Refactor grid classes and add summary of tasks at the end
This commit is contained in:
@@ -137,7 +137,7 @@
|
||||
|
||||
include(CMakeParseArguments)
|
||||
|
||||
option(CODE_COVERAGE_VERBOSE "Verbose information" FALSE)
|
||||
option(CODE_COVERAGE_VERBOSE "Verbose information" TRUE)
|
||||
|
||||
# Check prereqs
|
||||
find_program( GCOV_PATH gcov )
|
||||
@@ -160,7 +160,11 @@ foreach(LANG ${LANGUAGES})
|
||||
endif()
|
||||
elseif(NOT "${CMAKE_${LANG}_COMPILER_ID}" MATCHES "GNU"
|
||||
AND NOT "${CMAKE_${LANG}_COMPILER_ID}" MATCHES "(LLVM)?[Ff]lang")
|
||||
message(FATAL_ERROR "Compiler is not GNU or Flang! Aborting...")
|
||||
if ("${LANG}" MATCHES "CUDA")
|
||||
message(STATUS "Ignoring CUDA")
|
||||
else()
|
||||
message(FATAL_ERROR "Compiler is not GNU or Flang! Aborting...")
|
||||
endif()
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
|
Submodule lib/Files updated: a4329f5f9d...18c79f6d48
Submodule lib/catch2 updated: 0321d2fce3...914aeecfe2
2
lib/json
2
lib/json
Submodule lib/json updated: 620034ecec...48e7b4c23b
Submodule lib/libxlsxwriter updated: 8206bda64a...14f13513cb
@@ -318,7 +318,7 @@ void experiment(argparse::ArgumentParser& program)
|
||||
auto env = platform::DotEnv();
|
||||
config.platform = env.get("platform");
|
||||
platform::Paths::createPath(platform::Paths::grid());
|
||||
// auto grid_experiment = platform::GridExperiment(config);
|
||||
auto grid_experiment = platform::GridExperiment(config);
|
||||
platform::Timer timer;
|
||||
timer.start();
|
||||
struct platform::ConfigMPI mpi_config;
|
||||
@@ -329,7 +329,7 @@ void experiment(argparse::ArgumentParser& program)
|
||||
if (mpi_config.n_procs < 2) {
|
||||
throw std::runtime_error("Cannot use --compute with less than 2 mpi processes, try mpirun -np 2 ...");
|
||||
}
|
||||
// grid_experiment.go(mpi_config);
|
||||
grid_experiment.go(mpi_config);
|
||||
if (mpi_config.rank == mpi_config.manager) {
|
||||
// auto results = grid_experiment.loadResults();
|
||||
// list_results(results, config.model);
|
||||
|
@@ -1,3 +1,5 @@
|
||||
#include <random>
|
||||
#include <cstddef>
|
||||
#include "common/DotEnv.h"
|
||||
#include "common/Paths.h"
|
||||
#include "GridBase.h"
|
||||
@@ -18,5 +20,235 @@ namespace platform {
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
std::string GridBase::get_color_rank(int rank)
|
||||
{
|
||||
auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN(), Colors::YELLOW(), Colors::BLACK() };
|
||||
std::string id = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
||||
auto idx = rank % id.size();
|
||||
return *(colors.begin() + rank % colors.size()) + id[idx];
|
||||
};
|
||||
json GridBase::build_tasks()
|
||||
{
|
||||
/*
|
||||
* Each task is a json object with the following structure:
|
||||
* {
|
||||
* "dataset": "dataset_name",
|
||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
||||
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
||||
* "seed": # of seed to use,
|
||||
* "fold": # of fold to process
|
||||
* }
|
||||
*/
|
||||
auto tasks = json::array();
|
||||
auto grid = GridData(Paths::grid_input(config.model));
|
||||
auto datasets = Datasets(false, Paths::datasets());
|
||||
auto all_datasets = datasets.getNames();
|
||||
auto datasets_names = filterDatasets(datasets);
|
||||
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
|
||||
auto dataset = datasets_names[idx_dataset];
|
||||
for (const auto& seed : config.seeds) {
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
||||
json task = {
|
||||
{ "dataset", dataset },
|
||||
{ "idx_dataset", idx_dataset},
|
||||
{ "seed", seed },
|
||||
{ "fold", n_fold},
|
||||
};
|
||||
tasks.push_back(task);
|
||||
}
|
||||
}
|
||||
}
|
||||
// Shuffle the array so heavy datasets are eas ier spread across the workers
|
||||
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
|
||||
std::shuffle(tasks.begin(), tasks.end(), g);
|
||||
std::cout << "* Number of tasks: " << tasks.size() << std::endl;
|
||||
std::cout << separator << std::flush;
|
||||
for (int i = 0; i < tasks.size(); ++i) {
|
||||
if ((i + 1) % 10 == 0)
|
||||
std::cout << separator;
|
||||
else
|
||||
std::cout << (i + 1) % 10;
|
||||
}
|
||||
std::cout << separator << std::endl << separator << std::flush;
|
||||
return tasks;
|
||||
}
|
||||
void GridBase::summary(json& all_results, json& tasks, struct ConfigMPI& config_mpi)
|
||||
{
|
||||
// Report the tasks done by each worker, showing dataset number, seed, fold and time spent
|
||||
// The format I want to show is:
|
||||
// worker, dataset, seed, fold, time
|
||||
// with headers
|
||||
std::cout << Colors::RESET() << "* Summary of tasks done by each worker" << std::endl;
|
||||
json worker_tasks = json::array();
|
||||
for (int i = 0; i < config_mpi.n_procs; ++i) {
|
||||
worker_tasks.push_back(json::array());
|
||||
}
|
||||
int max_dataset = 7;
|
||||
for (const auto& [key, results] : all_results.items()) {
|
||||
auto dataset = key;
|
||||
if (dataset.size() > max_dataset)
|
||||
max_dataset = dataset.size();
|
||||
for (const auto& result : results) {
|
||||
int n_task = result["task"].get<int>();
|
||||
json task = tasks[n_task];
|
||||
auto seed = task["seed"].get<int>();
|
||||
auto fold = task["fold"].get<int>();
|
||||
auto time = result["time"].get<double>();
|
||||
auto worker = result["process"].get<int>();
|
||||
json line = {
|
||||
{ "dataset", dataset },
|
||||
{ "seed", seed },
|
||||
{ "fold", fold },
|
||||
{ "time", time }
|
||||
};
|
||||
worker_tasks[worker].push_back(line);
|
||||
}
|
||||
}
|
||||
std::cout << Colors::MAGENTA() << " W " << setw(max_dataset) << std::left << "Dataset";
|
||||
std::cout << " Seed Fold Time" << std::endl;
|
||||
std::cout << "=== " << std::string(max_dataset, '=') << " ==== ==== " << std::string(15, '=') << std::endl;
|
||||
for (int worker = 0; worker < config_mpi.n_procs; ++worker) {
|
||||
auto color = (worker % 2) ? Colors::CYAN() : Colors::BLUE();
|
||||
std::cout << color << std::right << setw(3) << worker << " ";
|
||||
if (worker == config_mpi.manager) {
|
||||
std::cout << "Manager" << std::endl;
|
||||
continue;
|
||||
}
|
||||
if (worker_tasks[worker].empty()) {
|
||||
std::cout << "No tasks" << std::endl;
|
||||
continue;
|
||||
}
|
||||
bool first = true;
|
||||
double total = 0.0;
|
||||
int num_tasks = 0;
|
||||
for (const auto& task : worker_tasks[worker]) {
|
||||
num_tasks++;
|
||||
if (!first)
|
||||
std::cout << std::string(4, ' ');
|
||||
else
|
||||
first = false;
|
||||
std::cout << std::left << setw(max_dataset) << task["dataset"].get<std::string>();
|
||||
std::cout << " " << setw(4) << std::right << task["seed"].get<int>();
|
||||
std::cout << " " << setw(4) << task["fold"].get<int>();
|
||||
std::cout << " " << setw(15) << std::setprecision(7) << std::fixed << task["time"].get<double>() << std::endl;
|
||||
total += task["time"].get<double>();
|
||||
}
|
||||
if (num_tasks > 1) {
|
||||
std::cout << Colors::MAGENTA() << setw(3) << std::right << num_tasks;
