Compare commits

167 Commits

Author SHA1 Message Date
ba455bb934 Rename config.h to config_platform.h 2024-12-13 19:57:05 +01:00
a65955248a Add mdlp as dependency 2024-12-13 10:28:27 +01:00
84930b0537 Remove lib/mdlp folder 2024-12-13 10:11:45 +01:00
10c65f44a0 Add mdlp library dependency 2024-12-13 09:55:37 +01:00
6d112f01e7 Remove external library dependency 2024-12-13 09:49:46 +01:00
401296293b Add header to b_main time 2024-12-11 23:18:20 +01:00
9566ae4cf6 Fix gridsearch discretize_algo mistake 2024-12-11 12:45:16 +01:00
55187ee521 Add time to experiment seed 2024-12-11 10:05:24 +01:00
68ea06d129 Fix fimdlp library includes 2024-11-20 21:19:35 +01:00
6c1d1d0d32 Remove mdlp files 2024-11-20 21:14:42 +01:00
b0853d169b Remove mdlp submodule 2024-11-20 21:14:19 +01:00
26f8e07774 Remove Python 3.11 only requirement 2024-11-20 20:21:39 +01:00
315dfb104f Add train test time to report console 2024-10-25 09:53:31 +02:00
381f226d53 Fix pm code in tex bestresults 2024-10-15 10:32:28 +02:00
ea13835701 Add Markdown best results output 2024-10-07 18:08:42 +02:00
d75468cf78 Replace Nº with # in output labels 2024-09-28 22:55:11 +02:00
c58bd9d60d add score name to best results excel file name 2024-09-28 18:58:49 +02:00
148a3b831a Add missing \ to results.tex 2024-09-03 12:57:22 +02:00
69063badbb Fix status error in holm.tex 2024-09-03 12:54:09 +02:00
6ae2b2182a Complete Tex output with Holm test 2024-09-03 12:43:50 +02:00
4dbd76df55 Continue TeX output 2024-09-02 20:30:47 +02:00
4545f76667 Begin adding TeX output to b_best -m any command 2024-09-02 18:14:53 +02:00
8372987dae Update sample to last library version 2024-08-31 12:41:11 +02:00
d72943c749 Fix hyperparams mistake 2024-08-07 10:52:04 +02:00
800246acd2 Accept nested hyperparameters in b_main 2024-08-04 17:19:31 +02:00
0ea967dd9d Support b_main with best hyperparameters 2024-08-02 19:10:25 +02:00
97abec8b69 Fix hide result error 2024-08-02 12:02:11 +02:00
17c9522e77 Add support to old format results 2024-07-25 17:06:31 +02:00
45af550cf9 Change time showed in report 2024-07-24 18:40:59 +02:00
5d5f49777e Fix wrong columns message 2024-07-16 11:30:28 +02:00
540a8ea06d Refactor update rows 2024-07-16 10:33:44 +02:00
1924c4392b Adapt screen to resized window 2024-07-16 10:25:15 +02:00
f2556a30af Add screen width control in b_manage 2024-07-15 18:06:39 +02:00
2f2ed00ca1 Add roc-auc-ovr as score to b_main 2024-07-14 12:48:33 +02:00
28f6a0d7a7 RocAuc refactor to speed up binary classif. problems 2024-07-13 16:54:34 +02:00
028522f180 Add AUC to reportConsole 2024-07-12 17:41:23 +02:00
84adf13a79 Add AUC computing in Experiment and store in result 2024-07-12 17:23:03 +02:00
26dfe6d056 Add Graphs to results
Add bin5..bin10 q & u discretizers algos
Fix trouble in computing states
Update mdlp to 2.0.0
2024-07-11 11:23:20 +02:00
3acc34e4c6 Fix title mistake in b_main 2024-06-17 19:07:15 +02:00
8f92b74260 Change Constant smooth type 2024-06-14 10:16:32 +02:00
3d900f8c81 Update models versions 2024-06-13 12:30:31 +02:00
e628d80f4c Experiment working with smoothing and disc-algo 2024-06-11 13:52:26 +02:00
0f06f8971e Change default smooth type in Experiment 2024-06-10 15:50:54 +02:00
f800772149 Add new hyperparameters validation in b_main 2024-06-10 10:16:07 +02:00
b8a8ddaf8c Add smooth strategy to hyperparameter in b_main
Add smooth strategy to reports
2024-06-09 20:46:14 +02:00
90555489ff Add discretiz_algo to b_main as hyperparameter 2024-06-09 11:35:50 +02:00
080f3cee34 Add discretization algo to reports 2024-06-09 01:11:56 +02:00
643633e6dd fit discretizer only with train data 2024-06-09 00:50:55 +02:00
361c51d864 Add traintest split in gridsearch 2024-06-07 11:05:59 +02:00
5dd3deca1a Add discretiz algorithm management to b_main & Dataset 2024-06-07 09:00:51 +02:00
2202a81782 Add discretization algo to result 2024-06-06 18:33:01 +02:00
c4f4e332f6 Add parsing to DotEnv 2024-06-06 17:55:39 +02:00
a7ec930fa0 Add numeric features management to Dataset 2024-06-06 13:03:57 +02:00
6858b3d89a Remove model selection from b_best and b_list 2024-06-03 17:09:45 +02:00
5fb176d78a Add message of the file saved in b_main 2024-05-29 20:52:25 +02:00
f5d5c35002 Add generate-fold-files to b_main 2024-05-28 10:52:08 +02:00
b34af13eea Add new Files library 2024-05-26 17:27:42 +02:00
e3a06264a9 Remove old Files library 2024-05-26 17:25:36 +02:00
df82f82e88 Add F column to b_best in excel 2024-05-21 08:45:17 +02:00
886dde7a06 Fix various classification reports in the same excel book 2024-05-19 18:53:55 +02:00
88468434e7 Add color and fix format in classification report in excel 2024-05-19 11:12:31 +02:00
ad5c3319bd Complete excel classification report 2024-05-18 22:59:37 +02:00
594adb0534 Begin classification report in excel 2024-05-18 21:37:34 +02:00
b9e0c92334 Move ResultsDatasetConsole to results folder 2024-05-18 18:41:17 +02:00
25bd7a42c6 Replacce pragma once with ifndef 2024-05-18 13:00:13 +02:00
c165a4bdda Fix refactor of static aggregate method 2024-05-17 23:38:21 +02:00
49a36904dc Refactor aggregate score to a constructor 2024-05-17 22:52:13 +02:00
577351eda5 put using json=nlohmann:ordered_json under namespace platform 2024-05-17 18:32:01 +02:00
a3c4bde460 Fix problem with num of classes in pyclassifiers experiments 2024-05-17 14:05:09 +02:00
696c0564a7 Add BoostA2DE model and fix some report errors 2024-05-17 01:25:27 +02:00
30a6d5e60d Complete reporconsole with classification report 2024-05-14 13:22:13 +02:00
f8f3ca28dc Fix colors of classification report 2024-05-14 12:06:08 +02:00
5c190d7c66 Add train classification report 2024-05-14 11:45:54 +02:00
99c9c6731f Add colors to confusion matrix and classification report 2024-05-14 00:41:29 +02:00
8d20545fd2 Git add Confusion Matrix to console report 2024-05-13 10:40:25 +02:00
2b480cdcb7 Merge pull request 'Fix json key automatic ordering error when creating Score from json' (#4) from temp into main
Reviewed-on: #4
2024-05-12 16:36:08 +00:00
ebaddf1a6c Fix json key automatic ordering error when creating Score from json 2024-05-12 18:23:48 +02:00
07a2efb298 Show classification report in b_manage 2024-05-12 12:52:22 +02:00
f88b223c46 Update libraries 2024-05-12 12:26:49 +02:00
69b9609154 Add labels to confusion_matrices in results 2024-05-10 17:12:11 +02:00
6d4117d188 Add Classification report to end of experiment if only one dataset is tested 2024-05-10 14:11:51 +02:00
ec0268c514 Add confusion matrix to json results
Add Aggregate method to Scores
2024-05-10 13:42:38 +02:00
dd94fd51f7 Add json constructor to Scores 2024-05-10 11:35:07 +02:00
009ed037b8 Add Scores class and TestsScores 2024-05-10 00:51:21 +02:00
6d1b78ada7 Remove trace message from report 2024-05-09 17:09:03 +02:00
3882ebd6e4 Add SPnDE & A2DE models 2024-05-05 19:53:14 +02:00
423242d280 Add logo to README 2024-05-02 11:36:58 +02:00
b9381aa453 Fix json keys in ReporExcelCompared 2024-05-01 11:53:21 +02:00
33cfb78554 Fix Nodes, Leaves, Depth vs Nodes, Edges, States headers in reports 2024-04-21 11:05:12 +02:00
1caa39c071 Add env to enable test data 2024-04-19 10:02:59 +02:00
018c94bfe6 add platform filter to b_manage 2024-04-18 15:43:39 +02:00
a54d6b8716 Fix paginator error when deleting in b_manage 2024-04-17 12:57:57 +02:00
6cde09d81e Change launch parameters 2024-04-17 11:36:21 +02:00
7be95d889d Fix some output mistakes in b_manage experiments list 2024-04-17 11:35:43 +02:00
42d61c6fc4 Add datasets-file to b_main 2024-04-15 18:14:21 +02:00
e5e947779f Add datasets hyperparameter to b_main 2024-04-15 17:34:37 +02:00
ad168d13ba Add stratified and discretize to b_manage list 2024-04-11 11:45:43 +02:00
78b8a8ae66 Add platform to b_manage, fix report after experiment 2024-04-11 10:54:18 +02:00
7ed9073d15 Add ascending/descending sort to b_manage 2024-04-10 19:42:40 +02:00
ee93789ca3 Fix CMakeLists PyClassifier install folder 2024-04-10 13:34:48 +02:00
375ed437ed Find BayesNet and PyClassifiers in $HOME/lib folder 2024-04-10 00:53:39 +02:00
5ec7fe8d00 Show model version in b_main 2024-04-09 23:20:19 +02:00
72ea62f783 Update main CMakeLists 2024-04-06 21:15:51 +02:00
4b91f2bde0 Update vscode c++ configuration 2024-04-05 23:10:27 +02:00
3bc51cb7b0 Add pagination to detail result
Add version of libraries info to header
2024-04-04 00:14:21 +02:00
cf83d1f8f4 Add tests for libraries required versions 2024-04-03 20:51:21 +02:00
0dd10bcbe4 Fix some console report formats 2024-04-02 10:23:32 +02:00
622b36b2c7 Fix divide by 0 error in excel compared 2024-03-23 22:25:09 +01:00
ea29a96ca1 hide make buildr command 2024-03-21 11:30:03 +01:00
673a41fc4d fix b_main dataset selection 2024-03-19 17:37:32 +01:00
634ea36169 Add optimization to compile flags in Release 2024-03-18 14:00:34 +01:00
20fef5b6b3 Add excel to experiment view in b_manage 2024-03-18 10:21:28 +01:00
7cf864c3f3 Fix report after experiment 2024-03-18 10:10:48 +01:00
4a0fa33917 Remove indexList variable in ManageScreen 2024-03-17 13:08:07 +01:00
d47da27571 Complete pagination of result report 2024-03-17 11:26:26 +01:00
faccb09c43 Begin result report pagination 2024-03-17 02:07:10 +01:00
fa4f47ff35 Create Base class for paged reports 2024-03-17 01:22:50 +01:00
106a36109e Refactor report folder 2024-03-17 00:06:00 +01:00
37eba57765 Rename ManageResults -> ManageScreen 2024-03-16 23:44:21 +01:00
67487ffce1 shorten dataset name to maximum length 2024-03-16 23:37:37 +01:00
9c11dee019 Complete Datasets in b_manage 2024-03-16 22:39:25 +01:00
58ae2c7690 Complete file output in ResultsDataset & ReportDataset 2024-03-16 17:05:26 +01:00
fa366a4c22 Convert DatasetsConsole & ResultsDatasetConsole to string output 2024-03-16 13:48:49 +01:00
b9af086c29 Refactor library folders
Add paginators per output type in b_manage
2024-03-16 12:02:24 +01:00
6a285b149b Fix report and showindex header in bmanage 2024-03-16 01:24:47 +01:00
ad402ac21e ReportConsole to string 2024-03-16 01:16:00 +01:00
38978aa7b7 Add message of Excel file created in b_manage 2024-03-15 19:54:03 +01:00
3691363b8e Parsing errors to to status in b_manage 2024-03-15 19:28:37 +01:00
fe24aa0b3e Change header color to white in b_manage 2024-03-15 14:04:16 +01:00
175e0eb591 Fix some status issue in b_manage 2024-03-15 12:45:08 +01:00
1912d17498 Add status to b_manage 2024-03-15 11:31:56 +01:00
54249e5304 Add different header colors in b_manage 2024-03-15 00:24:16 +01:00
d7f92c9682 Refactor colors in b_manage 2024-03-15 00:18:30 +01:00
00bb7f4680 Adjust sizes in b_manage 2024-03-14 23:52:33 +01:00
bf5dabb169 Add pagination to b_manage 2024-03-14 23:41:05 +01:00
cdf339856a Fix b_manage error if no results were present 2024-03-13 17:56:44 +01:00
3ceea5677c Remove odd variable in some sources 2024-03-12 13:35:07 +01:00
260fd122eb Fix number in header of b_manage 2024-03-12 13:27:22 +01:00
eff0be1c1c Add apply number of lines in terminal in b_manage 2024-03-12 13:23:30 +01:00
0ade72a37a Permit partial results comparison 2024-03-12 00:24:36 +01:00
72cda3784a Add bold max score per model in b_list results 2024-03-11 17:02:58 +01:00
52d689666a Update License & Readme 2024-03-11 10:21:40 +01:00
26e87c9cb1 Merge pull request 'list_results' (#3) from list_results into main
Reviewed-on: #3
2024-03-11 08:54:01 +00:00
03cd6e5a51 Complete b_list results 2024-03-10 20:12:13 +01:00
cd9ff89b52 Add results to b_list 2024-03-10 18:02:03 +01:00
05d05e25c2 Add make example command 2024-03-10 13:25:55 +01:00
5cd6e3d1a5 Rename tests from cc to cpp 2024-03-10 13:04:02 +01:00
d9e9356d92 Rename all from *.cc to *.cpp 2024-03-10 13:03:37 +01:00
0010c840d1 Replace #define ... with pragma once 2024-03-10 12:50:35 +01:00
51f32113c0 Add model argument validation in b_best 2024-03-10 12:31:13 +01:00
b3b3d9f1b9 Add command results to b_list
Rename tostring -> toString in models
Add datasets names to b_main command help - validation
2024-03-10 12:16:02 +01:00
4c847fc3f6 Add model selection to b_best to filter results 2024-03-09 20:19:27 +01:00
7e4ee0a9a9 Refactor to accept new Library structure 2024-03-08 22:20:13 +01:00
b7398db9b1 Update CMake to work in Linux 2024-03-08 13:21:25 +01:00
0a9bd0d9c4 Update sample 2024-03-08 12:49:21 +01:00
7a3adaf4a9 Remove source bayesnet & pyclassifiers libraries dependency 2024-03-08 12:30:04 +01:00
5c4efa08db Add # models to ReportExcelCompared 2024-03-07 11:40:36 +01:00
576016bbd9 Merge pull request 'Create an excel report with two complete results compared in b_manage' (#2) from report_compared into main
Reviewed-on: #2
2024-03-06 12:17:30 +00:00
e26b3c0970 Add fixed header to Delta 2024-03-06 11:22:43 +01:00
183cf12300 Refactor column count and header 2024-03-06 10:35:42 +01:00
4eb08cd281 Complete sheet with totals 2024-03-06 01:26:51 +01:00
4f5f629124 Create class ReportExcelCompared 2024-03-05 23:44:19 +01:00
df011f7e6b Update second menu color in b_manage 2024-03-02 18:24:36 +01:00
42648f3125 Add info to README.md 2024-03-01 19:03:16 +01:00
d2832ed2b3 Add back to submenu in b_manage 2024-03-01 11:20:49 +01:00
ec323d86ab Refactor datasetsExcel 2024-02-29 19:05:20 +01:00
e4a6575722 Fix block header in b_list excel 2024-02-29 18:21:15 +01:00
134 changed files with 5464 additions and 2401 deletions

View File

@@ -4,8 +4,8 @@ diagrams:
Platform:
type: class
glob:
- src/*.cc
- src/modules/*.cc
- src/*.cpp
- src/modules/*.cpp
using_namespace: platform
include:
namespaces:
@@ -17,7 +17,7 @@ diagrams:
sequence:
type: sequence
glob:
- src/b_main.cc
- src/b_main.cpp
combine_free_functions_into_file_participants: true
using_namespace:
- std

View File

10
.gitmodules vendored
View File

@@ -10,10 +10,12 @@
[submodule "lib/libxlsxwriter"]
path = lib/libxlsxwriter
url = https://github.com/jmcnamara/libxlsxwriter.git
[submodule "lib/folding"]
path = lib/folding
url = https://github.com/rmontanana/folding
[submodule "lib/Files"]
path = lib/Files
url = https://github.com/rmontanana/ArffFiles
[submodule "lib/mdlp"]
path = lib/mdlp
url = https://github.com/rmontanana/mdlp
update = merge
[submodule "lib/PyClassifiers"]
path = lib/PyClassifiers
url = git@github.com:rmontanana/PyClassifiers

View File

@@ -11,7 +11,18 @@
],
"cStandard": "c17",
"cppStandard": "c++17",
"compileCommands": "${workspaceFolder}/cmake-build-release/compile_commands.json"
"compileCommands": "${workspaceFolder}/cmake-build-release/compile_commands.json",
"configurationProvider": "ms-vscode.cmake-tools"
},
{
"name": "Linux",
"includePath": [
"${workspaceFolder}/**"
],
"defines": [],
"cStandard": "c17",
"cppStandard": "c++17",
"configurationProvider": "ms-vscode.cmake-tools"
}
],
"version": 4

15
.vscode/launch.json vendored
View File

@@ -62,9 +62,9 @@
"--stratified",
"--discretize",
"-d",
"iris",
"glass",
"--hyperparameters",
"{\"repeatSparent\": true, \"maxModels\": 12}"
"{\"block_update\": true}"
],
"cwd": "/home/rmontanana/Code/discretizbench",
},
@@ -99,7 +99,9 @@
"request": "launch",
"program": "${workspaceFolder}/build_debug/src/b_list",
"args": [
"--excel"
"results",
"-d",
"mfeat-morphological"
],
//"cwd": "/Users/rmontanana/Code/discretizbench",
"cwd": "${workspaceFolder}/../discretizbench",
@@ -108,12 +110,13 @@
"name": "test",
"type": "lldb",
"request": "launch",
"program": "${workspaceFolder}/build_debug/tests/unit_tests",
"program": "${workspaceFolder}/build_debug/tests/unit_tests_platform",
"args": [
"-c=\"Metrics Test\"",
"[Scores]",
// "-c=\"Metrics Test\"",
// "-s",
],
"cwd": "${workspaceFolder}/build/tests",
"cwd": "${workspaceFolder}/build_debug/tests",
},
{
"name": "Build & debug active file",

View File

@@ -1,16 +1,12 @@
cmake_minimum_required(VERSION 3.20)
project(Platform
VERSION 1.0.2
VERSION 1.1.0
DESCRIPTION "Platform to run Experiments with classifiers."
HOMEPAGE_URL "https://github.com/rmontanana/platform"
LANGUAGES CXX
)
if (CODE_COVERAGE AND NOT ENABLE_TESTING)
MESSAGE(FATAL_ERROR "Code coverage requires testing enabled")
endif (CODE_COVERAGE AND NOT ENABLE_TESTING)
find_package(Torch REQUIRED)
if (POLICY CMP0135)
@@ -25,6 +21,8 @@ set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -Ofast")
set(CMAKE_CXX_FLAGS_DEBUG " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage -O0 -g")
# Options
# -------
@@ -48,7 +46,7 @@ if(Boost_FOUND)
endif()
# Python
find_package(Python3 3.11...3.11.9 COMPONENTS Interpreter Development REQUIRED)
find_package(Python3 3.11 COMPONENTS Interpreter Development REQUIRED)
message("Python3_LIBRARIES=${Python3_LIBRARIES}")
# CMakes modules
@@ -60,7 +58,6 @@ if (CODE_COVERAGE)
enable_testing()
include(CodeCoverage)
MESSAGE("Code coverage enabled")
set(CMAKE_CXX_FLAGS " ${CMAKE_CXX_FLAGS} -fprofile-arcs -ftest-coverage -O0 -g")
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
endif (CODE_COVERAGE)
@@ -70,18 +67,31 @@ endif (ENABLE_CLANG_TIDY)
# External libraries - dependencies of Platform
# ---------------------------------------------
add_git_submodule("lib/PyClassifiers")
add_git_submodule("lib/argparse")
add_git_submodule("lib/mdlp")
find_library(XLSXWRITER_LIB NAMES libxlsxwriter.dylib libxlsxwriter.so PATHS ${Platform_SOURCE_DIR}/lib/libxlsxwriter/lib)
message("XLSXWRITER_LIB=${XLSXWRITER_LIB}")
find_library(PyClassifiers NAMES libPyClassifiers PyClassifiers libPyClassifiers.a PATHS ${Platform_SOURCE_DIR}/../lib/lib REQUIRED)
find_path(PyClassifiers_INCLUDE_DIRS REQUIRED NAMES pyclassifiers PATHS ${Platform_SOURCE_DIR}/../lib/include)
find_library(BayesNet NAMES libBayesNet BayesNet libBayesNet.a PATHS ${Platform_SOURCE_DIR}/../lib/lib REQUIRED)
find_path(Bayesnet_INCLUDE_DIRS REQUIRED NAMES bayesnet PATHS ${Platform_SOURCE_DIR}/../lib/include)
message(STATUS "PyClassifiers=${PyClassifiers}")
message(STATUS "PyClassifiers_INCLUDE_DIRS=${PyClassifiers_INCLUDE_DIRS}")
message(STATUS "BayesNet=${BayesNet}")
message(STATUS "Bayesnet_INCLUDE_DIRS=${Bayesnet_INCLUDE_DIRS}")
# Subdirectories
# --------------
## Configure test data path
cmake_path(SET TEST_DATA_PATH "${CMAKE_CURRENT_SOURCE_DIR}/tests/data")
configure_file(src/common/SourceData.h.in "${CMAKE_BINARY_DIR}/configured_files/include/SourceData.h")
add_subdirectory(config)
add_subdirectory(src)
add_subdirectory(sample)
file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${Platform_SOURCE_DIR}/src/*.cc)
# add_subdirectory(sample)
file(GLOB Platform_SOURCES CONFIGURE_DEPENDS ${Platform_SOURCE_DIR}/src/*.cpp)
# Testing
# -------

