc, argv);
|
||||
if (datasets.find(file_name) == datasets.end() && file_name != "all") {
|
||||
cout << "Invalid file name: " << file_name << endl;
|
||||
usage(argv[0]);
|
||||
exit(1);
|
||||
}
|
||||
if (file_name == "all")
|
||||
process_all_files(datasets, path, max_depth, min_length, max_cutpoints);
|
||||
else {
|
||||
process_file(path, file_name, datasets[file_name], max_depth, min_length, max_cutpoints);
|
||||
cout << "File name ....: " << file_name << endl;
|
||||
cout << "Max depth ....: " << max_depth << endl;
|
||||
cout << "Min length ...: " << min_length << endl;
|
||||
cout << "Max cutpoints : " << max_cutpoints << endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
}
|
@@ -1,43 +1,72 @@
|
||||
import time
|
||||
import argparse
|
||||
import os
|
||||
from scipy.io import arff
|
||||
import pandas as pd
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from fimdlp.mdlp import FImdlp
|
||||
from fimdlp.cppfimdlp import CArffFiles
|
||||
|
||||
datasets = {
|
||||
"mfeat-factors": True,
|
||||
"iris": True,
|
||||
"glass": True,
|
||||
"liver-disorders": True,
|
||||
"letter": True,
|
||||
"kdd_JapaneseVowels": False,
|
||||
}
|
||||
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("--proposal", action="store_true")
|
||||
ap.add_argument("--original", dest="proposal", action="store_false")
|
||||
ap.add_argument(
|
||||
"-n",
|
||||
"--min_length",
|
||||
type=int,
|
||||
default=3,
|
||||
help="Minimum length of interval",
|
||||
)
|
||||
ap.add_argument(
|
||||
"-m", "--max_depth", type=int, default=9999, help="Maximum depth"
|
||||
)
|
||||
ap.add_argument(
|
||||
"-c",
|
||||
"--max_cuts",
|
||||
type=float,
|
||||
default=0,
|
||||
help="Maximum number of cut points",
|
||||
)
|
||||
ap.add_argument("dataset", type=str, choices=datasets.keys())
|
||||
args = ap.parse_args()
|
||||
relative = "" if os.path.isdir("src") else ".."
|
||||
file_name = os.path.join(
|
||||
relative, "src", "cppmdlp", "tests", "datasets", args.dataset
|
||||
)
|
||||
data = arff.loadarff(file_name + ".arff")
|
||||
df = pd.DataFrame(data[0])
|
||||
class_column = -1 if datasets[args.dataset] else 0
|
||||
class_name = df.columns.to_list()[class_column]
|
||||
X = df.drop(class_name, axis=1)
|
||||
y, _ = pd.factorize(df[class_name])
|
||||
X = X.to_numpy()
|
||||
test = FImdlp(proposal=args.proposal)
|
||||
arff = CArffFiles()
|
||||
arff.load(bytes(f"{file_name}.arff", "utf-8"))
|
||||
X = arff.get_X()
|
||||
y = arff.get_y()
|
||||
attributes = arff.get_attributes()
|
||||
attributes = [x[0].decode() for x in attributes]
|
||||
df = pd.DataFrame(X, columns=attributes)
|
||||
class_name = arff.get_class_name().decode()
|
||||
df[class_name] = y
|
||||
test = FImdlp(
|
||||
min_length=args.min_length,
|
||||
max_depth=args.max_depth,
|
||||
max_cuts=args.max_cuts,
|
||||
)
|
||||
now = time.time()
|
||||
test.fit(X, y)
|
||||
fit_time = time.time()
|
||||
print("Fitting: ", fit_time - now)
|
||||
print(f"Fitting ....: {fit_time - now:7.5f} seconds")
|
||||
now = time.time()
|
||||
Xt = test.transform(X)
|
||||
print("Transforming: ", time.time() - now)
|
||||
print(test.get_cut_points())
|
||||
print(f"Transforming: {time.time() - now:7.5f} seconds")
|
||||
cut_points = test.get_cut_points()
|
||||
for i, cuts in enumerate(cut_points):
|
||||
print(f"Cut points for feature {attributes[i]}: {cuts}")
|
||||
print(f"Min: {min(X[:, i]):6.4f} Max: {max(X[:, i]):6.4f}")
|
||||
num_cuts = sum([len(x) for x in cut_points])
|
||||
print(f"Total cut points ...: {num_cuts}")
|
||||
print(f"Total feature states: {num_cuts + len(attributes)}")
|
||||
clf = RandomForestClassifier(random_state=0)
|
||||
print(
|
||||
"Random Forest score with discretized data: ", clf.fit(Xt, y).score(Xt, y)
|
||||
|
6
setup.py
6
setup.py
@@ -14,10 +14,14 @@ setup(
|
||||
"src/fimdlp/cfimdlp.pyx",
|
||||
"src/cppmdlp/CPPFImdlp.cpp",
|
||||
"src/cppmdlp/Metrics.cpp",
|
||||
"src/fimdlp/Factorize.cpp",
|
||||
"src/fimdlp/ArffFiles.cpp",
|
||||
],
|
||||
language="c++",
|
||||
include_dirs=["fimdlp"],
|
||||
extra_compile_args=["-std=c++2a"],
|
||||
extra_compile_args=[
|
||||
"-std=c++11",
|
||||
],
|
||||
),
|
||||
]
|
||||
)
|
||||
|
Submodule src/cppmdlp updated: e21482900b...db76afc4e2
132
src/fimdlp/ArffFiles.cpp
Normal file
132
src/fimdlp/ArffFiles.cpp
Normal file
@@ -0,0 +1,132 @@
|
||||
#include "ArffFiles.h"
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <map>
|
||||
|
||||
using namespace std;
|
||||
|
||||
ArffFiles::ArffFiles() = default;
|
||||
|
||||
vector<string> ArffFiles::getLines() const
|
||||
{
|
||||
return lines;
|
||||
}
|
||||
|
||||
unsigned long int ArffFiles::getSize() const
|
||||
{
|
||||
return lines.size();
|
||||
}
|
||||
|
||||
vector<pair<string, string>> ArffFiles::getAttributes() const
|
||||
