Compare commits

29 Commits

Author SHA1 Message Date
17728212c1 Ignore case in datasets sorting 2025-02-17 20:01:06 +01:00
86b4558f9d Add 1 char to b_list datasets headers 2025-02-17 19:44:23 +01:00
505edc79ac Fix sample issue 2025-02-04 18:53:23 +01:00
73a4b3d5e5 Add changeModel to b_manage 2025-02-04 17:34:00 +01:00
cbe8f4c79c Fix status length output in b_main 2025-02-01 21:42:56 +01:00
0d08a526fa Add score to b_main output 2025-01-30 17:36:45 +01:00
d0706da887 Fix sort order in bgrid report 2025-01-21 20:38:07 +01:00
07e3cc9599 Fix errors in grid Experiment 2025-01-19 13:51:51 +01:00
2a9652b450 Fix b_main order of datasets if --datasets parameter used 2025-01-18 20:31:58 +01:00
3397d0962f Refactor arguments management for Experimentation 2025-01-18 18:26:34 +01:00
7aaf6d1bf8 Add conditional saveResults to GridExperiment 2025-01-18 13:09:45 +01:00
eb430a84c4 Fix dataset name order in grid experiment 2025-01-17 16:58:39 +01:00
d0e65348e0 Complete b_grid experiment 2025-01-17 13:56:19 +01:00
c1d5dd74e3 Continue with grid experiment 2025-01-17 10:39:56 +01:00
9a9a9fb17a Continue grid Experiment 2025-01-14 22:04:23 +01:00
386faf960e Refactor grid classes and add summary of tasks at the end 2025-01-14 18:53:11 +01:00
28894004c8 Fix time output in b_main 2025-01-08 20:45:08 +01:00
ae41975fb4 Add nominal or index dataset name in tex output 2025-01-08 17:18:32 +01:00
0e475e4488 Sort datasets on input 2025-01-08 11:05:22 +01:00
909cec712c Complete schema validation 2025-01-07 18:24:55 +01:00
4901bb1f32 Add json results format validation 2025-01-07 11:58:18 +01:00
0318dcf8e5 Continue with grid_experiment refactor 2024-12-21 14:18:47 +01:00
1cc19a7b19 Refactor mpi classes 2024-12-20 19:10:17 +01:00
f88944de36 Add grid base class and static class 2024-12-20 18:54:08 +01:00
1a336a094e Refactor gridsearch and begin gridexperiment 2024-12-20 17:36:43 +01:00
8705adf3ee Begin b_grid experiment 2024-12-20 12:51:33 +01:00
017cb8a0dc Fix smoothing problem in gridsearch 2024-12-18 11:17:04 +01:00
e966c880e6 Refactor gridsearch output 2024-12-17 10:49:58 +01:00
70ea32dc9a Update folding library 2024-12-14 20:23:31 +01:00
39 changed files with 1680 additions and 671 deletions

View File

@@ -15,7 +15,7 @@ endif ()
# Global CMake variables
# ----------------------
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
@@ -90,7 +90,7 @@ cmake_path(SET TEST_DATA_PATH "${CMAKE_CURRENT_SOURCE_DIR}/tests/data")
configure_file(src/common/SourceData.h.in "${CMAKE_BINARY_DIR}/configured_files/include/SourceData.h")
add_subdirectory(config)
add_subdirectory(src)
# add_subdirectory(sample)
add_subdirectory(sample)
file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${Platform_SOURCE_DIR}/src/*.cpp)
# Testing

View File

@@ -4,7 +4,7 @@ SHELL := /bin/bash
f_release = build_release
f_debug = build_debug
app_targets = b_best b_list b_main b_manage b_grid
app_targets = b_best b_list b_main b_manage b_grid b_results
test_targets = unit_tests_platform
define ClearTests
@@ -55,10 +55,10 @@ dependency: ## Create a dependency graph diagram of the project (build/dependenc
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
buildd: ## Build the debug targets
cmake --build $(f_debug) -t $(app_targets) PlatformSample --parallel
@cmake --build $(f_debug) -t $(app_targets) PlatformSample --parallel
buildr: ## Build the release targets
cmake --build $(f_release) -t $(app_targets) --parallel
@cmake --build $(f_release) -t $(app_targets) --parallel
clean: ## Clean the tests info
@echo ">>> Cleaning Debug Platform tests...";

View File

@@ -40,7 +40,7 @@ export MPI_HOME="/usr/lib64/openmpi"
In Mac OS X, install mpich with brew and if cmake doesn't find it, edit mpicxx wrapper to remove the ",-commons,use_dylibs" from final_ldflags
```bash
vi /opt/homebrew/bin/mpicx
vi /opt/homebrew/bin/mpicxx
```
### boost library

View File

@@ -137,7 +137,7 @@
include(CMakeParseArguments)
option(CODE_COVERAGE_VERBOSE "Verbose information" FALSE)
option(CODE_COVERAGE_VERBOSE "Verbose information" TRUE)
# Check prereqs
find_program( GCOV_PATH gcov )
@@ -160,8 +160,12 @@ foreach(LANG ${LANGUAGES})
endif()
elseif(NOT "${CMAKE_${LANG}_COMPILER_ID}" MATCHES "GNU"
AND NOT "${CMAKE_${LANG}_COMPILER_ID}" MATCHES "(LLVM)?[Ff]lang")
if ("${LANG}" MATCHES "CUDA")
message(STATUS "Ignoring CUDA")
else()
message(FATAL_ERROR "Compiler is not GNU or Flang! Aborting...")
endif()
endif()
endforeach()
set(COVERAGE_COMPILER_FLAGS "-g --coverage"

View File

@@ -226,7 +226,7 @@ int main(int argc, char** argv)
}
if (dump_cpt) {
std::cout << "--- CPT Tables ---" << std::endl;
clf->dump_cpt();
std::cout << clf->dump_cpt();
}
total_score_train += score_train;
total_score += score_test;

View File

@@ -29,11 +29,13 @@ add_executable(
target_link_libraries(b_best Boost::boost "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy "${XLSXWRITER_LIB}")
# b_grid
set(grid_sources GridSearch.cpp GridData.cpp)
set(grid_sources GridSearch.cpp GridData.cpp GridExperiment.cpp GridBase.cpp )
list(TRANSFORM grid_sources PREPEND grid/)
add_executable(b_grid commands/b_grid.cpp ${grid_sources}
common/Datasets.cpp common/Dataset.cpp common/Discretization.cpp
main/HyperParameters.cpp main/Models.cpp
main/HyperParameters.cpp main/Models.cpp main/Experiment.cpp main/Scores.cpp main/ArgumentsExperiment.cpp
reports/ReportConsole.cpp reports/ReportBase.cpp
results/Result.cpp
)
target_link_libraries(b_grid ${MPI_CXX_LIBRARIES} "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy)
@@ -47,7 +49,7 @@ add_executable(b_list commands/b_list.cpp
target_link_libraries(b_list "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy "${XLSXWRITER_LIB}")
# b_main
set(main_sources Experiment.cpp Models.cpp HyperParameters.cpp Scores.cpp)
set(main_sources Experiment.cpp Models.cpp HyperParameters.cpp Scores.cpp ArgumentsExperiment.cpp)
list(TRANSFORM main_sources PREPEND main/)
add_executable(b_main commands/b_main.cpp ${main_sources}
common/Datasets.cpp common/Dataset.cpp common/Discretization.cpp
@@ -67,3 +69,6 @@ add_executable(
main/Scores.cpp
)
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" fimdlp "${BayesNet}")
# b_results
add_executable(b_results commands/b_results.cpp)

View File

@@ -132,6 +132,7 @@ namespace platform {
for (const auto& dataset_ : table.items()) {
datasets.push_back(dataset_.key());
}
std::stable_sort(datasets.begin(), datasets.end());
maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
maxDatasetName = std::max(7, maxDatasetName);
return datasets;
@@ -214,7 +215,7 @@ namespace platform {
return table;
}
void BestResults::printTableResults(std::vector<std::string> models, json table, bool tex)
void BestResults::printTableResults(std::vector<std::string> models, json table, bool tex, bool index)
{
std::stringstream oss;
oss << Colors::GREEN() << "Best results for " << score << " as of " << table.at("dateTable").get<std::string>() << std::endl;
@@ -224,7 +225,7 @@ namespace platform {
auto bestResultsTex = BestResultsTex();
auto bestResultsMd = BestResultsMd();
if (tex) {
bestResultsTex.results_header(models, table.at("dateTable").get<std::string>());
bestResultsTex.results_header(models, table.at("dateTable").get<std::string>(), index);
bestResultsMd.results_header(models, table.at("dateTable").get<std::string>());
}
for (const auto& model : models) {
@@ -241,7 +242,7 @@ namespace platform {
int nDatasets = table.begin().value().size();
auto datasets = getDatasets(table.begin().value());
if (tex) {
bestResultsTex.results_body(datasets, table);
bestResultsTex.results_body(datasets, table, index);
bestResultsMd.results_body(datasets, table);
}
for (auto const& dataset_ : datasets) {
@@ -325,14 +326,14 @@ namespace platform {
messageOutputFile("Excel", excel_report.getFileName());
}
}
void BestResults::reportAll(bool excel, bool tex)
void BestResults::reportAll(bool excel, bool tex, bool index)
{
auto models = getModels();
// Build the table of results
json table = buildTableResults(models);
std::vector<std::string> datasets = getDatasets(table.begin().value());
// Print the table of results
printTableResults(models, table, tex);
printTableResults(models, table, tex, index);
// Compute the Friedman test
std::map<std::string, std::map<std::string, float>> ranksModels;
if (friedman) {

View File

@@ -13,7 +13,7 @@ namespace platform {
}
std::string build();
void reportSingle(bool excel);
void reportAll(bool excel, bool tex);
void reportAll(bool excel, bool tex, bool index);
void buildAll();
private:
std::vector<std::string> getModels();
@@ -21,7 +21,7 @@ namespace platform {
std::vector<std::string> loadResultFiles();
void messageOutputFile(const std::string& title, const std::string& fileName);
json buildTableResults(std::vector<std::string> models);
void printTableResults(std::vector<std::string> models, json table, bool tex);
void printTableResults(std::vector<std::string> models, json table, bool tex, bool index);
json loadFile(const std::string& fileName);
void listFile();
std::string path;

View File

@@ -12,7 +12,7 @@ namespace platform {
exit(1);
}
}
void BestResultsTex::results_header(const std::vector<std::string>& models, const std::string& date)
void BestResultsTex::results_header(const std::vector<std::string>& models, const std::string& date, bool index)
{
this->models = models;
auto file_name = Paths::tex() + Paths::tex_output();
@@ -29,7 +29,8 @@ namespace platform {
handler << "\\renewcommand{\\tabcolsep }{0.07cm} " << std::endl;
handler << "\\caption{Accuracy results(mean $\\pm$ std) for all the algorithms and datasets} " << std::endl;
handler << "\\label{tab:results_accuracy}" << std::endl;
handler << "\\begin{tabular} {{r" << std::string(models.size(), 'c').c_str() << "}}" << std::endl;
std::string header_dataset_name = index ? "r" : "l";
handler << "\\begin{tabular} {{" << header_dataset_name << std::string(models.size(), 'c').c_str() << "}}" << std::endl;
handler << "\\hline " << std::endl;
handler << "" << std::endl;
for (const auto& model : models) {
@@ -38,13 +39,12 @@ namespace platform {
handler << "\\\\" << std::endl;
handler << "\\hline" << std::endl;
}
void BestResultsTex::results_body(const std::vector<std::string>& datasets, json& table)
void BestResultsTex::results_body(const std::vector<std::string>& datasets, json& table, bool index)
{
int i = 0;
for (auto const& dataset : datasets) {
// Find out max value for this dataset
double max_value = 0;
// Find out the max value for this dataset
for (const auto& model : models) {
double value;
try {
@@ -57,7 +57,10 @@ namespace platform {
max_value = value;
}
}
if (index)
handler << ++i << " ";
else
handler << dataset << " ";
for (const auto& model : models) {
double value = table[model].at(dataset).at(0).get<double>();
double std_value = table[model].at(dataset).at(3).get<double>();

View File

@@ -9,13 +9,14 @@ namespace platform {
using json = nlohmann::ordered_json;
class BestResultsTex {
public:
BestResultsTex() = default;
BestResultsTex(bool dataset_name = true) : dataset_name(dataset_name) {};
~BestResultsTex() = default;
void results_header(const std::vector<std::string>& models, const std::string& date);
void results_body(const std::vector<std::string>& datasets, json& table);
void results_header(const std::vector<std::string>& models, const std::string& date, bool index);
void results_body(const std::vector<std::string>& datasets, json& table, bool index);
void results_footer(const std::map<std::string, std::vector<double>>& totals, const std::string& best_model);
void holm_test(struct HolmResult& holmResult, const std::string& date);
private:
bool dataset_name;
void openTexFile(const std::string& name);
std::ofstream handler;
std::vector<std::string> models;

