5 Commits

13 changed files with 96 additions and 215 deletions

9
.gitignore vendored
View File

@@ -33,8 +33,8 @@ MANIFEST
*.manifest
*.spec
# Installer log2s
pip-log2.txt
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
@@ -56,7 +56,7 @@ coverage.xml
*.pot
# Django stuff:
*.log2
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
@@ -134,4 +134,5 @@ cmake-build-debug
cmake-build-debug/**
**/lcoverage/**
**/x/*
**/*.so
**/*.so
**/CMakeFiles

1
MANIFEST.in Normal file
View File

@@ -0,0 +1 @@
include src/cppmdlp/CPPFImdlp.h

View File

@@ -8,9 +8,9 @@
Discretization algorithm based on the paper by Usama M. Fayyad and Keki B. Irani
```
Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI-95), pages 1022-1027, Montreal, Canada, August 1995.
```
## Installation
@@ -24,8 +24,8 @@ git clone --recurse-submodules https://github.com/doctorado-ml/FImdlp.git
```bash
pip install -e .
python samples/sample.py iris --original
python samples/sample.py iris --proposal
python samples/sample.py iris
python samples/sample.py iris --alternative
python samples/sample.py -h # for more options
```

View File

@@ -1,117 +0,0 @@
#include "ArffFiles.h"
#include <fstream>
#include <sstream>
#include <map>
#include <iostream>
using namespace std;
ArffFiles::ArffFiles()
{
}
vector<string> ArffFiles::getLines()
{
return lines;
}
unsigned long int ArffFiles::getSize()
{
return lines.size();
}
vector<tuple<string, string>> ArffFiles::getAttributes()
{
return attributes;
}
string ArffFiles::getClassName()
{
return className;
}
string ArffFiles::getClassType()
{
return classType;
}
vector<vector<float>>& ArffFiles::getX()
{
return X;
}
vector<int>& ArffFiles::getY()
{
return y;
}
void ArffFiles::load(string fileName, bool classLast)
{
ifstream file(fileName);
string keyword, attribute, type;
if (file.is_open()) {
string line;
while (getline(file, line)) {
if (line[0] == '%' || line.empty() || line == "\r" || line == " ") {
continue;
}
if (line.find("@attribute") != string::npos || line.find("@ATTRIBUTE") != string::npos) {
stringstream ss(line);
ss >> keyword >> attribute >> type;
attributes.push_back(make_tuple(attribute, type));
continue;
}
if (line[0] == '@') {
continue;
}
lines.push_back(line);
}
file.close();
if (attributes.empty())
throw invalid_argument("No attributes found");
if (classLast) {
className = get<0>(attributes.back());
classType = get<1>(attributes.back());
attributes.pop_back();
} else {
className = get<0>(attributes.front());
classType = get<1>(attributes.front());
attributes.erase(attributes.begin());
}
generateDataset(classLast);
} else
throw invalid_argument("Unable to open file");
}
void ArffFiles::generateDataset(bool classLast)
{
X = vector<vector<float>>(attributes.size(), vector<float>(lines.size()));
vector<string> yy = vector<string>(lines.size(), "");
int labelIndex = classLast ? attributes.size() : 0;
for (int i = 0; i < lines.size(); i++) {
stringstream ss(lines[i]);
string value;
int pos = 0, xIndex = 0;
while (getline(ss, value, ',')) {
if (pos++ == labelIndex) {
yy[i] = value;
} else {
X[xIndex++][i] = stof(value);
}
}
}
y = factorize(yy);
}
string ArffFiles::trim(const string& source)
{
string s(source);
s.erase(0, s.find_first_not_of(" \n\r\t"));
s.erase(s.find_last_not_of(" \n\r\t") + 1);
return s;
}
vector<int> ArffFiles::factorize(const vector<string>& labels_t)
{
vector<int> yy;
yy.reserve(labels_t.size());
map<string, int> labelMap;
int i = 0;
for (string label : labels_t) {
if (labelMap.find(label) == labelMap.end()) {
labelMap[label] = i++;
}
yy.push_back(labelMap[label]);
}
return yy;
}