{
|
||||
return attributes;
|
||||
}
|
||||
|
||||
string ArffFiles::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
|
||||
string ArffFiles::getClassType() const
|
||||
{
|
||||
return classType;
|
||||
}
|
||||
|
||||
vector<vector<float>>& ArffFiles::getX()
|
||||
{
|
||||
return X;
|
||||
}
|
||||
|
||||
vector<int>& ArffFiles::getY()
|
||||
{
|
||||
return y;
|
||||
}
|
||||
|
||||
void ArffFiles::load(const string& fileName, bool classLast)
|
||||
{
|
||||
ifstream file(fileName);
|
||||
if (!file.is_open()) {
|
||||
throw invalid_argument("Unable to open file");
|
||||
}
|
||||
string line;
|
||||
string keyword;
|
||||
string attribute;
|
||||
string type;
|
||||
string type_w;
|
||||
while (getline(file, line)) {
|
||||
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
|
||||
continue;
|
||||
}
|
||||
if (line.find("@attribute") != string::npos || line.find("@ATTRIBUTE") != string::npos) {
|
||||
stringstream ss(line);
|
||||
ss >> keyword >> attribute;
|
||||
type = "";
|
||||
while (ss >> type_w)
|
||||
type += type_w + " ";
|
||||
attributes.emplace_back(attribute, trim(type));
|
||||
continue;
|
||||
}
|
||||
if (line[0] == '@') {
|
||||
continue;
|
||||
}
|
||||
lines.push_back(line);
|
||||
}
|
||||
file.close();
|
||||
if (attributes.empty())
|
||||
throw invalid_argument("No attributes found");
|
||||
if (classLast) {
|
||||
className = get<0>(attributes.back());
|
||||
classType = get<1>(attributes.back());
|
||||
attributes.pop_back();
|
||||
} else {
|
||||
className = get<0>(attributes.front());
|
||||
classType = get<1>(attributes.front());
|
||||
attributes.erase(attributes.begin());
|
||||
}
|
||||
generateDataset(classLast);
|
||||
|
||||
}
|
||||
|
||||
void ArffFiles::generateDataset(bool classLast)
|
||||
{
|
||||
X = vector<vector<float>>(attributes.size(), vector<float>(lines.size()));
|
||||
auto yy = vector<string>(lines.size(), "");
|
||||
int labelIndex = classLast ? static_cast<int>(attributes.size()) : 0;
|
||||
for (size_t i = 0; i < lines.size(); i++) {
|
||||
stringstream ss(lines[i]);
|
||||
string value;
|
||||
int pos = 0;
|
||||
int xIndex = 0;
|
||||
while (getline(ss, value, ',')) {
|
||||
if (pos++ == labelIndex) {
|
||||
yy[i] = value;
|
||||
} else {
|
||||
X[xIndex++][i] = stof(value);
|
||||
}
|
||||
}
|
||||
}
|
||||
y = factorize(yy);
|
||||
}
|
||||
|
||||
string ArffFiles::trim(const string& source)
|
||||
{
|
||||
string s(source);
|
||||
s.erase(0, s.find_first_not_of(" \n\r\t"));
|
||||
s.erase(s.find_last_not_of(" \n\r\t") + 1);
|
||||
return s;
|
||||
}
|
||||
|
||||
vector<int> ArffFiles::factorize(const vector<string>& labels_t)
|
||||
{
|
||||
vector<int> yy;
|
||||
yy.reserve(labels_t.size());
|
||||
map<string, int> labelMap;
|
||||
int i = 0;
|
||||
for (const string& label : labels_t) {
|
||||
if (labelMap.find(label) == labelMap.end()) {
|
||||
labelMap[label] = i++;
|
||||
}
|
||||
yy.push_back(labelMap[label]);
|
||||
}
|
||||
return yy;
|
||||
}
|
34
src/fimdlp/ArffFiles.h
Normal file
34
src/fimdlp/ArffFiles.h
Normal file
@@ -0,0 +1,34 @@
|
||||
#ifndef ARFFFILES_H
|
||||
#define ARFFFILES_H
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
|
||||
class ArffFiles {
|
||||
private:
|
||||
vector<string> lines;
|
||||
vector<pair<string, string>> attributes;
|
||||
string className;
|
||||
string classType;
|
||||
vector<vector<float>> X;
|
||||
vector<int> y;
|
||||
|
||||
void generateDataset(bool);
|
||||
|
||||
public:
|
||||
ArffFiles();
|
||||
void load(const string&, bool = true);
|
||||
vector<string> getLines() const;
|
||||
unsigned long int getSize() const;
|
||||
string getClassName() const;
|
||||
string getClassType() const;
|
||||
static string trim(const string&);
|
||||
vector<vector<float>>& getX();
|
||||
vector<int>& getY();
|
||||
vector<pair<string, string>> getAttributes() const;
|
||||
static vector<int> factorize(const vector<string>& labels_t);
|
||||
};
|
||||
|
||||
#endif
|
18
src/fimdlp/Factorize.cpp
Normal file
18
src/fimdlp/Factorize.cpp
Normal file
@@ -0,0 +1,18 @@
|
||||
#include "Factorize.h"
|
||||
|
||||
namespace utils {
|
||||
vector<int> cppFactorize(const vector<string>& labels_t)
|
||||
{
|
||||
vector<int> yy;
|
||||
yy.reserve(labels_t.size());
|
||||
map<string, int> labelMap;
|
||||
int i = 0;
|
||||
for (const string& label : labels_t) {
|
||||
if (labelMap.find(label) == labelMap.end()) {
|
||||
labelMap[label] = i++;
|
||||
}
|
||||
yy.push_back(labelMap[label]);
|
||||
}
|
||||
return yy;
|
||||
}
|
||||
}
|
10
src/fimdlp/Factorize.h
Normal file
10
src/fimdlp/Factorize.h
Normal file
@@ -0,0 +1,10 @@
|
||||
#ifndef FACTORIZE_H
|
||||
#define FACTORIZE_H
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
namespace utils {
|
||||
using namespace std;
|
||||
