BayesNet/bayesnet/ensembles/BoostAODE.cc

179 lines
8.8 KiB
C++
Raw Permalink Normal View History

2024-04-11 16:02:49 +00:00
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
#include <random>
#include <set>
2023-10-10 16:16:43 +00:00
#include <functional>
#include <limits.h>
#include <tuple>
2023-10-10 16:16:43 +00:00
#include "BoostAODE.h"
2023-08-15 14:16:04 +00:00
namespace bayesnet {
2024-04-02 07:52:40 +00:00
BoostAODE::BoostAODE(bool predict_voting) : Boost(predict_voting)
2023-11-19 21:36:27 +00:00
{
}
2024-06-11 09:40:45 +00:00
std::vector<int> BoostAODE::initializeModels(const Smoothing_t smoothing)
2023-10-10 09:52:39 +00:00
{
2023-11-08 17:45:35 +00:00
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
std::vector<int> featuresSelected = featureSelection(weights_);
for (const int& feature : featuresSelected) {
2023-11-08 17:45:35 +00:00
std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
2024-06-11 09:40:45 +00:00
model->fit(dataset, features, className, states, weights_, smoothing);
2023-10-13 11:46:22 +00:00
models.push_back(std::move(model));
significanceModels.push_back(1.0); // They will be updated later in trainModel
2023-10-13 11:46:22 +00:00
n_models++;
2023-10-10 09:52:39 +00:00
}
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
return featuresSelected;
2023-10-10 09:52:39 +00:00
}
2024-06-11 09:40:45 +00:00
void BoostAODE::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
{
//
// Logging setup
//
2024-05-16 09:17:21 +00:00
// loguru::set_thread_name("BoostAODE");
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
// loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX);
2024-03-06 16:04:16 +00:00
// Algorithm based on the adaboost algorithm for classification
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
fitted = true;
double alpha_t = 0;
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
2024-03-19 13:13:40 +00:00
bool finished = false;
std::vector<int> featuresUsed;
if (selectFeatures) {
2024-06-11 09:40:45 +00:00
featuresUsed = initializeModels(smoothing);
auto ypred = predict(X_train);
2024-03-19 13:13:40 +00:00
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
// Update significance of the models
for (int i = 0; i < n_models; ++i) {
significanceModels[i] = alpha_t;
}
2024-03-19 13:13:40 +00:00
if (finished) {
return;
}
2023-10-11 09:33:29 +00:00
}
2024-03-20 10:30:02 +00:00
int numItemsPack = 0; // The counter of the models inserted in the current pack
2023-09-07 09:27:35 +00:00
// Variables to control the accuracy finish condition
double priorAccuracy = 0.0;
double improvement = 1.0;
2024-02-19 21:58:15 +00:00
double convergence_threshold = 1e-4;
2024-03-19 13:13:40 +00:00
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
2023-08-18 09:50:34 +00:00
// Step 0: Set the finish condition
2023-10-25 08:23:42 +00:00
// epsilon sub t > 0.5 => inverse the weights policy
2023-09-07 09:27:35 +00:00
// validation error is not decreasing
2024-03-20 10:30:02 +00:00
// run out of features
2024-03-05 10:05:11 +00:00
bool ascending = order_algorithm == Orders.ASC;
std::mt19937 g{ 173 };
2024-03-19 13:13:40 +00:00
while (!finished) {
2023-08-18 09:50:34 +00:00
// Step 1: Build ranking with mutual information
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
2024-03-05 10:05:11 +00:00
if (order_algorithm == Orders.RAND) {
std::shuffle(featureSelection.begin(), featureSelection.end(), g);
}
2024-03-19 08:42:03 +00:00
// Remove used features
featureSelection.erase(remove_if(begin(featureSelection), end(featureSelection), [&](auto x)
2024-03-20 10:30:02 +00:00
{ return std::find(begin(featuresUsed), end(featuresUsed), x) != end(featuresUsed);}),
2024-03-19 08:42:03 +00:00
end(featureSelection)
);
