Add status to classifier and Experiment
This commit is contained in:
parent
64fc7bd9dd
commit
5a7c8f1818
386
sample/sample.cc
386
sample/sample.cc
@ -58,180 +58,226 @@ pair<vector<vector<int>>, vector<int>> extract_indices(vector<int> indices, vect
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
map<string, bool> datasets = {
|
||||
{"diabetes", true},
|
||||
{"ecoli", true},
|
||||
{"glass", true},
|
||||
{"iris", true},
|
||||
{"kdd_JapaneseVowels", false},
|
||||
{"letter", true},
|
||||
{"liver-disorders", true},
|
||||
{"mfeat-factors", true},
|
||||
};
|
||||
auto valid_datasets = vector<string>();
|
||||
transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
|
||||
[](const pair<string, bool>& pair) { return pair.first; });
|
||||
argparse::ArgumentParser program("BayesNetSample");
|
||||
program.add_argument("-d", "--dataset")
|
||||
.help("Dataset file name")
|
||||
.action([valid_datasets](const std::string& value) {
|
||||
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
|
||||
return value;
|
||||
}
|
||||
throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
|
||||
}
|
||||
);
|
||||
program.add_argument("-p", "--path")
|
||||
.help(" folder where the data files are located, default")
|
||||
.default_value(string{ PATH }
|
||||
);
|
||||
program.add_argument("-m", "--model")
|
||||
.help("Model to use " + platform::Models::instance()->toString())
|
||||
.action([](const std::string& value) {
|
||||
static const vector<string> choices = platform::Models::instance()->getNames();
|
||||
if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
||||
return value;
|
||||
}
|
||||
throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
|
||||
}
|
||||
);
|
||||
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
|
||||
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
|
||||
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
|
||||
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
|
||||
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
|
||||
try {
|
||||
auto k = stoi(value);
|
||||
if (k < 2) {
|
||||
throw runtime_error("Number of folds must be greater than 1");
|
||||
}
|
||||
return k;
|
||||
}
|
||||
catch (const runtime_error& err) {
|
||||
throw runtime_error(err.what());
|
||||
}
|
||||
catch (...) {
|
||||
throw runtime_error("Number of folds must be an integer");
|
||||
}});
|
||||
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
|
||||
bool class_last, stratified, tensors, dump_cpt;
|
||||
string model_name, file_name, path, complete_file_name;
|
||||
int nFolds, seed;
|
||||
try {
|
||||
program.parse_args(argc, argv);
|
||||
file_name = program.get<string>("dataset");
|
||||
path = program.get<string>("path");
|
||||
model_name = program.get<string>("model");
|
||||
complete_file_name = path + file_name + ".arff";
|
||||
stratified = program.get<bool>("stratified");
|
||||
tensors = program.get<bool>("tensors");
|
||||
nFolds = program.get<int>("folds");
|
||||
seed = program.get<int>("seed");
|
||||
dump_cpt = program.get<bool>("dumpcpt");
|
||||
class_last = datasets[file_name];
|
||||
if (!file_exists(complete_file_name)) {
|
||||
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
|
||||
}
|
||||
torch::Tensor weights_ = torch::full({ 10 }, 1.0 / 10, torch::kFloat64);
|
||||
torch::Tensor y_ = torch::tensor({ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }, torch::kInt32);
|
||||
torch::Tensor ypred = torch::tensor({ 1, 1, 1, 0, 0, 1, 1, 1, 1, 0 }, torch::kInt32);
|
||||
cout << "Initial weights_: " << endl;
|
||||
for (int i = 0; i < 10; i++) {
|
||||
cout << weights_.index({ i }).item<double>() << ", ";
|
||||
}
|
||||
catch (const exception& err) {
|
||||
cerr << err.what() << endl;
|
||||
cerr << program;
|
||||
exit(1);
|
||||
cout << "end." << endl;
|
||||
cout << "y_: " << endl;
|
||||