vector<int> cppFactorize(const vector<string>&);
|
||||
}
|
||||
#endif
|
@@ -1,8 +1,4 @@
|
||||
from ._version import __version__
|
||||
|
||||
|
||||
def version():
|
||||
return __version__
|
||||
|
||||
|
||||
all = ["FImdlp", "__version__"]
|
||||
|
@@ -1 +1 @@
|
||||
__version__ = "0.9.1"
|
||||
__version__ = "0.9.4"
|
||||
|
@@ -1,20 +1,27 @@
|
||||
# distutils: language = c++
|
||||
# cython: language_level = 3
|
||||
from libcpp.vector cimport vector
|
||||
from libcpp.pair cimport pair
|
||||
from libcpp.string cimport string
|
||||
from libcpp cimport bool
|
||||
import numpy as np
|
||||
|
||||
cdef extern from "limits.h":
|
||||
cdef int INT_MAX
|
||||
cdef extern from "../cppmdlp/CPPFImdlp.h" namespace "mdlp":
|
||||
ctypedef float precision_t
|
||||
cdef cppclass CPPFImdlp:
|
||||
CPPFImdlp(bool) except +
|
||||
CPPFImdlp() except +
|
||||
CPPFImdlp(size_t, int, float) except +
|
||||
CPPFImdlp& fit(vector[precision_t]&, vector[int]&)
|
||||
int get_depth()
|
||||
vector[precision_t] getCutPoints()
|
||||
string version()
|
||||
|
||||
|
||||
cdef class CFImdlp:
|
||||
cdef CPPFImdlp *thisptr
|
||||
def __cinit__(self, proposal):
|
||||
self.thisptr = new CPPFImdlp(proposal)
|
||||
def __cinit__(self, size_t min_length=3, int max_depth=INT_MAX, float max_cuts=0):
|
||||
self.thisptr = new CPPFImdlp(min_length, max_depth, max_cuts)
|
||||
def __dealloc__(self):
|
||||
del self.thisptr
|
||||
def fit(self, X, y):
|
||||
@@ -22,4 +29,53 @@ cdef class CFImdlp:
|
||||
return self
|
||||
def get_cut_points(self):
|
||||
return self.thisptr.getCutPoints()
|
||||
|
||||
def get_version(self):
|
||||
return self.thisptr.version()
|
||||
def get_depth(self):
|
||||
return self.thisptr.get_depth()
|
||||
def __reduce__(self):
|
||||
return (CFImdlp, ())
|
||||
|
||||
cdef extern from "Factorize.h" namespace "utils":
|
||||
vector[int] cppFactorize(vector[string] &input_vector)
|
||||
def factorize(input_vector):
|
||||
return cppFactorize(input_vector)
|
||||
|
||||
cdef extern from "ArffFiles.h":
|
||||
cdef cppclass ArffFiles:
|
||||
ArffFiles() except +
|
||||
void load(string, bool)
|
||||
unsigned long int getSize()
|
||||
string getClassName()
|
||||
string getClassType()
|
||||
string trim(const string&)
|
||||
vector[vector[float]]& getX()
|
||||
vector[int]& getY()
|
||||
vector[string] getLines()
|
||||
vector[pair[string, string]] getAttributes()
|
||||
|
||||
cdef class CArffFiles:
|
||||
cdef ArffFiles *thisptr
|
||||
def __cinit__(self):
|
||||
self.thisptr = new ArffFiles()
|
||||
def __dealloc__(self):
|
||||
del self.thisptr
|
||||
def load(self, string filename, bool verbose = True):
|
||||
self.thisptr.load(filename, verbose)
|
||||
def get_size(self):
|
||||
return self.thisptr.getSize()
|
||||
def get_class_name(self):
|
||||
return self.thisptr.getClassName()
|
||||
def get_class_type(self):
|
||||
return self.thisptr.getClassType()
|
||||
def get_X(self):
|
||||
return np.array(self.thisptr.getX()).T
|
||||
def get_y(self):
|
||||
return self.thisptr.getY()
|
||||
def get_lines(self):
|
||||
return self.thisptr.getLines()
|
||||
def get_attributes(self):
|
||||
return self.thisptr.getAttributes()
|
||||
def __reduce__(self):
|
||||
return (CArffFiles, ())
|
||||
|
@@ -1,15 +1,18 @@
|
||||
import numpy as np
|
||||
from .cppfimdlp import CFImdlp
|
||||
from .cppfimdlp import CFImdlp, factorize
|
||||
from sklearn.base import BaseEstimator, TransformerMixin
|
||||
from sklearn.utils.multiclass import unique_labels
|
||||
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
|
||||
from joblib import Parallel, delayed
|
||||
from ._version import __version__
|
||||
|
||||
|
||||
class FImdlp(TransformerMixin, BaseEstimator):
|
||||
def __init__(self, n_jobs=-1, proposal=False):
|
||||
def __init__(self, n_jobs=-1, min_length=3, max_depth=1e6, max_cuts=0):
|
||||
self.n_jobs = n_jobs
|
||||
self.proposal = proposal
|
||||
self.min_length = min_length
|
||||
self.max_depth = max_depth
|
||||
self.max_cuts = max_cuts
|
||||
|
||||
"""Fayyad - Irani MDLP discretization algorithm based implementation.
|
||||
|
||||
@@ -19,30 +22,35 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
||||
The number of jobs to run in parallel. :meth:`fit` and
|
||||
:meth:`transform`, are parallelized over the features. ``-1`` means
|
||||
using all cores available.
|
||||
min_length: int, default=3
|
||||
The minimum length of an interval to be considered to be discretized.
|
||||
max_depth: int, default=1e6
|
||||
The maximum depth of the discretization process.
|
||||
max_cuts: float, default=0
|
||||
The maximum number of cut points to be computed for each feature.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
n_features_ : int
|
||||
n_features_in_ : int
|
||||
The number of features of the data passed to :meth:`fit`.