|
||||
std::cout << setw(max_dataset) << " Total..." << std::string(10, '.');
|
||||
std::cout << setw(15) << std::setprecision(7) << std::fixed << total << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
void GridBase::go(struct ConfigMPI& config_mpi)
|
||||
{
|
||||
/*
|
||||
* Each task is a json object with the following structure:
|
||||
* {
|
||||
* "dataset": "dataset_name",
|
||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
||||
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
||||
* "seed": # of seed to use,
|
||||
* "fold": # of fold to process
|
||||
* }
|
||||
*
|
||||
* This way a task consists in process all combinations of hyperparameters for a dataset, seed and fold
|
||||
*
|
||||
* The overall process consists in these steps:
|
||||
* 0. Create the MPI result type & tasks
|
||||
* 0.1 Create the MPI result type
|
||||
* 0.2 Manager creates the tasks
|
||||
* 1. Manager will broadcast the tasks to all the processes
|
||||
* 1.1 Broadcast the number of tasks
|
||||
* 1.2 Broadcast the length of the following string
|
||||
* 1.2 Broadcast the tasks as a char* string
|
||||
* 2a. Producer delivers the tasks to the consumers
|
||||
* 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||
* 2a.2 Producer will send the end message to all the consumers
|
||||
* 2b. Consumers process the tasks and send the results to the producer
|
||||
* 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||
* 2b.2 Consumers receive the task from the producer and process it
|
||||
* 2b.3 Consumers send the result to the producer
|
||||
* 3. Manager select the bests scores for each dataset
|
||||
* 3.1 Loop thru all the results obtained from each outer fold (task) and select the best
|
||||
* 3.2 Save the results
|
||||
* 3.3 Summary of jobs done
|
||||
*/
|
||||
//
|
||||
// 0.1 Create the MPI result type
|
||||
//
|
||||
Task_Result result;
|
||||
int tasks_size;
|
||||
MPI_Datatype MPI_Result;
|
||||
MPI_Datatype type[10] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_INT, MPI_DOUBLE, MPI_DOUBLE, MPI_DOUBLE, MPI_DOUBLE, MPI_DOUBLE, MPI_INT, MPI_INT };
|
||||
int blocklen[10] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
|
||||
MPI_Aint disp[10];
|
||||
disp[0] = offsetof(Task_Result, idx_dataset);
|
||||
disp[1] = offsetof(Task_Result, idx_combination);
|
||||
disp[2] = offsetof(Task_Result, n_fold);
|
||||
disp[3] = offsetof(Task_Result, score);
|
||||
disp[4] = offsetof(Task_Result, time);
|
||||
disp[5] = offsetof(Task_Result, nodes);
|
||||
disp[6] = offsetof(Task_Result, leaves);
|
||||
disp[7] = offsetof(Task_Result, depth);
|
||||
disp[8] = offsetof(Task_Result, process);
|
||||
disp[9] = offsetof(Task_Result, task);
|
||||
MPI_Type_create_struct(10, blocklen, disp, type, &MPI_Result);
|
||||
MPI_Type_commit(&MPI_Result);
|
||||
//
|
||||
// 0.2 Manager creates the tasks
|
||||
//
|
||||
char* msg;
|
||||
json tasks;
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
timer.start();
|
||||
tasks = build_tasks();
|
||||
auto tasks_str = tasks.dump();
|
||||
tasks_size = tasks_str.size();
|
||||
msg = new char[tasks_size + 1];
|
||||
strcpy(msg, tasks_str.c_str());
|
||||
}
|
||||
//
|
||||
// 1. Manager will broadcast the tasks to all the processes
|
||||
//
|
||||
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
|
||||
if (config_mpi.rank != config_mpi.manager) {
|
||||
msg = new char[tasks_size + 1];
|
||||
}
|
||||
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
||||
tasks = json::parse(msg);
|
||||
delete[] msg;
|
||||
auto env = platform::DotEnv();
|
||||
auto datasets = Datasets(config.discretize, Paths::datasets(), env.get("discretize_algo"));
|
||||
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
//
|
||||
// 2a. Producer delivers the tasks to the consumers
|
||||
//
|
||||
auto datasets_names = filterDatasets(datasets);
|
||||
json all_results = producer(datasets_names, tasks, config_mpi, MPI_Result);
|
||||
std::cout << separator << std::endl;
|
||||
//
|
||||
// 3. Manager select the bests sccores for each dataset
|
||||
//
|
||||
auto results = initializeResults();
|
||||
select_best_results_folds(results, all_results, config.model);
|
||||
//
|
||||
// 3.2 Save the results
|
||||
//
|
||||
save(results);
|
||||
//
|
||||
// 3.3 Summary of jobs done
|
||||
//
|
||||
if (!config.quiet)
|
||||
summary(all_results, tasks, config_mpi);
|
||||
} else {
|
||||
//
|
||||
// 2b. Consumers process the tasks and send the results to the producer
|
||||
//
|
||||
consumer(datasets, tasks, config, config_mpi, MPI_Result);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
@@ -19,23 +19,23 @@ namespace platform {
|
||||
public:
|
||||
explicit GridBase(struct ConfigGrid& config);
|
||||
~GridBase() = default;
|
||||
void go(struct ConfigMPI& config_mpi);
|
||||
protected:
|
||||
virtual json build_tasks() = 0;
|
||||
virtual void save(json& results) = 0;
|
||||
virtual std::vector<std::string> filterDatasets(Datasets& datasets) const = 0;
|
||||
virtual json initializeResults() = 0;
|
||||
virtual json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result) = 0;
|
||||
virtual void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result) = 0;
|
||||
virtual void select_best_results_folds(json& results, json& all_results, std::string& model) = 0;
|
||||
virtual json store_result(std::vector<std::string>& names, Task_Result& result, json& results) = 0;
|
||||
virtual void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result) = 0;
|
||||
std::string get_color_rank(int rank);
|
||||
json build_tasks();
|
||||
void summary(json& all_results, json& tasks, struct ConfigMPI& config_mpi);
|
||||
struct ConfigGrid config;
|
||||
Timer timer; // used to measure the time of the whole process
|
||||
const std::string separator = "|";
|
||||
bayesnet::Smoothing_t smooth_type{ bayesnet::Smoothing_t::NONE };
|
||||
};
|
||||
class MPI_Base {
|
||||
public:
|
||||
static std::string get_color_rank(int rank)
|
||||
{
|
||||
auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN(), Colors::YELLOW(), Colors::BLACK() };
|
||||
std::string id = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
||||
auto idx = rank % id.size();
|
||||
return *(colors.begin() + rank % colors.size()) + id[idx];
|
||||
}
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif
|
@@ -38,8 +38,13 @@ namespace platform {
|
||||
uint idx_dataset;
|
||||
uint idx_combination;
|
||||
int n_fold;
|
||||
double score;
|
||||
double time;
|
||||
double score; // Experiment: Score test, no score train in this case
|
||||
double time; // Experiment: Time train+test, no time train and/or time test in this case
|
||||
double nodes; // Experiment specific
|
||||
double leaves; // Experiment specific
|
||||
double depth; // Experiment specific
|
||||
int process;
|
||||
int task;
|
||||
} Task_Result;
|
||||
const int TAG_QUERY = 1;
|
||||
const int TAG_RESULT = 2;
|
||||
|
@@ -4,12 +4,10 @@
|
||||
