Fix smoothing problem in gridsearch
This commit is contained in:
@@ -40,6 +40,11 @@ void add_compute_args(argparse::ArgumentParser& program)
|
||||
program.add_argument("--continue").help("Continue computing from that dataset").default_value(platform::GridSearch::NO_CONTINUE());
|
||||
program.add_argument("--only").help("Used with continue to compute that dataset only").default_value(false).implicit_value(true);
|
||||
program.add_argument("--exclude").default_value("[]").help("Datasets to exclude in json format, e.g. [\"dataset1\", \"dataset2\"]");
|
||||
auto valid_choices = env.valid_tokens("smooth_strat");
|
||||
auto& smooth_arg = program.add_argument("--smooth-strat").help("Smooth strategy used in Bayes Network node initialization. Valid values: " + env.valid_values("smooth_strat")).default_value(env.get("smooth_strat"));
|
||||
for (auto choice : valid_choices) {
|
||||
smooth_arg.choices(choice);
|
||||
}
|
||||
program.add_argument("--nested").help("Set the double/nested cross validation number of folds").default_value(5).scan<'i', int>().action([](const std::string& value) {
|
||||
try {
|
||||
auto k = stoi(value);
|
||||
@@ -188,6 +193,7 @@ void compute(argparse::ArgumentParser& program)
|
||||
config.score = program.get<std::string>("score");
|
||||
config.discretize = program.get<bool>("discretize");
|
||||
config.stratified = program.get<bool>("stratified");
|
||||
config.smooth_strategy = program.get<std::string>("smooth-strat");
|
||||
config.n_folds = program.get<int>("folds");
|
||||
config.quiet = program.get<bool>("quiet");
|
||||
config.only = program.get<bool>("only");
|
||||
|
@@ -19,6 +19,16 @@ namespace platform {
|
||||
}
|
||||
GridSearch::GridSearch(struct ConfigGrid& config) : config(config)
|
||||
{
|
||||
if (config.smooth_strategy == "ORIGINAL")
|
||||
smooth_type = bayesnet::Smoothing_t::ORIGINAL;
|
||||
else if (config.smooth_strategy == "LAPLACE")
|
||||
smooth_type = bayesnet::Smoothing_t::LAPLACE;
|
||||
else if (config.smooth_strategy == "CESTNIK")
|
||||
smooth_type = bayesnet::Smoothing_t::CESTNIK;
|
||||
else {
|
||||
std::cerr << "GridSearch: Unknown smoothing strategy: " << config.smooth_strategy << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
json GridSearch::loadResults()
|
||||
{
|
||||
@@ -87,16 +97,21 @@ namespace platform {
|
||||
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
|
||||
std::shuffle(tasks.begin(), tasks.end(), g);
|
||||
std::cout << "* Number of tasks: " << tasks.size() << std::endl;
|
||||
std::cout << separator;
|
||||
std::cout << separator << std::flush;
|
||||
for (int i = 0; i < tasks.size(); ++i) {
|
||||
std::cout << (i + 1) % 10;
|
||||
if ((i + 1) % 10 == 0)
|
||||
std::cout << separator;
|
||||
else
|
||||
std::cout << (i + 1) % 10;
|
||||
}
|
||||
std::cout << separator << std::endl << separator << std::flush;
|
||||
return tasks;
|
||||
}
|
||||
void process_task_mpi_consumer(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
|
||||
{
|
||||
//
|
||||
// initialize
|
||||
//
|
||||
Timer timer;
|
||||
timer.start();
|
||||
json task = tasks[n_task];
|
||||
@@ -107,7 +122,16 @@ namespace platform {
|
||||
auto seed = task["seed"].get<int>();
|
||||
auto n_fold = task["fold"].get<int>();
|
||||
bool stratified = config.stratified;
|
||||
// Generate the hyperparamters combinations
|
||||
bayesnet::Smoothing_t smooth;
|
||||
if (config.smooth_strategy == "ORIGINAL")
|
||||
smooth = bayesnet::Smoothing_t::ORIGINAL;
|
||||
else if (config.smooth_strategy == "LAPLACE")
|
||||
smooth = bayesnet::Smoothing_t::LAPLACE;
|
||||
else if (config.smooth_strategy == "CESTNIK")
|
||||
smooth = bayesnet::Smoothing_t::CESTNIK;
|
||||
//
|
||||
// Generate the hyperparameters combinations
|
||||
//
|
||||
auto& dataset = datasets.getDataset(dataset_name);
|
||||
auto combinations = grid.getGrid(dataset_name);
|
||||
dataset.load();
|
||||
@@ -125,9 +149,8 @@ namespace platform {
|
||||
auto [train, test] = fold->getFold(n_fold);
|
||||
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
|
||||
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
|
||||
double best_fold_score = 0.0;