View File

@@ -16,7 +16,8 @@ void manageArguments(argparse::ArgumentParser& program)
program.add_argument("-s", "--score").default_value("accuracy").help("Filter results of the score name supplied");
program.add_argument("--friedman").help("Friedman test").default_value(false).implicit_value(true);
program.add_argument("--excel").help("Output to excel").default_value(false).implicit_value(true);
program.add_argument("--tex").help("Output result table to TeX file").default_value(false).implicit_value(true);
program.add_argument("--tex").help("Output results to TeX & Markdown files").default_value(false).implicit_value(true);
program.add_argument("--index").help("In tex output show the index of the dataset instead of the name to save space").default_value(false).implicit_value(true);
program.add_argument("--level").help("significance level").default_value(0.05).scan<'g', double>().action([](const std::string& value) {
try {
auto k = std::stod(value);
@@ -38,7 +39,7 @@ int main(int argc, char** argv)
argparse::ArgumentParser program("b_best", { platform_project_version.begin(), platform_project_version.end() });
manageArguments(program);
std::string model, dataset, score;
bool build, report, friedman, excel, tex;
bool build, report, friedman, excel, tex, index;
double level;
try {
program.parse_args(argc, argv);
@@ -48,6 +49,7 @@ int main(int argc, char** argv)
friedman = program.get<bool>("friedman");
excel = program.get<bool>("excel");
tex = program.get<bool>("tex");
index = program.get<bool>("index");
level = program.get<double>("level");
if (model == "" || score == "") {
throw std::runtime_error("Model and score name must be supplied");
@@ -67,7 +69,7 @@ int main(int argc, char** argv)
auto results = platform::BestResults(platform::Paths::results(), score, model, dataset, friedman, level);
if (model == "any") {
results.buildAll();
results.reportAll(excel, tex);
results.reportAll(excel, tex, index);
} else {
std::string fileName = results.build();
std::cout << Colors::GREEN() << fileName << " created!" << Colors::RESET() << std::endl;

View File

@@ -6,11 +6,13 @@
#include <mpi.h>
#include "main/Models.h"
#include "main/modelRegister.h"
#include "main/ArgumentsExperiment.h"
#include "common/Paths.h"
#include "common/Timer.h"
#include "common/Colors.h"
#include "common/DotEnv.h"
#include "grid/GridSearch.h"
#include "grid/GridExperiment.h"
#include "config_platform.h"
using json = nlohmann::ordered_json;
@@ -31,15 +33,20 @@ void assignModel(argparse::ArgumentParser& parser)
}
);
}
void add_compute_args(argparse::ArgumentParser& program)
void add_search_args(argparse::ArgumentParser& program)
{
auto env = platform::DotEnv();
program.add_argument("--discretize").help("Discretize input datasets").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
program.add_argument("--quiet").help("Don't display detailed progress").default_value(false).implicit_value(true);
program.add_argument("--continue").help("Continue computing from that dataset").default_value(platform::GridSearch::NO_CONTINUE());
program.add_argument("--only").help("Used with continue to compute that dataset only").default_value(false).implicit_value(true);
program.add_argument("--only").help("Used with continue to search with that dataset only").default_value(false).implicit_value(true);
program.add_argument("--exclude").default_value("[]").help("Datasets to exclude in json format, e.g. [\"dataset1\", \"dataset2\"]");
auto valid_choices = env.valid_tokens("smooth_strat");
auto& smooth_arg = program.add_argument("--smooth-strat").help("Smooth strategy used in Bayes Network node initialization. Valid values: " + env.valid_values("smooth_strat")).default_value(env.get("smooth_strat"));
for (auto choice : valid_choices) {
smooth_arg.choices(choice);
}
program.add_argument("--nested").help("Set the double/nested cross validation number of folds").default_value(5).scan<'i', int>().action([](const std::string& value) {
try {
auto k = stoi(value);
@@ -133,7 +140,8 @@ void list_results(json& results, std::string& model)
std::cout << std::string(MAXL, '*') << std::endl;
int spaces = 7;
int hyperparameters_spaces = 15;
for (const auto& item : results["results"].items()) {
nlohmann::json temp = results["results"]; // To show in alphabetical order of the dataset
for (const auto& item : temp.items()) {
auto key = item.key();
auto value = item.value();
if (key.size() > spaces) {
@@ -148,7 +156,7 @@ void list_results(json& results, std::string& model)
std::cout << "=== " << string(spaces, '=') << " " << string(19, '=') << " " << string(8, '=') << " "
<< string(8, '=') << " " << string(hyperparameters_spaces, '=') << std::endl;
int index = 0;
for (const auto& item : results["results"].items()) {
for (const auto& item : temp.items()) {
auto color = (index % 2) ? Colors::CYAN() : Colors::BLUE();
auto value = item.value();
std::cout << color;
@@ -181,13 +189,14 @@ void report(argparse::ArgumentParser& program)
list_results(results, config.model);
}
}
void compute(argparse::ArgumentParser& program)
void search(argparse::ArgumentParser& program)
{
struct platform::ConfigGrid config;
config.model = program.get<std::string>("model");
config.score = program.get<std::string>("score");
config.discretize = program.get<bool>("discretize");
config.stratified = program.get<bool>("stratified");
config.smooth_strategy = program.get<std::string>("smooth-strat");
config.n_folds = program.get<int>("folds");
config.quiet = program.get<bool>("quiet");
config.only = program.get<bool>("only");
@@ -199,9 +208,6 @@ void compute(argparse::ArgumentParser& program)
}
auto excluded = program.get<std::string>("exclude");
config.excluded = json::parse(excluded);
auto env = platform::DotEnv();
config.platform = env.get("platform");
platform::Paths::createPath(platform::Paths::grid());
auto grid_search = platform::GridSearch(config);
platform::Timer timer;
@@ -212,16 +218,47 @@ void compute(argparse::ArgumentParser& program)
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_config.rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_config.n_procs);
if (mpi_config.n_procs < 2) {
throw std::runtime_error("Cannot use --compute with less than 2 mpi processes, try mpirun -np 2 ...");
throw std::runtime_error("Cannot use --search with less than 2 mpi processes, try mpirun -np 2 ...");
}
grid_search.go(mpi_config);
if (mpi_config.rank == mpi_config.manager) {
auto results = grid_search.loadResults();
std::cout << Colors::RESET() << "* Report of the computed hyperparameters" << std::endl;
list_results(results, config.model);
std::cout << "Process took " << timer.getDurationString() << std::endl;
}
MPI_Finalize();
}
void experiment(argparse::ArgumentParser& program)
{
struct platform::ConfigGrid config;
auto arguments = platform::ArgumentsExperiment(program, platform::experiment_t::GRID);
arguments.parse();
auto grid_experiment = platform::GridExperiment(arguments, config);
platform::Timer timer;
timer.start();
struct platform::ConfigMPI mpi_config;
mpi_config.manager = 0; // which process is the manager
MPI_Init(nullptr, nullptr);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_config.rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_config.n_procs);
if (mpi_config.n_procs < 2) {
throw std::runtime_error("Cannot use --experiment with less than 2 mpi processes, try mpirun -np 2 ...");
}
grid_experiment.go(mpi_config);
if (mpi_config.rank == mpi_config.manager) {
auto experiment = grid_experiment.getExperiment();
std::cout << "* Report of the computed hyperparameters" << std::endl;
auto duration = timer.getDuration();
experiment.setDuration(duration);
if (grid_experiment.haveToSaveResults()) {
experiment.saveResult();
}
experiment.report();
std::cout << "Process took " << duration << std::endl;
}
MPI_Finalize();
}
int main(int argc, char** argv)
{
//
@@ -238,15 +275,21 @@ int main(int argc, char** argv)
assignModel(report_command);
report_command.add_description("Report the computed hyperparameters of a model.");
// grid compute subparser
argparse::ArgumentParser compute_command("compute");
compute_command.add_description("Compute using mpi the hyperparameters of a model.");
assignModel(compute_command);
add_compute_args(compute_command);
// grid search subparser
argparse::ArgumentParser search_command("search");
search_command.add_description("Search using mpi the hyperparameters of a model.");
assignModel(search_command);
add_search_args(search_command);
// grid experiment subparser
argparse::ArgumentParser experiment_command("experiment");
experiment_command.add_description("Experiment like b_main using mpi.");
auto arguments = platform::ArgumentsExperiment(experiment_command, platform::experiment_t::GRID);
arguments.add_arguments();
program.add_subparser(dump_command);
program.add_subparser(report_command);
program.add_subparser(compute_command);
program.add_subparser(search_command);
program.add_subparser(experiment_command);
//
// Process options
@@ -254,7 +297,7 @@ int main(int argc, char** argv)
try {
program.parse_args(argc, argv);
bool found = false;
map<std::string, void(*)(argparse::ArgumentParser&)> commands = { {"dump", &dump}, {"report", &report}, {"compute", &compute} };
map<std::string, void(*)(argparse::ArgumentParser&)> commands = { {"dump", &dump}, {"report", &report}, {"search", &search}, { "experiment",&experiment } };
for (const auto& command : commands) {
if (program.is_subcommand_used(command.first)) {
std::invoke(command.second, program.at<argparse::ArgumentParser>(command.first));
@@ -263,7 +306,7 @@ int main(int argc, char** argv)
}
}
if (!found) {
throw std::runtime_error("You must specify one of the following commands: dump, report, compute\n");
throw std::runtime_error("You must specify one of the following commands: dump, experiment, report, search \n");
}
}
catch (const exception& err) {