View File

@@ -976,7 +976,7 @@ INPUT_FILE_ENCODING =
# Note the list of default checked file patterns might differ from the list of
# default file extension mappings.
#
# If left blank the following patterns are tested:*.c, *.cc, *.cxx, *.cpp,
# If left blank the following patterns are tested:*.c, *.cpp, *.cxx, *.cpp,
# *.c++, *.java, *.ii, *.ixx, *.ipp, *.i++, *.inl, *.idl, *.ddl, *.odl, *.h,
# *.hh, *.hxx, *.hpp, *.h++, *.l, *.cs, *.d, *.php, *.php4, *.php5, *.phtml,
# *.inc, *.m, *.markdown, *.md, *.mm, *.dox (to be provided as doxygen C
@@ -984,7 +984,7 @@ INPUT_FILE_ENCODING =
# *.vhdl, *.ucf, *.qsf and *.ice.
FILE_PATTERNS = *.c \
*.cc \
*.cpp \
*.cxx \
*.cpp \
*.c++ \

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2024 rmontanana
Copyright (c) 2024 Ricardo Montañana Gómez
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

View File

@@ -5,8 +5,7 @@ SHELL := /bin/bash
f_release = build_release
f_debug = build_debug
app_targets = b_best b_list b_main b_manage b_grid
test_targets = unit_tests_bayesnet unit_tests_platform
n_procs = -j 16
test_targets = unit_tests_platform
define ClearTests
@for t in $(test_targets); do \
@@ -41,7 +40,7 @@ setup: ## Install dependencies for tests and coverage
dest ?= ${HOME}/bin
install: ## Copy binary files to bin folder
@echo "Destination folder: $(dest)"
make buildr
@make buildr
@echo "*******************************************"
@echo ">>> Copying files to $(dest)"
@echo "*******************************************"
@@ -56,10 +55,10 @@ dependency: ## Create a dependency graph diagram of the project (build/dependenc
cd $(f_debug) && cmake .. --graphviz=dependency.dot && dot -Tpng dependency.dot -o dependency.png
buildd: ## Build the debug targets
cmake --build $(f_debug) -t $(app_targets) PlatformSample $(n_procs)
cmake --build $(f_debug) -t $(app_targets) PlatformSample --parallel
buildr: ## Build the release targets
cmake --build $(f_release) -t $(app_targets) $(n_procs)
cmake --build $(f_release) -t $(app_targets) --parallel
clean: ## Clean the tests info
@echo ">>> Cleaning Debug Platform tests...";
@@ -87,7 +86,7 @@ opt = ""
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
@echo ">>> Running Platform tests...";
@$(MAKE) clean
@cmake --build $(f_debug) -t $(test_targets) $(n_procs)
@cmake --build $(f_debug) -t $(test_targets) --parallel
@for t in $(test_targets); do \
if [ -f $(f_debug)/tests/$$t ]; then \
cd $(f_debug)/tests ; \
@@ -96,6 +95,14 @@ test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximu
done
@echo ">>> Done";
fname = iris
example: ## Build sample
@echo ">>> Building Sample...";
@cmake --build build_debug -t sample
build_debug/sample/PlatformSample --model BoostAODE --dataset $(fname) --discretize --stratified
@echo ">>> Done";
coverage: ## Run tests and generate coverage report (build/index.html)
@echo ">>> Building tests with coverage..."
@$(MAKE) test
@@ -105,7 +112,7 @@ coverage: ## Run tests and generate coverage report (build/index.html)
help: ## Show help message
@IFS=$$'\n' ; \
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
help_lines=(`grep -Fh "##" $(MAKEFILE_LIST) | grep -Fv fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
printf "%s\n\n" "Usage: make [task]"; \
printf "%-20s %s\n" "task" "help" ; \
printf "%-20s %s\n" "------" "----" ; \