|
||||
discretizer_ : list
|
||||
The list of discretizers, one for each feature.
|
||||
cut_points_ : list
|
||||
The list of cut points for each feature.
|
||||
X_ : array
|
||||
the samples used to fit, shape (n_samples, n_features)
|
||||
y_ : array
|
||||
the labels used to fit, shape (n_samples,)
|
||||
X_ : array, shape (n_samples, n_features)
|
||||
the samples used to fit
|
||||
y_ : array, shape(n_samples,)
|
||||
the labels used to fit
|
||||
features_ : list
|
||||
the list of features to be discretized
|
||||
"""
|
||||
|
||||
def _check_params_fit(self, X, y, expected_args, kwargs):
|
||||
"""Check the common parameters passed to fit"""
|
||||
def _more_tags(self):
|
||||
return {"preserves_dtype": [np.int32], "requires_y": True}
|
||||
|
||||
def _check_args(self, X, y, expected_args, kwargs):
|
||||
# Check that X and y have correct shape
|
||||
X, y = check_X_y(X, y)
|
||||
# Store the classes seen during fit
|
||||
self.classes_ = unique_labels(y)
|
||||
self.n_classes_ = self.classes_.shape[0]
|
||||
# Default values
|
||||
self.features_ = [i for i in range(X.shape[1])]
|
||||
for key, value in kwargs.items():
|
||||
@@ -63,15 +71,24 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
||||
raise ValueError("Feature index out of range")
|
||||
return X, y
|
||||
|
||||
def _update_params(self, X, y):
|
||||
# Store the classes seen during fit
|
||||
self.classes_ = unique_labels(y)
|
||||
self.n_classes_ = self.classes_.shape[0]
|
||||
self.n_features_in_ = X.shape[1]
|
||||
|
||||
@staticmethod
|
||||
def get_version():
|
||||
return f"{__version__}({CFImdlp().get_version().decode()})"
|
||||
|
||||
def fit(self, X, y, **kwargs):
|
||||
"""A reference implementation of a fitting function for a transformer.
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like, sparse matrix}, shape (n_samples, n_features)
|
||||
X : array, shape (n_samples, n_features)
|
||||
The training input samples.
|
||||
y : None
|
||||
There is no need of a target in a transformer, yet the pipeline API
|
||||
requires this parameter.
|
||||
y : array, shape (n_samples,)
|
||||
the labels used to fit
|
||||
features : list, default=[i for i in range(n_features)]
|
||||
The list of features to be discretized.
|
||||
Returns
|
||||
@@ -79,24 +96,41 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
||||
self : object
|
||||
Returns self.
|
||||
"""
|
||||
X, y = self._check_params_fit(
|
||||
X, y = self._check_args(
|
||||
X, y, expected_args=["features"], kwargs=kwargs
|
||||
)
|
||||
self.n_features_ = X.shape[1]
|
||||
self._update_params(X, y)
|
||||
self.X_ = X
|
||||
self.y_ = y
|
||||
self.discretizer_ = [None] * self.n_features_
|
||||
self.cut_points_ = [None] * self.n_features_
|
||||
self.efective_min_length_ = (
|
||||
self.min_length
|
||||
if self.min_length > 1
|
||||
else int(self.min_length * X.shape[0])
|
||||
)
|
||||
self.discretizer_ = [None] * self.n_features_in_
|
||||
self.cut_points_ = [None] * self.n_features_in_
|
||||
Parallel(n_jobs=self.n_jobs, prefer="threads")(
|
||||
delayed(self._fit_discretizer)(feature)
|
||||
for feature in range(self.n_features_)
|
||||
for feature in range(self.n_features_in_)
|
||||
)
|
||||
# target of every feature. Start with -1 => y (see join_fit)
|
||||
self.target_ = [-1] * self.n_features_in_
|
||||
return self
|
||||
|
||||
def _fit_discretizer(self, feature):
|
||||
self.discretizer_[feature] = CFImdlp(proposal=self.proposal)
|
||||
self.discretizer_[feature].fit(self.X_[:, feature], self.y_)
|
||||
self.cut_points_[feature] = self.discretizer_[feature].get_cut_points()
|
||||
if feature in self.features_:
|
||||
self.discretizer_[feature] = CFImdlp(
|
||||
min_length=self.efective_min_length_,
|
||||
max_depth=self.max_depth,
|
||||
max_cuts=self.max_cuts,
|
||||
)
|
||||
self.discretizer_[feature].fit(self.X_[:, feature], self.y_)
|
||||
self.cut_points_[feature] = self.discretizer_[
|
||||
feature
|
||||
].get_cut_points()
|
||||
else:
|
||||
self.discretizer_[feature] = None
|
||||
self.cut_points_[feature] = []
|
||||
|
||||
def _discretize_feature(self, feature, X, result):
|
||||
if feature in self.features_:
|
||||
@@ -108,7 +142,7 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
||||
"""Discretize X values.
|
||||
Parameters
|
||||
----------
|
||||
X : {array-like}, shape (n_samples, n_features)
|
||||
X : array, shape (n_samples, n_features)
|
||||
The input samples.
|
||||
Returns
|
||||
-------
|
||||
@@ -116,22 +150,41 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
||||
The array containing the discretized values of ``X``.
|
||||
"""
|
||||
# Check is fit had been called
|
||||
check_is_fitted(self, "n_features_")
|
||||
check_is_fitted(self, "n_features_in_")
|
||||
# Input validation
|
||||
X = check_array(X)
|
||||
# Check that the input is of the same shape as the one passed
|
||||
# during fit.
|
||||
if X.shape[1] != self.n_features_:
|
||||
if X.shape[1] != self.n_features_in_:
|
||||
raise ValueError(
|
||||
"Shape of input is different from what was seen in `fit`"
|
||||
)
|
||||
result = np.zeros_like(X, dtype=np.int32) - 1
|
||||
if len(self.features_) == self.n_features_in_:
|
||||
result = np.zeros_like(X, dtype=np.int32) - 1
|
||||
else:
|
||||
result = np.zeros_like(X) - 1
|
||||
Parallel(n_jobs=self.n_jobs, prefer="threads")(
|
||||
delayed(self._discretize_feature)(feature, X[:, feature], result)
|
||||
for feature in range(self.n_features_)
|
||||
for feature in range(self.n_features_in_)
|
||||
)
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def factorize(yy):
|
||||
"""Factorize the input labels
|
||||
|
||||
Parameters
|
||||
----------
|
||||
yy : array, shape (n_samples,)
|
||||
Labels to be factorized, MUST be bytes, i.e. b"0", b"1", ...