for (int i = 0; i < 10; i++) {
|
||||
cout << y_.index({ i }).item<int>() << ", ";
|
||||
}
|
||||
cout << "end." << endl;
|
||||
cout << "ypred: " << endl;
|
||||
for (int i = 0; i < 10; i++) {
|
||||
cout << ypred.index({ i }).item<int>() << ", ";
|
||||
}
|
||||
cout << "end." << endl;
|
||||
auto mask_wrong = ypred != y_;
|
||||
auto mask_right = ypred == y_;
|
||||
auto masked_weights = weights_ * mask_wrong.to(weights_.dtype());
|
||||
double epsilon_t = masked_weights.sum().item<double>();
|
||||
cout << "epsilon_t: " << epsilon_t << endl;
|
||||
double wt = (1 - epsilon_t) / epsilon_t;
|
||||
cout << "wt: " << wt << endl;
|
||||
double alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
||||
cout << "alpha_t: " << alpha_t << endl;
|
||||
// Step 3.2: Update weights for next classifier
|
||||
// Step 3.2.1: Update weights of wrong samples
|
||||
cout << "exp(alpha_t): " << exp(alpha_t) << endl;
|
||||
cout << "exp(-alpha_t): " << exp(-alpha_t) << endl;
|
||||
weights_ += mask_wrong.to(weights_.dtype()) * exp(alpha_t) * weights_;
|
||||
// Step 3.2.2: Update weights of right samples
|
||||
weights_ += mask_right.to(weights_.dtype()) * exp(-alpha_t) * weights_;
|
||||
// Step 3.3: Normalise the weights
|
||||
double totalWeights = torch::sum(weights_).item<double>();
|
||||
cout << "totalWeights: " << totalWeights << endl;
|
||||
cout << "Before normalization: " << endl;
|
||||
for (int i = 0; i < 10; i++) {
|
||||
cout << weights_.index({ i }).item<double>() << endl;
|
||||
}
|
||||
weights_ = weights_ / totalWeights;
|
||||
cout << "After normalization: " << endl;
|
||||
for (int i = 0; i < 10; i++) {
|
||||
cout << weights_.index({ i }).item<double>() << endl;
|
||||
}
|
||||
// map<string, bool> datasets = {
|
||||
// {"diabetes", true},
|
||||
// {"ecoli", true},
|
||||
// {"glass", true},
|
||||
// {"iris", true},
|
||||
// {"kdd_JapaneseVowels", false},
|
||||
// {"letter", true},
|
||||
// {"liver-disorders", true},
|
||||
// {"mfeat-factors", true},
|
||||
// };
|
||||
// auto valid_datasets = vector<string>();
|
||||
// transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
|
||||
// [](const pair<string, bool>& pair) { return pair.first; });
|
||||
// argparse::ArgumentParser program("BayesNetSample");
|
||||
// program.add_argument("-d", "--dataset")
|
||||
// .help("Dataset file name")
|
||||
// .action([valid_datasets](const std::string& value) {
|
||||
// if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
|
||||
// return value;
|
||||
// }
|
||||
// throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
|
||||
// }
|
||||
// );
|
||||
// program.add_argument("-p", "--path")
|
||||
// .help(" folder where the data files are located, default")
|
||||
// .default_value(string{ PATH }
|
||||
// );
|
||||
// program.add_argument("-m", "--model")
|
||||
// .help("Model to use " + platform::Models::instance()->toString())
|
||||
// .action([](const std::string& value) {
|
||||
// static const vector<string> choices = platform::Models::instance()->getNames();
|
||||
// if (find(choices.begin(), choices.end(), value) != choices.end()) {
|
||||
// return value;
|
||||
// }
|
||||
// throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
|
||||
// }
|
||||
// );
|
||||
// program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
|
||||
// program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
|
||||
// program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
|
||||
// program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
|
||||
// program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const string& value) {
|
||||
// try {
|
||||
// auto k = stoi(value);
|
||||
// if (k < 2) {
|
||||
// throw runtime_error("Number of folds must be greater than 1");
|
||||
// }
|
||||
// return k;
|
||||
// }
|
||||
// catch (const runtime_error& err) {