View File

@@ -1,234 +1,36 @@
#include <iostream>
#include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "main/Experiment.h"
#include "common/Datasets.h"
#include "common/DotEnv.h"
#include "common/Paths.h"
#include "main/Models.h"
#include "main/modelRegister.h"
#include "main/ArgumentsExperiment.h"
#include "config_platform.h"
using json = nlohmann::ordered_json;
void manageArguments(argparse::ArgumentParser& program)
{
auto env = platform::DotEnv();
auto datasets = platform::Datasets(false, platform::Paths::datasets());
auto& group = program.add_mutually_exclusive_group(true);
group.add_argument("-d", "--dataset")
.help("Dataset file name: " + datasets.toString())
.default_value("all")
.action([](const std::string& value) {
auto datasets = platform::Datasets(false, platform::Paths::datasets());
static std::vector<std::string> choices_datasets(datasets.getNames());
choices_datasets.push_back("all");
if (find(choices_datasets.begin(), choices_datasets.end(), value) != choices_datasets.end()) {
return value;
}
throw std::runtime_error("Dataset must be one of: " + datasets.toString());
}
);
group.add_argument("--datasets").nargs(1, 50).help("Datasets file names 1..50 separated by spaces").default_value(std::vector<std::string>());
group.add_argument("--datasets-file").default_value("").help("Datasets file name. Mutually exclusive with dataset. This file should contain a list of datasets to test.");
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparameters passed to the model in Experiment");
program.add_argument("--hyper-file").default_value("").help("Hyperparameters file name." \
"Mutually exclusive with hyperparameters. This file should contain hyperparameters for each dataset in json format.");
program.add_argument("--hyper-best").default_value(false).help("Use best results of the model as source of hyperparameters").implicit_value(true);
program.add_argument("-m", "--model")
.help("Model to use: " + platform::Models::instance()->toString())
.action([](const std::string& value) {
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw std::runtime_error("Model must be one of " + platform::Models::instance()->toString());
}
);
program.add_argument("--title").default_value("").help("Experiment title");
program.add_argument("--discretize").help("Discretize input dataset").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
auto valid_choices = env.valid_tokens("discretize_algo");
auto& disc_arg = program.add_argument("--discretize-algo").help("Algorithm to use in discretization. Valid values: " + env.valid_values("discretize_algo")).default_value(env.get("discretize_algo"));
for (auto choice : valid_choices) {
disc_arg.choices(choice);
}
valid_choices = env.valid_tokens("smooth_strat");
auto& smooth_arg = program.add_argument("--smooth-strat").help("Smooth strategy used in Bayes Network node initialization. Valid values: " + env.valid_values("smooth_strat")).default_value(env.get("smooth_strat"));
for (auto choice : valid_choices) {
smooth_arg.choices(choice);
}
auto& score_arg = program.add_argument("-s", "--score").help("Score to use. Valid values: " + env.valid_values("score")).default_value(env.get("score"));
valid_choices = env.valid_tokens("score");
for (auto choice : valid_choices) {
score_arg.choices(choice);
}
program.add_argument("--generate-fold-files").help("generate fold information in datasets_experiment folder").default_value(false).implicit_value(true);
program.add_argument("--graph").help("generate graphviz dot files with the model").default_value(false).implicit_value(true);
program.add_argument("--no-train-score").help("Don't compute train score").default_value(false).implicit_value(true);
program.add_argument("--quiet").help("Don't display detailed progress").default_value(false).implicit_value(true);
program.add_argument("--save").help("Save result (always save if no dataset is supplied)").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const std::string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw std::runtime_error("Number of folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw std::runtime_error(err.what());
}
catch (...) {
throw std::runtime_error("Number of folds must be an integer");
}});
auto seed_values = env.getSeeds();
program.add_argument("--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
}
int main(int argc, char** argv)
{
argparse::ArgumentParser program("b_main", { platform_project_version.begin(), platform_project_version.end() });
manageArguments(program);
std::string file_name, model_name, title, hyperparameters_file, datasets_file, discretize_algo, smooth_strat, score;
json hyperparameters_json;
bool discretize_dataset, stratified, saveResults, quiet, no_train_score, generate_fold_files, graph, hyper_best;
std::vector<int> seeds;
std::vector<std::string> file_names;
std::vector<std::string> filesToTest;
int n_folds;
try {
program.parse_args(argc, argv);
file_name = program.get<std::string>("dataset");
file_names = program.get<std::vector<std::string>>("datasets");
datasets_file = program.get<std::string>("datasets-file");
model_name = program.get<std::string>("model");
discretize_dataset = program.get<bool>("discretize");
discretize_algo = program.get<std::string>("discretize-algo");
smooth_strat = program.get<std::string>("smooth-strat");
stratified = program.get<bool>("stratified");
quiet = program.get<bool>("quiet");
graph = program.get<bool>("graph");
n_folds = program.get<int>("folds");
score = program.get<std::string>("score");
seeds = program.get<std::vector<int>>("seeds");
auto hyperparameters = program.get<std::string>("hyperparameters");
hyperparameters_json = json::parse(hyperparameters);
hyperparameters_file = program.get<std::string>("hyper-file");
no_train_score = program.get<bool>("no-train-score");
hyper_best = program.get<bool>("hyper-best");
generate_fold_files = program.get<bool>("generate-fold-files");
if (hyper_best) {
// Build the best results file_name
hyperparameters_file = platform::Paths::results() + platform::Paths::bestResultsFile(score, model_name);
// ignore this parameter
hyperparameters = "{}";
} else {
if (hyperparameters_file != "" && hyperparameters != "{}") {
throw runtime_error("hyperparameters and hyper_file are mutually exclusive");
}
}
title = program.get<std::string>("title");
if (title == "" && file_name == "all") {
throw runtime_error("title is mandatory if all datasets are to be tested");
}
saveResults = program.get<bool>("save");
}
catch (const exception& err) {
cerr << err.what() << std::endl;
cerr << program;
exit(1);
}
auto datasets = platform::Datasets(false, platform::Paths::datasets());
if (datasets_file != "") {
ifstream catalog(datasets_file);
if (catalog.is_open()) {
std::string line;
while (getline(catalog, line)) {
if (line.empty() || line[0] == '#') {
continue;
}
if (!datasets.isDataset(line)) {
cerr << "Dataset " << line << " not found" << std::endl;
exit(1);
}
filesToTest.push_back(line);
}
catalog.close();
saveResults = true;
if (title == "") {
title = "Test " + to_string(filesToTest.size()) + " datasets (" + datasets_file + ") "\
+ model_name + " " + to_string(n_folds) + " folds";
}
} else {
throw std::invalid_argument("Unable to open catalog file. [" + datasets_file + "]");
}
} else {
if (file_names.size() > 0) {
for (auto file : file_names) {
if (!datasets.isDataset(file)) {
cerr << "Dataset " << file << " not found" << std::endl;
exit(1);
}
}
filesToTest = file_names;
saveResults = true;
if (title == "") {
title = "Test " + to_string(file_names.size()) + " datasets " + model_name + " " + to_string(n_folds) + " folds";
}
} else {
if (file_name != "all") {
if (!datasets.isDataset(file_name)) {
cerr << "Dataset " << file_name << " not found" << std::endl;
exit(1);
}
if (title == "") {
title = "Test " + file_name + " " + model_name + " " + to_string(n_folds) + " folds";
}
filesToTest.push_back(file_name);
} else {
filesToTest = datasets.getNames();
saveResults = true;
}
}
}
platform::HyperParameters test_hyperparams;
if (hyperparameters_file != "") {
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_file, hyper_best);
} else {
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_json);
}
auto arguments = platform::ArgumentsExperiment(program, platform::experiment_t::NORMAL);
arguments.add_arguments();
arguments.parse_args(argc, argv);
/*
* Begin Processing
*/
auto env = platform::DotEnv();
auto experiment = platform::Experiment();
experiment.setTitle(title).setLanguage("c++").setLanguageVersion("gcc 14.1.1");
experiment.setDiscretizationAlgorithm(discretize_algo).setSmoothSrategy(smooth_strat);
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName(score);
experiment.setHyperparameters(test_hyperparams);
for (auto seed : seeds) {
experiment.addRandomSeed(seed);
}
// Initialize the experiment class with the command line arguments
auto experiment = arguments.initializedExperiment();
platform::Timer timer;
timer.start();
experiment.go(filesToTest, quiet, no_train_score, generate_fold_files, graph);
experiment.go();
experiment.setDuration(timer.getDuration());
if (!quiet) {
if (!arguments.isQuiet()) {
// Classification report if only one dataset is tested
experiment.report(filesToTest.size() == 1);
experiment.report();
}
if (saveResults) {
if (arguments.haveToSaveResults()) {
experiment.saveResult();
}
if (graph) {
if (arguments.doGraph()) {
experiment.saveGraph();
}
std::cout << "Done!" << std::endl;
return 0;
}

102
src/commands/b_results.cpp Normal file
View File

@@ -0,0 +1,102 @@
#include <iostream>
#include <filesystem>
#include <fstream>
#include <vector>
#include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "common/Paths.h"
#include "results/JsonValidator.h"
#include "results/SchemaV1_0.h"
#include "config_platform.h"
using json = nlohmann::json;
namespace fs = std::filesystem;
void header(const std::string& message, int length, const std::string& symbol)
{
std::cout << std::string(length + 11, symbol[0]) << std::endl;
std::cout << symbol << " " << std::setw(length + 7) << std::left << message << " " << symbol << std::endl;
std::cout << std::string(length + 11, symbol[0]) << std::endl;
}
int main(int argc, char* argv[])
{
argparse::ArgumentParser program("b_results", { platform_project_version.begin(), platform_project_version.end() });
program.add_description("Check the results files and optionally fixes them.");
program.add_argument("--fix").help("Fix any errors in results").default_value(false).implicit_value(true);
program.add_argument("--file").help("check only this results file").default_value("");
std::string nameSuffix = "results_";
std::string schemaVersion = "1.0";
bool fix_it = false;
std::string selected_file;
try {
program.parse_args(argc, argv);
fix_it = program.get<bool>("fix");
selected_file = program.get<std::string>("file");
}
catch (const std::exception& err) {
std::cerr << err.what() << std::endl;
std::cerr << program;
exit(1);
}
//
// Determine the files to process
//
std::vector<std::string> result_files;
int max_length = 0;
if (selected_file != "") {
if (!selected_file.starts_with(platform::Paths::results())) {
selected_file = platform::Paths::results() + selected_file;
}
// Only check the selected file
result_files.push_back(selected_file);
max_length = selected_file.length();
} else {
// Load the result files and find the longest file name
for (const auto& entry : fs::directory_iterator(platform::Paths::results())) {
if (entry.is_regular_file() && entry.path().filename().string().starts_with(nameSuffix) && entry.path().filename().string().ends_with(".json")) {
std::string fileName = entry.path().string();
if (fileName.length() > max_length) {
max_length = fileName.length();
}
result_files.push_back(fileName);
}
}
}
//
// Process the results files
//
if (result_files.empty()) {
std::cerr << "Error: No result files found." << std::endl;
return 1;
}
std::string header_message = "Processing " + std::to_string(result_files.size()) + " result files.";
header(header_message, max_length, "*");
platform::JsonValidator validator(platform::SchemaV1_0::schema);
int n_errors = 0;
std::vector<std::string> files_with_errors;
for (const auto& file_name : result_files) {
std::vector<std::string> errors = validator.validate_file(file_name);
if (!errors.empty()) {
n_errors++;
std::cout << std::setw(max_length) << std::left << file_name << ": " << errors.size() << " Errors:" << std::endl;
for (const auto& error : errors) {
std::cout << " - " << error << std::endl;
}
if (fix_it) {
validator.fix_it(file_name);
std::cout << " -> File fixed." << std::endl;
}
files_with_errors.push_back(file_name);
}
}
if (n_errors == 0) {
header("All files are valid.", max_length, "*");
} else {
std::string $verb = (fix_it) ? "had" : "have";
std::string msg = std::to_string(n_errors) + " files " + $verb + " errors.";
header(msg, max_length, "*");
for (const auto& file_name : files_with_errors) {
std::cout << "- " << file_name << std::endl;
}
}
return 0;
}

View File

@@ -1,4 +1,5 @@
#include <fstream>
#include<algorithm>
#include "Datasets.h"
#include <nlohmann/json.hpp>
@@ -24,10 +25,20 @@ namespace platform {
throw std::invalid_argument("Unable to open catalog file. [" + path + "all.txt" + "]");
}
std::string line;
std::vector<std::string> sorted_lines;
while (getline(catalog, line)) {
if (line.empty() || line[0] == '#') {
continue;
}
sorted_lines.push_back(line);
}
sort(sorted_lines.begin(), sorted_lines.end(), [](const auto& lhs, const auto& rhs) {
const auto result = mismatch(lhs.cbegin(), lhs.cend(), rhs.cbegin(), rhs.cend(), [](const auto& lhs, const auto& rhs) {return tolower(lhs) == tolower(rhs);});
return result.second != rhs.cend() && (result.first == lhs.cend() || tolower(*result.first) < tolower(*result.second));
});
for (const auto& line : sorted_lines) {
std::vector<std::string> tokens = split(line, ';');
std::string name = tokens[0];
std::string className;
@@ -70,6 +81,11 @@ namespace platform {
{
std::vector<std::string> result;
transform(datasets.begin(), datasets.end(), back_inserter(result), [](const auto& d) { return d.first; });
sort(result.begin(), result.end(), [](const auto& lhs, const auto& rhs) {
const auto result = mismatch(lhs.cbegin(), lhs.cend(), rhs.cbegin(), rhs.cend(), [](const auto& lhs, const auto& rhs) {return tolower(lhs) == tolower(rhs);});
return result.second != rhs.cend() && (result.first == lhs.cend() || tolower(*result.first) < tolower(*result.second));
});
return result;
}
bool Datasets::isDataset(const std::string& name) const