|
||||
|
||||
Returns
|
||||
-------
|
||||
array, shape (n_samples,)
|
||||
Factorized labels
|
||||
"""
|
||||
return factorize(yy)
|
||||
|
||||
def get_cut_points(self):
|
||||
"""Get the cut points for each feature.
|
||||
Returns
|
||||
@@ -140,6 +193,78 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
||||
The list of cut points for each feature.
|
||||
"""
|
||||
result = []
|
||||
for feature in range(self.n_features_):
|
||||
for feature in range(self.n_features_in_):
|
||||
result.append(self.cut_points_[feature])
|
||||
return result
|
||||
|
||||
def get_states_feature(self, feature):
|
||||
"""Return the states a feature can take
|
||||
|
||||
Parameters
|
||||
----------
|
||||
feature : int
|
||||
feature to get the states
|
||||
|
||||
Returns
|
||||
-------
|
||||
list
|
||||
states of the feature
|
||||
"""
|
||||
if feature in self.features_:
|
||||
return list(range(len(self.cut_points_[feature]) + 1))
|
||||
return None
|
||||
|
||||
def join_fit(self, features, target, data):
|
||||
"""Join the selected features with the labels and fit the discretizer
|
||||
of the target variable
|
||||
join - fit - transform
|
||||
|
||||
Parameters
|
||||
----------
|
||||
features : [list]
|
||||
index of the features to join with the labels
|
||||
target : [int]
|
||||
index of the target variable to discretize
|
||||
data: [array] shape (n_samples, n_features)
|
||||
dataset that contains the features to join
|
||||
|
||||
Returns
|
||||
-------
|
||||
result: np.array
|
||||
The target variable newly discretized
|
||||
"""
|
||||
check_is_fitted(self, "n_features_in_")
|
||||
if len(features) < 1 or len(features) > self.n_features_in_:
|
||||
raise ValueError(
|
||||
"Number of features must be in range [1, "
|
||||
f"{self.n_features_in_}]"
|
||||
)
|
||||
for feature in features:
|
||||
if feature < 0 or feature >= self.n_features_in_:
|
||||
raise ValueError(
|
||||
f"Feature {feature} not in range [0, "
|
||||
f"{self.n_features_in_})"
|
||||
)
|
||||
if target < 0 or target >= self.n_features_in_:
|
||||
raise ValueError(
|
||||
f"Target {target} not in range [0, {self.n_features_in_})"
|
||||
)
|
||||
if target in features:
|
||||
raise ValueError("Target cannot be in features to join")
|
||||
y_join = [
|
||||
f"{str(item_y)}{''.join([str(x) for x in items_x])}".encode()
|
||||
for item_y, items_x in zip(self.y_, data[:, features])
|
||||
]
|
||||
# Store in target_ the features used with class to discretize target
|
||||
self.target_[target] = features + [-1]
|
||||
self.y_join_ = y_join
|
||||
self.discretizer_[target].fit(self.X_[:, target], factorize(y_join))
|
||||
self.cut_points_[target] = self.discretizer_[target].get_cut_points()
|
||||
# return the discretized target variable with the new cut points
|
||||
return np.searchsorted(self.cut_points_[target], self.X_[:, target])
|
||||
|
||||
def get_depths(self):
|
||||
res = [0] * self.n_features_in_
|
||||
for feature in self.features_:
|
||||
res[feature] = self.discretizer_[feature].get_depth()
|
||||
return res
|
||||
|
@@ -1,73 +1,57 @@
|
||||
import unittest
|
||||
import sklearn
|
||||
from sklearn.datasets import load_iris
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.utils.estimator_checks import check_estimator
|
||||
from ..cppfimdlp import CFImdlp, factorize, CArffFiles
|
||||
from ..mdlp import FImdlp
|
||||
from .. import version
|
||||
from .._version import __version__
|
||||
from .. import __version__
|
||||
|
||||
|
||||
class FImdlpTest(unittest.TestCase):
|
||||
delta = 1e-6 # same tolerance as in C++ code
|
||||
|
||||
def test_version(self):
|
||||
self.assertEqual(version(), __version__)
|
||||
clf = FImdlp()
|
||||
self.assertEqual(
|
||||
clf.get_version(),
|
||||
f"{__version__}({CFImdlp().get_version().decode()})",
|
||||
)
|
||||
|
||||
def test_minimum_mdlp_version(self):
|
||||
mdlp_version = tuple(
|
||||
int(c) for c in CFImdlp().get_version().decode().split(".")[0:3]
|
||||
)
|
||||
minimum_mdlp_version = (1, 1, 2)
|
||||
self.assertTrue(mdlp_version >= minimum_mdlp_version)
|
||||
|
||||
def test_init(self):
|
||||
clf = FImdlp()
|
||||
self.assertEqual(-1, clf.n_jobs)
|
||||
self.assertFalse(clf.proposal)
|
||||
clf = FImdlp(proposal=True, n_jobs=7)
|
||||
self.assertTrue(clf.proposal)
|
||||
self.assertEqual(3, clf.min_length)
|
||||
self.assertEqual(1e6, clf.max_depth)
|
||||
clf = FImdlp(n_jobs=7, min_length=24, max_depth=17)
|
||||
self.assertEqual(7, clf.n_jobs)
|
||||
self.assertEqual(24, clf.min_length)
|