#include <folding.hpp>
|
||||
#include "main/Models.h"
|
||||
#include "common/Paths.h"
|
||||
#include "common/Colors.h"
|
||||
#include "common/Utils.h"
|
||||
#include "GridExperiment.h"
|
||||
|
||||
namespace platform {
|
||||
|
||||
GridExperiment::GridExperiment(struct ConfigGrid& config) : GridBase(config)
|
||||
{
|
||||
}
|
||||
@@ -21,56 +19,59 @@ namespace platform {
|
||||
}
|
||||
return json();
|
||||
}
|
||||
json GridExperiment::build_tasks()
|
||||
std::vector<std::string> GridExperiment::filterDatasets(Datasets& datasets) const
|
||||
{
|
||||
/*
|
||||
* Each task is a json object with the following structure:
|
||||
* {
|
||||
* "dataset": "dataset_name",
|
||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
||||
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
||||
* "seed": # of seed to use,
|
||||
* "fold": # of fold to process
|
||||
* }
|
||||
*/
|
||||
auto tasks = json::array();
|
||||
auto grid = GridData(Paths::grid_input(config.model));
|
||||
auto datasets = Datasets(false, Paths::datasets());
|
||||
auto all_datasets = datasets.getNames();
|
||||
auto datasets_names = all_datasets;
|
||||
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
|
||||
auto dataset = datasets_names[idx_dataset];
|
||||
for (const auto& seed : config.seeds) {
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
||||
json task = {
|
||||
{ "dataset", dataset },
|
||||
{ "idx_dataset", idx_dataset},
|
||||
{ "seed", seed },
|
||||
{ "fold", n_fold},
|
||||
};
|
||||
tasks.push_back(task);
|
||||
// Load datasets
|
||||
auto datasets_names = datasets.getNames();
|
||||
if (config.continue_from != NO_CONTINUE()) {
|
||||
// Continue previous execution:
|
||||
if (std::find(datasets_names.begin(), datasets_names.end(), config.continue_from) == datasets_names.end()) {
|
||||
throw std::invalid_argument("Dataset " + config.continue_from + " not found");
|
||||
}
|
||||
// Remove datasets already processed
|
||||
std::vector<string>::iterator it = datasets_names.begin();
|
||||
while (it != datasets_names.end()) {
|
||||
if (*it != config.continue_from) {
|
||||
it = datasets_names.erase(it);
|
||||
} else {
|
||||
if (config.only)
|
||||
++it;
|
||||
else
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Shuffle the array so heavy datasets are eas ier spread across the workers
|
||||
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
|
||||
std::shuffle(tasks.begin(), tasks.end(), g);
|
||||
std::cout << "* Number of tasks: " << tasks.size() << std::endl;
|
||||
std::cout << separator << std::flush;
|
||||
for (int i = 0; i < tasks.size(); ++i) {
|
||||
if ((i + 1) % 10 == 0)
|
||||
std::cout << separator;
|
||||
else
|
||||
std::cout << (i + 1) % 10;
|
||||
// Exclude datasets
|
||||
for (const auto& name : config.excluded) {
|
||||
auto dataset = name.get<std::string>();
|
||||
auto it = std::find(datasets_names.begin(), datasets_names.end(), dataset);
|
||||
if (it == datasets_names.end()) {
|
||||
throw std::invalid_argument("Dataset " + dataset + " already excluded or doesn't exist!");
|
||||
}
|
||||
datasets_names.erase(it);
|
||||
}
|
||||
std::cout << separator << std::endl << separator << std::flush;
|
||||
return tasks;
|
||||
return datasets_names;
|
||||
}
|
||||
json GridExperiment::initializeResults()
|
||||
{
|
||||
// Load previous results if continue is set
|
||||
json results;
|
||||
if (config.continue_from != NO_CONTINUE()) {
|
||||
if (!config.quiet)
|
||||
std::cout << Colors::RESET() << "* Loading previous results" << std::endl;
|
||||
try {
|
||||
std::ifstream file(Paths::grid_output(config.model));
|
||||
if (file.is_open()) {
|
||||
results = json::parse(file);
|
||||
results = results["results"];
|
||||
}
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
std::cerr << "* There were no previous results" << std::endl;
|
||||
std::cerr << "* Initizalizing new results" << std::endl;
|
||||
results = json();
|
||||
}
|
||||
}
|
||||
return results;
|
||||
}
|
||||
void GridExperiment::save(json& results)
|
||||
@@ -92,5 +93,226 @@ namespace platform {
|
||||
};
|
||||
file << output.dump(4);
|
||||
}
|
||||
//
|
||||
//
|
||||
//
|
||||
json GridExperiment::producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
json results;
|
||||
int num_tasks = tasks.size();
|
||||
//
|
||||
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||
//
|
||||
for (int i = 0; i < num_tasks; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
||||
}
|
||||
//
|
||||
// 2a.2 Producer will send the end message to all the consumers
|
||||
//
|
||||
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
||||
}
|
||||
return results;
|
||||
}
|
||||
void GridExperiment::consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
//
|
||||
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
||||
int task;
|
||||
while (true) {
|
||||
MPI_Status status;
|
||||
//
|
||||
// 2b.2 Consumers receive the task from the producer and process it
|
||||
//
|
||||
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_END) {
|
||||
break;
|
||||
}
|
||||
consumer_go(config, config_mpi, tasks, task, datasets, &result);
|
||||
//
|
||||
// 2b.3 Consumers send the result to the producer
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
||||
}
|
||||
}
|
||||
void GridExperiment::select_best_results_folds(json& results, json& all_results, std::string& model)
|
||||
{
|
||||
Timer timer;
|
||||
auto grid = GridData(Paths::grid_input(model));
|
||||
//
|
||||
// Select the best result of the computed outer folds
|
||||
//
|
||||
for (const auto& result : all_results.items()) {
|
||||
// each result has the results of all the outer folds as each one were a different task
|
||||
double best_score = 0.0;
|
||||
json best;
|
||||
for (const auto& result_fold : result.value()) {
|
||||
double score = result_fold["score"].get<double>();
|
||||
if (score > best_score) {
|
||||
best_score = score;
|
||||
best = result_fold;
|
||||
}
|
||||
}
|
||||
auto dataset = result.key();
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
json json_best = {
|
||||
{ "score", best_score },
|
||||
{ "hyperparameters", combinations[best["combination"].get<int>()] },
|
||||
{ "date", get_date() + " " + get_time() },
|
||||
{ "grid", grid.getInputGrid(dataset) },
|
||||
{ "duration", timer.translate2String(best["time"].get<double>()) }
|
||||
};
|
||||
results[dataset] = json_best;
|
||||
}
|
||||
}
|
||||
json GridExperiment::store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
||||
{
|
||||
json json_result = {
|
||||
{ "score", result.score },
|
||||
{ "combination", result.idx_combination },
|
||||
{ "fold", result.n_fold },
|
||||
{ "time", result.time },
|
||||
{ "dataset", result.idx_dataset },
|
||||
{ "process", result.process },
|
||||
{ "task", result.task }
|
||||
};
|
||||
auto name = names[result.idx_dataset];
|
||||
if (!results.contains(name)) {
|
||||
results[name] = json::array();
|
||||
}
|
||||
results[name].push_back(json_result);
