mirror of
https://github.com/Doctorado-ML/FImdlp.git
synced 2025-08-16 16:05:52 +00:00
feat: ✨ Add version method to cppfimdlp
This commit is contained in:
9
.gitignore
vendored
9
.gitignore
vendored
@@ -33,8 +33,8 @@ MANIFEST
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer log2s
|
||||
pip-log2.txt
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
@@ -56,7 +56,7 @@ coverage.xml
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log2
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
@@ -134,4 +134,5 @@ cmake-build-debug
|
||||
cmake-build-debug/**
|
||||
**/lcoverage/**
|
||||
**/x/*
|
||||
**/*.so
|
||||
**/*.so
|
||||
**/CMakeFiles
|
@@ -1,7 +1,7 @@
|
||||
# distutils: language = c++
|
||||
# cython: language_level = 3
|
||||
from libcpp.vector cimport vector
|
||||
from libcpp cimport bool
|
||||
from libcpp.string cimport string
|
||||
|
||||
cdef extern from "../cppmdlp/CPPFImdlp.h" namespace "mdlp":
|
||||
ctypedef float precision_t
|
||||
@@ -9,6 +9,7 @@ cdef extern from "../cppmdlp/CPPFImdlp.h" namespace "mdlp":
|
||||
CPPFImdlp(int) except +
|
||||
CPPFImdlp& fit(vector[precision_t]&, vector[int]&)
|
||||
vector[precision_t] getCutPoints()
|
||||
string version()
|
||||
|
||||
|
||||
cdef class CFImdlp:
|
||||
@@ -22,4 +23,6 @@ cdef class CFImdlp:
|
||||
return self
|
||||
def get_cut_points(self):
|
||||
return self.thisptr.getCutPoints()
|
||||
def get_version(self):
|
||||
return self.thisptr.version()
|
||||
|
||||
|
@@ -99,9 +99,15 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
||||
return self
|
||||
|
||||
def _fit_discretizer(self, feature):
|
||||
self.discretizer_[feature] = CFImdlp(proposal=self.proposal)
|
||||
self.discretizer_[feature].fit(self.X_[:, feature], self.y_)
|
||||
self.cut_points_[feature] = self.discretizer_[feature].get_cut_points()
|
||||
if feature in self.features_:
|
||||
self.discretizer_[feature] = CFImdlp(proposal=self.proposal)
|
||||
self.discretizer_[feature].fit(self.X_[:, feature], self.y_)
|
||||
self.cut_points_[feature] = self.discretizer_[
|
||||
feature
|
||||
].get_cut_points()
|
||||
else:
|
||||
self.discretizer_[feature] = None
|
||||
self.cut_points_[feature] = []
|
||||
|
||||
def _discretize_feature(self, feature, X, result):
|
||||
if feature in self.features_:
|
||||
|
Reference in New Issue
Block a user