mirror of
https://github.com/Doctorado-ML/FImdlp.git
synced 2025-08-16 16:05:52 +00:00
Add range_features method
This commit is contained in:
@@ -119,6 +119,15 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
||||
else:
|
||||
result[:, feature] = X
|
||||
|
||||
def range_features(self):
|
||||
res = []
|
||||
for i in range(self.n_features_in_):
|
||||
if i in self.features_:
|
||||
res.append(list(range(len(self.cut_points_[i]))))
|
||||
else:
|
||||
res.append([])
|
||||
return res
|
||||
|
||||
def transform(self, X):
|
||||
"""Discretize X values.
|
||||
Parameters
|
||||
@@ -214,6 +223,7 @@ class FImdlp(TransformerMixin, BaseEstimator):
|
||||
f"{str(item_y)}{''.join([str(x) for x in items_x])}".encode()
|
||||
for item_y, items_x in zip(self.y_, data[:, features])
|
||||
]
|
||||
self.y_join = y_join
|
||||
self.discretizer_[target].fit(self.X_[:, target], factorize(y_join))
|
||||
self.cut_points_[target] = self.discretizer_[target].get_cut_points()
|
||||
# return the discretized target variable with the new cut points
|
||||
|
Reference in New Issue
Block a user