|
||||
return results;
|
||||
}
|
||||
void GridExperiment::consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
|
||||
{
|
||||
//
|
||||
// initialize
|
||||
//
|
||||
Timer timer;
|
||||
timer.start();
|
||||
json task = tasks[n_task];
|
||||
auto model = config.model;
|
||||
auto grid = GridData(Paths::grid_input(model));
|
||||
auto dataset_name = task["dataset"].get<std::string>();
|
||||
auto idx_dataset = task["idx_dataset"].get<int>();
|
||||
auto seed = task["seed"].get<int>();
|
||||
auto n_fold = task["fold"].get<int>();
|
||||
bool stratified = config.stratified;
|
||||
bayesnet::Smoothing_t smooth;
|
||||
if (config.smooth_strategy == "ORIGINAL")
|
||||
smooth = bayesnet::Smoothing_t::ORIGINAL;
|
||||
else if (config.smooth_strategy == "LAPLACE")
|
||||
smooth = bayesnet::Smoothing_t::LAPLACE;
|
||||
else if (config.smooth_strategy == "CESTNIK")
|
||||
smooth = bayesnet::Smoothing_t::CESTNIK;
|
||||
//
|
||||
// Generate the hyperparameters combinations
|
||||
//
|
||||
auto& dataset = datasets.getDataset(dataset_name);
|
||||
auto combinations = grid.getGrid(dataset_name);
|
||||
dataset.load();
|
||||
auto [X, y] = dataset.getTensors();
|
||||
auto features = dataset.getFeatures();
|
||||
auto className = dataset.getClassName();
|
||||
//
|
||||
// Start working on task
|
||||
//
|
||||
folding::Fold* fold;
|
||||
if (stratified)
|
||||
fold = new folding::StratifiedKFold(config.n_folds, y, seed);
|
||||
else
|
||||
fold = new folding::KFold(config.n_folds, y.size(0), seed);
|
||||
auto [train, test] = fold->getFold(n_fold);
|
||||
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
|
||||
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
|
||||
float best_fold_score = 0.0;
|
||||
int best_idx_combination = -1;
|
||||
json best_fold_hyper;
|
||||
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
|
||||
auto hyperparam_line = combinations[idx_combination];
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
folding::Fold* nested_fold;
|
||||
if (config.stratified)
|
||||
nested_fold = new folding::StratifiedKFold(config.nested, y_train, seed);
|
||||
else
|
||||
nested_fold = new folding::KFold(config.nested, y_train.size(0), seed);
|
||||
double score = 0.0;
|
||||
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||
//
|
||||
// Nested level fold
|
||||
//
|
||||
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||
auto train_nested_t = torch::tensor(train_nested);
|
||||
auto test_nested_t = torch::tensor(test_nested);
|
||||
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
||||
auto y_nested_train = y_train.index({ train_nested_t });
|
||||
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||
auto y_nested_test = y_train.index({ test_nested_t });
|
||||
//
|
||||
// Build Classifier with selected hyperparameters
|
||||
//
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset_name);
|
||||
clf->setHyperparameters(hyperparameters.get(dataset_name));
|
||||
//
|
||||
// Train model
|
||||
//
|
||||
clf->fit(X_nested_train, y_nested_train, features, className, states, smooth);
|
||||
//
|
||||
// Test model
|
||||
//
|
||||
score += clf->score(X_nested_test, y_nested_test);
|
||||
}
|
||||
delete nested_fold;
|
||||
score /= config.nested;
|
||||
if (score > best_fold_score) {
|
||||
best_fold_score = score;
|
||||
best_idx_combination = idx_combination;
|
||||
best_fold_hyper = hyperparam_line;
|
||||
}
|
||||
}
|
||||
delete fold;
|
||||
//
|
||||
// Build Classifier with the best hyperparameters to obtain the best score
|
||||
//
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset_name);
|
||||
clf->setHyperparameters(best_fold_hyper);
|
||||
clf->fit(X_train, y_train, features, className, states, smooth);
|
||||
best_fold_score = clf->score(X_test, y_test);
|
||||
//
|
||||
// Return the result
|
||||
//
|
||||
result->idx_dataset = task["idx_dataset"].get<int>();
|
||||
result->idx_combination = best_idx_combination;
|
||||
result->score = best_fold_score;
|
||||
result->n_fold = n_fold;
|
||||
result->time = timer.getDuration();
|
||||
result->process = config_mpi.rank;
|
||||
result->task = n_task;
|
||||
//
|
||||
// Update progress bar
|
||||
//
|
||||
std::cout << get_color_rank(config_mpi.rank) << std::flush;
|
||||
}
|
||||
} /* namespace platform */
|
@@ -18,234 +18,16 @@ namespace platform {
|
||||
explicit GridExperiment(struct ConfigGrid& config);
|
||||
~GridExperiment() = default;
|
||||
json loadResults();
|
||||
void go(struct ConfigMPI& config_mpi);
|
||||
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
|
||||
private:
|
||||
void save(json& results);
|
||||
json initializeResults();
|
||||
json build_tasks();
|
||||
};
|
||||
/* *************************************************************************************************************
|
||||
//
|
||||
// MPI Experiment Functions
|
||||
//
|
||||
************************************************************************************************************* */
|
||||
class MPI_EXPERIMENT :public MPI_Base {
|
||||
public:
|
||||
static json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
json results;
|
||||
int num_tasks = tasks.size();
|
||||
|
||||
//
|
||||
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||
//
|
||||
for (int i = 0; i < num_tasks; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
||||
}
|
||||
//
|
||||
// 2a.2 Producer will send the end message to all the consumers
|
||||
//
|
||||
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
||||
}
|
||||
return results;
|
||||
}
|
||||
static void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
//
|
||||
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
||||
int task;
|
||||
while (true) {
|
||||
MPI_Status status;
|
||||
//
|
||||
// 2b.2 Consumers receive the task from the producer and process it
|
||||
//
|
||||
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_END) {
|
||||
break;
|
||||
}
|
||||
consumer_go(config, config_mpi, tasks, task, datasets, &result);
|
||||
//
|
||||
// 2b.3 Consumers send the result to the producer
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
||||
}
|
||||
}
|
||||
static void select_best_results_folds(json& results, json& all_results, std::string& model)
|
||||
{
|
||||
Timer timer;
|
||||
auto grid = GridData(Paths::grid_input(model));
|
||||
//
|
||||
// Select the best result of the computed outer folds
|
||||
//
|
||||
for (const auto& result : all_results.items()) {
|
||||
// each result has the results of all the outer folds as each one were a different task
|
||||
double best_score = 0.0;
|
||||
json best;
|
||||
for (const auto& result_fold : result.value()) {
|
||||
double score = result_fold["score"].get<double>();
|
||||
if (score > best_score) {
|
||||
best_score = score;
|
||||
best = result_fold;
|
||||
}
|
||||
}
|
||||
auto dataset = result.key();
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
json json_best = {
|
||||
{ "score", best_score },