View File

@@ -1,10 +1,8 @@
# Platform
# <img src="logo.png" alt="logo" width="50"/> Platform
Platform to run Bayesian Networks and Machine Learning Classifiers experiments.
# Platform
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
![C++](https://img.shields.io/badge/c++-%2300599C.svg?style=flat&logo=c%2B%2B&logoColor=white)
[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](<https://opensource.org/licenses/MIT>)
![Gitea Last Commit](https://img.shields.io/gitea/last-commit/rmontanana/platform?gitea_url=https://gitea.rmontanana.es:3000&logo=gitea)
Platform to run Bayesian Networks and Machine Learning Classifiers experiments.
@@ -22,11 +20,18 @@ In Linux sometimes the library libstdc++ is mistaken from the miniconda installa
libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by b_xxxx)
```
The solution is to erase the libstdc++ library from the miniconda installation:
The solution is to erase the libstdc++ library from the miniconda installation and no further compilation is needed.
### MPI
In Linux just install openmpi & openmpi-devel packages. Only if cmake can't find openmpi installation (like in Oracle Linux) set the following variable:
In Linux just install openmpi & openmpi-devel packages.
```bash
source /etc/profile.d/modules.sh
module load mpi/openmpi-x86_64
```
If cmake can't find openmpi installation (like in Oracle Linux) set the following variable:
```bash
export MPI_HOME="/usr/lib64/openmpi"
@@ -86,4 +91,64 @@ make release
make debug
```
## 1. Introduction
### Configuration
The configuration file is named .env and it should be located in the folder where the experiments should be run. In the root folder of the project there is a file named .env.example that can be used as a template.
## 1. Commands
### b_list
List all the datasets and its properties. The datasets are located in the _datasets_ folder under the experiments root folder. A special file called all.txt with the names of the datasets has to be created. This all file is built wih lines of the form:
<name>,<class_name>,<real_features>
where <real_features> can be either the word _all_ or a list of numbers separated by commas, i.e. [0,3,6,7]
### b_grid
Run a grid search over the parameters of the classifiers. The parameters are defined in the file _grid.txt_ located in the grid folder of the experiments. The file has to be created with the following format:
```json
{
"all": [
<set of hyperparams>, ...
],
"<dataset_name>": [
<specific set of hyperparams for <dataset_name>>, ...
],
}
```
The file has to be named _grid_<model_name>_input.json_
As a result it builds a file named _grid_<model_name>_output.json_ with the results of the grid search.
The computation is done in parallel using MPI.
![b_grid](img/bgrid.gif)
### b_main
Run the main experiment. There are several hyperparameters that can set in command line:
- -d, -\-dataset <dataset_name> : Name of the dataset to run the experiment with. If no dataset is specificied the experiment will run with all the datasets in the all.txt file.
- -m, -\-model <classifier_name> : Name of the classifier to run the experiment with (i.e. BoostAODE, TAN, Odte, etc.).
- -\-discretize: Discretize the dataset before running the experiment.
- -\-stratified: Use stratified cross validation.
- -\-folds <folds>: Number of folds for cross validation (optional, default value is in .env file).
- -s, -\-seeds <seed>: Seeds for the random number generator (optional, default values are in .env file).
- -\-no-train-score: Do not calculate the train score (optional), this is useful when the dataset is big and the training score is not needed.
- -\-hyperparameters <hyperparameters>: Hyperparameters for the experiment in json format.
- -\-hyper-file <hyperparameters_file>: File with the hyperparameters for the experiment in json format. This file uses the output format of the b_grid command.
- -\-title <title_text>: Title of the experiment (optional if only one dataset is specificied).
- -\-quiet: Don't display detailed progress and result of the experiment.
### b_manage
Manage the results of the experiments.
### b_best
Get and optionally compare the best results of the experiments. The results can be stored in an MS Excel file.
![b_best](img/bbest.gif)

View File

@@ -1,4 +1,4 @@
configure_file(
"config.h.in"
"${CMAKE_BINARY_DIR}/configured_files/include/config.h" ESCAPE_QUOTES
"${CMAKE_BINARY_DIR}/configured_files/include/config_platform.h" ESCAPE_QUOTES
)

View File

@@ -1,14 +1,11 @@
#pragma once
#ifndef PLATFORM_H
#define PLATFORM_H
#include <string>
#include <string_view>
#define PROJECT_VERSION_MAJOR @PROJECT_VERSION_MAJOR @
#define PROJECT_VERSION_MINOR @PROJECT_VERSION_MINOR @
#define PROJECT_VERSION_PATCH @PROJECT_VERSION_PATCH @
static constexpr std::string_view project_name = "@PROJECT_NAME@";
static constexpr std::string_view project_version = "@PROJECT_VERSION@";
static constexpr std::string_view project_description = "@PROJECT_DESCRIPTION@";
static constexpr std::string_view git_sha = "@GIT_SHA@";
static constexpr std::string_view data_path = "@Platform_SOURCE_DIR@/tests/data/";
static constexpr std::string_view platform_project_name = "@PROJECT_NAME@";
static constexpr std::string_view platform_project_version = "@PROJECT_VERSION@";
static constexpr std::string_view platform_project_description = "@PROJECT_DESCRIPTION@";
static constexpr std::string_view platform_git_sha = "@GIT_SHA@";
static constexpr std::string_view platform_data_path = "@Platform_SOURCE_DIR@/tests/data/";
#endif

View File

@@ -1,4 +1,4 @@
filter = src/
exclude-directories = build/lib/
exclude-directories = build_debug/lib/
print-summary = yes
sort-percentage = yes

View File

@@ -1,8 +1,3 @@
[submodule "lib/mdlp"]
path = lib/mdlp
url = https://github.com/rmontanana/mdlp
main = main
update = merge
[submodule "lib/catch2"]
path = lib/catch2
main = v2.x
@@ -23,9 +18,6 @@
url = https://github.com/jmcnamara/libxlsxwriter.git
main = main
update = merge
[submodule "lib/PyClassifiers"]
path = lib/PyClassifiers
url = https://github.com/rmontanana/PyClassifiers
[submodule "lib/folding"]
path = lib/folding
url = https://github.com/rmontanana/Folding

BIN
img/bbest.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 MiB

BIN
img/bgrid.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 349 KiB

BIN
img/blist.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 MiB

BIN
img/bmain.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 MiB

BIN
img/bmanage.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.7 MiB

1
lib/Files Submodule

Submodule lib/Files added at a4329f5f9d

View File

@@ -1,168 +0,0 @@
#include "ArffFiles.h"
#include <fstream>
#include <sstream>
#include <map>
#include <iostream>
ArffFiles::ArffFiles() = default;
std::vector<std::string> ArffFiles::getLines() const
{
return lines;
}
unsigned long int ArffFiles::getSize() const
{
return lines.size();
}
std::vector<std::pair<std::string, std::string>> ArffFiles::getAttributes() const
{
return attributes;
}
std::string ArffFiles::getClassName() const
{
return className;
}
std::string ArffFiles::getClassType() const
{
return classType;
}
std::vector<std::vector<float>>& ArffFiles::getX()
{
return X;
}
std::vector<int>& ArffFiles::getY()
{
return y;
}
void ArffFiles::loadCommon(std::string fileName)
{
std::ifstream file(fileName);
if (!file.is_open()) {
throw std::invalid_argument("Unable to open file");
}
std::string line;
std::string keyword;
std::string attribute;
std::string type;
std::string type_w;
while (getline(file, line)) {
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
continue;
}
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
std::stringstream ss(line);
ss >> keyword >> attribute;
type = "";
while (ss >> type_w)
type += type_w + " ";
attributes.emplace_back(trim(attribute), trim(type));
continue;
}
if (line[0] == '@') {
continue;
}
lines.push_back(line);
}
file.close();
if (attributes.empty())
throw std::invalid_argument("No attributes found");
}
void ArffFiles::load(const std::string& fileName, bool classLast)
{
int labelIndex;
loadCommon(fileName);
if (classLast) {
className = std::get<0>(attributes.back());
classType = std::get<1>(attributes.back());
attributes.pop_back();
labelIndex = static_cast<int>(attributes.size());
} else {
className = std::get<0>(attributes.front());
classType = std::get<1>(attributes.front());
attributes.erase(attributes.begin());
labelIndex = 0;
}
generateDataset(labelIndex);
}
void ArffFiles::load(const std::string& fileName, const std::string& name)
{
int labelIndex;
loadCommon(fileName);
bool found = false;
for (int i = 0; i < attributes.size(); ++i) {
if (attributes[i].first == name) {
className = std::get<0>(attributes[i]);
classType = std::get<1>(attributes[i]);
attributes.erase(attributes.begin() + i);
labelIndex = i;
found = true;
break;
}
}
if (!found) {
throw std::invalid_argument("Class name not found");
}
generateDataset(labelIndex);
}
void ArffFiles::generateDataset(int labelIndex)
{
X = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(lines.size()));
auto yy = std::vector<std::string>(lines.size(), "");
auto removeLines = std::vector<int>(); // Lines with missing values
for (size_t i = 0; i < lines.size(); i++) {
std::stringstream ss(lines[i]);
std::string value;
int pos = 0;
int xIndex = 0;
while (getline(ss, value, ',')) {
if (pos++ == labelIndex) {
yy[i] = value;
} else {
if (value == "?") {
X[xIndex++][i] = -1;
removeLines.push_back(i);
} else
X[xIndex++][i] = stof(value);
}
}
}
for (auto i : removeLines) {
yy.erase(yy.begin() + i);
for (auto& x : X) {
x.erase(x.begin() + i);
}
}
y = factorize(yy);
}
std::string ArffFiles::trim(const std::string& source)
{
std::string s(source);
s.erase(0, s.find_first_not_of(" '\n\r\t"));
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
return s;
}
std::vector<int> ArffFiles::factorize(const std::vector<std::string>& labels_t)
{
std::vector<int> yy;
yy.reserve(labels_t.size());
std::map<std::string, int> labelMap;
int i = 0;
for (const std::string& label : labels_t) {
if (labelMap.find(label) == labelMap.end()) {
labelMap[label] = i++;
}
yy.push_back(labelMap[label]);
}
return yy;
}

View File

@@ -1,32 +0,0 @@
#ifndef ARFFFILES_H
#define ARFFFILES_H
#include <string>
#include <vector>
class ArffFiles {
private:
std::vector<std::string> lines;
std::vector<std::pair<std::string, std::string>> attributes;
std::string className;
std::string classType;
std::vector<std::vector<float>> X;
std::vector<int> y;
void generateDataset(int);
void loadCommon(std::string);
public:
ArffFiles();
void load(const std::string&, bool = true);
void load(const std::string&, const std::string&);
std::vector<std::string> getLines() const;
unsigned long int getSize() const;
std::string getClassName() const;
std::string getClassType() const;
static std::string trim(const std::string&);
std::vector<std::vector<float>>& getX();
std::vector<int>& getY();
std::vector<std::pair<std::string, std::string>> getAttributes() const;
static std::vector<int> factorize(const std::vector<std::string>& labels_t);
};
#endif

View File

@@ -1 +0,0 @@
add_library(ArffFiles ArffFiles.cc)

1
lib/folding Submodule

Submodule lib/folding added at 2ac43e32ac

BIN
logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 874 KiB

View File

@@ -1,15 +1,15 @@
include_directories(
${Platform_SOURCE_DIR}/src/common
${Platform_SOURCE_DIR}/src/main
${Platform_SOURCE_DIR}/lib/PyClassifiers/src
${Python3_INCLUDE_DIRS}
${Platform_SOURCE_DIR}/lib/Files
${Platform_SOURCE_DIR}/lib/mdlp/src
${Platform_SOURCE_DIR}/lib/argparse/include
${Platform_SOURCE_DIR}/lib/PyClassifiers/lib/BayesNet/src
${Platform_SOURCE_DIR}/lib/PyClassifiers/lib/BayesNet/lib/folding
${Platform_SOURCE_DIR}/lib/PyClassifiers/lib/BayesNet/lib/mdlp
${Platform_SOURCE_DIR}/lib/PyClassifiers/lib/BayesNet/lib/json/include
${Platform_SOURCE_DIR}/lib/folding
${Platform_SOURCE_DIR}/lib/json/include
${CMAKE_BINARY_DIR}/configured_files/include
${PyClassifiers_INCLUDE_DIRS}
${Bayesnet_INCLUDE_DIRS}
)
add_executable(PlatformSample sample.cc ${Platform_SOURCE_DIR}/src/main/Models.cc)
target_link_libraries(PlatformSample PyClassifiers ArffFiles mdlp "${TORCH_LIBRARIES}")
add_executable(PlatformSample sample.cpp ${Platform_SOURCE_DIR}/src/main/Models.cpp)
target_link_libraries(PlatformSample "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy)

View File

@@ -1,240 +0,0 @@
#include <iostream>
#include <torch/torch.h>
#include <string>
#include <map>
#include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "ArffFiles.h"
#include "BayesMetrics.h"
#include "CPPFImdlp.h"
#include "folding.hpp"
#include "Models.h"
#include "modelRegister.h"
#include <fstream>
#include "config.h"
const std::string PATH = { data_path.begin(), data_path.end() };
pair<std::vector<mdlp::labels_t>, map<std::string, int>> discretize(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y, std::vector<std::string> features)
{
std::vector<mdlp::labels_t>Xd;
map<std::string, int> maxes;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
Xd.push_back(xd);
}
return { Xd, maxes };
}
bool file_exists(const std::string& name)
{
if (FILE* file = fopen(name.c_str(), "r")) {
fclose(file);
return true;
} else {
return false;
}
}
pair<std::vector<std::vector<int>>, std::vector<int>> extract_indices(std::vector<int> indices, std::vector<std::vector<int>> X, std::vector<int> y)
{
std::vector<std::vector<int>> Xr; // nxm
std::vector<int> yr;
for (int col = 0; col < X.size(); ++col) {
Xr.push_back(std::vector<int>());
}
for (auto index : indices) {
for (int col = 0; col < X.size(); ++col) {
Xr[col].push_back(X[col][index]);
}
yr.push_back(y[index]);
}
return { Xr, yr };
}
int main(int argc, char** argv)
{
map<std::string, bool> datasets = {
{"diabetes", true},
{"ecoli", true},
{"glass", true},
{"iris", true},
{"kdd_JapaneseVowels", false},
{"letter", true},
{"liver-disorders", true},
{"mfeat-factors", true},
};
auto valid_datasets = std::vector<std::string>();
transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
[](const pair<std::string, bool>& pair) { return pair.first; });
argparse::ArgumentParser program("PlatformSample");
program.add_argument("-d", "--dataset")
.help("Dataset file name")
.action([valid_datasets](const std::string& value) {
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
return value;
}
throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
}
);
program.add_argument("-p", "--path")
.help(" folder where the data files are located, default")
.default_value(std::string{ PATH }
);
program.add_argument("-m", "--model")
.help("Model to use " + platform::Models::instance()->tostring())
.action([](const std::string& value) {
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw runtime_error("Model must be one of " + platform::Models::instance()->tostring());
}
);
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const std::string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw runtime_error("Number of folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw runtime_error(err.what());
}
catch (...) {
throw runtime_error("Number of folds must be an integer");
}});
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
bool class_last, stratified, tensors, dump_cpt;
std::string model_name, file_name, path, complete_file_name;
int nFolds, seed;
try {
program.parse_args(argc, argv);
file_name = program.get<std::string>("dataset");
path = program.get<std::string>("path");
model_name = program.get<std::string>("model");
complete_file_name = path + file_name + ".arff";
stratified = program.get<bool>("stratified");
tensors = program.get<bool>("tensors");
nFolds = program.get<int>("folds");
seed = program.get<int>("seed");
dump_cpt = program.get<bool>("dumpcpt");
class_last = datasets[file_name];
if (!file_exists(complete_file_name)) {
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
}
}
catch (const exception& err) {
cerr << err.what() << std::endl;
cerr << program;
exit(1);
}
/*
* Begin Processing
*/
auto handler = ArffFiles();
handler.load(complete_file_name, class_last);
// Get Dataset X, y
std::vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
std::vector<std::string> features;
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features),
[](const pair<std::string, std::string>& item) { return item.first; });
// Discretize Dataset
auto [Xd, maxes] = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
map<std::string, std::vector<int>> states;
for (auto feature : features) {
states[feature] = std::vector<int>(maxes[feature]);
}
states[className] = std::vector<int>(maxes[className]);
auto clf = platform::Models::instance()->create(model_name);
clf->fit(Xd, y, features, className, states);
if (dump_cpt) {
std::cout << "--- CPT Tables ---" << std::endl;
clf->dump_cpt();
}
auto lines = clf->show();
for (auto line : lines) {
std::cout << line << std::endl;
}
std::cout << "--- Topological Order ---" << std::endl;
auto order = clf->topological_order();
for (auto name : order) {
std::cout << name << ", ";
}
std::cout << "end." << std::endl;
auto score = clf->score(Xd, y);
std::cout << "Score: " << score << std::endl;
auto graph = clf->graph();
auto dot_file = model_name + "_" + file_name;
ofstream file(dot_file + ".dot");
file << graph;
file.close();
std::cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << std::endl;
std::cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << std::endl;
std::string stratified_string = stratified ? " Stratified" : "";
std::cout << nFolds << " Folds" << stratified_string << " Cross validation" << std::endl;
std::cout << "==========================================" << std::endl;
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
torch::Tensor yt = torch::tensor(y, torch::kInt32);
for (int i = 0; i < features.size(); ++i) {
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
}
float total_score = 0, total_score_train = 0, score_train, score_test;
folding::Fold* fold;
double nodes = 0.0;
if (stratified)
fold = new folding::StratifiedKFold(nFolds, y, seed);
else
fold = new folding::KFold(nFolds, y.size(), seed);
for (auto i = 0; i < nFolds; ++i) {
auto [train, test] = fold->getFold(i);
std::cout << "Fold: " << i + 1 << std::endl;
if (tensors) {
auto ttrain = torch::tensor(train, torch::kInt64);
auto ttest = torch::tensor(test, torch::kInt64);
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
torch::Tensor ytraint = yt.index({ ttrain });
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
torch::Tensor ytestt = yt.index({ ttest });
clf->fit(Xtraint, ytraint, features, className, states);
auto temp = clf->predict(Xtraint);
score_train = clf->score(Xtraint, ytraint);
score_test = clf->score(Xtestt, ytestt);
} else {
auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
auto [Xtest, ytest] = extract_indices(test, Xd, y);
clf->fit(Xtrain, ytrain, features, className, states);
std::cout << "Nodes: " << clf->getNumberOfNodes() << std::endl;
nodes += clf->getNumberOfNodes();
score_train = clf->score(Xtrain, ytrain);
score_test = clf->score(Xtest, ytest);
}
if (dump_cpt) {
std::cout << "--- CPT Tables ---" << std::endl;
clf->dump_cpt();
}
total_score_train += score_train;
total_score += score_test;
std::cout << "Score Train: " << score_train << std::endl;
std::cout << "Score Test : " << score_test << std::endl;
std::cout << "-------------------------------------------------------------------------------" << std::endl;
}
std::cout << "Nodes: " << nodes / nFolds << std::endl;
std::cout << "**********************************************************************************" << std::endl;
std::cout << "Average Score Train: " << total_score_train / nFolds << std::endl;
std::cout << "Average Score Test : " << total_score / nFolds << std::endl;return 0;
}

241
sample/sample.cpp Normal file
View File

@@ -0,0 +1,241 @@
#include <iostream>
#include <string>
#include <map>
#include <fstream>
#include <torch/torch.h>
#include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include <ArffFiles.hpp>
#include <fimdlp/CPPFImdlp.h>
#include <folding.hpp>
#include <bayesnet/utils/BayesMetrics.h>
#include "Models.h"
#include "modelRegister.h"
#include "config_platform.h"
const std::string PATH = { platform_data_path.begin(), platform_data_path.end() };
pair<std::vector<mdlp::labels_t>, map<std::string, int>> discretize(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y, std::vector<std::string> features)
{
std::vector<mdlp::labels_t>Xd;
map<std::string, int> maxes;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
Xd.push_back(xd);
}
return { Xd, maxes };
}
bool file_exists(const std::string& name)
{
if (FILE* file = fopen(name.c_str(), "r")) {
fclose(file);
return true;
} else {
return false;
}
}
pair<std::vector<std::vector<int>>, std::vector<int>> extract_indices(std::vector<int> indices, std::vector<std::vector<int>> X, std::vector<int> y)
{
std::vector<std::vector<int>> Xr; // nxm
std::vector<int> yr;
for (int col = 0; col < X.size(); ++col) {
Xr.push_back(std::vector<int>());
}
for (auto index : indices) {
for (int col = 0; col < X.size(); ++col) {
Xr[col].push_back(X[col][index]);
}
yr.push_back(y[index]);
}
return { Xr, yr };
}
int main(int argc, char** argv)
{
map<std::string, bool> datasets = {
{"diabetes", true},
{"ecoli", true},
{"glass", true},
{"iris", true},
{"kdd_JapaneseVowels", false},
{"letter", true},
{"liver-disorders", true},
{"mfeat-factors", true},
};
auto valid_datasets = std::vector<std::string>();
transform(datasets.begin(), datasets.end(), back_inserter(valid_datasets),
[](const pair<std::string, bool>& pair) { return pair.first; });
argparse::ArgumentParser program("PlatformSample");
program.add_argument("-d", "--dataset")
.help("Dataset file name")
.action([valid_datasets](const std::string& value) {
if (find(valid_datasets.begin(), valid_datasets.end(), value) != valid_datasets.end()) {
return value;
}
throw runtime_error("file must be one of {diabetes, ecoli, glass, iris, kdd_JapaneseVowels, letter, liver-disorders, mfeat-factors}");
}
);
program.add_argument("-p", "--path")
.help(" folder where the data files are located, default")
.default_value(std::string{ PATH }
);
program.add_argument("-m", "--model")
.help("Model to use " + platform::Models::instance()->toString())
.action([](const std::string& value) {
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw runtime_error("Model must be one of " + platform::Models::instance()->toString());
}
);
program.add_argument("--discretize").help("Discretize input dataset").default_value(false).implicit_value(true);
program.add_argument("--dumpcpt").help("Dump CPT Tables").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value(false).implicit_value(true);
program.add_argument("--tensors").help("Use tensors to store samples").default_value(false).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(5).scan<'i', int>().action([](const std::string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw runtime_error("Number of folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw runtime_error(err.what());
}
catch (...) {
throw runtime_error("Number of folds must be an integer");
}});
program.add_argument("-s", "--seed").help("Random seed").default_value(-1).scan<'i', int>();
bool class_last, stratified, tensors, dump_cpt;
std::string model_name, file_name, path, complete_file_name;
int nFolds, seed;
try {
program.parse_args(argc, argv);
file_name = program.get<std::string>("dataset");
path = program.get<std::string>("path");
model_name = program.get<std::string>("model");
complete_file_name = path + file_name + ".arff";
stratified = program.get<bool>("stratified");
tensors = program.get<bool>("tensors");
nFolds = program.get<int>("folds");
seed = program.get<int>("seed");
dump_cpt = program.get<bool>("dumpcpt");
class_last = datasets[file_name];
if (!file_exists(complete_file_name)) {