|
||||
// throw runtime_error(err.what());
|
||||
// }
|
||||
// catch (...) {
|
||||
// throw runtime_error("Number of folds must be an integer");
|
||||
// }});
|
||||
// program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
|
||||
// bool class_last, stratified, tensors, dump_cpt;
|
||||
// string model_name, file_name, path, complete_file_name;
|
||||
// int nFolds, seed;
|
||||
// try {
|
||||
// program.parse_args(argc, argv);
|
||||
// file_name = program.get<string>("dataset");
|
||||
// path = program.get<string>("path");
|
||||
// model_name = program.get<string>("model");
|
||||
// complete_file_name = path + file_name + ".arff";
|
||||
// stratified = program.get<bool>("stratified");
|
||||
// tensors = program.get<bool>("tensors");
|
||||
// nFolds = program.get<int>("folds");
|
||||
// seed = program.get<int>("seed");
|
||||
// dump_cpt = program.get<bool>("dumpcpt");
|
||||
// class_last = datasets[file_name];
|
||||
// if (!file_exists(complete_file_name)) {
|
||||
// throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
|
||||
// }
|
||||
// }
|
||||
// catch (const exception& err) {
|
||||
// cerr << err.what() << endl;
|
||||
// cerr << program;
|
||||
// exit(1);
|
||||
// }
|
||||
|
||||
/*
|
||||
* Begin Processing
|
||||
*/
|
||||
auto handler = ArffFiles();
|
||||
handler.load(complete_file_name, class_last);
|
||||
// Get Dataset X, y
|
||||
vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t& y = handler.getY();
|
||||
// Get className & Features
|
||||
auto className = handler.getClassName();
|
||||
vector<string> features;
|
||||
auto attributes = handler.getAttributes();
|
||||
transform(attributes.begin(), attributes.end(), back_inserter(features),
|
||||
[](const pair<string, string>& item) { return item.first; });
|
||||
// Discretize Dataset
|
||||
auto [Xd, maxes] = discretize(X, y, features);
|
||||
maxes[className] = *max_element(y.begin(), y.end()) + 1;
|
||||
map<string, vector<int>> states;
|
||||
for (auto feature : features) {
|
||||
states[feature] = vector<int>(maxes[feature]);
|
||||
}
|
||||
states[className] = vector<int>(maxes[className]);
|
||||
auto clf = platform::Models::instance()->create(model_name);
|
||||
clf->fit(Xd, y, features, className, states);
|
||||
if (dump_cpt) {
|
||||
cout << "--- CPT Tables ---" << endl;
|
||||
clf->dump_cpt();
|
||||
}
|
||||
auto lines = clf->show();
|
||||
for (auto line : lines) {
|
||||
cout << line << endl;
|
||||
}
|
||||
cout << "--- Topological Order ---" << endl;
|
||||
auto order = clf->topological_order();
|
||||
for (auto name : order) {
|
||||
cout << name << ", ";
|
||||
}
|
||||
cout << "end." << endl;
|
||||
auto score = clf->score(Xd, y);
|
||||
cout << "Score: " << score << endl;
|
||||
auto graph = clf->graph();
|
||||
auto dot_file = model_name + "_" + file_name;
|
||||
ofstream file(dot_file + ".dot");
|
||||
file << graph;
|
||||
file.close();
|
||||
cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
|
||||
cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
|
||||
string stratified_string = stratified ? " Stratified" : "";
|
||||
cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
|
||||
cout << "==========================================" << endl;
|
||||
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
|
||||
torch::Tensor yt = torch::tensor(y, torch::kInt32);
|
||||
for (int i = 0; i < features.size(); ++i) {
|
||||
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
||||
}
|
||||
float total_score = 0, total_score_train = 0, score_train, score_test;
|
||||
platform::Fold* fold;
|
||||
if (stratified)
|
||||
fold = new platform::StratifiedKFold(nFolds, y, seed);
|
||||
else
|
||||
fold = new platform::KFold(nFolds, y.size(), seed);
|
||||
for (auto i = 0; i < nFolds; ++i) {
|
||||
auto [train, test] = fold->getFold(i);