|
||||
{ "hyperparameters", combinations[best["combination"].get<int>()] },
|
||||
{ "date", get_date() + " " + get_time() },
|
||||
{ "grid", grid.getInputGrid(dataset) },
|
||||
{ "duration", timer.translate2String(best["time"].get<double>()) }
|
||||
};
|
||||
results[dataset] = json_best;
|
||||
}
|
||||
}
|
||||
static json store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
||||
{
|
||||
json json_result = {
|
||||
{ "score", result.score },
|
||||
{ "combination", result.idx_combination },
|
||||
{ "fold", result.n_fold },
|
||||
{ "time", result.time },
|
||||
{ "dataset", result.idx_dataset }
|
||||
};
|
||||
auto name = names[result.idx_dataset];
|
||||
if (!results.contains(name)) {
|
||||
results[name] = json::array();
|
||||
}
|
||||
results[name].push_back(json_result);
|
||||
return results;
|
||||
}
|
||||
static void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
|
||||
{
|
||||
//
|
||||
// initialize
|
||||
//
|
||||
Timer timer;
|
||||
timer.start();
|
||||
json task = tasks[n_task];
|
||||
auto model = config.model;
|
||||
auto grid = GridData(Paths::grid_input(model));
|
||||
auto dataset_name = task["dataset"].get<std::string>();
|
||||
auto idx_dataset = task["idx_dataset"].get<int>();
|
||||
auto seed = task["seed"].get<int>();
|
||||
auto n_fold = task["fold"].get<int>();
|
||||
bool stratified = config.stratified;
|
||||
bayesnet::Smoothing_t smooth;
|
||||
if (config.smooth_strategy == "ORIGINAL")
|
||||
smooth = bayesnet::Smoothing_t::ORIGINAL;
|
||||
else if (config.smooth_strategy == "LAPLACE")
|
||||
smooth = bayesnet::Smoothing_t::LAPLACE;
|
||||
else if (config.smooth_strategy == "CESTNIK")
|
||||
smooth = bayesnet::Smoothing_t::CESTNIK;
|
||||
//
|
||||
// Generate the hyperparameters combinations
|
||||
//
|
||||
auto& dataset = datasets.getDataset(dataset_name);
|
||||
auto combinations = grid.getGrid(dataset_name);
|
||||
dataset.load();
|
||||
auto [X, y] = dataset.getTensors();
|
||||
auto features = dataset.getFeatures();
|
||||
auto className = dataset.getClassName();
|
||||
//
|
||||
// Start working on task
|
||||
//
|
||||
folding::Fold* fold;
|
||||
if (stratified)
|
||||
fold = new folding::StratifiedKFold(config.n_folds, y, seed);
|
||||
else
|
||||
fold = new folding::KFold(config.n_folds, y.size(0), seed);
|
||||
auto [train, test] = fold->getFold(n_fold);
|
||||
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
|
||||
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
|
||||
float best_fold_score = 0.0;
|
||||
int best_idx_combination = -1;
|
||||
json best_fold_hyper;
|
||||
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
|
||||
auto hyperparam_line = combinations[idx_combination];
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
folding::Fold* nested_fold;
|
||||
if (config.stratified)
|
||||
nested_fold = new folding::StratifiedKFold(config.nested, y_train, seed);
|
||||
else
|
||||
nested_fold = new folding::KFold(config.nested, y_train.size(0), seed);
|
||||
double score = 0.0;
|
||||
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||
//
|
||||
// Nested level fold
|
||||
//
|
||||
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||
auto train_nested_t = torch::tensor(train_nested);
|
||||
auto test_nested_t = torch::tensor(test_nested);
|
||||
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
||||
auto y_nested_train = y_train.index({ train_nested_t });
|
||||
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||
auto y_nested_test = y_train.index({ test_nested_t });
|
||||
//
|
||||
// Build Classifier with selected hyperparameters
|
||||
//
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset_name);
|
||||
clf->setHyperparameters(hyperparameters.get(dataset_name));
|
||||
//
|
||||
// Train model
|
||||
//
|
||||
clf->fit(X_nested_train, y_nested_train, features, className, states, smooth);
|
||||
//
|
||||
// Test model
|
||||
//
|
||||
score += clf->score(X_nested_test, y_nested_test);
|
||||
}
|
||||
delete nested_fold;
|
||||
score /= config.nested;
|
||||
if (score > best_fold_score) {
|
||||
best_fold_score = score;
|
||||
best_idx_combination = idx_combination;
|
||||
best_fold_hyper = hyperparam_line;
|
||||
}
|
||||
}
|
||||
delete fold;
|
||||
//
|
||||
// Build Classifier with the best hyperparameters to obtain the best score
|
||||
//
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset_name);
|
||||
clf->setHyperparameters(best_fold_hyper);
|
||||
clf->fit(X_train, y_train, features, className, states, smooth);
|
||||
best_fold_score = clf->score(X_test, y_test);
|
||||
//
|
||||
// Return the result
|
||||
//
|
||||
result->idx_dataset = task["idx_dataset"].get<int>();
|
||||
result->idx_combination = best_idx_combination;
|
||||
result->score = best_fold_score;
|
||||
result->n_fold = n_fold;
|
||||
result->time = timer.getDuration();
|
||||
//
|
||||
// Update progress bar
|
||||
//
|
||||
std::cout << get_color_rank(config_mpi.rank) << std::flush;
|
||||
}
|
||||
std::vector<std::string> filterDatasets(Datasets& datasets) const;
|
||||
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
||||
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
||||
void select_best_results_folds(json& results, json& all_results, std::string& model);
|
||||
json store_result(std::vector<std::string>& names, Task_Result& result, json& results);
|
||||
void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result);
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif
|
@@ -52,157 +52,13 @@ namespace platform {
|
||||
}
|
||||
return datasets_names;
|
||||
}
|
||||
json GridSearch::build_tasks()
|
||||
{
|
||||
/*
|
||||
* Each task is a json object with the following structure:
|
||||
* {
|
||||
* "dataset": "dataset_name",
|
||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
||||
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
||||
* "seed": # of seed to use,
|
||||
* "fold": # of fold to process
|
||||
* }
|
||||
*/
|
||||
auto tasks = json::array();
|
||||
auto grid = GridData(Paths::grid_input(config.model));
|
||||
auto datasets = Datasets(false, Paths::datasets());
|
||||
auto all_datasets = datasets.getNames();
|
||||
auto datasets_names = filterDatasets(datasets);
|
||||
for (int idx_dataset = 0; idx_dataset < datasets_names.size(); ++idx_dataset) {
|
||||
auto dataset = datasets_names[idx_dataset];
|
||||
for (const auto& seed : config.seeds) {
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
for (int n_fold = 0; n_fold < config.n_folds; n_fold++) {
|
||||
json task = {
|
||||
{ "dataset", dataset },
|
||||
{ "idx_dataset", idx_dataset},
|
||||
{ "seed", seed },
|
||||
{ "fold", n_fold},
|
||||
};
|
||||
tasks.push_back(task);
|
||||
}
|
||||
}
|
||||
}
|
||||
// Shuffle the array so heavy datasets are eas ier spread across the workers
|
||||
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
|
||||
std::shuffle(tasks.begin(), tasks.end(), g);
|
||||
std::cout << "* Number of tasks: " << tasks.size() << std::endl;