throw runtime_error("Data File " + path + file_name + ".arff" + " does not exist");
}
}
catch (const exception& err) {
cerr << err.what() << std::endl;
cerr << program;
exit(1);
}
/*
* Begin Processing
*/
auto handler = ArffFiles();
handler.load(complete_file_name, class_last);
// Get Dataset X, y
std::vector<mdlp::samples_t>& X = handler.getX();
mdlp::labels_t& y = handler.getY();
// Get className & Features
auto className = handler.getClassName();
std::vector<std::string> features;
auto attributes = handler.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features),
[](const pair<std::string, std::string>& item) { return item.first; });
// Discretize Dataset
auto [Xd, maxes] = discretize(X, y, features);
maxes[className] = *max_element(y.begin(), y.end()) + 1;
map<std::string, std::vector<int>> states;
for (auto feature : features) {
states[feature] = std::vector<int>(maxes[feature]);
}
states[className] = std::vector<int>(maxes[className]);
auto clf = platform::Models::instance()->create(model_name);
bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::ORIGINAL;
clf->fit(Xd, y, features, className, states, smoothing);
if (dump_cpt) {
std::cout << "--- CPT Tables ---" << std::endl;
clf->dump_cpt();
}
auto lines = clf->show();
for (auto line : lines) {
std::cout << line << std::endl;
}
std::cout << "--- Topological Order ---" << std::endl;
auto order = clf->topological_order();
for (auto name : order) {
std::cout << name << ", ";
}
std::cout << "end." << std::endl;
auto score = clf->score(Xd, y);
std::cout << "Score: " << score << std::endl;
auto graph = clf->graph();
auto dot_file = model_name + "_" + file_name;
ofstream file(dot_file + ".dot");
file << graph;
file.close();
std::cout << "Graph saved in " << model_name << "_" << file_name << ".dot" << std::endl;
std::cout << "dot -Tpng -o " + dot_file + ".png " + dot_file + ".dot " << std::endl;
std::string stratified_string = stratified ? " Stratified" : "";
std::cout << nFolds << " Folds" << stratified_string << " Cross validation" << std::endl;
std::cout << "==========================================" << std::endl;
torch::Tensor Xt = torch::zeros({ static_cast<int>(Xd.size()), static_cast<int>(Xd[0].size()) }, torch::kInt32);
torch::Tensor yt = torch::tensor(y, torch::kInt32);
for (int i = 0; i < features.size(); ++i) {
Xt.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
}
float total_score = 0, total_score_train = 0, score_train, score_test;
folding::Fold* fold;
double nodes = 0.0;
if (stratified)
fold = new folding::StratifiedKFold(nFolds, y, seed);
else
fold = new folding::KFold(nFolds, y.size(), seed);
for (auto i = 0; i < nFolds; ++i) {
auto [train, test] = fold->getFold(i);
std::cout << "Fold: " << i + 1 << std::endl;
if (tensors) {
auto ttrain = torch::tensor(train, torch::kInt64);
auto ttest = torch::tensor(test, torch::kInt64);
torch::Tensor Xtraint = torch::index_select(Xt, 1, ttrain);
torch::Tensor ytraint = yt.index({ ttrain });
torch::Tensor Xtestt = torch::index_select(Xt, 1, ttest);
torch::Tensor ytestt = yt.index({ ttest });
clf->fit(Xtraint, ytraint, features, className, states, smoothing);
auto temp = clf->predict(Xtraint);
score_train = clf->score(Xtraint, ytraint);
score_test = clf->score(Xtestt, ytestt);
} else {
auto [Xtrain, ytrain] = extract_indices(train, Xd, y);
auto [Xtest, ytest] = extract_indices(test, Xd, y);
clf->fit(Xtrain, ytrain, features, className, states, smoothing);
std::cout << "Nodes: " << clf->getNumberOfNodes() << std::endl;
nodes += clf->getNumberOfNodes();
score_train = clf->score(Xtrain, ytrain);
score_test = clf->score(Xtest, ytest);
}
if (dump_cpt) {
std::cout << "--- CPT Tables ---" << std::endl;
clf->dump_cpt();
}
total_score_train += score_train;
total_score += score_test;
std::cout << "Score Train: " << score_train << std::endl;
std::cout << "Score Test : " << score_test << std::endl;
std::cout << "-------------------------------------------------------------------------------" << std::endl;
}
std::cout << "Nodes: " << nodes / nFolds << std::endl;
std::cout << "**********************************************************************************" << std::endl;
std::cout << "Average Score Train: " << total_score_train / nFolds << std::endl;
std::cout << "Average Score Test : " << total_score / nFolds << std::endl;return 0;
}

View File

@@ -1,53 +1,69 @@
include_directories(
## Libs
${Platform_SOURCE_DIR}/lib/PyClassifiers/lib/BayesNet/src
${Platform_SOURCE_DIR}/lib/PyClassifiers/lib/BayesNet/lib/folding
${Platform_SOURCE_DIR}/lib/PyClassifiers/lib/BayesNet/lib/mdlp
${Platform_SOURCE_DIR}/lib/PyClassifiers/lib/BayesNet/lib/json/include
${Platform_SOURCE_DIR}/lib/PyClassifiers/src
${Platform_SOURCE_DIR}/lib/Files
${Platform_SOURCE_DIR}/lib/mdlp
${Platform_SOURCE_DIR}/lib/folding
${Platform_SOURCE_DIR}/lib/mdlp/src
${Platform_SOURCE_DIR}/lib/argparse/include
${Platform_SOURCE_DIR}/lib/json/include
${Platform_SOURCE_DIR}/lib/libxlsxwriter/include
${Python3_INCLUDE_DIRS}
${MPI_CXX_INCLUDE_DIRS}
${TORCH_INCLUDE_DIRS}
${CMAKE_BINARY_DIR}/configured_files/include
${PyClassifiers_INCLUDE_DIRS}
${Bayesnet_INCLUDE_DIRS}
## Platform
${Platform_SOURCE_DIR}/src/common
${Platform_SOURCE_DIR}/src/best
${Platform_SOURCE_DIR}/src/grid
${Platform_SOURCE_DIR}/src/main
${Platform_SOURCE_DIR}/src/manage
${Platform_SOURCE_DIR}/src/reports
${Platform_SOURCE_DIR}/src
${Platform_SOURCE_DIR}/results
)
# b_best
set(best_sources b_best.cc BestResults.cc Statistics.cc BestResultsExcel.cc)
list(TRANSFORM best_sources PREPEND best/)
add_executable(b_best ${best_sources} main/Result.cc reports/ReportExcel.cc reports/ReportBase.cc reports/ExcelFile.cc common/Datasets.cc common/Dataset.cc)
target_link_libraries(b_best Boost::boost "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
add_executable(
b_best commands/b_best.cpp best/Statistics.cpp
best/BestResultsExcel.cpp best/BestResultsTex.cpp best/BestResultsMd.cpp best/BestResults.cpp
common/Datasets.cpp common/Dataset.cpp common/Discretization.cpp
main/Models.cpp main/Scores.cpp
reports/ReportExcel.cpp reports/ReportBase.cpp reports/ExcelFile.cpp
results/Result.cpp
)
target_link_libraries(b_best Boost::boost "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy "${XLSXWRITER_LIB}")
# b_grid
set(grid_sources b_grid.cc GridSearch.cc GridData.cc)
set(grid_sources GridSearch.cpp GridData.cpp)
list(TRANSFORM grid_sources PREPEND grid/)
add_executable(b_grid ${grid_sources} main/HyperParameters.cc main/Models.cc common/Datasets.cc common/Dataset.cc)
target_link_libraries(b_grid PyClassifiers ${MPI_CXX_LIBRARIES} ArffFiles)
add_executable(b_grid commands/b_grid.cpp ${grid_sources}
common/Datasets.cpp common/Dataset.cpp common/Discretization.cpp
main/HyperParameters.cpp main/Models.cpp
)
target_link_libraries(b_grid ${MPI_CXX_LIBRARIES} "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy)
# b_list
set(list_sources b_list.cc DatasetsExcel.cc)
list(TRANSFORM list_sources PREPEND list/)
add_executable(b_list ${list_sources} common/Datasets.cc common/Dataset.cc reports/ReportExcel.cc reports/ExcelFile.cc reports/ReportBase.cc)
target_link_libraries(b_list "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
add_executable(b_list commands/b_list.cpp
common/Datasets.cpp common/Dataset.cpp common/Discretization.cpp
main/Models.cpp main/Scores.cpp
reports/ReportExcel.cpp reports/ExcelFile.cpp reports/ReportBase.cpp reports/DatasetsExcel.cpp reports/DatasetsConsole.cpp reports/ReportsPaged.cpp
results/Result.cpp results/ResultsDatasetExcel.cpp results/ResultsDataset.cpp results/ResultsDatasetConsole.cpp
)
target_link_libraries(b_list "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy "${XLSXWRITER_LIB}")
# b_main
set(main_sources b_main.cc Experiment.cc Models.cc HyperParameters.cc)
set(main_sources Experiment.cpp Models.cpp HyperParameters.cpp Scores.cpp)
list(TRANSFORM main_sources PREPEND main/)
add_executable(b_main ${main_sources} common/Datasets.cc common/Dataset.cc reports/ReportConsole.cc reports/ReportBase.cc main/Result.cc)
target_link_libraries(b_main PyClassifiers BayesNet ArffFiles mdlp)
add_executable(b_main commands/b_main.cpp ${main_sources}
common/Datasets.cpp common/Dataset.cpp common/Discretization.cpp
reports/ReportConsole.cpp reports/ReportBase.cpp
results/Result.cpp
)
target_link_libraries(b_main "${PyClassifiers}" "${BayesNet}" fimdlp ${Python3_LIBRARIES} "${TORCH_LIBRARIES}" ${LIBTORCH_PYTHON} Boost::python Boost::numpy)
# b_manage
set(manage_sources b_manage.cc ManageResults.cc CommandParser.cc Results.cc)
set(manage_sources ManageScreen.cpp OptionsMenu.cpp ResultsManager.cpp)
list(TRANSFORM manage_sources PREPEND manage/)
add_executable(b_manage ${manage_sources} main/Result.cc reports/ReportConsole.cc reports/ReportExcel.cc reports/ReportBase.cc reports/ExcelFile.cc common/Datasets.cc common/Dataset.cc)
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" ArffFiles mdlp)
add_executable(
b_manage commands/b_manage.cpp ${manage_sources}
common/Datasets.cpp common/Dataset.cpp common/Discretization.cpp
reports/ReportConsole.cpp reports/ReportExcel.cpp reports/ReportExcelCompared.cpp reports/ReportBase.cpp reports/ExcelFile.cpp reports/DatasetsConsole.cpp reports/ReportsPaged.cpp
results/Result.cpp results/ResultsDataset.cpp results/ResultsDatasetConsole.cpp
main/Scores.cpp
)
target_link_libraries(b_manage "${TORCH_LIBRARIES}" "${XLSXWRITER_LIB}" fimdlp "${BayesNet}")

View File

@@ -4,12 +4,16 @@
#include <iostream>
#include <sstream>
#include <algorithm>
#include "BestResults.h"
#include "Result.h"
#include "Colors.h"
#include "Statistics.h"
#include "common/Colors.h"
#include "common/CLocale.h"
#include "common/Paths.h"
#include "common/Utils.h" // compute_std
#include "results/Result.h"
#include "BestResultsExcel.h"
#include "CLocale.h"
#include "BestResultsTex.h"
#include "BestResultsMd.h"
#include "best/Statistics.h"
#include "BestResults.h"
namespace fs = std::filesystem;
@@ -42,26 +46,29 @@ namespace platform {
for (auto const& item : data.at("results")) {
bool update = true;
auto datasetName = item.at("dataset").get<std::string>();
if (dataset != "any" && dataset != datasetName) {
continue;
}
if (bests.contains(datasetName)) {
if (item.at("score").get<double>() < bests[datasetName].at(0).get<double>()) {
update = false;
}
}
if (update) {
bests[datasetName] = { item.at("score").get<double>(), item.at("hyperparameters"), file };
bests[datasetName] = { item.at("score").get<double>(), item.at("hyperparameters"), file, item.at("score_std").get<double>() };
}
}
}
std::string bestFileName = path + bestResultFile();
if (bests.empty()) {
std::cerr << Colors::MAGENTA() << "No results found for model " << model << " and score " << score << Colors::RESET() << std::endl;
exit(1);
}
std::string bestFileName = path + Paths::bestResultsFile(score, model);
std::ofstream file(bestFileName);
file << bests;
file.close();
return bestFileName;
}
std::string BestResults::bestResultFile()
{
return "best_results_" + score + "_" + model + ".json";
}
std::pair<std::string, std::string> getModelScore(std::string name)
{
// results_accuracy_BoostAODE_MacBookpro16_2023-09-06_12:27:00_1.json
@@ -122,8 +129,8 @@ namespace platform {
std::vector<std::string> BestResults::getDatasets(json table)
{
std::vector<std::string> datasets;
for (const auto& dataset : table.items()) {
datasets.push_back(dataset.key());
for (const auto& dataset_ : table.items()) {
datasets.push_back(dataset_.key());
}
maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
maxDatasetName = std::max(7, maxDatasetName);
@@ -143,7 +150,7 @@ namespace platform {
}
void BestResults::listFile()
{
std::string bestFileName = path + bestResultFile();
std::string bestFileName = path + Paths::bestResultsFile(score, model);
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
fclose(fileTest);
} else {
@@ -167,10 +174,9 @@ namespace platform {
std::cout << Colors::GREEN() << " # " << std::setw(maxDatasetName + 1) << std::left << "Dataset" << "Score " << std::setw(maxFileName) << "File" << " Hyperparameters" << std::endl;
std::cout << "=== " << std::string(maxDatasetName, '=') << " =========== " << std::string(maxFileName, '=') << " " << std::string(maxHyper, '=') << std::endl;
auto i = 0;
bool odd = true;
double total = 0;
for (auto const& item : data.items()) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
auto color = (i % 2) ? Colors::BLUE() : Colors::CYAN();
double value = item.value().at(0).get<double>();
std::cout << color << std::setw(3) << std::fixed << std::right << i++ << " ";
std::cout << std::setw(maxDatasetName) << std::left << item.key() << " ";
@@ -179,7 +185,6 @@ namespace platform {
std::cout << item.value().at(1) << " ";
std::cout << std::endl;
total += value;
odd = !odd;
}
std::cout << Colors::GREEN() << "=== " << std::string(maxDatasetName, '=') << " ===========" << std::endl;
std::cout << Colors::GREEN() << " Total" << std::string(maxDatasetName - 5, '.') << " " << std::setw(11) << std::setprecision(8) << std::fixed << total << std::endl;
@@ -191,7 +196,7 @@ namespace platform {
auto maxDate = std::filesystem::file_time_type::max();
for (const auto& model : models) {
this->model = model;
std::string bestFileName = path + bestResultFile();
std::string bestFileName = path + Paths::bestResultsFile(score, model);
if (FILE* fileTest = fopen(bestFileName.c_str(), "r")) {
fclose(fileTest);
} else {
@@ -208,13 +213,20 @@ namespace platform {
table["dateTable"] = ftime_to_string(maxDate);
return table;
}
void BestResults::printTableResults(std::vector<std::string> models, json table)
void BestResults::printTableResults(std::vector<std::string> models, json table, bool tex)
{
std::stringstream oss;
oss << Colors::GREEN() << "Best results for " << score << " as of " << table.at("dateTable").get<std::string>() << std::endl;
std::cout << oss.str();
std::cout << std::string(oss.str().size() - 8, '-') << std::endl;
std::cout << Colors::GREEN() << " # " << std::setw(maxDatasetName + 1) << std::left << std::string("Dataset");
auto bestResultsTex = BestResultsTex();
auto bestResultsMd = BestResultsMd();
if (tex) {
bestResultsTex.results_header(models, table.at("dateTable").get<std::string>());
bestResultsMd.results_header(models, table.at("dateTable").get<std::string>());
}
for (const auto& model : models) {
std::cout << std::setw(maxModelName) << std::left << model << " ";
}
@@ -225,23 +237,23 @@ namespace platform {
}
std::cout << std::endl;
auto i = 0;
bool odd = true;
std::map<std::string, double> totals;
std::map<std::string, std::vector<double>> totals;
int nDatasets = table.begin().value().size();
for (const auto& model : models) {
totals[model] = 0.0;
}
auto datasets = getDatasets(table.begin().value());
for (auto const& dataset : datasets) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
if (tex) {
bestResultsTex.results_body(datasets, table);
bestResultsMd.results_body(datasets, table);
}
for (auto const& dataset_ : datasets) {
auto color = (i % 2) ? Colors::BLUE() : Colors::CYAN();
std::cout << color << std::setw(3) << std::fixed << std::right << i++ << " ";
std::cout << std::setw(maxDatasetName) << std::left << dataset << " ";
std::cout << std::setw(maxDatasetName) << std::left << dataset_ << " ";
double maxValue = 0;
// Find out the max value for this dataset
for (const auto& model : models) {
double value;
try {
value = table[model].at(dataset).at(0).get<double>();
value = table[model].at(dataset_).at(0).get<double>();
}
catch (nlohmann::json_abi_v3_11_3::detail::out_of_range err) {
value = -1.0;
@@ -255,7 +267,7 @@ namespace platform {
std::string efectiveColor = color;
double value;
try {
value = table[model].at(dataset).at(0).get<double>();
value = table[model].at(dataset_).at(0).get<double>();
}
catch (nlohmann::json_abi_v3_11_3::detail::out_of_range err) {
value = -1.0;
@@ -266,31 +278,37 @@ namespace platform {
if (value == -1) {
std::cout << Colors::YELLOW() << std::setw(maxModelName) << std::right << "N/A" << " ";
} else {
totals[model] += value;
totals[model].push_back(value);
std::cout << efectiveColor << std::setw(maxModelName) << std::setprecision(maxModelName - 2) << std::fixed << value << " ";
}
}
std::cout << std::endl;
odd = !odd;
}
std::cout << Colors::GREEN() << "=== " << std::string(maxDatasetName, '=') << " ";
for (const auto& model : models) {
std::cout << std::string(maxModelName, '=') << " ";
}
std::cout << std::endl;
std::cout << Colors::GREEN() << " Totals" << std::string(maxDatasetName - 6, '.') << " ";
std::cout << Colors::GREEN() << " Average" << std::string(maxDatasetName - 7, '.') << " ";
double max_value = 0.0;
std::string best_model = "";
for (const auto& total : totals) {
if (total.second > max_value) {
max_value = total.second;
auto actual = std::reduce(total.second.begin(), total.second.end());
if (actual > max_value) {
max_value = actual;
best_model = total.first;
}
}
if (tex) {
bestResultsTex.results_footer(totals, best_model);
bestResultsMd.results_footer(totals, best_model);
}
for (const auto& model : models) {
std::string efectiveColor = Colors::GREEN();
if (totals[model] == max_value) {
efectiveColor = Colors::RED();
}
std::cout << efectiveColor << std::right << std::setw(maxModelName) << std::setprecision(maxModelName - 4) << std::fixed << totals[model] << " ";
std::string efectiveColor = model == best_model ? Colors::RED() : Colors::GREEN();
double value = std::reduce(totals[model].begin(), totals[model].end()) / nDatasets;
double std_value = compute_std(totals[model], value);
std::cout << efectiveColor << std::right << std::setw(maxModelName) << std::setprecision(maxModelName - 4) << std::fixed << value << " ";
}
std::cout << std::endl;
}
@@ -303,26 +321,34 @@ namespace platform {
json table = buildTableResults(models);
std::vector<std::string> datasets = getDatasets(table.begin().value());
BestResultsExcel excel_report(score, datasets);
excel_report.reportSingle(model, path + bestResultFile());
messageExcelFile(excel_report.getFileName());
excel_report.reportSingle(model, path + Paths::bestResultsFile(score, model));
messageOutputFile("Excel", excel_report.getFileName());
}
}
void BestResults::reportAll(bool excel)
void BestResults::reportAll(bool excel, bool tex)
{
auto models = getModels();
// Build the table of results
json table = buildTableResults(models);
std::vector<std::string> datasets = getDatasets(table.begin().value());
// Print the table of results
printTableResults(models, table);
printTableResults(models, table, tex);
// Compute the Friedman test
std::map<std::string, std::map<std::string, float>> ranksModels;
if (friedman) {
Statistics stats(models, datasets, table, significance);
auto result = stats.friedmanTest();
stats.postHocHolmTest(result);
stats.postHocHolmTest(result, tex);
ranksModels = stats.getRanks();
}
if (tex) {
messageOutputFile("TeX", Paths::tex() + Paths::tex_output());
messageOutputFile("MarkDown", Paths::tex() + Paths::md_output());
if (friedman) {
messageOutputFile("TeX", Paths::tex() + Paths::tex_post_hoc());
messageOutputFile("MarkDown", Paths::tex() + Paths::md_post_hoc());
}
}
if (excel) {
BestResultsExcel excel(score, datasets);
excel.reportAll(models, table, ranksModels, friedman, significance);
@@ -331,9 +357,9 @@ namespace platform {
double min = 2000;
// Find out the control model
auto totals = std::vector<double>(models.size(), 0.0);
for (const auto& dataset : datasets) {
for (const auto& dataset_ : datasets) {
for (int i = 0; i < models.size(); ++i) {
totals[i] += ranksModels[dataset][models[i]];
totals[i] += ranksModels[dataset_][models[i]];
}
}
for (int i = 0; i < models.size(); ++i) {
@@ -343,13 +369,14 @@ namespace platform {
}
}
model = models.at(idx);
excel.reportSingle(model, path + bestResultFile());
excel.reportSingle(model, path + Paths::bestResultsFile(score, model));
}
messageExcelFile(excel.getFileName());
messageOutputFile("Excel", excel.getFileName());
}
}
void BestResults::messageExcelFile(const std::string& fileName)
void BestResults::messageOutputFile(const std::string& title, const std::string& fileName)
{
std::cout << Colors::YELLOW() << "** Excel file generated: " << fileName << Colors::RESET() << std::endl;
std::cout << Colors::YELLOW() << "** " << std::setw(5) << std::left << title
<< " file generated: " << fileName << Colors::RESET() << std::endl;
}
}

View File

@@ -2,35 +2,36 @@
#define BESTRESULTS_H
#include <string>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
namespace platform {
using json = nlohmann::ordered_json;
class BestResults {
public:
explicit BestResults(const std::string& path, const std::string& score, const std::string& model, bool friedman, double significance = 0.05)
: path(path), score(score), model(model), friedman(friedman), significance(significance)
explicit BestResults(const std::string& path, const std::string& score, const std::string& model, const std::string& dataset, bool friedman, double significance = 0.05)
: path(path), score(score), model(model), dataset(dataset), friedman(friedman), significance(significance)
{
}
std::string build();
void reportSingle(bool excel);
void reportAll(bool excel);
void reportAll(bool excel, bool tex);
void buildAll();
private:
std::vector<std::string> getModels();
std::vector<std::string> getDatasets(json table);
std::vector<std::string> loadResultFiles();
void messageExcelFile(const std::string& fileName);
void messageOutputFile(const std::string& title, const std::string& fileName);
json buildTableResults(std::vector<std::string> models);
void printTableResults(std::vector<std::string> models, json table);
std::string bestResultFile();
void printTableResults(std::vector<std::string> models, json table, bool tex);
json loadFile(const std::string& fileName);
void listFile();
std::string path;
std::string score;
std::string model;
std::string dataset;
bool friedman;
double significance;
int maxModelName = 0;
int maxDatasetName = 0;
};
}
#endif //BESTRESULTS_H
#endif

View File

@@ -1,10 +1,10 @@
#include <sstream>
#include "BestResultsExcel.h"
#include "Paths.h"
#include <map>
#include <nlohmann/json.hpp>
#include "Statistics.h"
#include "ReportExcel.h"
#include "common/Paths.h"
#include "reports/ReportExcel.h"
#include "best/Statistics.h"
#include "BestResultsExcel.h"
namespace platform {
json loadResultData(const std::string& fileName)
@@ -32,7 +32,7 @@ namespace platform {
}
BestResultsExcel::BestResultsExcel(const std::string& score, const std::vector<std::string>& datasets) : score(score), datasets(datasets)
{
file_name = "BestResults.xlsx";
file_name = Paths::bestResultsExcel(score);
workbook = workbook_new(getFileName().c_str());
setProperties("Best Results");
int maxDatasetName = (*max_element(datasets.begin(), datasets.end(), [](const std::string& a, const std::string& b) { return a.size() < b.size(); })).size();
@@ -64,19 +64,21 @@ namespace platform {
json data = loadResultData(fileName);
std::string title = "Best results for " + model;
worksheet_merge_range(worksheet, 0, 0, 0, 4, title.c_str(), styles["headerFirst"]);
worksheet_merge_range(worksheet, 0, 0, 0, 5, title.c_str(), styles["headerFirst"]);
// Body header
row = 3;
int col = 1;
writeString(row, 0, "", "bodyHeader");
writeString(row, 0, "#", "bodyHeader");
writeString(row, 1, "Dataset", "bodyHeader");
writeString(row, 2, "Score", "bodyHeader");
writeString(row, 3, "File", "bodyHeader");
writeString(row, 4, "Hyperparameters", "bodyHeader");
writeString(row, 5, "F", "bodyHeader");
auto i = 0;
std::string hyperparameters;
int hypSize = 22;
std::map<std::string, std::string> files; // map of files imported and their tabs
int numLines = data.size();
for (auto const& item : data.items()) {
row++;
writeInt(row, 0, i++, "ints");
@@ -104,6 +106,8 @@ namespace platform {
hypSize = hyperparameters.size();
}
writeString(row, 4, hyperparameters, "text");