315
src/grid/GridBase.cpp Normal file
View File

@@ -0,0 +1,315 @@
#include <random>
#include <cstddef>
#include "common/DotEnv.h"
#include "common/Paths.h"
#include "common/DotEnv.h"
#include "GridBase.h"
namespace platform {
GridBase::GridBase(struct ConfigGrid& config)
{
this->config = config;
auto env = platform::DotEnv();
this->config.platform = env.get("platform");
}
void GridBase::validate_config()
{
if (config.smooth_strategy == "ORIGINAL")
smooth_type = bayesnet::Smoothing_t::ORIGINAL;
else if (config.smooth_strategy == "LAPLACE")
smooth_type = bayesnet::Smoothing_t::LAPLACE;
else if (config.smooth_strategy == "CESTNIK")
smooth_type = bayesnet::Smoothing_t::CESTNIK;
else {
std::cerr << "GridBase: Unknown smoothing strategy: " << config.smooth_strategy << std::endl;
exit(1);
}
}
std::string GridBase::get_color_rank(int rank)
{
auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN(), Colors::YELLOW(), Colors::BLACK() };
std::string id = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
auto idx = rank % id.size();
return *(colors.begin() + rank % colors.size()) + id[idx];
}
void GridBase::shuffle_and_progress_bar(json& tasks)
{
// Shuffle the array so heavy datasets are eas ier spread across the workers
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
std::shuffle(tasks.begin(), tasks.end(), g);
std::cout << "* Number of tasks: " << tasks.size() << std::endl;
std::cout << separator << std::flush;
for (int i = 0; i < tasks.size(); ++i) {
if ((i + 1) % 10 == 0)
std::cout << separator;
else
std::cout << (i + 1) % 10;
}
std::cout << separator << std::endl << separator << std::flush;
}
json GridBase::build_tasks(Datasets& datasets)
{
/*
* Each task is a json object with the following structure:
* {
* "dataset": "dataset_name",
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
* "seed": # of seed to use,
* "fold": # of fold to process
* }
* This way a task consists in process all combinations of hyperparameters for a dataset, seed and fold
*/
auto tasks = json::array();
auto grid = GridData(Paths::grid_input(config.model));
auto all_datasets = datasets.getNames();
auto datasets_names = filterDatasets(datasets);
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
auto dataset = datasets_names[idx_dataset];
for (const auto& seed : config.seeds) {
auto combinations = grid.getGrid(dataset);
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
json task = {
{ "dataset", dataset },
{ "idx_dataset", idx_dataset},
{ "seed", seed },
{ "fold", n_fold},
};
tasks.push_back(task);
}
}
}
shuffle_and_progress_bar(tasks);
return tasks;
}
void GridBase::summary(json& all_results, json& tasks, struct ConfigMPI& config_mpi)
{
// Report the tasks done by each worker, showing dataset number, seed, fold and time spent
// The format I want to show is:
// worker, dataset, seed, fold, time
// with headers
std::cout << Colors::RESET() << "* Summary of tasks done by each worker" << std::endl;
json worker_tasks = json::array();
for (int i = 0; i < config_mpi.n_procs; ++i) {
worker_tasks.push_back(json::array());
}
int max_dataset = 7;
for (const auto& [key, results] : all_results.items()) {
auto dataset = key;
if (dataset.size() > max_dataset)
max_dataset = dataset.size();
for (const auto& result : results) {
int n_task = result["task"].get<int>();
json task = tasks[n_task];
auto seed = task["seed"].get<int>();
auto fold = task["fold"].get<int>();
auto time = result["time"].get<double>();
auto worker = result["process"].get<int>();
json line = {
{ "dataset", dataset },
{ "seed", seed },
{ "fold", fold },
{ "time", time }
};
worker_tasks[worker].push_back(line);
}
}
std::cout << Colors::MAGENTA() << " W " << setw(max_dataset) << std::left << "Dataset";
std::cout << " Seed Fold Time" << std::endl;
std::cout << "=== " << std::string(max_dataset, '=') << " ==== ==== " << std::string(15, '=') << std::endl;
for (int worker = 0; worker < config_mpi.n_procs; ++worker) {
auto color = (worker % 2) ? Colors::CYAN() : Colors::BLUE();
std::cout << color << std::right << setw(3) << worker << " ";
if (worker == config_mpi.manager) {
std::cout << "Manager" << std::endl;
continue;
}
if (worker_tasks[worker].empty()) {
std::cout << "No tasks" << std::endl;
continue;
}
bool first = true;
double total = 0.0;
int num_tasks = 0;
for (const auto& task : worker_tasks[worker]) {
num_tasks++;
if (!first)
std::cout << std::string(4, ' ');
else
first = false;
std::cout << std::left << setw(max_dataset) << task["dataset"].get<std::string>();
std::cout << " " << setw(4) << std::right << task["seed"].get<int>();
std::cout << " " << setw(4) << task["fold"].get<int>();
std::cout << " " << setw(15) << std::setprecision(7) << std::fixed << task["time"].get<double>() << std::endl;
total += task["time"].get<double>();
}
if (num_tasks > 1) {
std::cout << Colors::MAGENTA() << " ";
std::cout << setw(max_dataset) << "Total (" << setw(2) << std::right << num_tasks << ")" << std::string(7, '.');
std::cout << " " << setw(15) << std::setprecision(7) << std::fixed << total << std::endl;
}
}
}
void GridBase::go(struct ConfigMPI& config_mpi)
{
/*
* Each task is a json object with the data needed by the process
*
* The overall process consists in these steps:
* 0. Validate config, create the MPI result type & tasks
* 0.1 Create the MPI result type
* 0.2 Manager creates the tasks
* 1. Manager will broadcast the tasks to all the processes
* 1.1 Broadcast the number of tasks
* 1.2 Broadcast the length of the following string
* 1.2 Broadcast the tasks as a char* string
* 2a. Producer delivers the tasks to the consumers
* 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
* 2a.2 Producer will send the end message to all the consumers
* 2b. Consumers process the tasks and send the results to the producer
* 2b.1 Consumers announce to the producer that they are ready to receive a task
* 2b.2 Consumers receive the task from the producer and process it
* 2b.3 Consumers send the result to the producer
* 3. Manager compile results for each dataset
* 3.1 Loop thru all the results obtained from each outer fold (task) and select the best
* 3.2 Save the results
* 3.3 Summary of jobs done
*/
//
// 0.1 Create the MPI result type
//
validate_config();
Task_Result result;
int tasks_size;
MPI_Datatype MPI_Result;
MPI_Datatype type[11] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_INT, MPI_DOUBLE, MPI_DOUBLE, MPI_DOUBLE, MPI_DOUBLE, MPI_DOUBLE, MPI_DOUBLE, MPI_INT, MPI_INT };
int blocklen[11] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
MPI_Aint disp[11];
disp[0] = offsetof(Task_Result, idx_dataset);
disp[1] = offsetof(Task_Result, idx_combination);
disp[2] = offsetof(Task_Result, n_fold);
disp[3] = offsetof(Task_Result, score);
disp[4] = offsetof(Task_Result, time);
disp[5] = offsetof(Task_Result, time_train);
disp[6] = offsetof(Task_Result, nodes);
disp[7] = offsetof(Task_Result, leaves);
disp[8] = offsetof(Task_Result, depth);
disp[9] = offsetof(Task_Result, process);
disp[10] = offsetof(Task_Result, task);
MPI_Type_create_struct(11, blocklen, disp, type, &MPI_Result);
MPI_Type_commit(&MPI_Result);
//
// 0.2 Manager creates the tasks
//
char* msg;
json tasks;
auto env = platform::DotEnv();
auto datasets = Datasets(config.discretize, Paths::datasets(), env.get("discretize_algo"));
if (config_mpi.rank == config_mpi.manager) {
timer.start();
tasks = build_tasks(datasets);
auto tasks_str = tasks.dump();
tasks_size = tasks_str.size();
msg = new char[tasks_size + 1];
strcpy(msg, tasks_str.c_str());
}
//
// 1. Manager will broadcast the tasks to all the processes
//
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
if (config_mpi.rank != config_mpi.manager) {
msg = new char[tasks_size + 1];
}
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
tasks = json::parse(msg);
delete[] msg;
if (config_mpi.rank == config_mpi.manager) {
//
// 2a. Producer delivers the tasks to the consumers
//
auto datasets_names = filterDatasets(datasets);
json all_results = producer(datasets_names, tasks, config_mpi, MPI_Result);
std::cout << separator << std::endl;
//
// 3. Manager compile results for each dataset
//
auto results = initializeResults();
compile_results(results, all_results, config.model);
//
// 3.2 Save the results
//
save(results);
//
// 3.3 Summary of jobs done
//
if (!config.quiet)
summary(all_results, tasks, config_mpi);
} else {
//
// 2b. Consumers process the tasks and send the results to the producer
//
consumer(datasets, tasks, config, config_mpi, MPI_Result);
}
}
json GridBase::producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{
Task_Result result;
json results;
int num_tasks = tasks.size();
//
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
//
for (int i = 0; i < num_tasks; ++i) {
MPI_Status status;
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) {
//Store result
store_result(names, result, results);
}
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
}
//
// 2a.2 Producer will send the end message to all the consumers
//
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
MPI_Status status;
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) {
//Store result
store_result(names, result, results);
}
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
}
return results;
}
void GridBase::consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{
Task_Result result;
//
// 2b.1 Consumers announce to the producer that they are ready to receive a task
//
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
int task;
while (true) {
MPI_Status status;
//
// 2b.2 Consumers receive the task from the producer and process it
//
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_END) {
break;
}
consumer_go(config, config_mpi, tasks, task, datasets, &result);
//
// 2b.3 Consumers send the result to the producer
//
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
}
}
}

43
src/grid/GridBase.h Normal file
View File

@@ -0,0 +1,43 @@
#ifndef GRIDBASE_H
#define GRIDBASE_H
#include <string>
#include <map>
#include <mpi.h>
#include <nlohmann/json.hpp>
#include "common/Datasets.h"
#include "common/Timer.h"
#include "common/Colors.h"
#include "main/HyperParameters.h"
#include "GridData.h"
#include "GridConfig.h"
#include "bayesnet/network/Network.h"
namespace platform {
using json = nlohmann::ordered_json;
class GridBase {
public:
explicit GridBase(struct ConfigGrid& config);
~GridBase() = default;
void go(struct ConfigMPI& config_mpi);
void validate_config();
protected:
json build_tasks(Datasets& datasets);
virtual void save(json& results) = 0;
virtual std::vector<std::string> filterDatasets(Datasets& datasets) const = 0;
virtual json initializeResults() = 0;
virtual void compile_results(json& results, json& all_results, std::string& model) = 0;
virtual json store_result(std::vector<std::string>& names, Task_Result& result, json& results) = 0;
virtual void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result) = 0;
void shuffle_and_progress_bar(json& tasks);
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
std::string get_color_rank(int rank);
void summary(json& all_results, json& tasks, struct ConfigMPI& config_mpi);
struct ConfigGrid config;
Timer timer; // used to measure the time of the whole process
const std::string separator = "|";
bayesnet::Smoothing_t smooth_type{ bayesnet::Smoothing_t::NONE };
};
} /* namespace platform */
#endif

55
src/grid/GridConfig.h Normal file
View File

@@ -0,0 +1,55 @@
#ifndef GRIDCONFIG_H
#define GRIDCONFIG_H
#include <string>
#include <map>
#include <mpi.h>
#include <nlohmann/json.hpp>
#include "common/Datasets.h"
#include "common/Timer.h"
#include "main/HyperParameters.h"
#include "GridData.h"
#include "GridConfig.h"
#include "bayesnet/network/Network.h"
namespace platform {
using json = nlohmann::ordered_json;
struct ConfigGrid {
std::string model;
std::string score;
std::string continue_from;
std::string platform;
std::string smooth_strategy;
bool quiet;
bool only; // used with continue_from to only compute that dataset
bool discretize;
bool stratified;
int nested;
int n_folds;
json excluded;
std::vector<int> seeds;
};
struct ConfigMPI {
int rank;
int n_procs;
int manager;
};
typedef struct {
uint idx_dataset;
uint idx_combination;
int n_fold;
double score; // Experiment: Score test, no score train in this case
double time; // Experiment: Time test
double time_train;
double nodes; // Experiment specific
double leaves; // Experiment specific
double depth; // Experiment specific
int process;
int task;
} Task_Result;
const int TAG_QUERY = 1;
const int TAG_RESULT = 2;
const int TAG_TASK = 3;
const int TAG_END = 4;
} /* namespace platform */
#endif

196
src/grid/GridExperiment.cpp Normal file
View File

@@ -0,0 +1,196 @@
#include <iostream>
#include <cstddef>
#include <torch/torch.h>
#include <folding.hpp>
#include "main/Models.h"
#include "common/Paths.h"
#include "common/Utils.h"
#include "GridExperiment.h"
namespace platform {
// GridExperiment::GridExperiment(argparse::ArgumentParser& program, struct ConfigGrid& config) : arguments(program), GridBase(config)
GridExperiment::GridExperiment(ArgumentsExperiment& program, struct ConfigGrid& config) : arguments(program), GridBase(config)
{
experiment = arguments.initializedExperiment();
filesToTest = arguments.getFilesToTest();
saveResults = arguments.haveToSaveResults();
this->config.model = experiment.getModel();
this->config.score = experiment.getScore();
this->config.discretize = experiment.isDiscretized();
this->config.stratified = experiment.isStratified();
this->config.smooth_strategy = experiment.getSmoothStrategy();
this->config.n_folds = experiment.getNFolds();
this->config.seeds = experiment.getRandomSeeds();
this->config.quiet = experiment.isQuiet();
}
json GridExperiment::getResults()
{
return computed_results;
}
std::vector<std::string> GridExperiment::filterDatasets(Datasets& datasets) const
{
return filesToTest;
}
json GridExperiment::initializeResults()
{
json results;
return results;
}
void GridExperiment::save(json& results)
{
}
void GridExperiment::compile_results(json& results, json& all_results, std::string& model)
{
auto datasets = Datasets(false, Paths::datasets());
nlohmann::json temp = all_results; // To restore the order of the data by dataset name
all_results = temp;
for (const auto& result_item : all_results.items()) {
// each result has the results of all the outer folds as each one were a different task
auto dataset_name = result_item.key();
auto data = result_item.value();
auto result = json::object();
int data_size = data.size();
auto score = torch::zeros({ data_size }, torch::kFloat64);
auto score_train = torch::zeros({ data_size }, torch::kFloat64);
auto time_test = torch::zeros({ data_size }, torch::kFloat64);
auto time_train = torch::zeros({ data_size }, torch::kFloat64);
auto nodes = torch::zeros({ data_size }, torch::kFloat64);
auto leaves = torch::zeros({ data_size }, torch::kFloat64);
auto depth = torch::zeros({ data_size }, torch::kFloat64);
auto& dataset = datasets.getDataset(dataset_name);
dataset.load();
//
// Prepare Result
//
auto partial_result = PartialResult();
partial_result.setSamples(dataset.getNSamples()).setFeatures(dataset.getNFeatures()).setClasses(dataset.getNClasses());
partial_result.setHyperparameters(experiment.getHyperParameters().get(dataset_name));
for (int fold = 0; fold < data_size; ++fold) {
partial_result.addScoreTest(data[fold]["score"]);
partial_result.addScoreTrain(0.0);
partial_result.addTimeTest(data[fold]["time"]);
partial_result.addTimeTrain(data[fold]["time_train"]);
score[fold] = data[fold]["score"].get<double>();
time_test[fold] = data[fold]["time"].get<double>();
time_train[fold] = data[fold]["time_train"].get<double>();
nodes[fold] = data[fold]["nodes"].get<double>();
leaves[fold] = data[fold]["leaves"].get<double>();
depth[fold] = data[fold]["depth"].get<double>();
}
partial_result.setGraph(std::vector<std::string>());
partial_result.setScoreTest(torch::mean(score).item<double>()).setScoreTrain(0.0);
partial_result.setScoreTestStd(torch::std(score).item<double>()).setScoreTrainStd(0.0);
partial_result.setTrainTime(torch::mean(time_train).item<double>()).setTestTime(torch::mean(time_test).item<double>());
partial_result.setTrainTimeStd(torch::std(time_train).item<double>()).setTestTimeStd(torch::std(time_test).item<double>());
partial_result.setNodes(torch::mean(nodes).item<double>()).setLeaves(torch::mean(leaves).item<double>()).setDepth(torch::mean(depth).item<double>());
partial_result.setDataset(dataset_name).setNotes(std::vector<std::string>());
partial_result.setConfusionMatrices(json::array());
experiment.addResult(partial_result);
}
auto clf = Models::instance()->create(experiment.getModel());
experiment.setModelVersion(clf->getVersion());
computed_results = results;
}
json GridExperiment::store_result(std::vector<std::string>& names, Task_Result& result, json& results)
{
json json_result = {
{ "score", result.score },
{ "combination", result.idx_combination },
{ "fold", result.n_fold },
{ "time", result.time },
{ "time_train", result.time_train },
{ "dataset", result.idx_dataset },
{ "nodes", result.nodes },
{ "leaves", result.leaves },
{ "depth", result.depth },
{ "process", result.process },
{ "task", result.task }
};
auto name = names[result.idx_dataset];
if (!results.contains(name)) {
results[name] = json::array();
}
results[name].push_back(json_result);
return results;
}
void GridExperiment::consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
{
//
// initialize
//
Timer train_timer, test_timer;
json task = tasks[n_task];
auto model = config.model;
auto dataset_name = task["dataset"].get<std::string>();
auto idx_dataset = task["idx_dataset"].get<int>();
auto seed = task["seed"].get<int>();
auto n_fold = task["fold"].get<int>();
bool stratified = config.stratified;
bayesnet::Smoothing_t smooth;
if (config.smooth_strategy == "ORIGINAL")
smooth = bayesnet::Smoothing_t::ORIGINAL;
else if (config.smooth_strategy == "LAPLACE")
smooth = bayesnet::Smoothing_t::LAPLACE;
else if (config.smooth_strategy == "CESTNIK")
smooth = bayesnet::Smoothing_t::CESTNIK;
//
// Generate the hyperparameters combinations
//
auto& dataset = datasets.getDataset(dataset_name);
dataset.load();
auto [X, y] = dataset.getTensors();
auto features = dataset.getFeatures();
auto className = dataset.getClassName();
//
// Start working on task
//
folding::Fold* fold;
if (stratified)
fold = new folding::StratifiedKFold(config.n_folds, y, seed);
else
fold = new folding::KFold(config.n_folds, y.size(0), seed);
train_timer.start();
auto [train, test] = fold->getFold(n_fold);
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
//
// Build Classifier with selected hyperparameters
//
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
auto hyperparameters = experiment.getHyperParameters();
hyperparameters.check(valid, dataset_name);
clf->setHyperparameters(hyperparameters.get(dataset_name));
//
// Train model
//
clf->fit(X_train, y_train, features, className, states, smooth);
auto train_time = train_timer.getDuration();
//
// Test model
//
test_timer.start();
double score = clf->score(X_test, y_test);
delete fold;
auto test_time = test_timer.getDuration();
//
// Return the result
//
result->idx_dataset = task["idx_dataset"].get<int>();
result->idx_combination = 0;
result->score = score;
result->n_fold = n_fold;
result->time = test_time;
result->time_train = train_time;
result->nodes = clf->getNumberOfNodes();
result->leaves = clf->getNumberOfEdges();
result->depth = clf->getNumberOfStates();
result->process = config_mpi.rank;
result->task = n_task;
//
// Update progress bar
//
std::cout << get_color_rank(config_mpi.rank) << std::flush;
}
} /* namespace platform */