|
||||
std::cout << separator << std::flush;
|
||||
for (int i = 0; i < tasks.size(); ++i) {
|
||||
if ((i + 1) % 10 == 0)
|
||||
std::cout << separator;
|
||||
else
|
||||
std::cout << (i + 1) % 10;
|
||||
}
|
||||
std::cout << separator << std::endl << separator << std::flush;
|
||||
return tasks;
|
||||
}
|
||||
void GridSearch::go(struct ConfigMPI& config_mpi)
|
||||
{
|
||||
/*
|
||||
* Each task is a json object with the following structure:
|
||||
* {
|
||||
* "dataset": "dataset_name",
|
||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
||||
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
||||
* "seed": # of seed to use,
|
||||
* "fold": # of fold to process
|
||||
* }
|
||||
*
|
||||
* This way a task consists in process all combinations of hyperparameters for a dataset, seed and fold
|
||||
*
|
||||
* The overall process consists in these steps:
|
||||
* 0. Create the MPI result type & tasks
|
||||
* 0.1 Create the MPI result type
|
||||
* 0.2 Manager creates the tasks
|
||||
* 1. Manager will broadcast the tasks to all the processes
|
||||
* 1.1 Broadcast the number of tasks
|
||||
* 1.2 Broadcast the length of the following string
|
||||
* 1.2 Broadcast the tasks as a char* string
|
||||
* 2a. Producer delivers the tasks to the consumers
|
||||
* 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||
* 2a.2 Producer will send the end message to all the consumers
|
||||
* 2b. Consumers process the tasks and send the results to the producer
|
||||
* 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||
* 2b.2 Consumers receive the task from the producer and process it
|
||||
* 2b.3 Consumers send the result to the producer
|
||||
* 3. Manager select the bests scores for each dataset
|
||||
* 3.1 Loop thru all the results obtained from each outer fold (task) and select the best
|
||||
* 3.2 Save the results
|
||||
*/
|
||||
//
|
||||
// 0.1 Create the MPI result type
|
||||
//
|
||||
Task_Result result;
|
||||
int tasks_size;
|
||||
MPI_Datatype MPI_Result;
|
||||
MPI_Datatype type[5] = { MPI_UNSIGNED, MPI_UNSIGNED, MPI_INT, MPI_DOUBLE, MPI_DOUBLE };
|
||||
int blocklen[5] = { 1, 1, 1, 1, 1 };
|
||||
MPI_Aint disp[5];
|
||||
disp[0] = offsetof(Task_Result, idx_dataset);
|
||||
disp[1] = offsetof(Task_Result, idx_combination);
|
||||
disp[2] = offsetof(Task_Result, n_fold);
|
||||
disp[3] = offsetof(Task_Result, score);
|
||||
disp[4] = offsetof(Task_Result, time);
|
||||
MPI_Type_create_struct(5, blocklen, disp, type, &MPI_Result);
|
||||
MPI_Type_commit(&MPI_Result);
|
||||
//
|
||||
// 0.2 Manager creates the tasks
|
||||
//
|
||||
char* msg;
|
||||
json tasks;
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
timer.start();
|
||||
tasks = build_tasks();
|
||||
auto tasks_str = tasks.dump();
|
||||
tasks_size = tasks_str.size();
|
||||
msg = new char[tasks_size + 1];
|
||||
strcpy(msg, tasks_str.c_str());
|
||||
}
|
||||
//
|
||||
// 1. Manager will broadcast the tasks to all the processes
|
||||
//
|
||||
MPI_Bcast(&tasks_size, 1, MPI_INT, config_mpi.manager, MPI_COMM_WORLD);
|
||||
if (config_mpi.rank != config_mpi.manager) {
|
||||
msg = new char[tasks_size + 1];
|
||||
}
|
||||
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
|
||||
tasks = json::parse(msg);
|
||||
delete[] msg;
|
||||
auto env = platform::DotEnv();
|
||||
auto datasets = Datasets(config.discretize, Paths::datasets(), env.get("discretize_algo"));
|
||||
|
||||
if (config_mpi.rank == config_mpi.manager) {
|
||||
//
|
||||
// 2a. Producer delivers the tasks to the consumers
|
||||
//
|
||||
auto datasets_names = filterDatasets(datasets);
|
||||
json all_results = MPI_SEARCH::producer(datasets_names, tasks, config_mpi, MPI_Result);
|
||||
std::cout << separator << std::endl;
|
||||
//
|
||||
// 3. Manager select the bests sccores for each dataset
|
||||
//
|
||||
auto results = initializeResults();
|
||||
MPI_SEARCH::select_best_results_folds(results, all_results, config.model);
|
||||
//
|
||||
// 3.2 Save the results
|
||||
//
|
||||
save(results);
|
||||
} else {
|
||||
//
|
||||
// 2b. Consumers process the tasks and send the results to the producer
|
||||
//
|
||||
MPI_SEARCH::consumer(datasets, tasks, config, config_mpi, MPI_Result);
|
||||
}
|
||||
}
|
||||
json GridSearch::initializeResults()
|
||||
{
|
||||
// Load previous results if continue is set
|
||||
json results;
|
||||
if (config.continue_from != NO_CONTINUE()) {
|
||||
if (!config.quiet)
|
||||
std::cout << "* Loading previous results" << std::endl;
|
||||
std::cout << Colors::RESET() << "* Loading previous results" << std::endl;
|
||||
try {
|
||||
std::ifstream file(Paths::grid_output(config.model));
|
||||
if (file.is_open()) {
|
||||
@@ -237,4 +93,226 @@ namespace platform {
|
||||
};
|
||||
file << output.dump(4);
|
||||
}
|
||||
//
|
||||
//
|
||||
//
|
||||
json GridSearch::producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
json results;
|
||||
int num_tasks = tasks.size();
|
||||
//
|
||||
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||
//
|
||||
for (int i = 0; i < num_tasks; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
||||
}
|
||||
//
|
||||
// 2a.2 Producer will send the end message to all the consumers
|
||||
//
|
||||
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
||||
}
|
||||
return results;
|
||||
}
|
||||
void GridSearch::consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
//
|
||||
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
||||
int task;
|
||||
while (true) {
|
||||
MPI_Status status;
|
||||
//
|
||||
// 2b.2 Consumers receive the task from the producer and process it
|
||||
//
|
||||
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_END) {
|
||||
break;
|
||||
}
|
||||
consumer_go(config, config_mpi, tasks, task, datasets, &result);
|
||||
//
|
||||
// 2b.3 Consumers send the result to the producer
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
||||
}
|
||||
}
|
||||
void GridSearch::select_best_results_folds(json& results, json& all_results, std::string& model)
|
||||
{
|
||||
Timer timer;
|
||||
auto grid = GridData(Paths::grid_input(model));
|
||||
//
|
||||
// Select the best result of the computed outer folds
|
||||
//
|
||||
for (const auto& result : all_results.items()) {
|
||||
// each result has the results of all the outer folds as each one were a different task
|
||||
double best_score = 0.0;
|
||||
json best;
|
||||
for (const auto& result_fold : result.value()) {
|
||||
double score = result_fold["score"].get<double>();
|
||||
if (score > best_score) {
|
||||
best_score = score;
|
||||
best = result_fold;
|
||||
}
|
||||
}
|
||||
auto dataset = result.key();
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
json json_best = {
|
||||
{ "score", best_score },
|
||||
{ "hyperparameters", combinations[best["combination"].get<int>()] },
|
||||
{ "date", get_date() + " " + get_time() },
|
||||
{ "grid", grid.getInputGrid(dataset) },
|
||||