std::string countHyperparameters = "=COUNTIF(e5:e" + std::to_string(numLines + 4) + ", e" + std::to_string(row + 1) + ")";
worksheet_write_formula(worksheet, row, 5, countHyperparameters.c_str(), efectiveStyle("ints"));
}
row++;
// Set Totals
@@ -180,7 +184,7 @@ namespace platform {
// Body header
row = 3;
int col = 1;
writeString(row, 0, "", "bodyHeader");
writeString(row, 0, "#", "bodyHeader");
writeString(row, 1, "Dataset", "bodyHeader");
for (const auto& model : models) {
writeString(row, ++col, model.c_str(), "bodyHeader");

View File

@@ -1,14 +1,13 @@
#ifndef BESTRESULTS_EXCEL_H
#define BESTRESULTS_EXCEL_H
#include "ExcelFile.h"
#ifndef BESTRESULTSEXCEL_H
#define BESTRESULTSEXCEL_H
#include <vector>
#include <map>
#include <nlohmann/json.hpp>
#include "reports/ExcelFile.h"
using json = nlohmann::json;
namespace platform {
using json = nlohmann::ordered_json;
class BestResultsExcel : public ExcelFile {
public:
BestResultsExcel(const std::string& score, const std::vector<std::string>& datasets);
@@ -34,4 +33,4 @@ namespace platform {
int datasetNameSize = 25; // Min size of the column
};
}
#endif //BESTRESULTS_EXCEL_H
#endif

103
src/best/BestResultsMd.cpp Normal file
View File

@@ -0,0 +1,103 @@
#include <iostream>
#include "BestResultsMd.h"
#include "common/Utils.h" // compute_std
namespace platform {
using json = nlohmann::ordered_json;
void BestResultsMd::openMdFile(const std::string& name)
{
handler.open(name);
if (!handler.is_open()) {
std::cerr << "Error opening file " << name << std::endl;
exit(1);
}
}
void BestResultsMd::results_header(const std::vector<std::string>& models, const std::string& date)
{
this->models = models;
auto file_name = Paths::tex() + Paths::md_output();
openMdFile(file_name);
handler << "<!-- This file has been generated by the platform program" << std::endl;
handler << " Date: " << date.c_str() << std::endl;
handler << "" << std::endl;
handler << " Table of results" << std::endl;
handler << "-->" << std::endl;
handler << "| # | Dataset |";
for (const auto& model : models) {
handler << " " << model.c_str() << " |";
}
handler << std::endl;
handler << "|--: | :--- |";
for (const auto& model : models) {
handler << " :---: |";
}
handler << std::endl;
}
void BestResultsMd::results_body(const std::vector<std::string>& datasets, json& table)
{
int i = 0;
for (auto const& dataset : datasets) {
// Find out max value for this dataset
double max_value = 0;
// Find out the max value for this dataset
for (const auto& model : models) {
double value;
try {
value = table[model].at(dataset).at(0).get<double>();
}
catch (nlohmann::json_abi_v3_11_3::detail::out_of_range err) {
value = -1.0;
}
if (value > max_value) {
max_value = value;
}
}
handler << "| " << ++i << " | " << dataset.c_str() << " | ";
for (const auto& model : models) {
double value = table[model].at(dataset).at(0).get<double>();
double std_value = table[model].at(dataset).at(3).get<double>();
const char* bold = value == max_value ? "**" : "";
handler << bold << std::setprecision(4) << std::fixed << value << "±" << std::setprecision(3) << std_value << bold << " | ";
}
handler << std::endl;
}
}
void BestResultsMd::results_footer(const std::map<std::string, std::vector<double>>& totals, const std::string& best_model)
{
handler << "| | **Average Score** | ";
int nDatasets = totals.begin()->second.size();
for (const auto& model : models) {
double value = std::reduce(totals.at(model).begin(), totals.at(model).end()) / nDatasets;
double std_value = compute_std(totals.at(model), value);
const char* bold = model == best_model ? "**" : "";
handler << bold << std::setprecision(4) << std::fixed << value << "±" << std::setprecision(3) << std::fixed << std_value << bold << " | ";
}
handler.close();
}
void BestResultsMd::holm_test(struct HolmResult& holmResult, const std::string& date)
{
auto file_name = Paths::tex() + Paths::md_post_hoc();
openMdFile(file_name);
handler << "<!-- This file has been generated by the platform program" << std::endl;
handler << " Date: " << date.c_str() << std::endl;
handler << std::endl;
handler << " Post-hoc handler test" << std::endl;
handler << "-->" << std::endl;
handler << "Post-hoc Holm test: H<sub>0</sub>: There is no significant differences between the control model and the other models." << std::endl << std::endl;
handler << "| classifier | pvalue | rank | win | tie | loss | H<sub>0</sub> |" << std::endl;
handler << "| :-- | --: | --: | --:| --: | --: | :--: |" << std::endl;
for (auto const& line : holmResult.holmLines) {
auto textStatus = !line.reject ? "**" : " ";
if (line.model == holmResult.model) {
handler << "| " << line.model << " | - | " << std::fixed << std::setprecision(2) << line.rank << " | - | - | - |" << std::endl;
} else {
handler << "| " << line.model << " | " << textStatus << std::scientific << std::setprecision(4) << line.pvalue << textStatus << " |";
handler << std::fixed << std::setprecision(2) << line.rank << " | " << line.wtl.win << " | " << line.wtl.tie << " | " << line.wtl.loss << " |";
handler << (line.reject ? "rejected" : "**accepted**") << " |" << std::endl;
}
}
handler << std::endl;
handler.close();
}
}

24
src/best/BestResultsMd.h Normal file
View File

@@ -0,0 +1,24 @@
#ifndef BEST_RESULTS_MD_H
#define BEST_RESULTS_MD_H
#include <map>
#include <vector>
#include <nlohmann/json.hpp>
#include "common/Paths.h"
#include "Statistics.h"
namespace platform {
using json = nlohmann::ordered_json;
class BestResultsMd {
public:
BestResultsMd() = default;
~BestResultsMd() = default;
void results_header(const std::vector<std::string>& models, const std::string& date);
void results_body(const std::vector<std::string>& datasets, json& table);
void results_footer(const std::map<std::string, std::vector<double>>& totals, const std::string& best_model);
void holm_test(struct HolmResult& holmResult, const std::string& date);
private:
void openMdFile(const std::string& name);
std::ofstream handler;
std::vector<std::string> models;
};
}
#endif

117
src/best/BestResultsTex.cpp Normal file
View File

@@ -0,0 +1,117 @@
#include <iostream>
#include "BestResultsTex.h"
#include "common/Utils.h" // compute_std
namespace platform {
using json = nlohmann::ordered_json;
void BestResultsTex::openTexFile(const std::string& name)
{
handler.open(name);
if (!handler.is_open()) {
std::cerr << "Error opening file " << name << std::endl;
exit(1);
}
}
void BestResultsTex::results_header(const std::vector<std::string>& models, const std::string& date)
{
this->models = models;
auto file_name = Paths::tex() + Paths::tex_output();
openTexFile(file_name);
handler << "%% This file has been generated by the platform program" << std::endl;
handler << "%% Date: " << date.c_str() << std::endl;
handler << "%%" << std::endl;
handler << "%% Table of results" << std::endl;
handler << "%%" << std::endl;
handler << "\\begin{table}[htbp] " << std::endl;
handler << "\\centering " << std::endl;
handler << "\\tiny " << std::endl;
handler << "\\renewcommand{\\arraystretch }{1.2} " << std::endl;
handler << "\\renewcommand{\\tabcolsep }{0.07cm} " << std::endl;
handler << "\\caption{Accuracy results(mean $\\pm$ std) for all the algorithms and datasets} " << std::endl;
handler << "\\label{tab:results_accuracy}" << std::endl;
handler << "\\begin{tabular} {{r" << std::string(models.size(), 'c').c_str() << "}}" << std::endl;
handler << "\\hline " << std::endl;
handler << "" << std::endl;
for (const auto& model : models) {
handler << "& " << model.c_str();
}
handler << "\\\\" << std::endl;
handler << "\\hline" << std::endl;
}
void BestResultsTex::results_body(const std::vector<std::string>& datasets, json& table)
{
int i = 0;
for (auto const& dataset : datasets) {
// Find out max value for this dataset
double max_value = 0;
// Find out the max value for this dataset
for (const auto& model : models) {
double value;
try {
value = table[model].at(dataset).at(0).get<double>();
}
catch (nlohmann::json_abi_v3_11_3::detail::out_of_range err) {
value = -1.0;
}
if (value > max_value) {
max_value = value;
}
}
handler << ++i << " ";
for (const auto& model : models) {
double value = table[model].at(dataset).at(0).get<double>();
double std_value = table[model].at(dataset).at(3).get<double>();
const char* bold = value == max_value ? "\\bfseries" : "";
handler << "& " << bold << std::setprecision(4) << std::fixed << value << "$\\pm$" << std::setprecision(3) << std_value;
}
handler << "\\\\" << std::endl;
}
}
void BestResultsTex::results_footer(const std::map<std::string, std::vector<double>>& totals, const std::string& best_model)
{
handler << "\\hline" << std::endl;
handler << "Average ";
int nDatasets = totals.begin()->second.size();
for (const auto& model : models) {
double value = std::reduce(totals.at(model).begin(), totals.at(model).end()) / nDatasets;
double std_value = compute_std(totals.at(model), value);
const char* bold = model == best_model ? "\\bfseries" : "";
handler << "& " << bold << std::setprecision(4) << std::fixed << value << "$\\pm$" << std::setprecision(3) << std::fixed << std_value;
}
handler << "\\\\" << std::endl;
handler << "\\hline " << std::endl;
handler << "\\end{tabular}" << std::endl;
handler << "\\end{table}" << std::endl;
handler.close();
}
void BestResultsTex::holm_test(struct HolmResult& holmResult, const std::string& date)
{
auto file_name = Paths::tex() + Paths::tex_post_hoc();
openTexFile(file_name);
handler << "%% This file has been generated by the platform program" << std::endl;
handler << "%% Date: " << date.c_str() << std::endl;
handler << "%%" << std::endl;
handler << "%% Post-hoc handler test" << std::endl;
handler << "%%" << std::endl;
handler << "\\begin{table}[htbp]" << std::endl;
handler << "\\centering" << std::endl;
handler << "\\caption{Results of the post-hoc test for the mean accuracy of the algorithms.}\\label{tab:tests}" << std::endl;
handler << "\\begin{tabular}{lrrrrr}" << std::endl;
handler << "\\hline" << std::endl;
handler << "classifier & pvalue & rank & win & tie & loss\\\\" << std::endl;
handler << "\\hline" << std::endl;
for (auto const& line : holmResult.holmLines) {
auto textStatus = !line.reject ? "\\bf " : " ";
if (line.model == holmResult.model) {
handler << line.model << " & - & " << std::fixed << std::setprecision(2) << line.rank << " & - & - & - \\\\" << std::endl;
} else {
handler << line.model << " & " << textStatus << std::scientific << std::setprecision(4) << line.pvalue << " & ";
handler << std::fixed << std::setprecision(2) << line.rank << " & " << line.wtl.win << " & " << line.wtl.tie << " & " << line.wtl.loss << "\\\\" << std::endl;
}
}
handler << "\\hline " << std::endl;
handler << "\\end{tabular}" << std::endl;
handler << "\\end{table}" << std::endl;
handler.close();
}
}

24
src/best/BestResultsTex.h Normal file
View File

@@ -0,0 +1,24 @@
#ifndef BEST_RESULTS_TEX_H
#define BEST_RESULTS_TEX_H
#include <map>
#include <vector>
#include <nlohmann/json.hpp>
#include "common/Paths.h"
#include "Statistics.h"
namespace platform {
using json = nlohmann::ordered_json;
class BestResultsTex {
public:
BestResultsTex() = default;
~BestResultsTex() = default;
void results_header(const std::vector<std::string>& models, const std::string& date);
void results_body(const std::vector<std::string>& datasets, json& table);
void results_footer(const std::map<std::string, std::vector<double>>& totals, const std::string& best_model);
void holm_test(struct HolmResult& holmResult, const std::string& date);
private:
void openTexFile(const std::string& name);
std::ofstream handler;
std::vector<std::string> models;
};
}
#endif

View File

@@ -3,7 +3,7 @@
#include <string>
#include <map>
#include <utility>
#include "DotEnv.h"
#include "common/DotEnv.h"
namespace platform {
class BestScore {
public:
@@ -24,5 +24,4 @@ namespace platform {
}
};
}
#endif

View File

@@ -1,10 +1,12 @@
#include <sstream>
#include "Statistics.h"
#include "Colors.h"
#include "Symbols.h"
#include <boost/math/distributions/chi_squared.hpp>
#include <boost/math/distributions/normal.hpp>
#include "CLocale.h"
#include "common/Colors.h"
#include "common/Symbols.h"
#include "common/CLocale.h"
#include "BestResultsTex.h"
#include "BestResultsMd.h"
#include "Statistics.h"
namespace platform {
@@ -113,7 +115,7 @@ namespace platform {
}
}
void Statistics::postHocHolmTest(bool friedmanResult)
void Statistics::postHocHolmTest(bool friedmanResult, bool tex)
{
if (!fitted) {
fit();
@@ -130,7 +132,7 @@ namespace platform {
stats[i] = 0.0;
continue;
}
double z = abs(ranks.at(models[controlIdx]) - ranks.at(models[i])) / diff;
double z = std::abs(ranks.at(models[controlIdx]) - ranks.at(models[i])) / diff;
double p_value = (long double)2 * (1 - cdf(dist, z));
stats[i] = p_value;
}
@@ -195,6 +197,12 @@ namespace platform {
if (output) {
std::cout << oss.str();
}
if (tex) {
BestResultsTex bestResultsTex;
BestResultsMd bestResultsMd;
bestResultsTex.holm_test(holmResult, get_date() + " " + get_time());
bestResultsMd.holm_test(holmResult, get_date() + " " + get_time());
}
}
bool Statistics::friedmanTest()
{

View File

@@ -5,9 +5,9 @@
#include <map>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
namespace platform {
using json = nlohmann::ordered_json;
struct WTL {
int win;
int tie;
@@ -34,7 +34,7 @@ namespace platform {
public:
Statistics(const std::vector<std::string>& models, const std::vector<std::string>& datasets, const json& data, double significance = 0.05, bool output = true);
bool friedmanTest();
void postHocHolmTest(bool friedmanResult);
void postHocHolmTest(bool friedmanResult, bool tex=false);
FriedmanResult& getFriedmanResult();
HolmResult& getHolmResult();
std::map<std::string, std::map<std::string, float>>& getRanks();
@@ -60,4 +60,4 @@ namespace platform {
std::map<std::string, std::map<std::string, float>> ranksModels;
};
}
#endif // !STATISTICS_H
#endif

View File

@@ -1,16 +1,22 @@
#include <iostream>
#include <argparse/argparse.hpp>
#include "Paths.h"
#include "BestResults.h"
#include "Colors.h"
#include "config.h"
#include "main/Models.h"
#include "main/modelRegister.h"
#include "common/Paths.h"
#include "common/Colors.h"
#include "best/BestResults.h"
#include "config_platform.h"
void manageArguments(argparse::ArgumentParser& program)
{
program.add_argument("-m", "--model").default_value("").help("Filter results of the selected model) (any for all models)");
program.add_argument("-m", "--model")
.help("Model to use or any")
.default_value("any");
program.add_argument("-d", "--dataset").default_value("any").help("Filter results of the selected model) (any for all datasets)");
program.add_argument("-s", "--score").default_value("accuracy").help("Filter results of the score name supplied");
program.add_argument("--friedman").help("Friedman test").default_value(false).implicit_value(true);
program.add_argument("--excel").help("Output to excel").default_value(false).implicit_value(true);
program.add_argument("--tex").help("Output result table to TeX file").default_value(false).implicit_value(true);
program.add_argument("--level").help("significance level").default_value(0.05).scan<'g', double>().action([](const std::string& value) {
try {
auto k = std::stod(value);
@@ -29,23 +35,25 @@ void manageArguments(argparse::ArgumentParser& program)
int main(int argc, char** argv)
{
argparse::ArgumentParser program("b_best", { project_version.begin(), project_version.end() });
argparse::ArgumentParser program("b_best", { platform_project_version.begin(), platform_project_version.end() });
manageArguments(program);
std::string model, score;
bool build, report, friedman, excel;
std::string model, dataset, score;
bool build, report, friedman, excel, tex;
double level;
try {
program.parse_args(argc, argv);
model = program.get<std::string>("model");
dataset = program.get<std::string>("dataset");
score = program.get<std::string>("score");
friedman = program.get<bool>("friedman");
excel = program.get<bool>("excel");
tex = program.get<bool>("tex");
level = program.get<double>("level");
if (model == "" || score == "") {
throw std::runtime_error("Model and score name must be supplied");
}
if (friedman && model != "any") {
std::cerr << "Friedman test can only be used with all models" << std::endl;
if (friedman && (model != "any" || dataset != "any")) {
std::cerr << "Friedman test can only be used with all models and all the datasets" << std::endl;
std::cerr << program;
exit(1);
}
@@ -56,10 +64,10 @@ int main(int argc, char** argv)
exit(1);
}
// Generate report
auto results = platform::BestResults(platform::Paths::results(), score, model, friedman, level);
auto results = platform::BestResults(platform::Paths::results(), score, model, dataset, friedman, level);
if (model == "any") {
results.buildAll();
results.reportAll(excel);
results.reportAll(excel, tex);
} else {
std::string fileName = results.build();
std::cout << Colors::GREEN() << fileName << " created!" << Colors::RESET() << std::endl;

View File

@@ -4,30 +4,30 @@
#include <tuple>
#include <nlohmann/json.hpp>
#include <mpi.h>
#include "DotEnv.h"
#include "Models.h"
#include "modelRegister.h"
#include "GridSearch.h"
#include "Paths.h"
#include "Timer.h"
#include "Colors.h"
#include "config.h"
#include "main/Models.h"
#include "main/modelRegister.h"
#include "common/Paths.h"
#include "common/Timer.h"
#include "common/Colors.h"
#include "common/DotEnv.h"
#include "grid/GridSearch.h"
#include "config_platform.h"
using json = nlohmann::json;
using json = nlohmann::ordered_json;
const int MAXL = 133;
void assignModel(argparse::ArgumentParser& parser)
{
auto models = platform::Models::instance();
parser.add_argument("-m", "--model")
.help("Model to use " + models->tostring())
.help("Model to use " + models->toString())
.required()
.action([models](const std::string& value) {
static const std::vector<std::string> choices = models->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw std::runtime_error("Model must be one of " + models->tostring());
throw std::runtime_error("Model must be one of " + models->toString());
}
);
}
@@ -93,21 +93,27 @@ void list_dump(std::string& model)
if (item.first.size() > max_dataset) {
max_dataset = item.first.size();
}
if (item.second.dump().size() > max_hyper) {
max_hyper = item.second.dump().size();
for (auto const& [key, value] : item.second.items()) {
if (value.dump().size() > max_hyper) {
max_hyper = value.dump().size();
}
}
}
std::cout << Colors::GREEN() << left << " # " << left << setw(max_dataset) << "Dataset" << " #Com. "
<< setw(max_hyper) << "Hyperparameters" << std::endl;
std::cout << "=== " << string(max_dataset, '=') << " ===== " << string(max_hyper, '=') << std::endl;
bool odd = true;
int i = 0;
for (auto const& item : combinations) {
auto color = odd ? Colors::CYAN() : Colors::BLUE();
auto color = (i++ % 2) ? Colors::CYAN() : Colors::BLUE();
std::cout << color;
auto num_combinations = data.getNumCombinations(item.first);
std::cout << setw(3) << fixed << right << ++index << left << " " << setw(max_dataset) << item.first
<< " " << setw(5) << right << num_combinations << " " << setw(max_hyper) << left << item.second.dump() << std::endl;
odd = !odd;
<< " " << setw(5) << right << num_combinations << " ";
std::string prefix = "";
for (auto const& [key, value] : item.second.items()) {
std::cout << prefix << setw(max_hyper) << std::left << value.dump() << std::endl;
prefix = string(11 + max_dataset, ' ');
}
}
std::cout << Colors::RESET() << std::endl;
}
@@ -141,17 +147,15 @@ void list_results(json& results, std::string& model)
<< "Duration " << setw(8) << "Score" << " " << "Hyperparameters" << std::endl;
std::cout << "=== " << string(spaces, '=') << " " << string(19, '=') << " " << string(8, '=') << " "
<< string(8, '=') << " " << string(hyperparameters_spaces, '=') << std::endl;
bool odd = true;
int index = 0;
for (const auto& item : results["results"].items()) {
auto color = odd ? Colors::CYAN() : Colors::BLUE();
auto color = (index % 2) ? Colors::CYAN() : Colors::BLUE();
auto value = item.value();
std::cout << color;
std::cout << std::setw(3) << std::right << index++ << " ";
std::cout << left << setw(spaces) << item.key() << " " << value["date"].get<string>()
<< " " << setw(8) << right << value["duration"].get<string>() << " " << setw(8) << setprecision(6)
<< fixed << right << value["score"].get<double>() << " " << value["hyperparameters"].dump() << std::endl;
odd = !odd;
}
std::cout << Colors::RESET() << std::endl;
}
@@ -223,7 +227,7 @@ int main(int argc, char** argv)
//
// Manage arguments
//
argparse::ArgumentParser program("b_grid", { project_version.begin(), project_version.end() });
argparse::ArgumentParser program("b_grid", { platform_project_version.begin(), platform_project_version.end() });
// grid dump subparser
argparse::ArgumentParser dump_command("dump");
dump_command.add_description("Dump the combinations of hyperparameters of a model.");
@@ -259,7 +263,7 @@ int main(int argc, char** argv)
}
}
if (!found) {
throw std::runtime_error("You must specify one of the following commands: dump, report, compute, export\n");
throw std::runtime_error("You must specify one of the following commands: dump, report, compute\n");
}
}
catch (const exception& err) {

110
src/commands/b_list.cpp Normal file
View File

@@ -0,0 +1,110 @@
#include <iostream>
#include <locale>
#include <map>
#include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "main/Models.h"
#include "main/modelRegister.h"
#include "common/Paths.h"
#include "common/Colors.h"
#include "common/Datasets.h"
#include "reports/DatasetsExcel.h"
#include "reports/DatasetsConsole.h"
#include "results/ResultsDatasetConsole.h"
#include "results/ResultsDataset.h"
#include "results/ResultsDatasetExcel.h"
#include "config_platform.h"
void list_datasets(argparse::ArgumentParser& program)
{
auto excel = program.get<bool>("excel");
auto report = platform::DatasetsConsole();
report.report();
std::cout << report.getOutput();
if (excel) {
auto data = report.getData();
auto report = platform::DatasetsExcel();
report.report(data);
std::cout << std::endl << Colors::GREEN() << "Output saved in " << report.getFileName() << std::endl;
}
}
void list_results(argparse::ArgumentParser& program)
{
auto dataset = program.get<string>("dataset");
auto score = program.get<string>("score");
auto model = program.get<string>("model");
auto excel = program.get<bool>("excel");
auto report = platform::ResultsDatasetsConsole();
if (!report.report(dataset, score, model))
return;
std::cout << report.getOutput();
if (excel) {
auto data = report.getData();
auto report = platform::ResultsDatasetExcel();
report.report(data);
std::cout << std::endl << Colors::GREEN() << "Output saved in " << report.getFileName() << std::endl;
}
}
int main(int argc, char** argv)
{
argparse::ArgumentParser program("b_list", { platform_project_version.begin(), platform_project_version.end() });
//
// datasets subparser
//
argparse::ArgumentParser datasets_command("datasets");
datasets_command.add_description("List datasets available in the platform.");
datasets_command.add_argument("--excel").help("Output in Excel format").default_value(false).implicit_value(true);
//
// results subparser
//
argparse::ArgumentParser results_command("results");
results_command.add_description("List the results of a given dataset.");
auto datasets = platform::Datasets(false, platform::Paths::datasets());
results_command.add_argument("-d", "--dataset")
.help("Dataset to use " + datasets.toString())
.required()
.action([](const std::string& value) {
auto datasets = platform::Datasets(false, platform::Paths::datasets());
static const std::vector<std::string> choices = datasets.getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw std::runtime_error("Dataset must be one of " + datasets.toString());
}
);
results_command.add_argument("-m", "--model")
.help("Model to use or any")
.default_value("any");