42
src/grid/GridExperiment.h Normal file
View File

@@ -0,0 +1,42 @@
#ifndef GRIDEXPERIMENT_H
#define GRIDEXPERIMENT_H
#include <string>
#include <map>
#include <mpi.h>
#include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "common/Datasets.h"
#include "common/DotEnv.h"
#include "main/Experiment.h"
#include "main/HyperParameters.h"
#include "main/ArgumentsExperiment.h"
#include "GridData.h"
#include "GridBase.h"
#include "bayesnet/network/Network.h"
namespace platform {
using json = nlohmann::ordered_json;
class GridExperiment : public GridBase {
public:
explicit GridExperiment(ArgumentsExperiment& program, struct ConfigGrid& config);
~GridExperiment() = default;
json getResults();
Experiment& getExperiment() { return experiment; }
size_t numFiles() const { return filesToTest.size(); }
bool haveToSaveResults() const { return saveResults; }
private:
ArgumentsExperiment& arguments;
Experiment experiment;
json computed_results;
bool saveResults = false;
std::vector<std::string> filesToTest;
void save(json& results);
json initializeResults();
std::vector<std::string> filterDatasets(Datasets& datasets) const;
void compile_results(json& results, json& all_results, std::string& model);
json store_result(std::vector<std::string>& names, Task_Result& result, json& results);
void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result);
};
} /* namespace platform */
#endif

View File

@@ -4,18 +4,11 @@
#include <folding.hpp>
#include "main/Models.h"
#include "common/Paths.h"
#include "common/Colors.h"
#include "common/Utils.h"
#include "GridSearch.h"
namespace platform {
std::string get_color_rank(int rank)
{
auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN() };
return *(colors.begin() + rank % colors.size());
}
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
GridSearch::GridSearch(struct ConfigGrid& config) : GridBase(config)
{
}
json GridSearch::loadResults()
@@ -59,333 +52,13 @@ namespace platform {
}
return datasets_names;
}
json GridSearch::build_tasks_mpi(int rank)
{
auto tasks = json::array();
auto grid = GridData(Paths::grid_input(config.model));
auto datasets = Datasets(false, Paths::datasets());
auto all_datasets = datasets.getNames();
auto datasets_names = filterDatasets(datasets);
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
auto dataset = datasets_names[idx_dataset];
for (const auto& seed : config.seeds) {
auto combinations = grid.getGrid(dataset);
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
json task = {
{ "dataset", dataset },
{ "idx_dataset", idx_dataset},
{ "seed", seed },
{ "fold", n_fold},
};
tasks.push_back(task);
}
}
}
// Shuffle the array so heavy datasets are spread across the workers
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
std::shuffle(tasks.begin(), tasks.end(), g);
std::cout << get_color_rank(rank) << "* Number of tasks: " << tasks.size() << std::endl;
std::cout << separator;
for (int i = 0; i < tasks.size(); ++i) {
std::cout << (i + 1) % 10;
}
std::cout << separator << std::endl << separator << std::flush;
return tasks;
}
void process_task_mpi_consumer(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
{
// initialize
Timer timer;
timer.start();
json task = tasks[n_task];
auto model = config.model;
auto grid = GridData(Paths::grid_input(model));
auto dataset_name = task["dataset"].get<std::string>();
auto idx_dataset = task["idx_dataset"].get<int>();
auto seed = task["seed"].get<int>();
auto n_fold = task["fold"].get<int>();
bool stratified = config.stratified;
// Generate the hyperparamters combinations
auto& dataset = datasets.getDataset(dataset_name);
auto combinations = grid.getGrid(dataset_name);
dataset.load();
auto [X, y] = dataset.getTensors();
auto features = dataset.getFeatures();
auto className = dataset.getClassName();
//
// Start working on task
//
folding::Fold* fold;
if (stratified)
fold = new folding::StratifiedKFold(config.n_folds, y, seed);
else
fold = new folding::KFold(config.n_folds, y.size(0), seed);
auto [train, test] = fold->getFold(n_fold);
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
double best_fold_score = 0.0;
int best_idx_combination = -1;
bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE;
json best_fold_hyper;
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
auto hyperparam_line = combinations[idx_combination];
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
folding::Fold* nested_fold;
if (config.stratified)
nested_fold = new folding::StratifiedKFold(config.nested, y_train, seed);
else
nested_fold = new folding::KFold(config.nested, y_train.size(0), seed);
double score = 0.0;
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
// Nested level fold
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
auto train_nested_t = torch::tensor(train_nested);
auto test_nested_t = torch::tensor(test_nested);
auto X_nested_train = X_train.index({ "...", train_nested_t });
auto y_nested_train = y_train.index({ train_nested_t });
auto X_nested_test = X_train.index({ "...", test_nested_t });
auto y_nested_test = y_train.index({ test_nested_t });
// Build Classifier with selected hyperparameters
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset_name);
clf->setHyperparameters(hyperparameters.get(dataset_name));
// Train model
clf->fit(X_nested_train, y_nested_train, features, className, states, smoothing);
// Test model
score += clf->score(X_nested_test, y_nested_test);
}
delete nested_fold;
score /= config.nested;
if (score > best_fold_score) {
best_fold_score = score;
best_idx_combination = idx_combination;
best_fold_hyper = hyperparam_line;
}
}
delete fold;
// Build Classifier with the best hyperparameters to obtain the best score
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset_name);
clf->setHyperparameters(best_fold_hyper);
clf->fit(X_train, y_train, features, className, states, smoothing);
best_fold_score = clf->score(X_test, y_test);
// Return the result
result->idx_dataset = task["idx_dataset"].get<int>();
result->idx_combination = best_idx_combination;
result->score = best_fold_score;
result->n_fold = n_fold;
result->time = timer.getDuration();
// Update progress bar
std::cout << get_color_rank(config_mpi.rank) << "*" << std::flush;
}
json store_result(std::vector<std::string>& names, Task_Result& result, json& results)
{
json json_result = {
{ "score", result.score },
{ "combination", result.idx_combination },
{ "fold", result.n_fold },
{ "time", result.time },
{ "dataset", result.idx_dataset }
};
auto name = names[result.idx_dataset];
if (!results.contains(name)) {
results[name] = json::array();
}
results[name].push_back(json_result);
return results;
}
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{
Task_Result result;
json results;
int num_tasks = tasks.size();
//
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
//
for (int i = 0; i < num_tasks; ++i) {
MPI_Status status;
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) {
//Store result
store_result(names, result, results);
}
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
}
//
// 2a.2 Producer will send the end message to all the consumers
//
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
MPI_Status status;
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_RESULT) {
//Store result
store_result(names, result, results);
}
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
}
return results;
}
void select_best_results_folds(json& results, json& all_results, std::string& model)
{
Timer timer;
auto grid = GridData(Paths::grid_input(model));
//
// Select the best result of the computed outer folds
//
for (const auto& result : all_results.items()) {
// each result has the results of all the outer folds as each one were a different task
double best_score = 0.0;
json best;
for (const auto& result_fold : result.value()) {
double score = result_fold["score"].get<double>();
if (score > best_score) {
best_score = score;
best = result_fold;
}
}
auto dataset = result.key();
auto combinations = grid.getGrid(dataset);
json json_best = {
{ "score", best_score },
{ "hyperparameters", combinations[best["combination"].get<int>()] },
{ "date", get_date() + " " + get_time() },
{ "grid", grid.getInputGrid(dataset) },
{ "duration", timer.translate2String(best["time"].get<double>()) }
};
results[dataset] = json_best;
}
}
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
{
Task_Result result;
//
// 2b.1 Consumers announce to the producer that they are ready to receive a task
//
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
int task;
while (true) {
MPI_Status status;
//
// 2b.2 Consumers receive the task from the producer and process it
//
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
if (status.MPI_TAG == TAG_END) {
break;
}
process_task_mpi_consumer(config, config_mpi, tasks, task, datasets, &result);
//
// 2b.3 Consumers send the result to the producer
//
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
}
}
void GridSearch::go(struct ConfigMPI& config_mpi)
{
/*
* Each task is a json object with the following structure:
* {
* "dataset": "dataset_name",
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
* // this index is relative to the used datasets in the actual run not to the whole datasets
* "seed": # of seed to use,
* "Fold": # of fold to process
* }
*
* The overall process consists in these steps:
* 0. Create the MPI result type & tasks
* 0.1 Create the MPI result type
* 0.2 Manager creates the tasks
* 1. Manager will broadcast the tasks to all the processes
* 1.1 Broadcast the number of tasks
* 1.2 Broadcast the length of the following string
* 1.2 Broadcast the tasks as a char* string
* 2a. Producer delivers the tasks to the consumers
* 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
* 2a.2 Producer will send the end message to all the consumers
* 2b. Consumers process the tasks and send the results to the producer
* 2b.1 Consumers announce to the producer that they are ready to receive a task
* 2b.2 Consumers receive the task from the producer and process it
* 2b.3 Consumers send the result to the producer
* 3. Manager select the bests sccores for each dataset
* 3.1 Loop thru all the results obtained from each outer fold (task) and select the best
* 3.2 Save the results
*/
//
// 0.1 Create the MPI result type
//
Task_Result result;
int tasks_size;
MPI_Datatype MPI_Result;
MPI_Datatype type[5] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_INT, MPI_DOUBLE, MPI_DOUBLE };
int blocklen[5] = { 1, 1, 1, 1, 1 };
MPI_Aint disp[5];
disp[0] = offsetof(Task_Result, idx_dataset);
disp[1] = offsetof(Task_Result, idx_combination);
disp[2] = offsetof(Task_Result, n_fold);
disp[3] = offsetof(Task_Result, score);
disp[4] = offsetof(Task_Result, time);
MPI_Type_create_struct(5, blocklen, disp, type, &MPI_Result);
MPI_Type_commit(&MPI_Result);
//
// 0.2 Manager creates the tasks
//
char* msg;
json tasks;
if (config_mpi.rank == config_mpi.manager) {
timer.start();
tasks = build_tasks_mpi(config_mpi.rank);
auto tasks_str = tasks.dump();
tasks_size = tasks_str.size();
msg = new char[tasks_size + 1];
strcpy(msg, tasks_str.c_str());
}
//
// 1. Manager will broadcast the tasks to all the processes
//
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
if (config_mpi.rank != config_mpi.manager) {
msg = new char[tasks_size + 1];
}
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
tasks = json::parse(msg);
delete[] msg;
auto env = platform::DotEnv();
auto datasets = Datasets(config.discretize, Paths::datasets(), env.get("discretize_algo"));
if (config_mpi.rank == config_mpi.manager) {
//
// 2a. Producer delivers the tasks to the consumers
//
auto datasets_names = filterDatasets(datasets);
json all_results = producer(datasets_names, tasks, config_mpi, MPI_Result);
std::cout << get_color_rank(config_mpi.rank) << separator << std::endl;
//
// 3. Manager select the bests sccores for each dataset
//
auto results = initializeResults();
select_best_results_folds(results, all_results, config.model);
//
// 3.2 Save the results
//
save(results);
} else {
//
// 2b. Consumers process the tasks and send the results to the producer
//
consumer(datasets, tasks, config, config_mpi, MPI_Result);
}
}
json GridSearch::initializeResults()
{
// Load previous results if continue is set
json results;
if (config.continue_from != NO_CONTINUE()) {
if (!config.quiet)
std::cout << "* Loading previous results" << std::endl;
std::cout << Colors::RESET() << "* Loading previous results" << std::endl;
try {
std::ifstream file(Paths::grid_output(config.model));
if (file.is_open()) {
@@ -420,4 +93,167 @@ namespace platform {
};
file << output.dump(4);
}
void GridSearch::compile_results(json& results, json& all_results, std::string& model)
{
Timer timer;
auto grid = GridData(Paths::grid_input(model));
//
// Select the best result of the computed outer folds
//
for (const auto& result : all_results.items()) {
// each result has the results of all the outer folds as each one were a different task
double best_score = 0.0;
json best;
for (const auto& result_fold : result.value()) {
double score = result_fold["score"].get<double>();
if (score > best_score) {
best_score = score;
best = result_fold;
}
}
auto dataset = result.key();
auto combinations = grid.getGrid(dataset);
json json_best = {
{ "score", best_score },
{ "hyperparameters", combinations[best["combination"].get<int>()] },
{ "date", get_date() + " " + get_time() },
{ "grid", grid.getInputGrid(dataset) },
{ "duration", timer.translate2String(best["time"].get<double>()) }
};
results[dataset] = json_best;
}
}
json GridSearch::store_result(std::vector<std::string>& names, Task_Result& result, json& results)
{
json json_result = {
{ "score", result.score },
{ "combination", result.idx_combination },
{ "fold", result.n_fold },
{ "time", result.time },
{ "dataset", result.idx_dataset },
{ "process", result.process },
{ "task", result.task }
};
auto name = names[result.idx_dataset];
if (!results.contains(name)) {
results[name] = json::array();
}
results[name].push_back(json_result);
return results;
}
void GridSearch::consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
{
//
// initialize
//
Timer timer;
timer.start();
json task = tasks[n_task];
auto model = config.model;
auto grid = GridData(Paths::grid_input(model));
auto dataset_name = task["dataset"].get<std::string>();
auto idx_dataset = task["idx_dataset"].get<int>();
auto seed = task["seed"].get<int>();
auto n_fold = task["fold"].get<int>();
bool stratified = config.stratified;
bayesnet::Smoothing_t smooth;
if (config.smooth_strategy == "ORIGINAL")
smooth = bayesnet::Smoothing_t::ORIGINAL;
else if (config.smooth_strategy == "LAPLACE")
smooth = bayesnet::Smoothing_t::LAPLACE;
else if (config.smooth_strategy == "CESTNIK")
smooth = bayesnet::Smoothing_t::CESTNIK;
//
// Generate the hyperparameters combinations
//
auto& dataset = datasets.getDataset(dataset_name);
auto combinations = grid.getGrid(dataset_name);
dataset.load();
auto [X, y] = dataset.getTensors();
auto features = dataset.getFeatures();
auto className = dataset.getClassName();
//
// Start working on task
//
folding::Fold* fold;
if (stratified)
fold = new folding::StratifiedKFold(config.n_folds, y, seed);
else
fold = new folding::KFold(config.n_folds, y.size(0), seed);
auto [train, test] = fold->getFold(n_fold);
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
float best_fold_score = 0.0;
int best_idx_combination = -1;
json best_fold_hyper;
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
auto hyperparam_line = combinations[idx_combination];
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
folding::Fold* nested_fold;
if (config.stratified)
nested_fold = new folding::StratifiedKFold(config.nested, y_train, seed);
else
nested_fold = new folding::KFold(config.nested, y_train.size(0), seed);
double score = 0.0;
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
//
// Nested level fold
//
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
auto train_nested_t = torch::tensor(train_nested);
auto test_nested_t = torch::tensor(test_nested);
auto X_nested_train = X_train.index({ "...", train_nested_t });
auto y_nested_train = y_train.index({ train_nested_t });
auto X_nested_test = X_train.index({ "...", test_nested_t });
auto y_nested_test = y_train.index({ test_nested_t });
//
// Build Classifier with selected hyperparameters
//
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset_name);
clf->setHyperparameters(hyperparameters.get(dataset_name));
//
// Train model
//
clf->fit(X_nested_train, y_nested_train, features, className, states, smooth);
//
// Test model
//
score += clf->score(X_nested_test, y_nested_test);
}
delete nested_fold;
score /= config.nested;
if (score > best_fold_score) {
best_fold_score = score;
best_idx_combination = idx_combination;
best_fold_hyper = hyperparam_line;
}
}
delete fold;
//
// Build Classifier with the best hyperparameters to obtain the best score
//
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset_name);
clf->setHyperparameters(best_fold_hyper);
clf->fit(X_train, y_train, features, className, states, smooth);
best_fold_score = clf->score(X_test, y_test);
//
// Return the result
//
result->idx_dataset = task["idx_dataset"].get<int>();
result->idx_combination = best_idx_combination;
result->score = best_fold_score;
result->n_fold = n_fold;
result->time = timer.getDuration();
result->process = config_mpi.rank;
result->task = n_task;
//
// Update progress bar
//
std::cout << get_color_rank(config_mpi.rank) << std::flush;
}
} /* namespace platform */