|
||||
cout << "Fold: " << i + 1 << endl;
|
||||
if (tensors) {
|
||||
auto ttrain = torch::tensor(train, torch::kInt64);
|
||||
auto ttest = torch::tensor(test, torch::kInt64);
|
||||
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
|
||||
torch::Tensor ytraint = yt.index({ ttrain });
|
||||
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
|
||||
torch::Tensor ytestt = yt.index({ ttest });
|
||||
clf->fit(Xtraint, ytraint, features, className, states);
|
||||
auto temp = clf->predict(Xtraint);
|
||||
score_train = clf->score(Xtraint, ytraint);
|
||||
score_test = clf->score(Xtestt, ytestt);
|
||||
} else {
|
||||
auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
|
||||
auto [Xtest, ytest] = extract_indices(test, Xd, y);
|
||||
clf->fit(Xtrain, ytrain, features, className, states);
|
||||
score_train = clf->score(Xtrain, ytrain);
|
||||
score_test = clf->score(Xtest, ytest);
|
||||
}
|
||||
if (dump_cpt) {
|
||||
cout << "--- CPT Tables ---" << endl;
|
||||
clf->dump_cpt();
|
||||
}
|
||||
total_score_train += score_train;
|
||||
total_score += score_test;
|
||||
cout << "Score Train: " << score_train << endl;
|
||||
cout << "Score Test : " << score_test << endl;
|
||||
cout << "-------------------------------------------------------------------------------" << endl;
|
||||
}
|
||||
cout << "**********************************************************************************" << endl;
|
||||
cout << "Average Score Train: " << total_score_train / nFolds << endl;
|
||||
cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
|
||||
// auto handler = ArffFiles();
|
||||
// handler.load(complete_file_name, class_last);
|
||||
// // Get Dataset X, y
|
||||
// vector<mdlp::samples_t>& X = handler.getX();
|
||||
// mdlp::labels_t& y = handler.getY();
|
||||
// // Get className & Features
|
||||
// auto className = handler.getClassName();
|
||||
// vector<string> features;
|
||||
// auto attributes = handler.getAttributes();
|
||||
// transform(attributes.begin(), attributes.end(), back_inserter(features),
|
||||
// [](const pair<string, string>& item) { return item.first; });
|
||||
// // Discretize Dataset
|
||||
// auto [Xd, maxes] = discretize(X, y, features);
|
||||
// maxes[className] = *max_element(y.begin(), y.end()) + 1;
|
||||
// map<string, vector<int>> states;
|
||||
// for (auto feature : features) {
|
||||
// states[feature] = vector<int>(maxes[feature]);
|
||||
// }
|
||||
// states[className] = vector<int>(maxes[className]);
|
||||
// auto clf = platform::Models::instance()->create(model_name);
|
||||
// clf->fit(Xd, y, features, className, states);
|
||||
// if (dump_cpt) {
|
||||
// cout << "--- CPT Tables ---" << endl;
|
||||
// clf->dump_cpt();
|
||||
// }
|
||||
// auto lines = clf->show();
|
||||
// for (auto line : lines) {
|
||||
// cout << line << endl;
|
||||
// }
|
||||
// cout << "--- Topological Order ---" << endl;
|
||||
// auto order = clf->topological_order();
|
||||
// for (auto name : order) {
|
||||
// cout << name << ", ";
|
||||
// }
|
||||
// cout << "end." << endl;
|
||||
// auto score = clf->score(Xd, y);
|
||||
// cout << "Score: " << score << endl;
|
||||
// auto graph = clf->graph();
|
||||
// auto dot_file = model_name + "_" + file_name;
|
||||
// ofstream file(dot_file + ".dot");
|
||||
// file << graph;
|
||||
// file.close();
|
||||
// cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << endl;
|
||||
// cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << endl;
|
||||
// string stratified_string = stratified ? " Stratified" : "";
|
||||
// cout << nFolds << " Folds" << stratified_string << " Cross validation" << endl;
|
||||
// cout << "==========================================" << endl;
|
||||
// torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
|
||||
// torch::Tensor yt = torch::tensor(y, torch::kInt32);