results_command.add_argument("--excel").help("Output in Excel format").default_value(false).implicit_value(true);
results_command.add_argument("-s", "--score").default_value("accuracy").help("Filter results of the score name supplied");
// Add subparsers
program.add_subparser(datasets_command);
program.add_subparser(results_command);
// Parse command line and execute
try {
program.parse_args(argc, argv);
bool found = false;
map<std::string, void(*)(argparse::ArgumentParser&)> commands = { {"datasets", &list_datasets}, {"results", &list_results} };
for (const auto& command : commands) {
if (program.is_subcommand_used(command.first)) {
std::invoke(command.second, program.at<argparse::ArgumentParser>(command.first));
found = true;
break;
}
}
if (!found) {
throw std::runtime_error("You must specify one of the following commands: {datasets, results}\n");
}
}
catch (const exception& err) {
cerr << err.what() << std::endl;
cerr << program;
exit(1);
}
std::cout << Colors::RESET() << std::endl;
return 0;
}

234
src/commands/b_main.cpp Normal file
View File

@@ -0,0 +1,234 @@
#include <iostream>
#include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "main/Experiment.h"
#include "common/Datasets.h"
#include "common/DotEnv.h"
#include "common/Paths.h"
#include "main/Models.h"
#include "main/modelRegister.h"
#include "config_platform.h"
using json = nlohmann::ordered_json;
void manageArguments(argparse::ArgumentParser& program)
{
auto env = platform::DotEnv();
auto datasets = platform::Datasets(false, platform::Paths::datasets());
auto& group = program.add_mutually_exclusive_group(true);
group.add_argument("-d", "--dataset")
.help("Dataset file name: " + datasets.toString())
.default_value("all")
.action([](const std::string& value) {
auto datasets = platform::Datasets(false, platform::Paths::datasets());
static std::vector<std::string> choices_datasets(datasets.getNames());
choices_datasets.push_back("all");
if (find(choices_datasets.begin(), choices_datasets.end(), value) != choices_datasets.end()) {
return value;
}
throw std::runtime_error("Dataset must be one of: " + datasets.toString());
}
);
group.add_argument("--datasets").nargs(1, 50).help("Datasets file names 1..50 separated by spaces").default_value(std::vector<std::string>());
group.add_argument("--datasets-file").default_value("").help("Datasets file name. Mutually exclusive with dataset. This file should contain a list of datasets to test.");
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparameters passed to the model in Experiment");
program.add_argument("--hyper-file").default_value("").help("Hyperparameters file name." \
"Mutually exclusive with hyperparameters. This file should contain hyperparameters for each dataset in json format.");
program.add_argument("--hyper-best").default_value(false).help("Use best results of the model as source of hyperparameters").implicit_value(true);
program.add_argument("-m", "--model")
.help("Model to use: " + platform::Models::instance()->toString())
.action([](const std::string& value) {
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw std::runtime_error("Model must be one of " + platform::Models::instance()->toString());
}
);
program.add_argument("--title").default_value("").help("Experiment title");
program.add_argument("--discretize").help("Discretize input dataset").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
auto valid_choices = env.valid_tokens("discretize_algo");
auto& disc_arg = program.add_argument("--discretize-algo").help("Algorithm to use in discretization. Valid values: " + env.valid_values("discretize_algo")).default_value(env.get("discretize_algo"));
for (auto choice : valid_choices) {
disc_arg.choices(choice);
}
valid_choices = env.valid_tokens("smooth_strat");
auto& smooth_arg = program.add_argument("--smooth-strat").help("Smooth strategy used in Bayes Network node initialization. Valid values: " + env.valid_values("smooth_strat")).default_value(env.get("smooth_strat"));
for (auto choice : valid_choices) {
smooth_arg.choices(choice);
}
auto& score_arg = program.add_argument("-s", "--score").help("Score to use. Valid values: " + env.valid_values("score")).default_value(env.get("score"));
valid_choices = env.valid_tokens("score");
for (auto choice : valid_choices) {
score_arg.choices(choice);
}
program.add_argument("--generate-fold-files").help("generate fold information in datasets_experiment folder").default_value(false).implicit_value(true);
program.add_argument("--graph").help("generate graphviz dot files with the model").default_value(false).implicit_value(true);
program.add_argument("--no-train-score").help("Don't compute train score").default_value(false).implicit_value(true);
program.add_argument("--quiet").help("Don't display detailed progress").default_value(false).implicit_value(true);
program.add_argument("--save").help("Save result (always save if no dataset is supplied)").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const std::string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw std::runtime_error("Number of folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw std::runtime_error(err.what());
}
catch (...) {
throw std::runtime_error("Number of folds must be an integer");
}});
auto seed_values = env.getSeeds();
program.add_argument("--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
}
int main(int argc, char** argv)
{
argparse::ArgumentParser program("b_main", { platform_project_version.begin(), platform_project_version.end() });
manageArguments(program);
std::string file_name, model_name, title, hyperparameters_file, datasets_file, discretize_algo, smooth_strat, score;
json hyperparameters_json;
bool discretize_dataset, stratified, saveResults, quiet, no_train_score, generate_fold_files, graph, hyper_best;
std::vector<int> seeds;
std::vector<std::string> file_names;
std::vector<std::string> filesToTest;
int n_folds;
try {
program.parse_args(argc, argv);
file_name = program.get<std::string>("dataset");
file_names = program.get<std::vector<std::string>>("datasets");
datasets_file = program.get<std::string>("datasets-file");
model_name = program.get<std::string>("model");
discretize_dataset = program.get<bool>("discretize");
discretize_algo = program.get<std::string>("discretize-algo");
smooth_strat = program.get<std::string>("smooth-strat");
stratified = program.get<bool>("stratified");
quiet = program.get<bool>("quiet");
graph = program.get<bool>("graph");
n_folds = program.get<int>("folds");
score = program.get<std::string>("score");
seeds = program.get<std::vector<int>>("seeds");
auto hyperparameters = program.get<std::string>("hyperparameters");
hyperparameters_json = json::parse(hyperparameters);
hyperparameters_file = program.get<std::string>("hyper-file");
no_train_score = program.get<bool>("no-train-score");
hyper_best = program.get<bool>("hyper-best");
generate_fold_files = program.get<bool>("generate-fold-files");
if (hyper_best) {
// Build the best results file_name
hyperparameters_file = platform::Paths::results() + platform::Paths::bestResultsFile(score, model_name);
// ignore this parameter
hyperparameters = "{}";
} else {
if (hyperparameters_file != "" && hyperparameters != "{}") {
throw runtime_error("hyperparameters and hyper_file are mutually exclusive");
}
}
title = program.get<std::string>("title");
if (title == "" && file_name == "all") {
throw runtime_error("title is mandatory if all datasets are to be tested");
}
saveResults = program.get<bool>("save");
}
catch (const exception& err) {
cerr << err.what() << std::endl;
cerr << program;
exit(1);
}
auto datasets = platform::Datasets(false, platform::Paths::datasets());
if (datasets_file != "") {
ifstream catalog(datasets_file);
if (catalog.is_open()) {
std::string line;
while (getline(catalog, line)) {
if (line.empty() || line[0] == '#') {
continue;
}
if (!datasets.isDataset(line)) {
cerr << "Dataset " << line << " not found" << std::endl;
exit(1);
}
filesToTest.push_back(line);
}
catalog.close();
saveResults = true;
if (title == "") {
title = "Test " + to_string(filesToTest.size()) + " datasets (" + datasets_file + ") "\
+ model_name + " " + to_string(n_folds) + " folds";
}
} else {
throw std::invalid_argument("Unable to open catalog file. [" + datasets_file + "]");
}
} else {
if (file_names.size() > 0) {
for (auto file : file_names) {
if (!datasets.isDataset(file)) {
cerr << "Dataset " << file << " not found" << std::endl;
exit(1);
}
}
filesToTest = file_names;
saveResults = true;
if (title == "") {
title = "Test " + to_string(file_names.size()) + " datasets " + model_name + " " + to_string(n_folds) + " folds";
}
} else {
if (file_name != "all") {
if (!datasets.isDataset(file_name)) {
cerr << "Dataset " << file_name << " not found" << std::endl;
exit(1);
}
if (title == "") {
title = "Test " + file_name + " " + model_name + " " + to_string(n_folds) + " folds";
}
filesToTest.push_back(file_name);
} else {
filesToTest = datasets.getNames();
saveResults = true;
}
}
}
platform::HyperParameters test_hyperparams;
if (hyperparameters_file != "") {
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_file, hyper_best);
} else {
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_json);
}
/*
* Begin Processing
*/
auto env = platform::DotEnv();
auto experiment = platform::Experiment();
experiment.setTitle(title).setLanguage("c++").setLanguageVersion("gcc 14.1.1");
experiment.setDiscretizationAlgorithm(discretize_algo).setSmoothSrategy(smooth_strat);
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName(score);
experiment.setHyperparameters(test_hyperparams);
for (auto seed : seeds) {
experiment.addRandomSeed(seed);
}
platform::Timer timer;
timer.start();
experiment.go(filesToTest, quiet, no_train_score, generate_fold_files, graph);
experiment.setDuration(timer.getDuration());
if (!quiet) {
// Classification report if only one dataset is tested
experiment.report(filesToTest.size() == 1);
}
if (saveResults) {
experiment.saveResult();
}
if (graph) {
experiment.saveGraph();
}
std::cout << "Done!" << std::endl;
return 0;
}

View File

@@ -1,23 +1,25 @@
#include <iostream>
#include <sys/ioctl.h>
#include <utility>
#include <unistd.h>
#include <argparse/argparse.hpp>
#include "ManageResults.h"
#include "config.h"
#include "manage/ManageScreen.h"
#include <signal.h>
#include "config_platform.h"
platform::ManageScreen* manager = nullptr;
void manageArguments(argparse::ArgumentParser& program, int argc, char** argv)
{
program.add_argument("-n", "--number").default_value(0).help("Number of results to show (0 = all)").scan<'i', int>();
program.add_argument("-m", "--model").default_value("any").help("Filter results of the selected model)");
program.add_argument("-s", "--score").default_value("any").help("Filter results of the score name supplied");
program.add_argument("--platform").default_value("any").help("Filter results of the selected platform");
program.add_argument("--complete").help("Show only results with all datasets").default_value(false).implicit_value(true);
program.add_argument("--partial").help("Show only partial results").default_value(false).implicit_value(true);
program.add_argument("--compare").help("Compare with best results").default_value(false).implicit_value(true);
try {
program.parse_args(argc, argv);
auto number = program.get<int>("number");
if (number < 0) {
throw std::runtime_error("Number of results must be greater than or equal to 0");
}
auto platform = program.get<std::string>("platform");
auto model = program.get<std::string>("model");
auto score = program.get<std::string>("score");
auto complete = program.get<bool>("complete");
@@ -31,19 +33,40 @@ void manageArguments(argparse::ArgumentParser& program, int argc, char** argv)
}
}
std::pair<int, int> numRowsCols()
{
#ifdef TIOCGSIZE
struct ttysize ts;
ioctl(STDIN_FILENO, TIOCGSIZE, &ts);
return { ts.ts_lines, ts.ts_cols };
#elif defined(TIOCGWINSZ)
struct winsize ts;
ioctl(STDIN_FILENO, TIOCGWINSZ, &ts);
return { ts.ws_row, ts.ws_col };
#endif /* TIOCGSIZE */
}
void handleResize(int sig)
{
auto [rows, cols] = numRowsCols();
manager->updateSize(rows, cols);
}
int main(int argc, char** argv)
{
auto program = argparse::ArgumentParser("b_manage", { project_version.begin(), project_version.end() });
auto program = argparse::ArgumentParser("b_manage", { platform_project_version.begin(), platform_project_version.end() });
manageArguments(program, argc, argv);
int number = program.get<int>("number");
std::string model = program.get<std::string>("model");
std::string score = program.get<std::string>("score");
auto complete = program.get<bool>("complete");
auto partial = program.get<bool>("partial");
auto compare = program.get<bool>("compare");
std::string platform = program.get<std::string>("platform");
bool complete = program.get<bool>("complete");
bool partial = program.get<bool>("partial");
bool compare = program.get<bool>("compare");
if (complete)
partial = false;
auto manager = platform::ManageResults(number, model, score, complete, partial, compare);
manager.doMenu();
signal(SIGWINCH, handleResize);
auto [rows, cols] = numRowsCols();
manager = new platform::ManageScreen(rows, cols, model, score, platform, complete, partial, compare);
manager->doMenu();
delete manager;
return 0;
}

View File

@@ -1,5 +1,5 @@
#ifndef LOCALE_H
#define LOCALE_H
#ifndef CLOCALE_H
#define CLOCALE_H
#include <locale>
#include <iostream>
#include <string>

View File

@@ -1,15 +1,30 @@
#ifndef COLORS_H
#define COLORS_H
#include <string>
class Colors {
public:
static std::string MAGENTA() { return "\033[1;35m"; }
static std::string BLACK() { return "\033[1;30m"; }
static std::string IBLACK() { return "\033[0;90m"; }
static std::string BLUE() { return "\033[1;34m"; }
static std::string CYAN() { return "\033[1;36m"; }
static std::string GREEN() { return "\033[1;32m"; }
static std::string YELLOW() { return "\033[1;33m"; }
static std::string RED() { return "\033[1;31m"; }
static std::string WHITE() { return "\033[1;37m"; }
static std::string IBLUE() { return "\033[0;94m"; }
static std::string CYAN() { return "\033[1;36m"; }
static std::string ICYAN() { return "\033[0;96m"; }
static std::string GREEN() { return "\033[1;32m"; }
static std::string IGREEN() { return "\033[0;92m"; }
static std::string MAGENTA() { return "\033[1;35m"; }
static std::string IMAGENTA() { return "\033[0;95m"; }
static std::string RED() { return "\033[1;31m"; }
static std::string IRED() { return "\033[0;91m"; }
static std::string YELLOW() { return "\033[1;33m"; }
static std::string IYELLOW() { return "\033[0;93m"; }
static std::string WHITE() { return "\033[1;37m"; }
static std::string IWHITE() { return "\033[0;97m"; }
static std::string RESET() { return "\033[0m"; }
static std::string BOLD() { return "\033[1m"; }
static std::string UNDERLINE() { return "\033[4m"; }
static std::string BLINK() { return "\033[5m"; }
static std::string REVERSE() { return "\033[7m"; }
static std::string CONCEALED() { return "\033[8m"; }
static std::string CLRSCR() { return "\033[2J\033[1;1H"; }
};
#endif // COLORS_H
#endif

View File

@@ -1,215 +0,0 @@
#include "Dataset.h"
#include "ArffFiles.h"
#include <fstream>
namespace platform {
Dataset::Dataset(const Dataset& dataset) : path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples), n_features(dataset.n_features), features(dataset.features), states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y), Xv(dataset.Xv), Xd(dataset.Xd), yv(dataset.yv), fileType(dataset.fileType)
{
}
std::string Dataset::getName() const
{
return name;
}
std::string Dataset::getClassName() const
{
return className;
}
std::vector<std::string> Dataset::getFeatures() const
{
if (loaded) {
return features;
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNFeatures() const
{
if (loaded) {
return n_features;
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
int Dataset::getNSamples() const
{
if (loaded) {
return n_samples;
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
std::map<std::string, std::vector<int>> Dataset::getStates() const
{
if (loaded) {
return states;
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
pair<std::vector<std::vector<float>>&, std::vector<int>&> Dataset::getVectors()
{
if (loaded) {
return { Xv, yv };
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
pair<std::vector<std::vector<int>>&, std::vector<int>&> Dataset::getVectorsDiscretized()
{
if (loaded) {
return { Xd, yv };
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
pair<torch::Tensor&, torch::Tensor&> Dataset::getTensors()
{
if (loaded) {
buildTensors();
return { X, y };
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
void Dataset::load_csv()
{
ifstream file(path + "/" + name + ".csv");
if (file.is_open()) {
std::string line;
getline(file, line);
std::vector<std::string> tokens = split(line, ',');
features = std::vector<std::string>(tokens.begin(), tokens.end() - 1);
if (className == "-1") {
className = tokens.back();
}
for (auto i = 0; i < features.size(); ++i) {
Xv.push_back(std::vector<float>());
}
while (getline(file, line)) {
tokens = split(line, ',');
for (auto i = 0; i < features.size(); ++i) {
Xv[i].push_back(stof(tokens[i]));
}
yv.push_back(stoi(tokens.back()));
}
file.close();
} else {
throw std::invalid_argument("Unable to open dataset file.");
}
}
void Dataset::computeStates()
{
for (int i = 0; i < features.size(); ++i) {
states[features[i]] = std::vector<int>(*max_element(Xd[i].begin(), Xd[i].end()) + 1);
auto item = states.at(features[i]);
iota(begin(item), end(item), 0);
}
states[className] = std::vector<int>(*max_element(yv.begin(), yv.end()) + 1);
iota(begin(states.at(className)), end(states.at(className)), 0);
}
void Dataset::load_arff()
{
auto arff = ArffFiles();
arff.load(path + "/" + name + ".arff", className);
// Get Dataset X, y
Xv = arff.getX();
yv = arff.getY();
// Get className & Features
className = arff.getClassName();
auto attributes = arff.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& attribute) { return attribute.first; });
}
std::vector<std::string> tokenize(std::string line)
{
std::vector<std::string> tokens;
for (auto i = 0; i < line.size(); ++i) {
if (line[i] == ' ' || line[i] == '\t' || line[i] == '\n') {
std::string token = line.substr(0, i);
tokens.push_back(token);
line.erase(line.begin(), line.begin() + i + 1);
i = 0;
while (line[i] == ' ' || line[i] == '\t' || line[i] == '\n')
line.erase(line.begin(), line.begin() + i + 1);
}
}
if (line.size() > 0) {
tokens.push_back(line);
}
return tokens;
}
void Dataset::load_rdata()
{
ifstream file(path + "/" + name + "_R.dat");
if (file.is_open()) {
std::string line;
getline(file, line);
line = ArffFiles::trim(line);
std::vector<std::string> tokens = tokenize(line);
transform(tokens.begin(), tokens.end() - 1, back_inserter(features), [](const auto& attribute) { return ArffFiles::trim(attribute); });
if (className == "-1") {
className = ArffFiles::trim(tokens.back());
}
for (auto i = 0; i < features.size(); ++i) {
Xv.push_back(std::vector<float>());
}
while (getline(file, line)) {
tokens = tokenize(line);
// We have to skip the first token, which is the instance number.
for (auto i = 1; i < features.size() + 1; ++i) {
const float value = stof(tokens[i]);
Xv[i - 1].push_back(value);
}
yv.push_back(stoi(tokens.back()));
}
file.close();
} else {
throw std::invalid_argument("Unable to open dataset file.");
}
}
void Dataset::load()
{
if (loaded) {
return;
}
if (fileType == CSV) {
load_csv();
} else if (fileType == ARFF) {
load_arff();
} else if (fileType == RDATA) {
load_rdata();
}
if (discretize) {
Xd = discretizeDataset(Xv, yv);
computeStates();
}
n_samples = Xv[0].size();
n_features = Xv.size();
loaded = true;
}
void Dataset::buildTensors()
{
if (discretize) {
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kInt32);
} else {
X = torch::zeros({ static_cast<int>(n_features), static_cast<int>(n_samples) }, torch::kFloat32);
}
for (int i = 0; i < features.size(); ++i) {
if (discretize) {
X.index_put_({ i, "..." }, torch::tensor(Xd[i], torch::kInt32));
} else {
X.index_put_({ i, "..." }, torch::tensor(Xv[i], torch::kFloat32));
}
}
y = torch::tensor(yv, torch::kInt32);
}
std::vector<mdlp::labels_t> Dataset::discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y)
{
std::vector<mdlp::labels_t> Xd;
auto fimdlp = mdlp::CPPFImdlp();
for (int i = 0; i < X.size(); i++) {
fimdlp.fit(X[i], y);
mdlp::labels_t& xd = fimdlp.transform(X[i]);
Xd.push_back(xd);
}
return Xd;
}
}

278
src/common/Dataset.cpp Normal file
View File

@@ -0,0 +1,278 @@
#include <ArffFiles.hpp>
#include <fstream>
#include "Dataset.h"
namespace platform {
const std::string message_dataset_not_loaded = "Dataset not loaded.";
Dataset::Dataset(const Dataset& dataset) :
path(dataset.path), name(dataset.name), className(dataset.className), n_samples(dataset.n_samples),
n_features(dataset.n_features), numericFeatures(dataset.numericFeatures), features(dataset.features),
states(dataset.states), loaded(dataset.loaded), discretize(dataset.discretize), X(dataset.X), y(dataset.y),
X_train(dataset.X_train), X_test(dataset.X_test), Xv(dataset.Xv), yv(dataset.yv),
fileType(dataset.fileType)
{
}
std::string Dataset::getName() const
{
return name;
}
std::vector<std::string> Dataset::getFeatures() const
{
if (loaded) {
return features;
} else {
throw std::invalid_argument(message_dataset_not_loaded);
}
}
int Dataset::getNFeatures() const
{
if (loaded) {
return n_features;
} else {
throw std::invalid_argument(message_dataset_not_loaded);
}
}
int Dataset::getNSamples() const
{
if (loaded) {
return n_samples;
} else {
throw std::invalid_argument(message_dataset_not_loaded);
}
}
std::string Dataset::getClassName() const
{
return className;
}
int Dataset::getNClasses() const
{
if (loaded) {
return *std::max_element(yv.begin(), yv.end()) + 1;
} else {
throw std::invalid_argument(message_dataset_not_loaded);
}
}
std::vector<std::string> Dataset::getLabels() const
{
// Return the labels factorization result
if (loaded) {
return labels;
} else {
throw std::invalid_argument(message_dataset_not_loaded);
}
}
std::vector<int> Dataset::getClassesCounts() const
{
if (loaded) {
std::vector<int> counts(*std::max_element(yv.begin(), yv.end()) + 1);
for (auto y : yv) {
counts[y]++;
}
return counts;
} else {
throw std::invalid_argument(message_dataset_not_loaded);
}
}
std::map<std::string, std::vector<int>> Dataset::getStates() const
{
if (loaded) {
return states;
} else {
throw std::invalid_argument(message_dataset_not_loaded);
}
}
pair<std::vector<std::vector<float>>&, std::vector<int>&> Dataset::getVectors()
{
if (loaded) {
return { Xv, yv };
} else {
throw std::invalid_argument(message_dataset_not_loaded);
}
}
pair<torch::Tensor&, torch::Tensor&> Dataset::getTensors()
{
if (loaded) {
return { X, y };
} else {
throw std::invalid_argument(message_dataset_not_loaded);
}
}
void Dataset::load_csv()
{
ifstream file(path + "/" + name + ".csv");
if (!file.is_open()) {
throw std::invalid_argument("Unable to open dataset file.");
}
labels.clear();
std::string line;
getline(file, line);
std::vector<std::string> tokens = split(line, ',');
features = std::vector<std::string>(tokens.begin(), tokens.end() - 1);
if (className == "-1") {
className = tokens.back();
}
for (auto i = 0; i < features.size(); ++i) {
Xv.push_back(std::vector<float>());
}
while (getline(file, line)) {
tokens = split(line, ',');
for (auto i = 0; i < features.size(); ++i) {
Xv[i].push_back(stof(tokens[i]));
}
auto label = trim(tokens.back());
if (find(labels.begin(), labels.end(), label) == labels.end()) {
labels.push_back(label);
}
yv.push_back(stoi(label));
}
file.close();
}
void Dataset::computeStates()
{
for (int i = 0; i < features.size(); ++i) {
auto [max_value, idx] = torch::max(X_train.index({ i, "..." }), 0);
states[features[i]] = std::vector<int>(max_value.item<int>() + 1);
iota(begin(states.at(features[i])), end(states.at(features[i])), 0);