View File

@@ -4,47 +4,20 @@
#include <map>
#include <mpi.h>
#include <nlohmann/json.hpp>
#include <folding.hpp>
#include "common/Datasets.h"
#include "common/Timer.h"
#include "main/HyperParameters.h"
#include "GridData.h"
#include "GridBase.h"
#include "bayesnet/network/Network.h"
namespace platform {
using json = nlohmann::ordered_json;
struct ConfigGrid {
std::string model;
std::string score;
std::string continue_from;
std::string platform;
bool quiet;
bool only; // used with continue_from to only compute that dataset
bool discretize;
bool stratified;
int nested;
int n_folds;
json excluded;
std::vector<int> seeds;
};
struct ConfigMPI {
int rank;
int n_procs;
int manager;
};
typedef struct {
uint idx_dataset;
uint idx_combination;
int n_fold;
double score;
double time;
} Task_Result;
const int TAG_QUERY = 1;
const int TAG_RESULT = 2;
const int TAG_TASK = 3;
const int TAG_END = 4;
class GridSearch {
class GridSearch : public GridBase {
public:
explicit GridSearch(struct ConfigGrid& config);
void go(struct ConfigMPI& config_mpi);
~GridSearch() = default;
json loadResults();
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
@@ -52,10 +25,9 @@ namespace platform {
void save(json& results);
json initializeResults();
std::vector<std::string> filterDatasets(Datasets& datasets) const;
struct ConfigGrid config;
json build_tasks_mpi(int rank);
Timer timer; // used to measure the time of the whole process
const std::string separator = "|";
void compile_results(json& results, json& all_results, std::string& model);
json store_result(std::vector<std::string>& names, Task_Result& result, json& results);
void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result);
};
} /* namespace platform */
#endif

View File

@@ -0,0 +1,225 @@
#include "common/Datasets.h"
#include "common/DotEnv.h"
#include "common/Paths.h"
#include "main/Models.h"
#include "main/modelRegister.h"
#include "ArgumentsExperiment.h"
namespace platform {
ArgumentsExperiment::ArgumentsExperiment(argparse::ArgumentParser& program, experiment_t type) : arguments{ program }, type{ type }
{
}
void ArgumentsExperiment::add_arguments()
{
auto env = platform::DotEnv();
auto datasets = platform::Datasets(false, platform::Paths::datasets());
auto& group = arguments.add_mutually_exclusive_group(true);
group.add_argument("-d", "--dataset")
.help("Dataset file name: " + datasets.toString())
.default_value("all")
.action([](const std::string& value) {
auto datasets = platform::Datasets(false, platform::Paths::datasets());
static std::vector<std::string> choices_datasets(datasets.getNames());
choices_datasets.push_back("all");
if (find(choices_datasets.begin(), choices_datasets.end(), value) != choices_datasets.end()) {
return value;
}
throw std::runtime_error("Dataset must be one of: " + datasets.toString());
}
);
group.add_argument("--datasets").nargs(1, 50).help("Datasets file names 1..50 separated by spaces").default_value(std::vector<std::string>());
group.add_argument("--datasets-file").default_value("").help("Datasets file name. Mutually exclusive with dataset. This file should contain a list of datasets to test.");
arguments.add_argument("--hyperparameters").default_value("{}").help("Hyperparameters passed to the model in Experiment");
arguments.add_argument("--hyper-file").default_value("").help("Hyperparameters file name." \
"Mutually exclusive with hyperparameters. This file should contain hyperparameters for each dataset in json format.");
arguments.add_argument("--hyper-best").default_value(false).help("Use best results of the model as source of hyperparameters").implicit_value(true);
arguments.add_argument("-m", "--model")
.help("Model to use: " + platform::Models::instance()->toString())
.action([](const std::string& value) {
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw std::runtime_error("Model must be one of " + platform::Models::instance()->toString());
}
);
arguments.add_argument("--title").default_value("").help("Experiment title");
arguments.add_argument("--discretize").help("Discretize input dataset").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
auto valid_choices = env.valid_tokens("discretize_algo");
auto& disc_arg = arguments.add_argument("--discretize-algo").help("Algorithm to use in discretization. Valid values: " + env.valid_values("discretize_algo")).default_value(env.get("discretize_algo"));
for (auto choice : valid_choices) {
disc_arg.choices(choice);
}
valid_choices = env.valid_tokens("smooth_strat");
auto& smooth_arg = arguments.add_argument("--smooth-strat").help("Smooth strategy used in Bayes Network node initialization. Valid values: " + env.valid_values("smooth_strat")).default_value(env.get("smooth_strat"));
for (auto choice : valid_choices) {
smooth_arg.choices(choice);
}
auto& score_arg = arguments.add_argument("-s", "--score").help("Score to use. Valid values: " + env.valid_values("score")).default_value(env.get("score"));
valid_choices = env.valid_tokens("score");
for (auto choice : valid_choices) {
score_arg.choices(choice);
}
arguments.add_argument("--no-train-score").help("Don't compute train score").default_value(false).implicit_value(true);
arguments.add_argument("--quiet").help("Don't display detailed progress").default_value(false).implicit_value(true);
arguments.add_argument("--save").help("Save result (always save even if a dataset is supplied)").default_value(false).implicit_value(true);
arguments.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
arguments.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const std::string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw std::runtime_error("Number of folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw std::runtime_error(err.what());
}
catch (...) {
throw std::runtime_error("Number of folds must be an integer");
}});
auto seed_values = env.getSeeds();
arguments.add_argument("--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
if (type == experiment_t::NORMAL) {
arguments.add_argument("--generate-fold-files").help("generate fold information in datasets_experiment folder").default_value(false).implicit_value(true);
arguments.add_argument("--graph").help("generate graphviz dot files with the model").default_value(false).implicit_value(true);
}
}
void ArgumentsExperiment::parse_args(int argc, char** argv)
{
try {
arguments.parse_args(argc, argv);
}
catch (const exception& err) {
cerr << err.what() << std::endl;
cerr << arguments;
exit(1);
}
parse();
}
void ArgumentsExperiment::parse()
{
try {
file_name = arguments.get<std::string>("dataset");
file_names = arguments.get<std::vector<std::string>>("datasets");
datasets_file = arguments.get<std::string>("datasets-file");
model_name = arguments.get<std::string>("model");
discretize_dataset = arguments.get<bool>("discretize");
discretize_algo = arguments.get<std::string>("discretize-algo");
smooth_strat = arguments.get<std::string>("smooth-strat");
stratified = arguments.get<bool>("stratified");
quiet = arguments.get<bool>("quiet");
n_folds = arguments.get<int>("folds");
score = arguments.get<std::string>("score");
seeds = arguments.get<std::vector<int>>("seeds");
auto hyperparameters = arguments.get<std::string>("hyperparameters");
hyperparameters_json = json::parse(hyperparameters);
hyperparameters_file = arguments.get<std::string>("hyper-file");
no_train_score = arguments.get<bool>("no-train-score");
hyper_best = arguments.get<bool>("hyper-best");
if (hyper_best) {
// Build the best results file_name
hyperparameters_file = platform::Paths::results() + platform::Paths::bestResultsFile(score, model_name);
// ignore this parameter
hyperparameters = "{}";
} else {
if (hyperparameters_file != "" && hyperparameters != "{}") {
throw runtime_error("hyperparameters and hyper_file are mutually exclusive");
}
}
title = arguments.get<std::string>("title");
if (title == "" && file_name == "all") {
throw runtime_error("title is mandatory if all datasets are to be tested");
}
saveResults = arguments.get<bool>("save");
if (type == experiment_t::NORMAL) {
graph = arguments.get<bool>("graph");
generate_fold_files = arguments.get<bool>("generate-fold-files");
} else {
graph = false;
generate_fold_files = false;
}
}
catch (const exception& err) {
cerr << err.what() << std::endl;
cerr << arguments;
exit(1);
}
auto datasets = platform::Datasets(false, platform::Paths::datasets());
if (datasets_file != "") {
ifstream catalog(datasets_file);
if (catalog.is_open()) {
std::string line;
while (getline(catalog, line)) {
if (line.empty() || line[0] == '#') {
continue;
}
if (!datasets.isDataset(line)) {
cerr << "Dataset " << line << " not found" << std::endl;
exit(1);
}
filesToTest.push_back(line);
}
catalog.close();
saveResults = true;
if (title == "") {
title = "Test " + to_string(filesToTest.size()) + " datasets (" + datasets_file + ") "\
+ model_name + " " + to_string(n_folds) + " folds";
}
} else {
throw std::invalid_argument("Unable to open catalog file. [" + datasets_file + "]");
}
} else {
if (file_names.size() > 0) {
for (auto file : file_names) {
if (!datasets.isDataset(file)) {
cerr << "Dataset " << file << " not found" << std::endl;
exit(1);
}
}
filesToTest = file_names;
saveResults = true;
if (title == "") {
title = "Test " + to_string(file_names.size()) + " datasets " + model_name + " " + to_string(n_folds) + " folds";
}
} else {
if (file_name != "all") {
if (!datasets.isDataset(file_name)) {
cerr << "Dataset " << file_name << " not found" << std::endl;
exit(1);
}
if (title == "") {
title = "Test " + file_name + " " + model_name + " " + to_string(n_folds) + " folds";
}
filesToTest.push_back(file_name);
} else {
filesToTest = datasets.getNames();
saveResults = true;
}
}
}
if (hyperparameters_file != "") {
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_file, hyper_best);
} else {
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_json);
}
}
Experiment& ArgumentsExperiment::initializedExperiment()
{
auto env = platform::DotEnv();
experiment.setTitle(title).setLanguage("c++").setLanguageVersion("gcc 14.1.1");
experiment.setDiscretizationAlgorithm(discretize_algo).setSmoothSrategy(smooth_strat);
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName(score);
experiment.setHyperparameters(test_hyperparams);
for (auto seed : seeds) {
experiment.addRandomSeed(seed);
}
experiment.setFilesToTest(filesToTest);
experiment.setQuiet(quiet);
experiment.setNoTrainScore(no_train_score);
experiment.setGenerateFoldFiles(generate_fold_files);
experiment.setGraph(graph);
return experiment;
}
}