{ "duration", timer.translate2String(best["time"].get<double>()) }
|
||||
};
|
||||
results[dataset] = json_best;
|
||||
}
|
||||
}
|
||||
json GridSearch::store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
||||
{
|
||||
json json_result = {
|
||||
{ "score", result.score },
|
||||
{ "combination", result.idx_combination },
|
||||
{ "fold", result.n_fold },
|
||||
{ "time", result.time },
|
||||
{ "dataset", result.idx_dataset },
|
||||
{ "process", result.process },
|
||||
{ "task", result.task }
|
||||
};
|
||||
auto name = names[result.idx_dataset];
|
||||
if (!results.contains(name)) {
|
||||
results[name] = json::array();
|
||||
}
|
||||
results[name].push_back(json_result);
|
||||
return results;
|
||||
}
|
||||
void GridSearch::consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
|
||||
{
|
||||
//
|
||||
// initialize
|
||||
//
|
||||
Timer timer;
|
||||
timer.start();
|
||||
json task = tasks[n_task];
|
||||
auto model = config.model;
|
||||
auto grid = GridData(Paths::grid_input(model));
|
||||
auto dataset_name = task["dataset"].get<std::string>();
|
||||
auto idx_dataset = task["idx_dataset"].get<int>();
|
||||
auto seed = task["seed"].get<int>();
|
||||
auto n_fold = task["fold"].get<int>();
|
||||
bool stratified = config.stratified;
|
||||
bayesnet::Smoothing_t smooth;
|
||||
if (config.smooth_strategy == "ORIGINAL")
|
||||
smooth = bayesnet::Smoothing_t::ORIGINAL;
|
||||
else if (config.smooth_strategy == "LAPLACE")
|
||||
smooth = bayesnet::Smoothing_t::LAPLACE;
|
||||
else if (config.smooth_strategy == "CESTNIK")
|
||||
smooth = bayesnet::Smoothing_t::CESTNIK;
|
||||
//
|
||||
// Generate the hyperparameters combinations
|
||||
//
|
||||
auto& dataset = datasets.getDataset(dataset_name);
|
||||
auto combinations = grid.getGrid(dataset_name);
|
||||
dataset.load();
|
||||
auto [X, y] = dataset.getTensors();
|
||||
auto features = dataset.getFeatures();
|
||||
auto className = dataset.getClassName();
|
||||
//
|
||||
// Start working on task
|
||||
//
|
||||
folding::Fold* fold;
|
||||
if (stratified)
|
||||
fold = new folding::StratifiedKFold(config.n_folds, y, seed);
|
||||
else
|
||||
fold = new folding::KFold(config.n_folds, y.size(0), seed);
|
||||
auto [train, test] = fold->getFold(n_fold);
|
||||
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
|
||||
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
|
||||
float best_fold_score = 0.0;
|
||||
int best_idx_combination = -1;
|
||||
json best_fold_hyper;
|
||||
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
|
||||
auto hyperparam_line = combinations[idx_combination];
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
folding::Fold* nested_fold;
|
||||
if (config.stratified)
|
||||
nested_fold = new folding::StratifiedKFold(config.nested, y_train, seed);
|
||||
else
|
||||
nested_fold = new folding::KFold(config.nested, y_train.size(0), seed);
|
||||
double score = 0.0;
|
||||
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||
//
|
||||
// Nested level fold
|
||||
//
|
||||
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||
auto train_nested_t = torch::tensor(train_nested);
|
||||
auto test_nested_t = torch::tensor(test_nested);
|
||||
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
||||
auto y_nested_train = y_train.index({ train_nested_t });
|
||||
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||
auto y_nested_test = y_train.index({ test_nested_t });
|
||||
//
|
||||
// Build Classifier with selected hyperparameters
|
||||
//
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset_name);
|
||||
clf->setHyperparameters(hyperparameters.get(dataset_name));
|
||||
//
|
||||
// Train model
|
||||
//
|
||||
clf->fit(X_nested_train, y_nested_train, features, className, states, smooth);
|
||||
//
|
||||
// Test model
|
||||
//
|
||||
score += clf->score(X_nested_test, y_nested_test);
|
||||
}
|
||||
delete nested_fold;
|
||||
score /= config.nested;
|
||||
if (score > best_fold_score) {
|
||||
best_fold_score = score;
|
||||
best_idx_combination = idx_combination;
|
||||
best_fold_hyper = hyperparam_line;
|
||||
}
|
||||
}
|
||||
delete fold;
|
||||
//
|
||||
// Build Classifier with the best hyperparameters to obtain the best score
|
||||
//
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset_name);
|
||||
clf->setHyperparameters(best_fold_hyper);
|
||||
clf->fit(X_train, y_train, features, className, states, smooth);
|
||||
best_fold_score = clf->score(X_test, y_test);
|
||||
//
|
||||
// Return the result
|
||||
//
|
||||
result->idx_dataset = task["idx_dataset"].get<int>();
|
||||
result->idx_combination = best_idx_combination;
|
||||
result->score = best_fold_score;
|
||||
result->n_fold = n_fold;
|
||||
result->time = timer.getDuration();
|
||||
result->process = config_mpi.rank;
|
||||
result->task = n_task;
|
||||
//
|
||||
// Update progress bar
|
||||
//
|
||||
std::cout << get_color_rank(config_mpi.rank) << std::flush;
|
||||
}
|
||||
} /* namespace platform */
|
@@ -21,235 +21,15 @@ namespace platform {
|
||||
~GridSearch() = default;
|
||||
json loadResults();
|
||||
static inline std::string NO_CONTINUE() { return "NO_CONTINUE"; }
|
||||
void go(struct ConfigMPI& config_mpi);
|
||||
private:
|
||||
void save(json& results);
|
||||
json initializeResults();
|
||||
std::vector<std::string> filterDatasets(Datasets& datasets) const;
|
||||
json build_tasks();
|
||||
};
|
||||
/* *************************************************************************************************************
|
||||
//
|
||||
// MPI Search Functions
|
||||
//
|
||||
************************************************************************************************************* */
|
||||
class MPI_SEARCH :public MPI_Base {
|
||||
public:
|
||||
static json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
json results;
|
||||
int num_tasks = tasks.size();
|
||||
|
||||
//
|
||||
// 2a.1 Producer will loop to send all the tasks to the consumers and receive the results
|
||||
//
|
||||
for (int i = 0; i < num_tasks; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_TASK, MPI_COMM_WORLD);
|
||||
}
|
||||
//
|
||||
// 2a.2 Producer will send the end message to all the consumers
|
||||
//
|
||||
for (int i = 0; i < config_mpi.n_procs - 1; ++i) {
|
||||
MPI_Status status;
|
||||
MPI_Recv(&result, 1, MPI_Result, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_RESULT) {
|
||||
//Store result
|
||||
store_result(names, result, results);
|
||||
}
|
||||
MPI_Send(&i, 1, MPI_INT, status.MPI_SOURCE, TAG_END, MPI_COMM_WORLD);
|
||||
}
|
||||
return results;
|
||||
}
|
||||
static void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result)
|
||||
{
|
||||
Task_Result result;
|
||||
//
|
||||
// 2b.1 Consumers announce to the producer that they are ready to receive a task
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_QUERY, MPI_COMM_WORLD);
|
||||
int task;
|
||||
while (true) {
|
||||
MPI_Status status;
|
||||
//
|
||||