|
||||
// for (int i = 0; i < features.size(); ++i) {
|
||||
// Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
|
||||
// }
|
||||
// float total_score = 0, total_score_train = 0, score_train, score_test;
|
||||
// platform::Fold* fold;
|
||||
// if (stratified)
|
||||
// fold = new platform::StratifiedKFold(nFolds, y, seed);
|
||||
// else
|
||||
// fold = new platform::KFold(nFolds, y.size(), seed);
|
||||
// for (auto i = 0; i < nFolds; ++i) {
|
||||
// auto [train, test] = fold->getFold(i);
|
||||
// cout << "Fold: " << i + 1 << endl;
|
||||
// if (tensors) {
|
||||
// auto ttrain = torch::tensor(train, torch::kInt64);
|
||||
// auto ttest = torch::tensor(test, torch::kInt64);
|
||||
// torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
|
||||
// torch::Tensor ytraint = yt.index({ ttrain });
|
||||
// torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
|
||||
// torch::Tensor ytestt = yt.index({ ttest });
|
||||
// clf->fit(Xtraint, ytraint, features, className, states);
|
||||
// auto temp = clf->predict(Xtraint);
|
||||
// score_train = clf->score(Xtraint, ytraint);
|
||||
// score_test = clf->score(Xtestt, ytestt);
|
||||
// } else {
|
||||
// auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
|
||||
// auto [Xtest, ytest] = extract_indices(test, Xd, y);
|
||||
// clf->fit(Xtrain, ytrain, features, className, states);
|
||||
// score_train = clf->score(Xtrain, ytrain);
|
||||
// score_test = clf->score(Xtest, ytest);
|
||||
// }
|
||||
// if (dump_cpt) {
|
||||
// cout << "--- CPT Tables ---" << endl;
|
||||
// clf->dump_cpt();
|
||||
// }
|
||||
// total_score_train += score_train;
|
||||
// total_score += score_test;
|
||||
// cout << "Score Train: " << score_train << endl;
|
||||
// cout << "Score Test : " << score_test << endl;
|
||||
// cout << "-------------------------------------------------------------------------------" << endl;
|
||||
// }
|
||||
// cout << "**********************************************************************************" << endl;
|
||||
// cout << "Average Score Train: " << total_score_train / nFolds << endl;
|
||||
// cout << "Average Score Test : " << total_score / nFolds << endl;return 0;
|
||||
}
|
@ -5,6 +5,7 @@
|
||||
#include <vector>
|
||||
namespace bayesnet {
|
||||
using namespace std;
|
||||
enum status_t { NORMAL, WARNING, ERROR };
|
||||
class BaseClassifier {
|
||||
protected:
|
||||
virtual void trainModel(const torch::Tensor& weights) = 0;
|
||||
@ -18,6 +19,7 @@ namespace bayesnet {
|
||||
virtual ~BaseClassifier() = default;
|
||||
torch::Tensor virtual predict(torch::Tensor& X) = 0;
|
||||
vector<int> virtual predict(vector<vector<int>>& X) = 0;
|
||||
status_t virtual getStatus() const = 0;
|
||||
float virtual score(vector<vector<int>>& X, vector<int>& y) = 0;
|
||||
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
|
||||
int virtual getNumberOfNodes()const = 0;
|
||||
|
@ -1,6 +1,7 @@
|
||||
#include "BoostAODE.h"
|
||||
#include <set>
|
||||
#include "BayesMetrics.h"
|
||||
#include "Colors.h"
|
||||
|
||||
namespace bayesnet {
|
||||
BoostAODE::BoostAODE() : Ensemble() {}
|
||||
@ -64,22 +65,26 @@ namespace bayesnet {
|
||||
auto ypred = model->predict(X_);
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
auto mask_wrong = ypred != y_;
|
||||
auto mask_right = ypred == y_;
|
||||
auto masked_weights = weights_ * mask_wrong.to(weights_.dtype());
|
||||
double wrongWeights = masked_weights.sum().item<double>();
|
||||
double significance = wrongWeights == 0 ? 1 : 0.5 * log((1 - wrongWeights) / wrongWeights);
|
||||
double epsilon_t = masked_weights.sum().item<double>();
|
||||
double wt = (1 - epsilon_t) / epsilon_t;
|
||||
double alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
||||
// Step 3.2: Update weights for next classifier
|
||||