}
auto [max_value, idx] = torch::max(y_train, 0);
states[className] = std::vector<int>(max_value.item<int>() + 1);
iota(begin(states.at(className)), end(states.at(className)), 0);
}
void Dataset::load_arff()
{
auto arff = ArffFiles();
arff.load(path + "/" + name + ".arff", className);
// Get Dataset X, y
Xv = arff.getX();
yv = arff.getY();
// Get className & Features
className = arff.getClassName();
auto attributes = arff.getAttributes();
transform(attributes.begin(), attributes.end(), back_inserter(features), [](const auto& attribute) { return attribute.first; });
labels = arff.getLabels();
}
std::vector<std::string> tokenize(std::string line)
{
std::vector<std::string> tokens;
for (auto i = 0; i < line.size(); ++i) {
if (line[i] == ' ' || line[i] == '\t' || line[i] == '\n') {
std::string token = line.substr(0, i);
tokens.push_back(token);
line.erase(line.begin(), line.begin() + i + 1);
i = 0;
while (line[i] == ' ' || line[i] == '\t' || line[i] == '\n')
line.erase(line.begin(), line.begin() + i + 1);
}
}
if (line.size() > 0) {
tokens.push_back(line);
}
return tokens;
}
void Dataset::load_rdata()
{
ifstream file(path + "/" + name + "_R.dat");
if (!file.is_open()) {
throw std::invalid_argument("Unable to open dataset file.");
}
std::string line;
labels.clear();
getline(file, line);
line = ArffFiles::trim(line);
std::vector<std::string> tokens = tokenize(line);
transform(tokens.begin(), tokens.end() - 1, back_inserter(features), [](const auto& attribute) { return ArffFiles::trim(attribute); });
if (className == "-1") {
className = ArffFiles::trim(tokens.back());
}
for (auto i = 0; i < features.size(); ++i) {
Xv.push_back(std::vector<float>());
}
while (getline(file, line)) {
tokens = tokenize(line);
// We have to skip the first token, which is the instance number.
for (auto i = 1; i < features.size() + 1; ++i) {
const float value = stof(tokens[i]);
Xv[i - 1].push_back(value);
}
auto label = trim(tokens.back());
if (find(labels.begin(), labels.end(), label) == labels.end()) {
labels.push_back(label);
}
yv.push_back(stoi(label));
}
file.close();
}
void Dataset::load()
{
if (loaded) {
return;
}
if (fileType == CSV) {
load_csv();
} else if (fileType == ARFF) {
load_arff();
} else if (fileType == RDATA) {
load_rdata();
}
n_samples = Xv[0].size();
n_features = Xv.size();
if (numericFeaturesIdx.size() == 0) {
numericFeatures = std::vector<bool>(n_features, false);
} else {
if (numericFeaturesIdx.at(0) == -1) {
numericFeatures = std::vector<bool>(n_features, true);
} else {
numericFeatures = std::vector<bool>(n_features, false);
for (auto i : numericFeaturesIdx) {
numericFeatures[i] = true;
}
}
}
// Build Tensors
X = torch::zeros({ n_features, n_samples }, torch::kFloat32);
for (int i = 0; i < features.size(); ++i) {
X.index_put_({ i, "..." }, torch::tensor(Xv[i], torch::kFloat32));
}
y = torch::tensor(yv, torch::kInt32);
loaded = true;
}
std::tuple<torch::Tensor&, torch::Tensor&, torch::Tensor&, torch::Tensor&> Dataset::getTrainTestTensors(std::vector<int>& train, std::vector<int>& test)
{
if (!loaded) {
throw std::invalid_argument(message_dataset_not_loaded);
}
auto train_t = torch::tensor(train);
int samples_train = train.size();
int samples_test = test.size();
auto test_t = torch::tensor(test);
X_train = X.index({ "...", train_t });
y_train = y.index({ train_t });
X_test = X.index({ "...", test_t });
y_test = y.index({ test_t });
if (discretize) {
auto discretizer = Discretization::instance()->create(discretizer_algorithm);
auto X_train_d = torch::zeros({ n_features, samples_train }, torch::kInt32);
auto X_test_d = torch::zeros({ n_features, samples_test }, torch::kInt32);
for (auto feature = 0; feature < n_features; ++feature) {
if (numericFeatures[feature]) {
auto feature_train = X_train.index({ feature, "..." });
auto feature_test = X_test.index({ feature, "..." });
auto feature_train_disc = discretizer->fit_transform_t(feature_train, y_train);
auto feature_test_disc = discretizer->transform_t(feature_test);
X_train_d.index_put_({ feature, "..." }, feature_train_disc);
X_test_d.index_put_({ feature, "..." }, feature_test_disc);
} else {
X_train_d.index_put_({ feature, "..." }, X_train.index({ feature, "..." }).to(torch::kInt32));
X_test_d.index_put_({ feature, "..." }, X_test.index({ feature, "..." }).to(torch::kInt32));
}
}
X_train = X_train_d;
X_test = X_test_d;
assert(X_train.dtype() == torch::kInt32);
assert(X_test.dtype() == torch::kInt32);
computeStates();
}
assert(y_train.dtype() == torch::kInt32);
assert(y_test.dtype() == torch::kInt32);
return { X_train, X_test, y_train, y_test };
}
}

View File

@@ -4,75 +4,57 @@
#include <map>
#include <vector>
#include <string>
#include "CPPFImdlp.h"
#include <tuple>
#include <common/DiscretizationRegister.h>
#include "Utils.h"
#include "SourceData.h"
namespace platform {
enum fileType_t { CSV, ARFF, RDATA };
class SourceData {
public:
SourceData(std::string source)
{
if (source == "Surcov") {
path = "datasets/";
fileType = CSV;
} else if (source == "Arff") {
path = "datasets/";
fileType = ARFF;
} else if (source == "Tanveer") {
path = "data/";
fileType = RDATA;
} else {
throw std::invalid_argument("Unknown source.");
}
}
std::string getPath()
{
return path;
}
fileType_t getFileType()
{
return fileType;
}
private:
std::string path;
fileType_t fileType;
};
class Dataset {
public:
Dataset(const std::string& path, const std::string& name, const std::string& className, bool discretize, fileType_t fileType, std::vector<int> numericFeaturesIdx, std::string discretizer_algo = "none") :
path(path), name(name), className(className), discretize(discretize),
loaded(false), fileType(fileType), numericFeaturesIdx(numericFeaturesIdx), discretizer_algorithm(discretizer_algo)
{
};
explicit Dataset(const Dataset&);
std::string getName() const;
std::string getClassName() const;
int getNClasses() const;
std::vector<std::string> getLabels() const; // return the labels factorization result
std::vector<int> getClassesCounts() const;
std::vector<string> getFeatures() const;
std::map<std::string, std::vector<int>> getStates() const;
std::pair<vector<std::vector<float>>&, std::vector<int>&> getVectors();
std::pair<torch::Tensor&, torch::Tensor&> getTensors();
std::tuple<torch::Tensor&, torch::Tensor&, torch::Tensor&, torch::Tensor&> getTrainTestTensors(std::vector<int>& train, std::vector<int>& test);
int getNFeatures() const;
int getNSamples() const;
std::vector<bool>& getNumericFeatures() { return numericFeatures; }
void load();
const bool inline isLoaded() const { return loaded; };
private:
std::string path;
std::string name;
fileType_t fileType;
std::string className;
int n_samples{ 0 }, n_features{ 0 };
std::vector<int> numericFeaturesIdx;
std::string discretizer_algorithm;
std::vector<bool> numericFeatures; // true if feature is numeric
std::vector<std::string> features;
std::vector<std::string> labels;
std::map<std::string, std::vector<int>> states;
bool loaded;
bool discretize;
torch::Tensor X, y;
torch::Tensor X_train, X_test, y_train, y_test;
std::vector<std::vector<float>> Xv;
std::vector<std::vector<int>> Xd;
std::vector<int> yv;
void buildTensors();
void load_csv();
void load_arff();
void load_rdata();
void computeStates();
std::vector<mdlp::labels_t> discretizeDataset(std::vector<mdlp::samples_t>& X, mdlp::labels_t& y);
public:
Dataset(const std::string& path, const std::string& name, const std::string& className, bool discretize, fileType_t fileType) : path(path), name(name), className(className), discretize(discretize), loaded(false), fileType(fileType) {};
explicit Dataset(const Dataset&);
std::string getName() const;
std::string getClassName() const;
std::vector<string> getFeatures() const;
std::map<std::string, std::vector<int>> getStates() const;
std::pair<vector<std::vector<float>>&, std::vector<int>&> getVectors();
std::pair<vector<std::vector<int>>&, std::vector<int>&> getVectorsDiscretized();
std::pair<torch::Tensor&, torch::Tensor&> getTensors();
int getNFeatures() const;
int getNSamples() const;
void load();
const bool inline isLoaded() const { return loaded; };
};
};
#endif

View File

@@ -1,129 +0,0 @@
#include "Datasets.h"
#include <fstream>
namespace platform {
void Datasets::load()
{
auto sd = SourceData(sfileType);
fileType = sd.getFileType();
path = sd.getPath();
ifstream catalog(path + "all.txt");
if (catalog.is_open()) {
std::string line;
while (getline(catalog, line)) {
if (line.empty() || line[0] == '#') {
continue;
}
std::vector<std::string> tokens = split(line, ',');
std::string name = tokens[0];
std::string className;
if (tokens.size() == 1) {
className = "-1";
} else {
className = tokens[1];
}
datasets[name] = make_unique<Dataset>(path, name, className, discretize, fileType);
}
catalog.close();
} else {
throw std::invalid_argument("Unable to open catalog file. [" + path + "all.txt" + "]");
}
}
std::vector<std::string> Datasets::getNames()
{
std::vector<std::string> result;
transform(datasets.begin(), datasets.end(), back_inserter(result), [](const auto& d) { return d.first; });
return result;
}
std::vector<std::string> Datasets::getFeatures(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getFeatures();
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
map<std::string, std::vector<int>> Datasets::getStates(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getStates();
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
void Datasets::loadDataset(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
return;
} else {
datasets.at(name)->load();
}
}
std::string Datasets::getClassName(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getClassName();
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
int Datasets::getNSamples(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
return datasets.at(name)->getNSamples();
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
int Datasets::getNClasses(const std::string& name)
{
if (datasets.at(name)->isLoaded()) {
auto className = datasets.at(name)->getClassName();
if (discretize) {
auto states = getStates(name);
return states.at(className).size();
}
auto [Xv, yv] = getVectors(name);
return *std::max_element(yv.begin(), yv.end()) + 1;
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
std::vector<int> Datasets::getClassesCounts(const std::string& name) const
{
if (datasets.at(name)->isLoaded()) {
auto [Xv, yv] = datasets.at(name)->getVectors();
std::vector<int> counts(*std::max_element(yv.begin(), yv.end()) + 1);
for (auto y : yv) {
counts[y]++;
}
return counts;
} else {
throw std::invalid_argument("Dataset not loaded.");
}
}
pair<std::vector<std::vector<float>>&, std::vector<int>&> Datasets::getVectors(const std::string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getVectors();
}
pair<std::vector<std::vector<int>>&, std::vector<int>&> Datasets::getVectorsDiscretized(const std::string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getVectorsDiscretized();
}
pair<torch::Tensor&, torch::Tensor&> Datasets::getTensors(const std::string& name)
{
if (!datasets[name]->isLoaded()) {
datasets[name]->load();
}
return datasets[name]->getTensors();
}
bool Datasets::isDataset(const std::string& name) const
{
return datasets.find(name) != datasets.end();
}
}

89
src/common/Datasets.cpp Normal file
View File

@@ -0,0 +1,89 @@
#include <fstream>
#include "Datasets.h"
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::ordered_json;
const std::string message_dataset_not_loaded = "dataset not loaded.";
Datasets::Datasets(bool discretize, std::string sfileType, std::string discretizer_algorithm) :
discretize(discretize), sfileType(sfileType), discretizer_algorithm(discretizer_algorithm)
{
if ((discretizer_algorithm == "none" || discretizer_algorithm == "") && discretize) {
throw std::runtime_error("Can't discretize without discretization algorithm");
}
load();
}
void Datasets::load()
{
auto sd = SourceData(sfileType);
fileType = sd.getFileType();
path = sd.getPath();
ifstream catalog(path + "all.txt");
std::vector<int> numericFeaturesIdx;
if (!catalog.is_open()) {
throw std::invalid_argument("Unable to open catalog file. [" + path + "all.txt" + "]");
}
std::string line;
while (getline(catalog, line)) {
if (line.empty() || line[0] == '#') {
continue;
}
std::vector<std::string> tokens = split(line, ';');
std::string name = tokens[0];
std::string className;
numericFeaturesIdx.clear();
int size = tokens.size();
switch (size) {
case 1:
className = "-1";
numericFeaturesIdx.push_back(-1);
break;
case 2:
className = tokens[1];
numericFeaturesIdx.push_back(-1);
break;
case 3:
{
className = tokens[1];
auto numericFeatures = tokens[2];
if (numericFeatures == "all") {
numericFeaturesIdx.push_back(-1);
} else {
if (numericFeatures != "none") {
auto features = json::parse(numericFeatures);
for (auto& f : features) {
numericFeaturesIdx.push_back(f);
}
}
}
}
break;
default:
throw std::invalid_argument("Invalid catalog file format.");
}
datasets[name] = make_unique<Dataset>(path, name, className, discretize, fileType, numericFeaturesIdx, discretizer_algorithm);
}
catalog.close();
}
std::vector<std::string> Datasets::getNames()
{
std::vector<std::string> result;
transform(datasets.begin(), datasets.end(), back_inserter(result), [](const auto& d) { return d.first; });
return result;
}
bool Datasets::isDataset(const std::string& name) const
{
return datasets.find(name) != datasets.end();
}
std::string Datasets::toString() const
{
std::string result;
std::string sep = "";
for (const auto& d : datasets) {
result += sep + d.first;
sep = ", ";
}
return "{" + result + "}";
}
}

View File

@@ -3,28 +3,20 @@
#include "Dataset.h"
namespace platform {
class Datasets {
public:
explicit Datasets(bool discretize, std::string sfileType, std::string discretizer_algorithm = "none");
std::vector<std::string> getNames();
bool isDataset(const std::string& name) const;
Dataset& getDataset(const std::string& name) const { return *datasets.at(name); }
std::string toString() const;
private:
std::string path;
fileType_t fileType;
std::string sfileType;
std::string discretizer_algorithm;
std::map<std::string, std::unique_ptr<Dataset>> datasets;
bool discretize;
void load(); // Loads the list of datasets
public:
explicit Datasets(bool discretize, std::string sfileType) : discretize(discretize), sfileType(sfileType) { load(); };
std::vector<string> getNames();
std::vector<string> getFeatures(const std::string& name) const;
int getNSamples(const std::string& name) const;
std::string getClassName(const std::string& name) const;
int getNClasses(const std::string& name);
std::vector<int> getClassesCounts(const std::string& name) const;
std::map<std::string, std::vector<int>> getStates(const std::string& name) const;
std::pair<std::vector<std::vector<float>>&, std::vector<int>&> getVectors(const std::string& name);
std::pair<std::vector<std::vector<int>>&, std::vector<int>&> getVectorsDiscretized(const std::string& name);
std::pair<torch::Tensor&, torch::Tensor&> getTensors(const std::string& name);
bool isDataset(const std::string& name) const;
void loadDataset(const std::string& name) const;
};
};
#endif

View File

@@ -0,0 +1,55 @@
#include "Discretization.h"
namespace platform {
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
Discretization* Discretization::factory = nullptr;
Discretization* Discretization::instance()
{
//manages singleton
if (factory == nullptr)
factory = new Discretization();
return factory;
}
void Discretization::registerFactoryFunction(const std::string& name,
function<mdlp::Discretizer* (void)> classFactoryFunction)
{
// register the class factory function
functionRegistry[name] = classFactoryFunction;
}
std::shared_ptr<mdlp::Discretizer> Discretization::create(const std::string& name)
{
mdlp::Discretizer* instance = nullptr;
// find name in the registry and call factory method.
auto it = functionRegistry.find(name);
if (it != functionRegistry.end())
instance = it->second();
// wrap instance in a shared ptr and return
if (instance != nullptr)
return std::unique_ptr<mdlp::Discretizer>(instance);
else
throw std::runtime_error("Discretizer not found: " + name);
}
std::vector<std::string> Discretization::getNames()
{
std::vector<std::string> names;
transform(functionRegistry.begin(), functionRegistry.end(), back_inserter(names),
[](const pair<std::string, function<mdlp::Discretizer* (void)>>& pair) { return pair.first; });
return names;
}
std::string Discretization::toString()
{
std::string result = "";
std::string sep = "";
for (const auto& pair : functionRegistry) {
result += sep + pair.first;
sep = ", ";
}
return "{" + result + "}";
}
RegistrarDiscretization::RegistrarDiscretization(const std::string& name, function<mdlp::Discretizer* (void)> classFactoryFunction)
{
// register the class factory function
Discretization::instance()->registerFactoryFunction(name, classFactoryFunction);
}
}

View File

@@ -0,0 +1,33 @@
#ifndef DISCRETIZATION_H
#define DISCRETIZATION_H
#include <map>
#include <memory>
#include <string>
#include <functional>
#include <vector>
#include <fimdlp/Discretizer.h>
#include <fimdlp/BinDisc.h>
#include <fimdlp/CPPFImdlp.h>
namespace platform {
class Discretization {
public:
Discretization(Discretization&) = delete;
void operator=(const Discretization&) = delete;
// Idea from: https://www.codeproject.com/Articles/567242/AplusC-2b-2bplusObjectplusFactory
static Discretization* instance();
std::shared_ptr<mdlp::Discretizer> create(const std::string& name);
void registerFactoryFunction(const std::string& name,
function<mdlp::Discretizer* (void)> classFactoryFunction);
std::vector<string> getNames();
std::string toString();
private:
map<std::string, function<mdlp::Discretizer* (void)>> functionRegistry;
static Discretization* factory; //singleton
Discretization() {};
};
class RegistrarDiscretization {
public:
RegistrarDiscretization(const std::string& className, function<mdlp::Discretizer* (void)> classFactoryFunction);
};
}
#endif

View File

@@ -0,0 +1,38 @@
#ifndef DISCRETIZATIONREGISTER_H
#define DISCRETIZATIONREGISTER_H
#include <common/Discretization.h>
static platform::RegistrarDiscretization registrarM("mdlp",
[](void) -> mdlp::Discretizer* { return new mdlp::CPPFImdlp();});
static platform::RegistrarDiscretization registrarBU3("bin3u",
[](void) -> mdlp::Discretizer* { return new mdlp::BinDisc(3, mdlp::strategy_t::UNIFORM);});
static platform::RegistrarDiscretization registrarBQ3("bin3q",
[](void) -> mdlp::Discretizer* { return new mdlp::BinDisc(3, mdlp::strategy_t::QUANTILE);});
static platform::RegistrarDiscretization registrarBU4("bin4u",
[](void) -> mdlp::Discretizer* { return new mdlp::BinDisc(4, mdlp::strategy_t::UNIFORM);});
static platform::RegistrarDiscretization registrarBQ4("bin4q",
[](void) -> mdlp::Discretizer* { return new mdlp::BinDisc(4, mdlp::strategy_t::QUANTILE);});
static platform::RegistrarDiscretization registrarBU5("bin5u",
[](void) -> mdlp::Discretizer* { return new mdlp::BinDisc(5, mdlp::strategy_t::UNIFORM);});
static platform::RegistrarDiscretization registrarBQ5("bin5q",
[](void) -> mdlp::Discretizer* { return new mdlp::BinDisc(5, mdlp::strategy_t::QUANTILE);});
static platform::RegistrarDiscretization registrarBU6("bin6u",
[](void) -> mdlp::Discretizer* { return new mdlp::BinDisc(6, mdlp::strategy_t::UNIFORM);});
static platform::RegistrarDiscretization registrarBQ6("bin6q",
[](void) -> mdlp::Discretizer* { return new mdlp::BinDisc(6, mdlp::strategy_t::QUANTILE);});
static platform::RegistrarDiscretization registrarBU7("bin7u",
[](void) -> mdlp::Discretizer* { return new mdlp::BinDisc(7, mdlp::strategy_t::UNIFORM);});
static platform::RegistrarDiscretization registrarBQ7("bin7q",
[](void) -> mdlp::Discretizer* { return new mdlp::BinDisc(7, mdlp::strategy_t::QUANTILE);});
static platform::RegistrarDiscretization registrarBU8("bin8u",
[](void) -> mdlp::Discretizer* { return new mdlp::BinDisc(8, mdlp::strategy_t::UNIFORM);});
static platform::RegistrarDiscretization registrarBQ8("bin8q",
[](void) -> mdlp::Discretizer* { return new mdlp::BinDisc(8, mdlp::strategy_t::QUANTILE);});
static platform::RegistrarDiscretization registrarBU9("bin9u",
[](void) -> mdlp::Discretizer* { return new mdlp::BinDisc(9, mdlp::strategy_t::UNIFORM);});
static platform::RegistrarDiscretization registrarBQ9("bin9q",
[](void) -> mdlp::Discretizer* { return new mdlp::BinDisc(9, mdlp::strategy_t::QUANTILE);});
static platform::RegistrarDiscretization registrarBU10("bin10u",
[](void) -> mdlp::Discretizer* { return new mdlp::BinDisc(10, mdlp::strategy_t::UNIFORM);});
static platform::RegistrarDiscretization registrarBQ10("bin10q",
[](void) -> mdlp::Discretizer* { return new mdlp::BinDisc(10, mdlp::strategy_t::QUANTILE);});
#endif

View File

@@ -13,9 +13,55 @@ namespace platform {
class DotEnv {
private:
std::map<std::string, std::string> env;
std::map<std::string, std::vector<std::string>> valid;
public:
DotEnv()
DotEnv(bool create = false)
{
valid =
{
{"depth", {"any"}},
{"discretize", {"0", "1"}},
{"discretize_algo", {"mdlp", "bin3u", "bin3q", "bin4u", "bin4q", "bin5q", "bin5u", "bin6q", "bin6u", "bin7q", "bin7u", "bin8q", "bin8u", "bin9q", "bin9u", "bin10q", "bin10u"}},
{"experiment", {"discretiz", "odte", "covid", "Test"}},
{"fit_features", {"0", "1"}},
{"framework", {"bulma", "bootstrap"}},
{"ignore_nan", {"0", "1"}},
{"leaves", {"any"}},
{"margin", {"0.1", "0.2", "0.3"}},
{"model", {"any"}},
{"n_folds", {"5", "10"}},
{"nodes", {"any"}},
{"platform", {"any"}},
{"stratified", {"0", "1"}},
{"score", {"accuracy", "roc-auc-ovr"}},
{"seeds", {"any"}},
{"smooth_strat", {"ORIGINAL", "LAPLACE", "CESTNIK"}},
{"source_data", {"Arff", "Tanveer", "Surcov", "Test"}},
};
if (create) {
// For testing purposes
std::ofstream file(".env");
file << "experiment=Test" << std::endl;
file << "source_data=Test" << std::endl;
file << "margin=0.1" << std::endl;
file << "score=accuracy" << std::endl;
file << "platform=um790Linux" << std::endl;
file << "n_folds=5" << std::endl;
file << "discretize_algo=mdlp" << std::endl;
file << "smooth_strat=ORIGINAL" << std::endl;
file << "stratified=0" << std::endl;
file << "model=TAN" << std::endl;
file << "seeds=[271]" << std::endl;
file << "discretize=0" << std::endl;
file << "ignore_nan=0" << std::endl;
file << "nodes=Nodes" << std::endl;
file << "leaves=Edges" << std::endl;
file << "depth=States" << std::endl;
file << "fit_features=0" << std::endl;
file << "framework=bulma" << std::endl;
file << "margin=0.1" << std::endl;
file.close();
}
std::ifstream file(".env");
if (!file.is_open()) {
std::cerr << "File .env not found" << std::endl;
@@ -30,12 +76,62 @@ namespace platform {
std::istringstream iss(line);
std::string key, value;
if (std::getline(iss, key, '=') && std::getline(iss, value)) {
key = trim(key);
value = trim(value);
parse(key, value);
env[key] = value;
}
}
parseEnv();
}
void parse(const std::string& key, const std::string& value)
{
if (valid.find(key) == valid.end()) {
std::cerr << "Invalid key in .env: " << key << std::endl;
exit(1);
}
if (valid[key].front() == "any") {
return;
}
if (std::find(valid[key].begin(), valid[key].end(), value) == valid[key].end()) {
std::cerr << "Invalid value in .env: " << key << " = " << value << std::endl;
exit(1);
}
}
std::vector<std::string> valid_tokens(const std::string& key)
{
if (valid.find(key) == valid.end()) {
return {};
}
return valid.at(key);
}
std::string valid_values(const std::string& key)
{
std::string valid_values = "{", sep = "";
if (valid.find(key) == valid.end()) {
return "{}";
}
for (const auto& value : valid.at(key)) {
valid_values += sep + value;
sep = ", ";
}
return valid_values + "}";
}
void parseEnv()
{
for (auto& [key, values] : valid) {
if (env.find(key) == env.end()) {
std::cerr << "Key not found in .env: " << key << ", valid values: " << valid_values(key) << std::endl;
exit(1);
}
}
}
std::string get(const std::string& key)
{