View File

@@ -0,0 +1,39 @@
#ifndef ARGUMENTSEXPERIMENT_H
#define ARGUMENTSEXPERIMENT_H
#include <string>
#include <iostream>
#include <vector>
#include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "Experiment.h"
namespace platform {
using json = nlohmann::ordered_json;
enum class experiment_t { NORMAL, GRID };
class ArgumentsExperiment {
public:
ArgumentsExperiment(argparse::ArgumentParser& program, experiment_t type);
~ArgumentsExperiment() = default;
std::vector<std::string> getFilesToTest() const { return filesToTest; }
void add_arguments();
void parse_args(int argc, char** argv);
void parse();
Experiment& initializedExperiment();
bool isQuiet() const { return quiet; }
bool haveToSaveResults() const { return saveResults; }
bool doGraph() const { return graph; }
private:
Experiment experiment;
experiment_t type;
argparse::ArgumentParser& arguments;
std::string file_name, model_name, title, hyperparameters_file, datasets_file, discretize_algo, smooth_strat, score;
json hyperparameters_json;
bool discretize_dataset, stratified, saveResults, quiet, no_train_score, generate_fold_files, graph, hyper_best;
std::vector<int> seeds;
std::vector<std::string> file_names;
std::vector<std::string> filesToTest;
platform::HyperParameters test_hyperparams;
int n_folds;
};
}
#endif

View File

@@ -9,14 +9,16 @@ namespace platform {
void Experiment::saveResult()
{
result.setSchemaVersion("1.0");
result.check();
result.save();
std::cout << "Result saved in " << Paths::results() << result.getFilename() << std::endl;
}
void Experiment::report(bool classification_report)
void Experiment::report()
{
ReportConsole report(result.getJson());
report.show();
if (classification_report) {
if (filesToTest.size() == 1) {
std::cout << report.showClassificationReport(Colors::BLUE());
}
}
@@ -41,9 +43,25 @@ namespace platform {
}
}
}
void Experiment::go(std::vector<std::string> filesToProcess, bool quiet, bool no_train_score, bool generate_fold_files, bool graph)
Experiment& Experiment::setSmoothSrategy(const std::string& smooth_strategy)
{
for (auto fileName : filesToProcess) {
this->smooth_strategy = smooth_strategy;
this->result.setSmoothStrategy(smooth_strategy);
if (smooth_strategy == "ORIGINAL")
smooth_type = bayesnet::Smoothing_t::ORIGINAL;
else if (smooth_strategy == "LAPLACE")
smooth_type = bayesnet::Smoothing_t::LAPLACE;
else if (smooth_strategy == "CESTNIK")
smooth_type = bayesnet::Smoothing_t::CESTNIK;
else {
std::cerr << "Experiment: Unknown smoothing strategy: " << smooth_strategy << std::endl;
exit(1);
}
return *this;
}
void Experiment::go()
{
for (auto fileName : filesToTest) {
if (fileName.size() > max_name)
max_name = fileName.size();
}
@@ -58,14 +76,18 @@ namespace platform {
std::cout << " ( " << Colors::GREEN() << "b" << Colors::RESET() << " ) Scoring train dataset" << std::endl;
std::cout << " ( " << Colors::GREEN() << "c" << Colors::RESET() << " ) Scoring test dataset" << std::endl << std::endl;
std::cout << Colors::YELLOW() << "Note: fold number in this color means fitting had issues such as not using all features in BoostAODE classifier" << std::endl << std::endl;
std::cout << Colors::GREEN() << left << " # " << setw(max_name) << "Dataset" << " #Samp #Feat Seed Status" << string(3 * nfolds - 2, ' ') << " Time" << std::endl;
std::cout << " --- " << string(max_name, '-') << " ----- ----- ---- " << string(4 + 3 * nfolds, '-') << " ----------" << Colors::RESET() << std::endl;
int nc = 4 + 3 * nfolds + (nfolds >= 10 ? nfolds - 10 + 1 : 0);
std::cout << Colors::GREEN() << left << " # " << setw(max_name) << "Dataset" << " #Samp #Feat Seed Status" << string(nc - 6, ' ') << setw(11) << " Time" << " Score" << std::endl;
std::cout << " --- " << string(max_name, '-') << " ----- ----- ---- " << string(nc, '-') << " ----------" << " ---------";
std::cout << Colors::RESET() << std::endl;
}
int num = 0;
for (auto fileName : filesToProcess) {
// Sort files to test to have a consistent order even if --datasets is used
std::stable_sort(filesToTest.begin(), filesToTest.end());
for (auto fileName : filesToTest) {
if (!quiet)
std::cout << " " << setw(3) << right << num++ << " " << setw(max_name) << left << fileName << right << flush;
cross_validation(fileName, quiet, no_train_score, generate_fold_files, graph);
cross_validation(fileName);
if (!quiet)
std::cout << std::endl;
}
@@ -95,7 +117,8 @@ namespace platform {
}
void showProgress(int fold, const std::string& color, const std::string& phase)
{
std::string prefix = phase == "-" ? "" : "\b\b\b\b";
int nc = fold >= 10 ? 5 : 4;
std::string prefix = phase == "-" ? "" : std::string(nc, '\b');
std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
}
@@ -137,7 +160,7 @@ namespace platform {
file << output.dump(4);
file.close();
}
void Experiment::cross_validation(const std::string& fileName, bool quiet, bool no_train_score, bool generate_fold_files, bool graph)
void Experiment::cross_validation(const std::string& fileName)
{
//
// Load dataset and prepare data
@@ -277,10 +300,13 @@ namespace platform {
}
if (!quiet) {
seed_timer.stop();
std::cout << "end. [" << seed_timer.getDurationString() << "]" << std::endl;
std::cout << "end. " << std::setw(10) << std::right << seed_timer.getDurationString();
}
delete fold;
}
// Show Results
if (!quiet)
std::cout << " " << setw(9) << right << std::fixed << std::setprecision(7) << torch::mean(score_test).item<double>();
//
// Store result totals in Result
//

View File

@@ -25,21 +25,7 @@ namespace platform {
{
this->discretization_algo = discretization_algo; this->result.setDiscretizationAlgorithm(discretization_algo); return *this;
}
Experiment& setSmoothSrategy(const std::string& smooth_strategy)
{
this->smooth_strategy = smooth_strategy; this->result.setSmoothStrategy(smooth_strategy);
if (smooth_strategy == "ORIGINAL")
smooth_type = bayesnet::Smoothing_t::ORIGINAL;
else if (smooth_strategy == "LAPLACE")
smooth_type = bayesnet::Smoothing_t::LAPLACE;
else if (smooth_strategy == "CESTNIK")
smooth_type = bayesnet::Smoothing_t::CESTNIK;
else {
std::cerr << "Experiment: Unknown smoothing strategy: " << smooth_strategy << std::endl;
exit(1);
}
return *this;
}
Experiment& setSmoothSrategy(const std::string& smooth_strategy);
Experiment& setLanguageVersion(const std::string& language_version) { this->result.setLanguageVersion(language_version); return *this; }
Experiment& setDiscretized(bool discretized) { this->discretized = discretized; result.setDiscretized(discretized); return *this; }
Experiment& setStratified(bool stratified) { this->stratified = stratified; result.setStratified(stratified); return *this; }
@@ -48,18 +34,33 @@ namespace platform {
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); result.addSeed(randomSeed); return *this; }
Experiment& setDuration(float duration) { this->result.setDuration(duration); return *this; }
Experiment& setHyperparameters(const HyperParameters& hyperparameters_) { this->hyperparameters = hyperparameters_; return *this; }
void cross_validation(const std::string& fileName, bool quiet, bool no_train_score, bool generate_fold_files, bool graph);
void go(std::vector<std::string> filesToProcess, bool quiet, bool no_train_score, bool generate_fold_files, bool graph);
HyperParameters& getHyperParameters() { return hyperparameters; }
std::string getModel() const { return result.getModel(); }
std::string getScore() const { return result.getScoreName(); }
bool isDiscretized() const { return discretized; }
bool isStratified() const { return stratified; }
bool isQuiet() const { return quiet; }
std::string getSmoothStrategy() const { return smooth_strategy; }
int getNFolds() const { return nfolds; }
std::vector<int> getRandomSeeds() const { return randomSeeds; }
void cross_validation(const std::string& fileName);
void go();
void saveResult();
void show();
void saveGraph();
void report(bool classification_report = false);
void report();
void setFilesToTest(const std::vector<std::string>& filesToTest) { this->filesToTest = filesToTest; }
void setQuiet(bool quiet) { this->quiet = quiet; }
void setNoTrainScore(bool no_train_score) { this->no_train_score = no_train_score; }
void setGenerateFoldFiles(bool generate_fold_files) { this->generate_fold_files = generate_fold_files; }
void setGraph(bool graph) { this->graph = graph; }
private:
score_t parse_score() const;
Result result;
bool discretized{ false }, stratified{ false };
bool discretized{ false }, stratified{ false }, generate_fold_files{ false }, graph{ false }, quiet{ false }, no_train_score{ false };
std::vector<PartialResult> results;
std::vector<int> randomSeeds;
std::vector<std::string> filesToTest;
std::string discretization_algo;
std::string smooth_strategy;
bayesnet::Smoothing_t smooth_type{ bayesnet::Smoothing_t::NONE };

View File

@@ -257,8 +257,9 @@ namespace platform {
auto [index_from, index_to] = paginator[static_cast<int>(output_type)].getOffset();
for (int i = index_from; i <= index_to; i++) {
auto color = (i % 2) ? Colors::BLUE() : Colors::CYAN();
std::cout << color << std::setw(3) << std::fixed << std::right << i << " ";
std::cout << results.at(i).to_string(maxModel, maxTitle) << std::endl;
auto color_status = results.at(i).check().size() == 0 ? color : Colors::RED();
std::cout << color_status << std::setw(3) << std::fixed << std::right << i << " ";
std::cout << color << results.at(i).to_string(maxModel, maxTitle) << std::endl;
}
//
// Status Area
@@ -311,6 +312,34 @@ namespace platform {
return "Reporting " + results.at(index).getFilename();
}
}
void ManageScreen::changeModel(const int index)
{
std::cout << "Old model: " << results.at(index).getModel() << std::endl;
std::cout << "New model: ";
std::string newModel;
getline(std::cin, newModel);
if (newModel.empty()) {
list("Model not changed", Colors::YELLOW());
return;
}
if (newModel == results.at(index).getModel()) {
list("Model already set to " + newModel, Colors::RED());
return;
}
// Remove the old result file
std::string oldFile = Paths::results() + results.at(index).getFilename();
std::filesystem::remove(oldFile);
// Actually change the model
results.at(index).setModel(newModel);
results.at(index).save();
int newModelSize = static_cast<int>(newModel.size());
if (newModelSize > maxModel) {
maxModel = newModelSize;
header_lengths[2] = maxModel;
updateSize(rows, cols);
}
list("Model changed to " + newModel, Colors::GREEN());
}
std::pair<std::string, std::string> ManageScreen::sortList()
{
std::vector<std::tuple<std::string, char, bool>> sortOptions = {
@@ -371,6 +400,7 @@ namespace platform {
{"list", 'l', false},
{"Delete", 'D', true},
{"datasets", 'd', false},
{"change model", 'm', true},
{"hide", 'h', true},
{"sort", 's', false},
{"report", 'r', true},
@@ -497,6 +527,9 @@ namespace platform {
paginator[static_cast<int>(OutputType::EXPERIMENTS)].setTotal(results.size());
list(filename + " deleted!", Colors::RED());
break;
case 'm':
changeModel(index);
break;
case 'h':
{
std::string status_message;
@@ -543,7 +576,6 @@ namespace platform {
break;
case 't':
{
std::string status_message;
std::cout << "Title: " << results.at(index).getTitle() << std::endl;
std::cout << "New title: ";
std::string newTitle;
@@ -551,8 +583,7 @@ namespace platform {
if (!newTitle.empty()) {
results.at(index).setTitle(newTitle);
results.at(index).save();
status_message = "Title changed to " + newTitle;
list(status_message, Colors::GREEN());
list("Title changed to " + newTitle, Colors::GREEN());
break;
}
list("No title change!", Colors::YELLOW());