||||
self.assertEqual(17, clf.max_depth)
|
||||
|
||||
def test_fit_proposal(self):
|
||||
clf = FImdlp(proposal=True)
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
||||
self.assertEqual(clf.n_features_, 2)
|
||||
self.assertListEqual(clf.X_.tolist(), [[1, 2], [3, 4]])
|
||||
self.assertListEqual(clf.y_.tolist(), [1, 2])
|
||||
self.assertListEqual([[], []], clf.get_cut_points())
|
||||
def test_fit_definitive(self):
|
||||
clf = FImdlp()
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
self.assertEqual(clf.n_features_, 4)
|
||||
self.assertEqual(clf.n_features_in_, 4)
|
||||
self.assertTrue(np.array_equal(X, clf.X_))
|
||||
self.assertTrue(np.array_equal(y, clf.y_))
|
||||
expected = [
|
||||
[
|
||||
4.900000095367432,
|
||||
5.0,
|
||||
5.099999904632568,
|
||||
5.400000095367432,
|
||||
5.699999809265137,
|
||||
],
|
||||
[2.6999998092651367, 2.9000000953674316, 3.1999998092651367],
|
||||
[2.3499999046325684, 4.5, 4.800000190734863],
|
||||
[0.75, 1.399999976158142, 1.5, 1.7000000476837158],
|
||||
[5.45, 5.75],
|
||||
[2.75, 2.85, 2.95, 3.05, 3.35],
|
||||
[2.45, 4.75, 5.05],
|
||||
[0.8, 1.75],
|
||||
]
|
||||
self.assertListEqual(expected, clf.get_cut_points())
|
||||
self.assertListEqual([0, 1, 2, 3], clf.features_)
|
||||
clf.fit(X, y, features=[0, 2, 3])
|
||||
self.assertListEqual([0, 2, 3], clf.features_)
|
||||
|
||||
def test_fit_original(self):
|
||||
clf = FImdlp(proposal=False)
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
||||
self.assertEqual(clf.n_features_, 2)
|
||||
self.assertListEqual(clf.X_.tolist(), [[1, 2], [3, 4]])
|
||||
self.assertListEqual(clf.y_.tolist(), [1, 2])
|
||||
self.assertListEqual([[], []], clf.get_cut_points())
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
self.assertEqual(clf.n_features_, 4)
|
||||
self.assertTrue(np.array_equal(X, clf.X_))
|
||||
self.assertTrue(np.array_equal(y, clf.y_))
|
||||
|
||||
expected = [
|
||||
[5.5, 5.800000190734863],
|
||||
[2.9000000953674316, 3.3499999046325684],
|
||||
[2.450000047683716, 4.800000190734863],
|
||||
[0.800000011920929, 1.7999999523162842],
|
||||
]
|
||||
self.assertListEqual(expected, clf.get_cut_points())
|
||||
computed = clf.get_cut_points()
|
||||
for item_computed, item_expected in zip(computed, expected):
|
||||
for x_, y_ in zip(item_computed, item_expected):
|
||||
self.assertAlmostEqual(x_, y_, delta=self.delta)
|
||||
self.assertListEqual([0, 1, 2, 3], clf.features_)
|
||||
clf.fit(X, y, features=[0, 2, 3])
|
||||
self.assertListEqual([0, 2, 3], clf.features_)
|
||||
@@ -88,67 +72,296 @@ class FImdlpTest(unittest.TestCase):
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2], features=[0, 2])
|
||||
|
||||
def test_fit_features(self):
|
||||
clf = FImdlp(n_jobs=-1)
|
||||
# Two samples doesn't have enough information to split
|
||||
clf.fit([[1, -2], [3, 4]], [1, 2], features=[0])
|
||||
self.assertListEqual(clf.get_cut_points(), [[], []])
|
||||
clf.fit([[1, -2], [3, 4], [5, 6]], [1, 2, 2], features=[0])
|
||||
self.assertListEqual(clf.get_cut_points(), [[2], []])
|
||||
res = clf.transform([[1, -2], [3, 4]])
|
||||
self.assertListEqual(res.tolist(), [[0, -2], [1, 4]])
|
||||
X, y = load_iris(return_X_y=True)
|
||||
X_expected = X[:, [0, 2]].copy()
|
||||
clf.fit(X, y, features=[1, 3])
|
||||
X_computed = clf.transform(X)
|
||||
self.assertListEqual(
|
||||
X_expected[:, 0].tolist(), X_computed[:, 0].tolist()
|
||||
)
|
||||
self.assertListEqual(
|
||||
X_expected[:, 1].tolist(), X_computed[:, 2].tolist()
|
||||
)
|
||||
self.assertEqual(X_computed.dtype, np.float64)
|
||||
|
||||
def test_transform(self):
|
||||
clf = FImdlp()
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2], features=[0])
|
||||
res = clf.transform([[1, 2], [3, 4]])
|
||||
self.assertListEqual(res.tolist(), [[0, 2], [0, 4]])
|
||||
|
||||
def test_transform_original(self):
|
||||
clf = FImdlp(proposal=False)
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
||||
clf.fit([[1, 2], [3, 4], [5, 6]], [1, 2, 2])
|
||||
self.assertEqual(
|
||||
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [0, 0]]
|
||||
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [1, 1]]
|
||||
)
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
self.assertEqual(clf.n_features_, 4)
|
||||
self.assertEqual(clf.n_features_in_, 4)
|
||||
self.assertTrue(np.array_equal(X, clf.X_))
|
||||
self.assertTrue(np.array_equal(y, clf.y_))
|
||||
X_transformed = clf.transform(X)
|
||||
self.assertListEqual(
|
||||
clf.transform(X).tolist(), clf.fit(X, y).transform(X).tolist()