|
||||
float best_fold_score = 0.0;
|
||||
int best_idx_combination = -1;
|
||||
bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE;
|
||||
json best_fold_hyper;
|
||||
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
|
||||
auto hyperparam_line = combinations[idx_combination];
|
||||
@@ -139,7 +162,9 @@ namespace platform {
|
||||
nested_fold = new folding::KFold(config.nested, y_train.size(0), seed);
|
||||
double score = 0.0;
|
||||
for (int n_nested_fold = 0; n_nested_fold < config.nested; n_nested_fold++) {
|
||||
//
|
||||
// Nested level fold
|
||||
//
|
||||
auto [train_nested, test_nested] = nested_fold->getFold(n_nested_fold);
|
||||
auto train_nested_t = torch::tensor(train_nested);
|
||||
auto test_nested_t = torch::tensor(test_nested);
|
||||
@@ -147,14 +172,20 @@ namespace platform {
|
||||
auto y_nested_train = y_train.index({ train_nested_t });
|
||||
auto X_nested_test = X_train.index({ "...", test_nested_t });
|
||||
auto y_nested_test = y_train.index({ test_nested_t });
|
||||
//
|
||||
// Build Classifier with selected hyperparameters
|
||||
//
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset_name);
|
||||
clf->setHyperparameters(hyperparameters.get(dataset_name));
|
||||
//
|
||||
// Train model
|
||||
clf->fit(X_nested_train, y_nested_train, features, className, states, smoothing);
|
||||
//
|
||||
clf->fit(X_nested_train, y_nested_train, features, className, states, smooth);
|
||||
//
|
||||
// Test model
|
||||
//
|
||||
score += clf->score(X_nested_test, y_nested_test);
|
||||
}
|
||||
delete nested_fold;
|
||||
@@ -166,21 +197,27 @@ namespace platform {
|
||||
}
|
||||
}
|
||||
delete fold;
|
||||
//
|
||||
// Build Classifier with the best hyperparameters to obtain the best score
|
||||
//
|
||||
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
|
||||
auto clf = Models::instance()->create(config.model);
|
||||
auto valid = clf->getValidHyperparameters();
|
||||
hyperparameters.check(valid, dataset_name);
|
||||
clf->setHyperparameters(best_fold_hyper);
|
||||
clf->fit(X_train, y_train, features, className, states, smoothing);
|
||||
clf->fit(X_train, y_train, features, className, states, smooth);
|
||||
best_fold_score = clf->score(X_test, y_test);
|
||||
//
|
||||
// Return the result
|
||||
//
|
||||
result->idx_dataset = task["idx_dataset"].get<int>();
|
||||
result->idx_combination = best_idx_combination;
|
||||
result->score = best_fold_score;
|
||||
result->n_fold = n_fold;
|
||||
result->time = timer.getDuration();
|
||||
//
|
||||
// Update progress bar
|
||||
//
|
||||
std::cout << get_color_rank(config_mpi.rank) << std::flush;
|
||||
}
|
||||
json store_result(std::vector<std::string>& names, Task_Result& result, json& results)
|
||||
@@ -294,7 +331,7 @@ namespace platform {
|
||||
* "idx_dataset": idx_dataset, // used to identify the dataset in the results
|
||||
* // this index is relative to the list of used datasets in the actual run not to the whole datasets list
|
||||
* "seed": # of seed to use,
|
||||
* "Fold": # of fold to process
|
||||
* "fold": # of fold to process
|
||||
* }
|
||||
*
|
||||
* This way a task consists in process all combinations of hyperparameters for a dataset, seed and fold
|
||||
|
@@ -8,6 +8,8 @@
|
||||
#include "common/Timer.h"
|
||||
#include "main/HyperParameters.h"
|
||||
#include "GridData.h"
|
||||
#include "bayesnet/network/Network.h"
|
||||
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::ordered_json;
|
||||
@@ -16,6 +18,7 @@ namespace platform {
|
||||
std::string score;
|
||||
std::string continue_from;
|
||||
std::string platform;
|
||||
std::string smooth_strategy;
|
||||
bool quiet;
|
||||
bool only; // used with continue_from to only compute that dataset
|
||||
bool discretize;
|
||||
@@ -56,6 +59,7 @@ namespace platform {
|
||||
json build_tasks_mpi(int rank);
|
||||
Timer timer; // used to measure the time of the whole process
|
||||
const std::string separator = "|";
|
||||
bayesnet::Smoothing_t smooth_type{ bayesnet::Smoothing_t::NONE };
|
||||
};
|
||||
} /* namespace platform */
|
||||
#endif
|
Reference in New Issue
Block a user