View File

@@ -1,28 +0,0 @@
#ifndef ARFFFILES_H
#define ARFFFILES_H
#include <string>
#include <vector>
#include <tuple>
using namespace std;
class ArffFiles {
private:
vector<string> lines;
vector<tuple<string, string>> attributes;
string className, classType;
vector<vector<float>> X;
vector<int> y;
void generateDataset(bool);
public:
ArffFiles();
void load(string, bool = true);
vector<string> getLines();
unsigned long int getSize();
string getClassName();
string getClassType();
string trim(const string&);
vector<vector<float>>& getX();
vector<int>& getY();
vector<tuple<string, string>> getAttributes();
vector<int> factorize(const vector<string>& labels_t);
};
#endif

View File

@@ -3,4 +3,4 @@ project(main)
set(CMAKE_CXX_STANDARD 14)
add_executable(sample sample.cpp ArffFiles.cpp ../src/cppmdlp/Metrics.cpp ../src/cppmdlp/CPPFImdlp.cpp)
add_executable(sample sample.cpp ../src/cppmdlp/tests/ArffFiles.cpp ../src/cppmdlp/Metrics.cpp ../src/cppmdlp/CPPFImdlp.cpp)

View File

@@ -1,4 +1,4 @@
#include "ArffFiles.h"
#include "../src/cppmdlp/tests/ArffFiles.h"
#include <iostream>
#include <vector>
#include <iomanip>
@@ -41,7 +41,7 @@ int main(int argc, char** argv)
}
cout << y[i] << endl;
}
mdlp::CPPFImdlp test = mdlp::CPPFImdlp(false);
mdlp::CPPFImdlp test = mdlp::CPPFImdlp(0);
for (auto i = 0; i < attributes.size(); i++) {
cout << "Cut points for " << get<0>(attributes[i]) << endl;
cout << "--------------------------" << setprecision(3) << endl;

View File

@@ -14,8 +14,9 @@ datasets = {
}
ap = argparse.ArgumentParser()
ap.add_argument("--proposal", action="store_true")
ap.add_argument("--original", dest="proposal", action="store_false")
ap.add_argument(
"--alternative", dest="proposal", action="store_const", const=1
)
ap.add_argument("dataset", type=str, choices=datasets.keys())
args = ap.parse_args()
relative = "" if os.path.isdir("src") else ".."
@@ -29,7 +30,7 @@ class_name = df.columns.to_list()[class_column]
X = df.drop(class_name, axis=1)
y, _ = pd.factorize(df[class_name])
X = X.to_numpy()
test = FImdlp(proposal=args.proposal)
test = FImdlp(algorithm=args.proposal if args.proposal is not None else 0)
now = time.time()
test.fit(X, y)
fit_time = time.time()

View File

@@ -1 +1 @@
__version__ = "0.9.1"
__version__ = "0.9.2"

View File

@@ -1,20 +1,21 @@
# distutils: language = c++
# cython: language_level = 3
from libcpp.vector cimport vector
from libcpp cimport bool
from libcpp.string cimport string
cdef extern from "../cppmdlp/CPPFImdlp.h" namespace "mdlp":
ctypedef float precision_t
cdef cppclass CPPFImdlp:
CPPFImdlp(bool) except +
CPPFImdlp(int) except +
CPPFImdlp& fit(vector[precision_t]&, vector[int]&)
vector[precision_t] getCutPoints()
string version()
cdef class CFImdlp:
cdef CPPFImdlp *thisptr
def __cinit__(self, proposal):
self.thisptr = new CPPFImdlp(proposal)
def __cinit__(self, algorithm):
self.thisptr = new CPPFImdlp(algorithm)
def __dealloc__(self):
del self.thisptr
def fit(self, X, y):
@@ -22,4 +23,6 @@ cdef class CFImdlp:
return self
def get_cut_points(self):
return self.thisptr.getCutPoints()
def get_version(self):
return self.thisptr.version()