|
||||
X_transformed.tolist(), clf.fit(X, y).transform(X).tolist()
|
||||
)
|
||||
self.assertEqual(X_transformed.dtype, np.int32)
|
||||
expected = [
|
||||
[0, 0, 1, 1],
|
||||
[2, 1, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[2, 3, 1, 1],
|
||||
[2, 0, 1, 1],
|
||||
[0, 0, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[1, 1, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[1, 3, 1, 1],
|
||||
[1, 2, 1, 1],
|
||||
]
|
||||
self.assertTrue(np.array_equal(clf.transform(X[90:97]), expected))
|
||||
with self.assertRaises(ValueError):
|
||||
clf.transform([[1, 2, 3], [4, 5, 6]])
|
||||
with self.assertRaises(sklearn.exceptions.NotFittedError):
|
||||
clf = FImdlp(proposal=False)
|
||||
clf = FImdlp()
|
||||
clf.transform([[1, 2], [3, 4]])
|
||||
|
||||
def test_transform_proposal(self):
|
||||
clf = FImdlp(proposal=True)
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
||||
self.assertEqual(
|
||||
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [0, 0]]
|
||||
def test_cppfactorize(self):
|
||||
source = [
|
||||
b"f0",
|
||||
b"f1",
|
||||
b"f2",
|
||||
b"f3",
|
||||
b"f4",
|
||||
b"f5",
|
||||
b"f6",
|
||||
b"f1",
|
||||
b"f1",
|
||||
b"f7",
|
||||
b"f8",
|
||||
]
|
||||
expected = [0, 1, 2, 3, 4, 5, 6, 1, 1, 7, 8]
|
||||
computed = factorize(source)
|
||||
self.assertListEqual(expected, computed)
|
||||
|
||||
def test_join_fit(self):
|
||||
y = np.array([b"f0", b"f0", b"f2", b"f3", b"f3", b"f4", b"f4"])
|
||||
x = np.array(
|
||||
[
|
||||
[0, 1, 2, 3, 4, 5],
|
||||
[0, 2, 2, 3, 4, 5],
|
||||
[1, 2, 3, 4, 5, 5],
|
||||
[2, 3, 4, 5, 6, 6],
|
||||
[3, 4, 5, 6, 7, 7],
|
||||
[1, 2, 2, 3, 5, 7],
|
||||
[1, 3, 4, 4, 4, 7],
|
||||
]
|
||||
)
|
||||
expected = [0, 1, 1, 2, 2, 1, 2]
|
||||
clf = FImdlp()
|
||||
clf.fit(x, factorize(y))
|
||||
computed = clf.join_fit([0, 2, 3, 4], 1, x)
|
||||
self.assertListEqual(computed.tolist(), expected)
|
||||
expected_y = [
|
||||
b"00234",
|
||||
b"00234",
|
||||
b"11345",
|
||||
b"22456",
|
||||
b"23567",
|
||||
b"31235",
|
||||
b"31444",
|
||||
]
|
||||
self.assertListEqual(expected_y, clf.y_join_)
|
||||
|
||||
def test_join_fit_error(self):
|
||||
y = np.array([b"f0", b"f0", b"f2", b"f3", b"f4"])
|
||||
x = np.array(
|
||||
[
|
||||
[0, 1, 2, 3, 4],
|
||||
[0, 1, 2, 3, 4],
|
||||
[1, 2, 3, 4, 5],
|
||||
[2, 3, 4, 5, 6],
|
||||
[3, 4, 5, 6, 7],
|
||||
]
|
||||
)
|
||||
clf = FImdlp()
|
||||
clf.fit(x, factorize(y))
|
||||
with self.assertRaises(ValueError) as exception:
|
||||
clf.join_fit([], 1, x)
|
||||
self.assertEqual(
|
||||
str(exception.exception),
|
||||
"Number of features must be in range [1, 5]",
|
||||
)
|
||||
with self.assertRaises(ValueError) as exception:
|
||||
FImdlp().join_fit([0, 4], 1, x)
|
||||
self.assertTrue(
|
||||
str(exception.exception).startswith(
|
||||
"This FImdlp instance is not fitted yet."
|
||||
)
|
||||
)
|
||||
with self.assertRaises(ValueError) as exception:
|
||||
clf.join_fit([0, 5], 1, x)
|
||||
self.assertEqual(
|
||||
str(exception.exception),
|
||||
"Feature 5 not in range [0, 5)",
|
||||
)
|
||||
with self.assertRaises(ValueError) as exception:
|
||||
clf.join_fit([0, 2], 5, x)
|
||||
self.assertEqual(
|
||||
str(exception.exception),
|
||||
"Target 5 not in range [0, 5)",
|
||||
)
|
||||
with self.assertRaises(ValueError) as exception:
|
||||
clf.join_fit([0, 2], 2, x)
|
||||
self.assertEqual(
|
||||
str(exception.exception),
|
||||
"Target cannot be in features to join",
|
||||
)
|
||||
|
||||
def test_factorize(self):
|
||||
y = np.array([b"f0", b"f0", b"f2", b"f3", b"f4"])
|
||||
clf = FImdlp()
|
||||
computed = clf.factorize(y)
|
||||
self.assertListEqual([0, 0, 1, 2, 3], computed)
|
||||
y = [b"f4", b"f0", b"f0", b"f2", b"f3"]
|
||||
clf = FImdlp()
|
||||
computed = clf.factorize(y)
|
||||
self.assertListEqual([0, 1, 1, 2, 3], computed)
|
||||
|
||||
def test_join_fit_info(self):
|
||||
clf = FImdlp()
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
self.assertEqual(clf.n_features_, 4)
|
||||
self.assertTrue(np.array_equal(X, clf.X_))
|
||||
self.assertTrue(np.array_equal(y, clf.y_))
|
||||
self.assertListEqual(
|
||||
clf.transform(X).tolist(), clf.fit(X, y).transform(X).tolist()
|
||||
)
|
||||
expected = [
|
||||
[4, 0, 1, 1],
|
||||
[5, 2, 2, 2],
|
||||
[5, 0, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[4, 1, 1, 1],
|
||||
[5, 2, 1, 1],
|
||||
[5, 1, 1, 1],
|
||||
clf.join_fit([0, 2], 1, X)
|
||||
clf.join_fit([0, 3], 2, X)
|
||||
clf.join_fit([1, 2], 3, X)
|
||||