int k = bisection ? pow(2, tolerance) : 1;
2024-03-20 10:30:02 +00:00
int counter = 0; // The model counter of the current pack
2024-05-16 09:17:21 +00:00
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
2024-03-20 10:30:02 +00:00
while (counter++ < k && featureSelection.size() > 0) {
2024-03-19 13:13:40 +00:00
auto feature = featureSelection[0];
featureSelection.erase(featureSelection.begin());
std::unique_ptr<Classifier> model;
model = std::make_unique<SPODE>(feature);
2024-06-11 09:40:45 +00:00
model->fit(dataset, features, className, states, weights_, smoothing);
alpha_t = 0.0;
if (!block_update) {
torch::Tensor ypred;
if (alpha_block) {
//
// Compute the prediction with the current ensemble + model
//
// Add the model to the ensemble
n_models++;
models.push_back(std::move(model));
significanceModels.push_back(1);
// Compute the prediction
ypred = predict(X_train);
// Remove the model from the ensemble
model = std::move(models.back());
models.pop_back();
significanceModels.pop_back();
n_models--;
} else {
ypred = model->predict(X_train);
}
// Step 3.1: Compute the classifier amout of say
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
2024-03-19 13:13:40 +00:00
}
// Step 3.4: Store classifier and its accuracy to weigh its future vote
2024-03-20 10:30:02 +00:00
numItemsPack++;
featuresUsed.push_back(feature);
2024-03-19 13:13:40 +00:00
models.push_back(std::move(model));
significanceModels.push_back(alpha_t);
n_models++;
2024-05-16 09:17:21 +00:00
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
}
if (block_update) {
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
}
2024-03-20 10:30:02 +00:00
if (convergence && !finished) {
2023-09-10 17:50:36 +00:00
auto y_val_predict = predict(X_test);
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
if (priorAccuracy == 0) {
priorAccuracy = accuracy;
} else {
improvement = accuracy - priorAccuracy;
2023-09-10 17:50:36 +00:00
}
if (improvement < convergence_threshold) {
2024-05-16 09:17:21 +00:00
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
2024-03-19 13:13:40 +00:00
tolerance++;
} else {
2024-05-16 09:17:21 +00:00
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
2024-03-19 13:13:40 +00:00
tolerance = 0; // Reset the counter if the model performs better
2024-03-20 10:30:02 +00:00
numItemsPack = 0;
2023-09-10 17:50:36 +00:00
}
if (convergence_best) {
// Keep the best accuracy until now as the prior accuracy
priorAccuracy = std::max(accuracy, priorAccuracy);
} else {
// Keep the last accuray obtained as the prior accuracy
priorAccuracy = accuracy;
}
2023-09-07 09:27:35 +00:00
}
2024-05-16 09:17:21 +00:00
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
2024-03-20 10:30:02 +00:00
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
}
2024-03-20 10:30:02 +00:00
if (tolerance > maxTolerance) {
if (numItemsPack < n_models) {
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
2024-05-16 09:17:21 +00:00
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
2024-03-20 10:30:02 +00:00
for (int i = 0; i < numItemsPack; ++i) {
significanceModels.pop_back();
models.pop_back();
n_models--;
}
} else {
notes.push_back("Convergence threshold reached & 0 models eliminated");
2024-05-16 09:17:21 +00:00
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
2024-03-19 13:13:40 +00:00
}
}
if (featuresUsed.size() != features.size()) {
notes.push_back("Used features in train: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()));
status = WARNING;
}
2024-02-12 09:58:20 +00:00
notes.push_back("Number of models: " + std::to_string(n_models));
}
2023-11-08 17:45:35 +00:00
std::vector<std::string> BoostAODE::graph(const std::string& title) const
2023-08-15 14:16:04 +00:00
{
return Ensemble::graph(title);
}
}