View File

@@ -7,14 +7,18 @@ from joblib import Parallel, delayed
class FImdlp(TransformerMixin, BaseEstimator):
def __init__(self, n_jobs=-1, proposal=False):
def __init__(self, algorithm=0, n_jobs=-1):
self.algorithm = algorithm
self.n_jobs = n_jobs
self.proposal = proposal
"""Fayyad - Irani MDLP discretization algorithm based implementation.
Parameters
----------
algorithm : int, default=0
The type of algorithm to use computing the cut points.
0 - Definitive implementation
1 - Alternative proposal
n_jobs : int, default=-1
The number of jobs to run in parallel. :meth:`fit` and
:meth:`transform`, are parallelized over the features. ``-1`` means
@@ -94,9 +98,15 @@ class FImdlp(TransformerMixin, BaseEstimator):
return self
def _fit_discretizer(self, feature):
self.discretizer_[feature] = CFImdlp(proposal=self.proposal)
self.discretizer_[feature].fit(self.X_[:, feature], self.y_)
self.cut_points_[feature] = self.discretizer_[feature].get_cut_points()
if feature in self.features_:
self.discretizer_[feature] = CFImdlp(algorithm=self.algorithm)
self.discretizer_[feature].fit(self.X_[:, feature], self.y_)
self.cut_points_[feature] = self.discretizer_[
feature
].get_cut_points()
else:
self.discretizer_[feature] = None
self.cut_points_[feature] = []
def _discretize_feature(self, feature, X, result):
if feature in self.features_:
@@ -125,7 +135,10 @@ class FImdlp(TransformerMixin, BaseEstimator):
raise ValueError(
"Shape of input is different from what was seen in `fit`"
)
result = np.zeros_like(X, dtype=np.int32) - 1
if len(self.features_) == self.n_features_:
result = np.zeros_like(X, dtype=np.int32) - 1
else:
result = np.zeros_like(X) - 1
Parallel(n_jobs=self.n_jobs, prefer="threads")(
delayed(self._discretize_feature)(feature, X[:, feature], result)
for feature in range(self.n_features_)