View File

@@ -27,6 +27,7 @@ namespace platform {
void list_datasets(const std::string& status, const std::string& color);
bool confirmAction(const std::string& intent, const std::string& fileName) const;
std::string report(const int index, const bool excelReport);
void changeModel(const int index);
std::string report_compared();
std::pair<std::string, std::string> sortList();
std::string getVersions();

View File

@@ -28,7 +28,7 @@ namespace platform {
auto datasets_names = datasets.getNames();
int maxName = std::max(size_t(7), (*max_element(datasets_names.begin(), datasets_names.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size());
std::vector<std::string> header_labels = { " #", "Dataset", "Sampl.", "Feat.", "#Num.", "Cls", "Balance" };
std::vector<int> header_lengths = { 3, maxName, 6, 5, 5, 3, DatasetsConsole::BALANCE_LENGTH };
std::vector<int> header_lengths = { 3, maxName, 6, 6, 6, 3, DatasetsConsole::BALANCE_LENGTH };
sheader << Colors::GREEN();
for (int i = 0; i < header_labels.size(); i++) {
sheader << setw(header_lengths[i]) << left << header_labels[i] << " ";
@@ -51,14 +51,14 @@ namespace platform {
auto& dataset = datasets.getDataset(dataset_name);
dataset.load();
auto nSamples = dataset.getNSamples();
line << setw(6) << right << nSamples << " ";
line << setw(header_lengths[2]) << right << nSamples << " ";
auto nFeatures = dataset.getFeatures().size();
line << setw(5) << right << nFeatures << " ";
line << setw(header_lengths[3]) << right << nFeatures << " ";
auto numericFeatures = dataset.getNumericFeatures();
auto num = std::count(numericFeatures.begin(), numericFeatures.end(), true);
line << setw(5) << right << num << " ";
line << setw(header_lengths[4]) << right << num << " ";
auto nClasses = dataset.getNClasses();
line << setw(3) << right << nClasses << " ";
line << setw(header_lengths[5]) << right << nClasses << " ";
std::string sep = "";
oss.str("");
for (auto number : dataset.getClassesCounts()) {

View File

@@ -49,7 +49,8 @@ namespace platform {
oss << "Execution took " << timer.translate2String(data["duration"].get<float>())
<< " on " << data["platform"].get<std::string>() << " Language: " << data["language"].get<std::string>();
sheader << headerLine(oss.str());
sheader << headerLine("Score is " + data["score_name"].get<std::string>());
std::string schema_version = data.find("schema_version") != data.end() ? data["schema_version"].get<std::string>() : "-";
sheader << headerLine("Score is " + data["score_name"].get<std::string>() + " Schema version: " + schema_version);
sheader << std::string(MAXL, '*') << std::endl;
sheader << std::endl;
}
@@ -223,7 +224,7 @@ namespace platform {
std::string ReportConsole::buildClassificationReport(json& result, std::string color)
{
std::stringstream oss;
if (result.find("confusion_matrices") == result.end())
if (result.find("confusion_matrices") == result.end() || result["confusion_matrices"].size() == 0)
return "";
bool second_header = false;
int lines_header = 0;

137
src/results/JsonValidator.h Normal file
View File

@@ -0,0 +1,137 @@
#ifndef JSONVALIDATOR_H
#define JSONVALIDATOR_H
#include <fstream>
#include <vector>
#include <regex>
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::ordered_json;
class JsonValidator {
public:
JsonValidator(const json& schema) : schema(schema) {}
std::vector<std::string> validate_file(const std::string& fileName)
{
auto data = load_json_file(fileName);
return validate(data);
}
std::vector<std::string> validate(const json& data)
{
std::vector<std::string> errors;
// Validate the top-level object
validateObject("", schema, data, errors);
return errors;
}
json load_json_file(const std::string& fileName)
{
std::ifstream file(fileName);
if (!file.is_open()) {
throw std::runtime_error("Error: Unable to open file " + fileName);
}
json data;
file >> data;
file.close();
return data;
}
void fix_it(const std::string& fileName)
{
// Load JSON file
auto data = load_json_file(fileName);
// Fix fields
for (const auto& [key, value] : schema["properties"].items()) {
if (!data.contains(key)) {
// Set default value if specified in the schema
if (value.contains("default")) {
data[key] = value["default"];
} else if (value["type"] == "array") {
data[key] = json::array();
} else if (value["type"] == "object") {
data[key] = json::object();
} else {
data[key] = nullptr;
}
}
// Fix const fields to match the schema value
if (value.contains("const")) {
data[key] = value["const"];
}
}
// Save fixed JSON
std::ofstream outFile(fileName);
if (!outFile.is_open()) {
std::cerr << "Error: Unable to open file for writing." << std::endl;
return;
}
outFile << data.dump(4);
outFile.close();
}
private:
json schema;
void validateObject(const std::string& path, const json& schema, const json& data, std::vector<std::string>& errors)
{
if (schema.contains("required")) {
for (const auto& requiredField : schema["required"]) {
if (!data.contains(requiredField)) {
std::string fullPath = path.empty() ? requiredField.get<std::string>() : path + "." + requiredField.get<std::string>();
errors.push_back("Missing required field: " + fullPath);
}
}
}
if (schema.contains("properties")) {
for (const auto& [key, value] : schema["properties"].items()) {
if (data.contains(key)) {
std::string fullPath = path.empty() ? key : path + "." + key;
validateField(fullPath, value, data[key], errors); // Pass data[key] for nested validation
} else if (value.contains("required")) {
errors.push_back("Missing required field: " + (path.empty() ? key : path + "." + key));
}
}
}
}
void validateField(const std::string& field, const json& value, const json& data, std::vector<std::string>& errors)
{
if (value.contains("type")) {
const std::string& type = value["type"];
if (type == "array") {
if (!data.is_array()) {
errors.push_back("Field '" + field + "' should be an array.");
return;
}
if (value.contains("items")) {
for (size_t i = 0; i < data.size(); ++i) {
validateObject(field + "[" + std::to_string(i) + "]", value["items"], data[i], errors);
}
}
} else if (type == "object") {
if (!data.is_object()) {
errors.push_back("Field '" + field + "' should be an object.");
return;
}
validateObject(field, value, data, errors);
} else if (type == "string" && !data.is_string()) {
errors.push_back("Field '" + field + "' should be a string.");
} else if (type == "number" && !data.is_number()) {
errors.push_back("Field '" + field + "' should be a number.");
} else if (type == "integer" && !data.is_number_integer()) {
errors.push_back("Field '" + field + "' should be an integer.");
} else if (type == "boolean" && !data.is_boolean()) {
errors.push_back("Field '" + field + "' should be a boolean.");
}
}
if (value.contains("const")) {
const auto& expectedValue = value["const"];
if (data != expectedValue) {
errors.push_back("Field '" + field + "' has an invalid value. Expected: " +
expectedValue.dump() + ", Found: " + data.dump());
}
}
}
};
}
#endif

View File

@@ -8,6 +8,8 @@
#include "common/Paths.h"
#include "common/Symbols.h"
#include "Result.h"
#include "JsonValidator.h"
#include "SchemaV1_0.h"
namespace platform {
std::string get_actual_date()
@@ -62,7 +64,11 @@ namespace platform {
{
return data;
}
std::vector<std::string> Result::check()
{
platform::JsonValidator validator(platform::SchemaV1_0::schema);
return validator.validate(data);
}
void Result::save()
{
std::ofstream file(Paths::results() + getFilename());

View File

@@ -16,6 +16,7 @@ namespace platform {
Result();
Result& load(const std::string& path, const std::string& filename);
void save();
std::vector<std::string> check();
// Getters
json getJson();
std::string to_string(int maxModel, int maxTitle) const;
@@ -28,7 +29,7 @@ namespace platform {
std::string getModel() const { return data["model"].get<std::string>(); };
std::string getPlatform() const { return data["platform"].get<std::string>(); };
std::string getScoreName() const { return data["score_name"].get<std::string>(); };
void setSchemaVersion(const std::string& version) { data["schema_version"] = version; };
bool isComplete() const { return complete; };
json getData() const { return data; }
// Setters

103
src/results/SchemaV1_0.h Normal file
View File

@@ -0,0 +1,103 @@
#ifndef SCHEMAV1_0_H
#define SCHEMAV1_0_H
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::ordered_json;
class SchemaV1_0 {
public:
// Define JSON schema
const static json schema;
};
const json SchemaV1_0::schema = {
{"$schema", "http://json-schema.org/draft-07/schema#"},
{"type", "object"},
{"properties", {
{"schema_version", {
{"type", "string"},
{"pattern", "^\\d+\\.\\d+$"},
{"default", "1.0"},
{"const", "1.0"} // Fixed schema version for this schema
}},
{"date", {{"type", "string"}, {"format", "date"}}},
{"time", {{"type", "string"}, {"pattern", "^\\d{2}:\\d{2}:\\d{2}$"}}},
{"title", {{"type", "string"}}},
{"language", {{"type", "string"}}},
{"language_version", {{"type", "string"}}},
{"discretized", {{"type", "boolean"}, {"default", false}}},
{"model", {{"type", "string"}}},
{"platform", {{"type", "string"}}},
{"stratified", {{"type", "boolean"}, {"default", false}}},
{"folds", {{"type", "integer"}, {"default", 0}}},
{"score_name", {{"type", "string"}}},
{"version", {{"type", "string"}}},
{"duration", {{"type", "number"}, {"default", 0}}},
{"results", {
{"type", "array"},
{"items", {
{"type", "object"},
{"properties", {
{"scores_train", {{"type", "array"}, {"items", {{"type", "number"}}}}},
{"scores_test", {{"type", "array"}, {"items", {{"type", "number"}}}}},
{"times_train", {{"type", "array"}, {"items", {{"type", "number"}}}}},
{"times_test", {{"type", "array"}, {"items", {{"type", "number"}}}}},
{"notes", {{"type", "array"}, {"items", {{"type", "string"}}}}},
{"train_time", {{"type", "number"}, {"default", 0}}},
{"train_time_std", {{"type", "number"}, {"default", 0}}},
{"test_time", {{"type", "number"}, {"default", 0}}},
{"test_time_std", {{"type", "number"}, {"default", 0}}},
{"samples", {{"type", "integer"}, {"default", 0}}},
{"features", {{"type", "integer"}, {"default", 0}}},
{"classes", {{"type", "integer"}, {"default", 0}}},
{"hyperparameters", {
{"type", "object"},
{"additionalProperties", {
{"oneOf", {
{{"type", "number"}}, // Field can be a number
{{"type", "string"}} // Field can also be a string
}}
}}
}},
{"score", {{"type", "number"}, {"default", 0}}},
{"score_train", {{"type", "number"}, {"default", 0}}},
{"score_std", {{"type", "number"}, {"default", 0}}},
{"score_train_std", {{"type", "number"}, {"default", 0}}},
{"time", {{"type", "number"}, {"default", 0}}},
{"time_std", {{"type", "number"}, {"default", 0}}},
{"nodes", {{"type", "number"}, {"default", 0}}},
{"leaves", {{"type", "number"}, {"default", 0}}},
{"depth", {{"type", "number"}, {"default", 0}}},
{"dataset", {{"type", "string"}}},
{"confusion_matrices", {
{"type", "array"},
{"items", {
{"type", "object"},
{"patternProperties", {
{".*", {
{"type", "array"},
{"items", {{"type", "integer"}}}
}}
}},
{"additionalProperties", false}
}}
}}
}},
{"required", {
"scores_train", "scores_test", "times_train", "times_test",
"train_time", "train_time_std", "test_time", "test_time_std",
"samples", "features", "classes", "hyperparameters", "score", "score_train",
"score_std", "score_train_std", "time", "time_std", "nodes", "leaves",
"depth", "dataset"
}}
}}
}}
}},
{"required", {
"schema_version", "date", "time", "title", "language", "language_version",
"discretized", "model", "platform", "stratified", "folds", "score_name",
"version", "duration", "results"
}}
};
}
#endif