// Step 3.2.1: Update weights of wrong samples
|
||||
weights_ += mask_wrong.to(weights_.dtype()) * exp(significance) * weights_;
|
||||
weights_ += mask_wrong.to(weights_.dtype()) * exp(alpha_t) * weights_;
|
||||
// Step 3.2.2: Update weights of right samples
|
||||
weights_ += mask_right.to(weights_.dtype()) * exp(-alpha_t) * weights_;
|
||||
// Step 3.3: Normalise the weights
|
||||
double totalWeights = torch::sum(weights_).item<double>();
|
||||
weights_ = weights_ / totalWeights;
|
||||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(significance);
|
||||
exitCondition = n_models == maxModels && repeatSparent;
|
||||
significanceModels.push_back(alpha_t);
|
||||
exitCondition = n_models == maxModels && repeatSparent || epsilon_t > 0.5;
|
||||
}
|
||||
if (featuresUsed.size() != features.size()) {
|
||||
cout << "Warning: BoostAODE did not use all the features" << endl;
|
||||
status = WARNING;
|
||||
}
|
||||
weights.copy_(weights_);
|
||||
}
|
||||
|
@ -21,6 +21,7 @@ namespace bayesnet {
|
||||
string className;
|
||||
map<string, vector<int>> states;
|
||||
Tensor dataset; // (n+1)xm tensor
|
||||
status_t status = NORMAL;
|
||||
void checkFitParameters();
|
||||
virtual void buildModel(const torch::Tensor& weights) = 0;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
@ -37,6 +38,7 @@ namespace bayesnet {
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
Tensor predict(Tensor& X) override;
|
||||
status_t getStatus() const override { return status; }
|
||||
vector<int> predict(vector<vector<int>>& X) override;
|
||||
float score(Tensor& X, Tensor& y) override;
|
||||
float score(vector<vector<int>>& X, vector<int>& y) override;
|
||||
|
@ -111,6 +111,26 @@ namespace platform {
|
||||
}
|
||||
}
|
||||
|
||||
string getColor(bayesnet::status_t status)
|
||||
{
|
||||
switch (status) {
|
||||
case bayesnet::NORMAL:
|
||||
return Colors::GREEN();
|
||||
case bayesnet::WARNING:
|
||||
return Colors::YELLOW();
|
||||
case bayesnet::ERROR:
|
||||
return Colors::RED();
|
||||
default:
|
||||
return Colors::RESET();
|
||||
}
|
||||
}
|
||||
|
||||
void showProgress(int fold, const string& color, const string& phase)
|
||||
{
|
||||
string prefix = phase == "a" ? "" : "\b\b\b\b";
|
||||
cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
|
||||
|
||||
}
|
||||
void Experiment::cross_validation(const string& path, const string& fileName)
|
||||
{
|
||||
auto datasets = platform::Datasets(path, discretized, platform::ARFF);
|
||||
@ -159,23 +179,24 @@ namespace platform {
|
||||
auto y_train = y.index({ train_t });
|
||||
auto X_test = X.index({ "...", test_t });
|
||||
auto y_test = y.index({ test_t });
|
||||
cout << nfold + 1 << "(a)" << flush;
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "a");
|
||||
// Train model
|
||||
clf->fit(X_train, y_train, features, className, states);
|
||||
cout << "\b\bb)" << flush;
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "b");
|
||||
nodes[item] = clf->getNumberOfNodes();
|
||||
edges[item] = clf->getNumberOfEdges();
|
||||
num_states[item] = clf->getNumberOfStates();
|
||||
train_time[item] = train_timer.getDuration();
|
||||
// Score train
|
||||
auto accuracy_train_value = clf->score(X_train, y_train);
|
||||
cout << "\b\bc)" << flush;
|
||||
// Test model
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "c");
|
||||
test_timer.start();
|
||||
auto accuracy_test_value = clf->score(X_test, y_test);
|
||||
cout << "\b\b\b, " << flush;
|
||||
test_time[item] = test_timer.getDuration();
|
||||
accuracy_train[item] = accuracy_train_value;
|
||||
accuracy_test[item] = accuracy_test_value;
|
||||
cout << "\b\b\b, " << flush;
|
||||
// Store results and times in vector
|
||||
result.addScoreTrain(accuracy_train_value);
|
||||
result.addScoreTest(accuracy_test_value);
|
||||
|
Loading…
Reference in New Issue
Block a user