expected = [-1, [0, 2, -1], [0, 3, -1], [1, 2, -1]]
|
||||
self.assertListEqual(expected, clf.target_)
|
||||
|
||||
@staticmethod
|
||||
def test_sklearn_transformer():
|
||||
for check, test in check_estimator(FImdlp(), generate_only=True):
|
||||
test(check)
|
||||
|
||||
def test_states_feature(self):
|
||||
clf = FImdlp()
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
expected = []
|
||||
for i in [3, 6, 4, 3]:
|
||||
expected.append(list(range(i)))
|
||||
for feature in range(X.shape[1]):
|
||||
self.assertListEqual(
|
||||
expected[feature], clf.get_states_feature(feature)
|
||||
)
|
||||
|
||||
def test_states_no_feature(self):
|
||||
clf = FImdlp()
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
self.assertIsNone(clf.get_states_feature(4))
|
||||
|
||||
def test_MaxDepth(self):
|
||||
clf = FImdlp(max_depth=1)
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
expected_cutpoints = [
|
||||
[5.45],
|
||||
[3.35],
|
||||
[2.45],
|
||||
[0.8],
|
||||
]
|
||||
self.assertTrue(np.array_equal(clf.transform(X[90:97]), expected))
|
||||
with self.assertRaises(ValueError):
|
||||
clf.transform([[1, 2, 3], [4, 5, 6]])
|
||||
with self.assertRaises(sklearn.exceptions.NotFittedError):
|
||||
clf = FImdlp(proposal=True)
|
||||
clf.transform([[1, 2], [3, 4]])
|
||||
expected_depths = [1] * 4
|
||||
self.assertListEqual(expected_depths, clf.get_depths())
|
||||
for expected, computed in zip(
|
||||
expected_cutpoints, clf.get_cut_points()
|
||||
):
|
||||
for e, c in zip(expected, computed):
|
||||
self.assertAlmostEqual(e, c, delta=self.delta)
|
||||
|
||||
def test_MinLength(self):
|
||||
clf = FImdlp(min_length=75)
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
expected_cutpoints = [
|
||||
[5.45, 5.75],
|
||||
[2.85, 3.35],
|
||||
[2.45, 4.75],
|
||||
[0.8, 1.75],
|
||||
]
|
||||
expected_depths = [3, 2, 2, 2]
|
||||
self.assertListEqual(expected_depths, clf.get_depths())
|
||||
for expected, computed in zip(
|
||||
expected_cutpoints, clf.get_cut_points()
|
||||
):
|
||||
for e, c in zip(expected, computed):
|
||||
self.assertAlmostEqual(e, c, delta=self.delta)
|
||||
|
||||
def test_MinLengthMaxDepth(self):
|
||||
clf = FImdlp(min_length=75, max_depth=2)
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
expected_cutpoints = [
|
||||
[5.45, 5.75],
|
||||
[2.85, 3.35],
|
||||
[2.45, 4.75],
|
||||
[0.8, 1.75],
|
||||
]
|
||||
expected_depths = [2, 2, 2, 2]
|
||||
self.assertListEqual(expected_depths, clf.get_depths())
|
||||
for expected, computed in zip(
|
||||
expected_cutpoints, clf.get_cut_points()
|
||||
):
|
||||
for e, c in zip(expected, computed):
|
||||
self.assertAlmostEqual(e, c, delta=self.delta)
|
||||
|
||||
def test_max_cuts(self):
|
||||
clf = FImdlp(max_cuts=1)
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
expected_cutpoints = [
|
||||
[5.45],
|
||||
[2.85],
|
||||
[2.45],
|
||||
[0.8],
|
||||
]
|
||||
expected_depths = [3, 5, 4, 3]
|
||||
self.assertListEqual(expected_depths, clf.get_depths())
|
||||
for expected, computed in zip(
|
||||
expected_cutpoints, clf.get_cut_points()
|
||||
):
|
||||
for e, c in zip(expected, computed):
|
||||
self.assertAlmostEqual(e, c, delta=self.delta)
|
||||
|
||||
def test_ArffFiles(self):
|
||||
loader = CArffFiles()
|
||||
loader.load(b"src/cppmdlp/tests/datasets/iris.arff")
|
||||
X = loader.get_X()
|
||||
y = loader.get_y()
|
||||
expected = [
|
||||
(b"sepallength", b"REAL"),
|
||||
(b"sepalwidth", b"REAL"),
|
||||
(b"petallength", b"REAL"),
|
||||
(b"petalwidth", b"REAL"),
|
||||
]
|
||||
self.assertListEqual(loader.get_attributes(), expected)
|
||||
self.assertListEqual(y[:10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
|
||||
expected = [
|
||||
b"5.1,3.5,1.4,0.2,Iris-setosa",
|
||||
b"4.9,3.0,1.4,0.2,Iris-setosa",
|
||||
b"4.7,3.2,1.3,0.2,Iris-setosa",
|
||||
b"4.6,3.1,1.5,0.2,Iris-setosa",
|
||||
b"5.0,3.6,1.4,0.2,Iris-setosa",
|
||||
b"5.4,3.9,1.7,0.4,Iris-setosa",
|
||||
b"4.6,3.4,1.4,0.3,Iris-setosa",
|
||||
b"5.0,3.4,1.5,0.2,Iris-setosa",
|
||||
b"4.4,2.9,1.4,0.2,Iris-setosa",
|
||||
b"4.9,3.1,1.5,0.1,Iris-setosa",
|
||||
]
|
||||
self.assertListEqual(loader.get_lines()[:10], expected)
|
||||
expected_X = [
|
||||
[5.0999999, 3.5, 1.39999998, 0.2],
|
||||
[4.9000001, 3, 1.39999998, 0.2],
|
||||
[4.69999981, 3.20000005, 1.29999995, 0.2],
|
||||
]
|
||||
for computed, expected in zip(X[:3].tolist(), expected_X):
|
||||
for c, e in zip(computed, expected):
|
||||
self.assertAlmostEqual(c, e, delta=self.delta)
|
||||
|
Reference in New Issue
Block a user