// 2b.2 Consumers receive the task from the producer and process it
|
||||
//
|
||||
MPI_Recv(&task, 1, MPI_INT, config_mpi.manager, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
||||
if (status.MPI_TAG == TAG_END) {
|
||||
break;
|
||||
}
|
||||
consumer_go(config, config_mpi, tasks, task, datasets, &result);
|
||||
//
|
||||
// 2b.3 Consumers send the result to the producer
|
||||
//
|
||||
MPI_Send(&result, 1, MPI_Result, config_mpi.manager, TAG_RESULT, MPI_COMM_WORLD);
|
||||
}
|
||||
}
|
||||
static void select_best_results_folds(json& results, json& all_results, std::string& model)
|
||||
{
|
||||
Timer timer;
|
||||
auto grid = GridData(Paths::grid_input(model));
|
||||
//
|
||||
// Select the best result of the computed outer folds
|
||||
//
|
||||
for (const auto& result : all_results.items()) {
|
||||
// each result has the results of all the outer folds as each one were a different task
|
||||
double best_score = 0.0;
|
||||
json best;
|
||||
for (const auto& result_fold : result.value()) {
|
||||
double score = result_fold["score"].get<double>();
|
||||
if (score > best_score) {
|
||||
best_score = score;
|
||||
best = result_fold;
|
||||
}
|
||||
}
|
||||
auto dataset = result.key();
|
||||
auto combinations = grid.getGrid(dataset);
|
||||
json json_best = {
|
||||
{ "score", best_score },
|
||||
{ "hyperparameters", combinations[best["combination"].get<int>()] },
|
||||
{ "date", get_date() + " " + get_time() },
|
||||
{ "grid", grid.getInputGrid(dataset) },
|
||||
{ "duration", timer.translate2String(best["time"].get<double>()) }
|
||||
};
|
||||
results[dataset] = json_best;
|
||||
}
|
||||
}
|
||||
static json store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
||||
{
|
||||
json json_result = {
|
||||
{ "score", result.score },
|
||||
{ "combination", result.idx_combination },
|
||||
{ "fold", result.n_fold },
|
||||
{ "time", result.time },
|
||||
{ "dataset", result.idx_dataset }
|
||||
};
|
||||
auto name = names[result.idx_dataset];
|
||||
if (!results.contains(name)) {
|
||||
results[name] = json::array();
|
||||
}
|
||||
results[name].push_back(json_result);
|
||||
return results;
|
||||
}
|
||||
static void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
|
||||
{
|
||||
//
|
||||
// initialize
|
||||
//
|
||||
Timer timer;
|
||||
timer.start();
|
||||
json task = tasks[n_task];
|
||||
auto model = config.model;
|
||||
auto grid = GridData(Paths::grid_input(model));
|
||||
auto dataset_name = task["dataset"].get<std::string>();
|
||||
auto idx_dataset = task["idx_dataset"].get<int>();
|
||||
auto seed = task["seed"].get<int>();
|
||||
auto n_fold = task["fold"].get<int>();
|
||||
bool stratified = config.stratified;
|
||||
bayesnet::Smoothing_t smooth;
|
||||
if (config.smooth_strategy == "ORIGINAL")
|
||||
smooth = bayesnet::Smoothing_t::ORIGINAL;
|
||||
else if (config.smooth_strategy == "LAPLACE")
|
||||
smooth = bayesnet::Smoothing_t::LAPLACE;
|
||||
else if (config.smooth_strategy == "CESTNIK")
|
||||
smooth = bayesnet::Smoothing_t::CESTNIK;
|
||||
//
|
||||
// Generate the hyperparameters combinations
|
||||
//
|
||||
auto& dataset = datasets.getDataset(dataset_name);
|
||||
auto combinations = grid.getGrid(dataset_name);
|
||||
dataset.load();
|
||||
auto [X, y] = dataset.getTensors();
|
||||
auto features = dataset.getFeatures();
|
||||
auto className = dataset.getClassName();
|
||||
//
|
||||
// Start working on task
|
||||
//
|
||||
folding::Fold* fold;
|
||||
if (stratified)
|
||||
fold = new folding::StratifiedKFold(config.n_folds, y, seed);
|
||||
else
|
||||
fold = new folding::KFold(config.n_folds, y.size(0), seed);
|
||||
auto [train, test] = fold->getFold(n_fold);
|
||||
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
|
||||
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
|
||||
float best_fold_score = 0.0;
|
||||
int best_idx_combination = -1;
|
||||
json best_fold_hyper;
|
||||
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
|
||||
auto hyperparam_line = combinations[idx_combination];
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), hyperparam_line);
|
||||
folding::Fold* nested_fold;
|
||||
if (config.stratified)
|
||||
nested_fold = new folding::StratifiedKFold(config.nested, y_train, seed);
|
||||
else
|
||||
nested_fold = new folding::KFold(config.nested, y_train.size(0), seed);
|
||||
double score = 0.0;
|
||||
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||
//
|
||||
// Nested level fold
|
||||
//
|
||||
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||
auto train_nested_t = torch::tensor(train_nested);
|
||||
auto test_nested_t = torch::tensor(test_nested);
|
||||
auto X_nested_train = X_train.index({ "...", train_nested_t });
|
||||
auto y_nested_train = y_train.index({ train_nested_t });
|
||||
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||
auto y_nested_test = y_train.index({ test_nested_t });
|
||||
//
|
||||
// Build Classifier with selected hyperparameters
|
||||
//
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset_name);
|
||||
clf->setHyperparameters(hyperparameters.get(dataset_name));
|
||||
//
|
||||
// Train model
|
||||
//
|
||||
clf->fit(X_nested_train, y_nested_train, features, className, states, smooth);
|
||||
//
|
||||
// Test model
|
||||
//
|
||||
score += clf->score(X_nested_test, y_nested_test);
|
||||
}
|
||||
delete nested_fold;
|
||||
score /= config.nested;
|
||||
if (score > best_fold_score) {
|
||||
best_fold_score = score;
|
||||
best_idx_combination = idx_combination;
|
||||
best_fold_hyper = hyperparam_line;
|
||||
}
|
||||
}
|
||||
delete fold;
|
||||
//
|
||||
// Build Classifier with the best hyperparameters to obtain the best score
|
||||
//
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset_name);
|
||||
clf->setHyperparameters(best_fold_hyper);
|
||||
clf->fit(X_train, y_train, features, className, states, smooth);
|
||||
best_fold_score = clf->score(X_test, y_test);
|
||||
//
|
||||
// Return the result
|
||||
//
|
||||
result->idx_dataset = task["idx_dataset"].get<int>();
|
||||
result->idx_combination = best_idx_combination;
|
||||
result->score = best_fold_score;
|
||||
result->n_fold = n_fold;
|
||||
result->time = timer.getDuration();
|
||||
//
|
||||
// Update progress bar
|
||||
//
|
||||
std::cout << get_color_rank(config_mpi.rank) << std::flush;
|
||||
}
|
||||
json producer(std::vector<std::string>& names, json& tasks, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
||||
void consumer(Datasets& datasets, json& tasks, struct ConfigGrid& config, struct ConfigMPI& config_mpi, MPI_Datatype& MPI_Result);
|
||||
void select_best_results_folds(json& results, json& all_results, std::string& model);
|
||||
json store_result(std::vector<std::string>& names, Task_Result& result, json& results);
|
||||
void consumer_go(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result);
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif
|
Reference in New Issue
Block a user