View File

@@ -14,47 +14,41 @@ class FImdlpTest(unittest.TestCase):
def test_init(self):
clf = FImdlp()
self.assertEqual(-1, clf.n_jobs)
self.assertFalse(clf.proposal)
clf = FImdlp(proposal=True, n_jobs=7)
self.assertTrue(clf.proposal)
self.assertEqual(0, clf.algorithm)
clf = FImdlp(algorithm=1, n_jobs=7)
self.assertEqual(1, clf.algorithm)
self.assertEqual(7, clf.n_jobs)
def test_fit_proposal(self):
clf = FImdlp(proposal=True)
def test_fit_definitive(self):
clf = FImdlp(algorithm=0)
clf.fit([[1, 2], [3, 4]], [1, 2])
self.assertEqual(clf.n_features_, 2)
self.assertListEqual(clf.X_.tolist(), [[1, 2], [3, 4]])
self.assertListEqual(clf.y_.tolist(), [1, 2])
self.assertListEqual([[], []], clf.get_cut_points())
self.assertListEqual([[2.0], [3.0]], clf.get_cut_points())
X, y = load_iris(return_X_y=True)
clf.fit(X, y)
self.assertEqual(clf.n_features_, 4)
self.assertTrue(np.array_equal(X, clf.X_))
self.assertTrue(np.array_equal(y, clf.y_))
expected = [
[
4.900000095367432,
5.0,
5.099999904632568,
5.400000095367432,
5.699999809265137,
],
[2.6999998092651367, 2.9000000953674316, 3.1999998092651367],
[2.3499999046325684, 4.5, 4.800000190734863],
[0.75, 1.399999976158142, 1.5, 1.7000000476837158],
[5.449999809265137, 6.25],
[2.8499999046325684, 3.0, 3.049999952316284, 3.3499999046325684],
[2.450000047683716, 4.75, 5.050000190734863],
[0.800000011920929, 1.4500000476837158, 1.75],
]
self.assertListEqual(expected, clf.get_cut_points())
self.assertListEqual([0, 1, 2, 3], clf.features_)
clf.fit(X, y, features=[0, 2, 3])
self.assertListEqual([0, 2, 3], clf.features_)
def test_fit_original(self):
clf = FImdlp(proposal=False)
def test_fit_alternative(self):
clf = FImdlp(algorithm=1)
clf.fit([[1, 2], [3, 4]], [1, 2])
self.assertEqual(clf.n_features_, 2)
self.assertListEqual(clf.X_.tolist(), [[1, 2], [3, 4]])
self.assertListEqual(clf.y_.tolist(), [1, 2])
self.assertListEqual([[], []], clf.get_cut_points())
self.assertListEqual([[2], [3]], clf.get_cut_points())
X, y = load_iris(return_X_y=True)
clf.fit(X, y)
self.assertEqual(clf.n_features_, 4)
@@ -62,10 +56,10 @@ class FImdlpTest(unittest.TestCase):
self.assertTrue(np.array_equal(y, clf.y_))
expected = [
[5.5, 5.800000190734863],
[2.9000000953674316, 3.3499999046325684],
[2.450000047683716, 4.800000190734863],
[0.800000011920929, 1.7999999523162842],
[5.449999809265137, 5.75],
[2.8499999046325684, 3.3499999046325684],
[2.450000047683716, 4.75],
[0.800000011920929, 1.75],
]
self.assertListEqual(expected, clf.get_cut_points())
self.assertListEqual([0, 1, 2, 3], clf.features_)
@@ -89,45 +83,58 @@ class FImdlpTest(unittest.TestCase):
def test_fit_features(self):
clf = FImdlp()
clf.fit([[1, 2], [3, 4]], [1, 2], features=[0])
res = clf.transform([[1, 2], [3, 4]])
self.assertListEqual(res.tolist(), [[0, 2], [0, 4]])
clf.fit([[1, -2], [3, 4]], [1, 2], features=[0])
res = clf.transform([[1, -2], [3, 4]])
self.assertListEqual(res.tolist(), [[0, -2], [1, 4]])
X, y = load_iris(return_X_y=True)
X_expected = X[:, [0, 2]].copy()
clf.fit(X, y, features=[1, 3])
X_computed = clf.transform(X)
self.assertListEqual(
X_expected[:, 0].tolist(), X_computed[:, 0].tolist()
)
self.assertListEqual(
X_expected[:, 1].tolist(), X_computed[:, 2].tolist()
)
self.assertEqual(X_computed.dtype, np.float64)
def test_transform_original(self):
clf = FImdlp(proposal=False)
def test_transform_definitive(self):
clf = FImdlp(algorithm=0)
clf.fit([[1, 2], [3, 4]], [1, 2])
self.assertEqual(
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [0, 0]]
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [1, 1]]
)
X, y = load_iris(return_X_y=True)
clf.fit(X, y)
self.assertEqual(clf.n_features_, 4)
self.assertTrue(np.array_equal(X, clf.X_))
self.assertTrue(np.array_equal(y, clf.y_))
X_transformed = clf.transform(X)
self.assertListEqual(
clf.transform(X).tolist(), clf.fit(X, y).transform(X).tolist()
X_transformed.tolist(), clf.fit(X, y).transform(X).tolist()
)
self.assertEqual(X_transformed.dtype, np.int32)
expected = [
[0, 0, 1, 1],
[2, 1, 1, 1],
[1, 0, 1, 1],
[1, 1, 1, 1],
[1, 0, 1, 1],
[0, 0, 1, 1],
[1, 0, 1, 1],
[1, 1, 1, 1],
[1, 0, 1, 1],
[1, 1, 1, 1],
]
self.assertTrue(np.array_equal(clf.transform(X[90:97]), expected))
with self.assertRaises(ValueError):
clf.transform([[1, 2, 3], [4, 5, 6]])
with self.assertRaises(sklearn.exceptions.NotFittedError):
clf = FImdlp(proposal=False)
clf = FImdlp(algorithm=0)
clf.transform([[1, 2], [3, 4]])
def test_transform_proposal(self):
clf = FImdlp(proposal=True)
def test_transform_alternative(self):
clf = FImdlp(algorithm=1)
clf.fit([[1, 2], [3, 4]], [1, 2])
self.assertEqual(
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [0, 0]]
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [1, 1]]
)
X, y = load_iris(return_X_y=True)
clf.fit(X, y)
@@ -138,17 +145,17 @@ class FImdlpTest(unittest.TestCase):
clf.transform(X).tolist(), clf.fit(X, y).transform(X).tolist()
)
expected = [
[4, 0, 1, 1],
[5, 2, 2, 2],
[5, 0, 1, 1],
[1, 0, 1, 1],
[4, 1, 1, 1],
[5, 2, 1, 1],
[5, 1, 1, 1],
[2, 1, 1, 1],
[2, 0, 1, 1],
[0, 0, 1, 1],
[1, 0, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
]
self.assertTrue(np.array_equal(clf.transform(X[90:97]), expected))
with self.assertRaises(ValueError):
clf.transform([[1, 2, 3], [4, 5, 6]])
with self.assertRaises(sklearn.exceptions.NotFittedError):
clf = FImdlp(proposal=True)
clf = FImdlp(algorithm=1)
clf.transform([[1, 2], [3, 4]])