if (env.find(key) == env.end()) {
std::cerr << "Key not found in .env: " << key << std::endl;
exit(1);
}
return env.at(key);
}
std::vector<int> getSeeds()

View File

@@ -6,15 +6,30 @@
namespace platform {
class Paths {
public:
static std::string results() { return "results/"; }
static std::string hiddenResults() { return "hidden_results/"; }
static std::string excel() { return "excel/"; }
static std::string grid() { return "grid/"; }
static std::string createIfNotExists(const std::string& folder)
{
if (!std::filesystem::exists(folder)) {
std::filesystem::create_directory(folder);
}
return folder;
}
static std::string results() { return createIfNotExists("results/"); }
static std::string hiddenResults() { return createIfNotExists("hidden_results/"); }
static std::string excel() { return createIfNotExists("excel/"); }
static std::string grid() { return createIfNotExists("grid/"); }
static std::string graphs() { return createIfNotExists("graphs/"); }
static std::string tex() { return createIfNotExists("tex/"); }
static std::string datasets()
{
auto env = platform::DotEnv();
return env.get("source_data");
}
static std::string experiment_file(const std::string& fileName, bool discretize, bool stratified, int seed, int nfold)
{
std::string disc = discretize ? "_disc_" : "_ndisc_";
std::string strat = stratified ? "strat_" : "nstrat_";
return "datasets_experiment/" + fileName + disc + strat + std::to_string(seed) + "_" + std::to_string(nfold) + ".json";
}
static void createPath(const std::string& path)
{
// Create directory if it does not exist
@@ -25,6 +40,14 @@ namespace platform {
throw std::runtime_error("Could not create directory " + path);
}
}
static std::string bestResultsFile(const std::string& score, const std::string& model)
{
return "best_results_" + score + "_" + model + ".json";
}
static std::string bestResultsExcel(const std::string& score)
{
return "BestResults_" + score + ".xlsx";
}
static std::string excelResults() { return "some_results.xlsx"; }
static std::string grid_input(const std::string& model)
{
@@ -34,6 +57,22 @@ namespace platform {
{
return grid() + "grid_" + model + "_output.json";
}
static std::string tex_output()
{
return "results.tex";
}
static std::string md_output()
{
return "results.md";
}
static std::string tex_post_hoc()
{
return "post_hoc.tex";
}
static std::string md_post_hoc()
{
return "post_hoc.md";
}
};
}
#endif

View File

@@ -0,0 +1,38 @@
#ifndef SOURCEDATA_H
#define SOURCEDATA_H
namespace platform {
enum fileType_t { CSV, ARFF, RDATA };
class SourceData {
public:
SourceData(std::string source)
{
if (source == "Surcov") {
path = "datasets/";
fileType = CSV;
} else if (source == "Arff") {
path = "datasets/";
fileType = ARFF;
} else if (source == "Tanveer") {
path = "data/";
fileType = RDATA;
} else if (source == "Test") {
path = "@TEST_DATA_PATH@/";
fileType = ARFF;
} else {
throw std::invalid_argument("Unknown source.");
}
}
std::string getPath()
{
return path;
}
fileType_t getFileType()
{
return fileType;
}
private:
std::string path;
fileType_t fileType;
};
}
#endif

View File

@@ -9,10 +9,13 @@ namespace platform {
inline static const std::string black_star{ "\u2605" };
inline static const std::string cross{ "\u2717" };
inline static const std::string upward_arrow{ "\u27B6" };
inline static const std::string down_arrow{ "\u27B4" };
inline static const std::string downward_arrow{ "\u27B4" };
inline static const std::string up_arrow{ "\u2B06" };
inline static const std::string down_arrow{ "\u2B07" };
inline static const std::string ellipsis{ "\u2026" };
inline static const std::string equal_best{ check_mark };
inline static const std::string better_best{ black_star };
inline static const std::string notebook{ "\U0001F5C8" };
};
}
#endif // !SYMBOLS_H
#endif

View File

@@ -40,4 +40,4 @@ namespace platform {
}
};
} /* namespace platform */
#endif /* TIMER_H */
#endif

View File

@@ -3,16 +3,16 @@
#include <sstream>
#include <string>
#include <vector>
#include <algorithm>
#include <torch/torch.h>
namespace platform {
//static std::vector<std::string> split(const std::string& text, char delimiter);
static std::vector<std::string> split(const std::string& text, char delimiter)
template <typename T>
std::vector<T> tensorToVector(const torch::Tensor& tensor)
{
std::vector<std::string> result;
std::stringstream ss(text);
std::string token;
while (std::getline(ss, token, delimiter)) {
result.push_back(token);
}
torch::Tensor contig_tensor = tensor.contiguous();
auto num_elements = contig_tensor.numel();
const T* tensor_data = contig_tensor.data_ptr<T>();
std::vector<T> result(tensor_data, tensor_data + num_elements);
return result;
}
static std::string trim(const std::string& str)
@@ -26,5 +26,45 @@ namespace platform {
}).base(), result.end());
return result;
}
static std::vector<std::string> split(const std::string& text, char delimiter)
{
std::vector<std::string> result;
std::stringstream ss(text);
std::string token;
while (std::getline(ss, token, delimiter)) {
result.push_back(trim(token));
}
return result;
}
inline double compute_std(std::vector<double> values, double mean)
{
// Compute standard devation of the values
double sum = 0.0;
for (const auto& value : values) {
sum += std::pow(value - mean, 2);
}
double variance = sum / values.size();
return std::sqrt(variance);
}
inline std::string get_date()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%Y-%m-%d");
return oss.str();
}
inline std::string get_time()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%H:%M:%S");
return oss.str();
}
}
#endif

View File

@@ -1,5 +1,5 @@
#include "GridData.h"
#include <fstream>
#include "GridData.h"
namespace platform {
GridData::GridData(const std::string& fileName)

View File

@@ -6,7 +6,7 @@
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::json;
using json = nlohmann::ordered_json;
const std::string ALL_DATASETS = "all";
class GridData {
public:
@@ -23,4 +23,4 @@ namespace platform {
std::map<std::string, json> grid;
};
} /* namespace platform */
#endif /* GRIDDATA_H */
#endif

View File

@@ -1,33 +1,15 @@
#include <iostream>
#include <cstddef>
#include <torch/torch.h>
#include <folding.hpp>
#include "main/Models.h"
#include "common/Paths.h"
#include "common/Colors.h"
#include "common/Utils.h"
#include "GridSearch.h"
#include "Models.h"
#include "Paths.h"
#include "folding.hpp"
#include "Colors.h"
namespace platform {
std::string get_date()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%Y-%m-%d");
return oss.str();
}
std::string get_time()
{
time_t rawtime;
tm* timeinfo;
time(&rawtime);
timeinfo = std::localtime(&rawtime);
std::ostringstream oss;
oss << std::put_time(timeinfo, "%H:%M:%S");
return oss.str();
}
std::string get_color_rank(int rank)
{
auto colors = { Colors::WHITE(), Colors::RED(), Colors::GREEN(), Colors::BLUE(), Colors::MAGENTA(), Colors::CYAN() };
@@ -103,11 +85,11 @@ namespace platform {
std::mt19937 g{ 271 }; // Use fixed seed to obtain the same shuffle
std::shuffle(tasks.begin(), tasks.end(), g);
std::cout << get_color_rank(rank) << "* Number of tasks: " << tasks.size() << std::endl;
std::cout << "|";
std::cout << separator;
for (int i = 0; i < tasks.size(); ++i) {
std::cout << (i + 1) % 10;
}
std::cout << "|" << std::endl << "|" << std::flush;
std::cout << separator << std::endl << separator << std::flush;
return tasks;
}
void process_task_mpi_consumer(struct ConfigGrid& config, struct ConfigMPI& config_mpi, json& tasks, int n_task, Datasets& datasets, Task_Result* result)
@@ -118,17 +100,18 @@ namespace platform {
json task = tasks[n_task];
auto model = config.model;
auto grid = GridData(Paths::grid_input(model));
auto dataset = task["dataset"].get<std::string>();
auto dataset_name = task["dataset"].get<std::string>();
auto idx_dataset = task["idx_dataset"].get<int>();
auto seed = task["seed"].get<int>();
auto n_fold = task["fold"].get<int>();
bool stratified = config.stratified;
// Generate the hyperparamters combinations
auto combinations = grid.getGrid(dataset);
auto [X, y] = datasets.getTensors(dataset);
auto states = datasets.getStates(dataset);
auto features = datasets.getFeatures(dataset);
auto className = datasets.getClassName(dataset);
auto& dataset = datasets.getDataset(dataset_name);
auto combinations = grid.getGrid(dataset_name);
dataset.load();
auto [X, y] = dataset.getTensors();
auto features = dataset.getFeatures();
auto className = dataset.getClassName();
//
// Start working on task
//
@@ -138,14 +121,11 @@ namespace platform {
else
fold = new folding::KFold(config.n_folds, y.size(0), seed);
auto [train, test] = fold->getFold(n_fold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
double best_fold_score = 0.0;
int best_idx_combination = -1;
bayesnet::Smoothing_t smoothing = bayesnet::Smoothing_t::NONE;
json best_fold_hyper;
for (int idx_combination = 0; idx_combination < combinations.size(); ++idx_combination) {
auto hyperparam_line = combinations[idx_combination];
@@ -168,10 +148,10 @@ namespace platform {
// Build Classifier with selected hyperparameters
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset);
clf->setHyperparameters(hyperparameters.get(dataset));
hyperparameters.check(valid, dataset_name);
clf->setHyperparameters(hyperparameters.get(dataset_name));
// Train model
clf->fit(X_nested_train, y_nested_train, features, className, states);
clf->fit(X_nested_train, y_nested_train, features, className, states, smoothing);
// Test model
score += clf->score(X_nested_test, y_nested_test);
}
@@ -188,9 +168,9 @@ namespace platform {
auto hyperparameters = platform::HyperParameters(datasets.getNames(), best_fold_hyper);
auto clf = Models::instance()->create(config.model);
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, dataset);
hyperparameters.check(valid, dataset_name);
clf->setHyperparameters(best_fold_hyper);
clf->fit(X_train, y_train, features, className, states);
clf->fit(X_train, y_train, features, className, states, smoothing);
best_fold_score = clf->score(X_test, y_test);
// Return the result
result->idx_dataset = task["idx_dataset"].get<int>();
@@ -373,14 +353,16 @@ namespace platform {
MPI_Bcast(msg, tasks_size + 1, MPI_CHAR, config_mpi.manager, MPI_COMM_WORLD);
tasks = json::parse(msg);
delete[] msg;
auto datasets = Datasets(config.discretize, Paths::datasets());
auto env = platform::DotEnv();
auto datasets = Datasets(config.discretize, Paths::datasets(), env.get("discretize_algo"));
if (config_mpi.rank == config_mpi.manager) {
//
// 2a. Producer delivers the tasks to the consumers
//
auto datasets_names = filterDatasets(datasets);
json all_results = producer(datasets_names, tasks, config_mpi, MPI_Result);
std::cout << get_color_rank(config_mpi.rank) << "|" << std::endl;
std::cout << get_color_rank(config_mpi.rank) << separator << std::endl;
//
// 3. Manager select the bests sccores for each dataset
//

View File

@@ -4,13 +4,13 @@
#include <map>
#include <mpi.h>
#include <nlohmann/json.hpp>
#include "Datasets.h"
#include "HyperParameters.h"
#include "common/Datasets.h"
#include "common/Timer.h"
#include "main/HyperParameters.h"
#include "GridData.h"
#include "Timer.h"
namespace platform {
using json = nlohmann::json;
using json = nlohmann::ordered_json;
struct ConfigGrid {
std::string model;
std::string score;
@@ -55,6 +55,7 @@ namespace platform {
struct ConfigGrid config;
json build_tasks_mpi(int rank);
Timer timer; // used to measure the time of the whole process
const std::string separator = "|";
};
} /* namespace platform */
#endif /* GRIDSEARCH_H */
#endif

View File

@@ -1,23 +0,0 @@
#ifndef DATASETS_EXCEL_H
#define DATASETS_EXCEL_H
#include "ExcelFile.h"
#include <vector>
#include <map>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
namespace platform {
class DatasetsExcel : public ExcelFile {
public:
explicit DatasetsExcel(json& data);
~DatasetsExcel();
void report();
private:
void formatColumns(int dataset, int balance);
json data;
};
}
#endif //DATASETS_EXCEL_H

View File

@@ -1,80 +0,0 @@
#include <iostream>
#include <locale>
#include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "Paths.h"
#include "Colors.h"
#include "Datasets.h"
#include "DatasetsExcel.h"
#include "config.h"
const int BALANCE_LENGTH = 75;
struct separated : numpunct<char> {
char do_decimal_point() const { return ','; }
char do_thousands_sep() const { return '.'; }
std::string do_grouping() const { return "\03"; }
};
std::string outputBalance(const std::string& balance)
{
auto temp = std::string(balance);
while (temp.size() > BALANCE_LENGTH - 1) {
auto part = temp.substr(0, BALANCE_LENGTH);
std::cout << part << std::endl;
std::cout << setw(52) << " ";
temp = temp.substr(BALANCE_LENGTH);
}
return temp;
}
int main(int argc, char** argv)
{
auto datasets = platform::Datasets(false, platform::Paths::datasets());
argparse::ArgumentParser program("b_list", { project_version.begin(), project_version.end() });
program.add_argument("--excel")
.help("Output in Excel format")
.default_value(false)
.implicit_value(true);
program.parse_args(argc, argv);
auto excel = program.get<bool>("--excel");
locale mylocale(std::cout.getloc(), new separated);
locale::global(mylocale);
std::cout.imbue(mylocale);
std::cout << Colors::GREEN() << " # Dataset Sampl. Feat. Cls Balance" << std::endl;
std::string balanceBars = std::string(BALANCE_LENGTH, '=');
std::cout << "=== ============================== ====== ===== === " << balanceBars << std::endl;
int num = 0;
json data;
for (const auto& dataset : datasets.getNames()) {
auto color = num % 2 ? Colors::CYAN() : Colors::BLUE();
std::cout << color << setw(3) << right << num++ << " ";
std::cout << setw(30) << left << dataset << " ";
datasets.loadDataset(dataset);
auto nSamples = datasets.getNSamples(dataset);
std::cout << setw(6) << right << nSamples << " ";
std::cout << setw(5) << right << datasets.getFeatures(dataset).size() << " ";
std::cout << setw(3) << right << datasets.getNClasses(dataset) << " ";
std::stringstream oss;
std::string sep = "";
for (auto number : datasets.getClassesCounts(dataset)) {
oss << sep << std::setprecision(2) << fixed << (float)number / nSamples * 100.0 << "% (" << number << ")";
sep = " / ";
}
auto balance = outputBalance(oss.str());
std::cout << balance << std::endl;
// Store data for Excel report
data[dataset] = json::object();
data[dataset]["samples"] = nSamples;
data[dataset]["features"] = datasets.getFeatures(dataset).size();
data[dataset]["classes"] = datasets.getNClasses(dataset);
data[dataset]["balance"] = oss.str();
}
std::cout << Colors::RESET() << std::endl;
if (excel) {
auto report = platform::DatasetsExcel(data);
report.report();
std::cout << "Output saved in " << report.getFileName() << std::endl;
}
return 0;
}

View File

@@ -1,175 +0,0 @@
#include "Experiment.h"
#include "Datasets.h"
#include "Models.h"
#include "ReportConsole.h"
#include "Paths.h"
namespace platform {
using json = nlohmann::json;
void Experiment::saveResult()
{
result.save();
}
void Experiment::report()
{
ReportConsole report(result.getJson());
report.show();
}
void Experiment::show()
{
std::cout << result.getJson().dump(4) << std::endl;
}
void Experiment::go(std::vector<std::string> filesToProcess, bool quiet, bool no_train_score)
{
for (auto fileName : filesToProcess) {
if (fileName.size() > max_name)
max_name = fileName.size();
}
std::cout << Colors::MAGENTA() << "*** Starting experiment: " << result.getTitle() << " ***" << Colors::RESET() << std::endl << std::endl;
if (!quiet) {
std::cout << Colors::GREEN() << " Status Meaning" << std::endl;
std::cout << " ------ --------------------------------" << Colors::RESET() << std::endl;
std::cout << " ( " << Colors::GREEN() << "a" << Colors::RESET() << " ) Fitting model with train dataset" << std::endl;
std::cout << " ( " << Colors::GREEN() << "b" << Colors::RESET() << " ) Scoring train dataset" << std::endl;
std::cout << " ( " << Colors::GREEN() << "c" << Colors::RESET() << " ) Scoring test dataset" << std::endl << std::endl;
std::cout << Colors::YELLOW() << "Note: fold number in this color means fitting had issues such as not using all features in BoostAODE classifier" << std::endl << std::endl;
std::cout << Colors::GREEN() << left << " # " << setw(max_name) << "Dataset" << " #Samp #Feat Seed Status" << std::endl;
std::cout << " --- " << string(max_name, '-') << " ----- ----- ---- " << string(4 + 3 * nfolds, '-') << Colors::RESET() << std::endl;
}
int num = 0;
for (auto fileName : filesToProcess) {
if (!quiet)
std::cout << " " << setw(3) << right << num++ << " " << setw(max_name) << left << fileName << right << flush;
cross_validation(fileName, quiet, no_train_score);
if (!quiet)
std::cout << std::endl;
}
if (!quiet)
std::cout << std::endl;
}
std::string getColor(bayesnet::status_t status)
{
switch (status) {
case bayesnet::NORMAL:
return Colors::GREEN();
case bayesnet::WARNING:
return Colors::YELLOW();
case bayesnet::ERROR:
return Colors::RED();
default:
return Colors::RESET();
}
}
void showProgress(int fold, const std::string& color, const std::string& phase)
{
std::string prefix = phase == "a" ? "" : "\b\b\b\b";
std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
}
void Experiment::cross_validation(const std::string& fileName, bool quiet, bool no_train_score)
{
auto datasets = Datasets(discretized, Paths::datasets());
// Get dataset
auto [X, y] = datasets.getTensors(fileName);
auto states = datasets.getStates(fileName);
auto features = datasets.getFeatures(fileName);
auto samples = datasets.getNSamples(fileName);
auto className = datasets.getClassName(fileName);
if (!quiet) {
std::cout << " " << setw(5) << samples << " " << setw(5) << features.size() << flush;
}
// Prepare Result
auto partial_result = PartialResult();
auto [values, counts] = at::_unique(y);
partial_result.setSamples(X.size(1)).setFeatures(X.size(0)).setClasses(values.size(0));
partial_result.setHyperparameters(hyperparameters.get(fileName));
// Initialize results std::vectors
int nResults = nfolds * static_cast<int>(randomSeeds.size());
auto accuracy_test = torch::zeros({ nResults }, torch::kFloat64);
auto accuracy_train = torch::zeros({ nResults }, torch::kFloat64);
auto train_time = torch::zeros({ nResults }, torch::kFloat64);
auto test_time = torch::zeros({ nResults }, torch::kFloat64);
auto nodes = torch::zeros({ nResults }, torch::kFloat64);
auto edges = torch::zeros({ nResults }, torch::kFloat64);
auto num_states = torch::zeros({ nResults }, torch::kFloat64);
std::vector<std::string> notes;
Timer train_timer, test_timer;
int item = 0;
bool first_seed = true;
for (auto seed : randomSeeds) {
if (!quiet) {
string prefix = " ";
if (!first_seed) {
prefix = "\n" + string(18 + max_name, ' ');
}
std::cout << prefix << setw(4) << right << seed << " " << flush;
first_seed = false;
}
folding::Fold* fold;
if (stratified)
fold = new folding::StratifiedKFold(nfolds, y, seed);
else
fold = new folding::KFold(nfolds, y.size(0), seed);
for (int nfold = 0; nfold < nfolds; nfold++) {
auto clf = Models::instance()->create(result.getModel());
setModelVersion(clf->getVersion());
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, fileName);
clf->setHyperparameters(hyperparameters.get(fileName));
// Split train - test dataset
train_timer.start();
auto [train, test] = fold->getFold(nfold);
auto train_t = torch::tensor(train);
auto test_t = torch::tensor(test);
auto X_train = X.index({ "...", train_t });
auto y_train = y.index({ train_t });
auto X_test = X.index({ "...", test_t });
auto y_test = y.index({ test_t });
if (!quiet)
showProgress(nfold + 1, getColor(clf->getStatus()), "a");
// Train model
clf->fit(X_train, y_train, features, className, states);
if (!quiet)
showProgress(nfold + 1, getColor(clf->getStatus()), "b");
auto clf_notes = clf->getNotes();
std::transform(clf_notes.begin(), clf_notes.end(), std::back_inserter(notes), [nfold](const std::string& note)
{ return "Fold " + std::to_string(nfold) + ": " + note; });
nodes[item] = clf->getNumberOfNodes();
edges[item] = clf->getNumberOfEdges();
num_states[item] = clf->getNumberOfStates();
train_time[item] = train_timer.getDuration();
double accuracy_train_value = 0.0;
// Score train
if (!no_train_score)
accuracy_train_value = clf->score(X_train, y_train);
// Test model
if (!quiet)
showProgress(nfold + 1, getColor(clf->getStatus()), "c");
test_timer.start();
auto accuracy_test_value = clf->score(X_test, y_test);
test_time[item] = test_timer.getDuration();
accuracy_train[item] = accuracy_train_value;
accuracy_test[item] = accuracy_test_value;
if (!quiet)
std::cout << "\b\b\b, " << flush;
// Store results and times in std::vector
partial_result.addScoreTrain(accuracy_train_value);
partial_result.addScoreTest(accuracy_test_value);
partial_result.addTimeTrain(train_time[item].item<double>());
partial_result.addTimeTest(test_time[item].item<double>());
item++;
}
if (!quiet)
std::cout << "end. " << flush;
delete fold;
}
partial_result.setScoreTest(torch::mean(accuracy_test).item<double>()).setScoreTrain(torch::mean(accuracy_train).item<double>());
partial_result.setScoreTestStd(torch::std(accuracy_test).item<double>()).setScoreTrainStd(torch::std(accuracy_train).item<double>());
partial_result.setTrainTime(torch::mean(train_time).item<double>()).setTestTime(torch::mean(test_time).item<double>());
partial_result.setTestTimeStd(torch::std(test_time).item<double>()).setTrainTimeStd(torch::std(train_time).item<double>());
partial_result.setNodes(torch::mean(nodes).item<double>()).setLeaves(torch::mean(edges).item<double>()).setDepth(torch::mean(num_states).item<double>());
partial_result.setDataset(fileName).setNotes(notes);
addResult(partial_result);
}
}

299
src/main/Experiment.cpp Normal file
View File

@@ -0,0 +1,299 @@
#include "common/Datasets.h"
#include "reports/ReportConsole.h"
#include "common/Paths.h"
#include "Models.h"
#include "Scores.h"
#include "Experiment.h"
namespace platform {
using json = nlohmann::ordered_json;
void Experiment::saveResult()
{
result.save();
std::cout << "Result saved in " << Paths::results() << result.getFilename() << std::endl;
}
void Experiment::report(bool classification_report)
{
ReportConsole report(result.getJson());
report.show();
if (classification_report) {
std::cout << report.showClassificationReport(Colors::BLUE());
}
}
void Experiment::show()
{
std::cout << result.getJson().dump(4) << std::endl;
}
void Experiment::saveGraph()
{
std::cout << "Saving graphs..." << std::endl;
auto data = result.getJson();
for (const auto& item : data["results"]) {
auto graphs = item["graph"];
int i = 0;
for (const auto& graph : graphs) {
i++;
auto fileName = Paths::graphs() + result.getFilename() + "_graph_" + item["dataset"].get<std::string>() + "_" + std::to_string(i) + ".dot";
auto file = std::ofstream(fileName);
file << graph.get<std::string>();
file.close();
std::cout << "Graph saved in " << fileName << std::endl;
}
}
}
void Experiment::go(std::vector<std::string> filesToProcess, bool quiet, bool no_train_score, bool generate_fold_files, bool graph)
{
for (auto fileName : filesToProcess) {
if (fileName.size() > max_name)
max_name = fileName.size();
}
std::cout << Colors::MAGENTA() << "*** Starting experiment: " << result.getTitle() << " ***" << Colors::RESET() << std::endl << std::endl;
auto clf = Models::instance()->create(result.getModel());
auto version = clf->getVersion();
std::cout << Colors::BLUE() << " Using " << result.getModel() << " ver. " << version << std::endl << std::endl;
if (!quiet) {
std::cout << Colors::GREEN() << " Status Meaning" << std::endl;
std::cout << " ------ --------------------------------" << Colors::RESET() << std::endl;
std::cout << " ( " << Colors::GREEN() << "a" << Colors::RESET() << " ) Fitting model with train dataset" << std::endl;
std::cout << " ( " << Colors::GREEN() << "b" << Colors::RESET() << " ) Scoring train dataset" << std::endl;
std::cout << " ( " << Colors::GREEN() << "c" << Colors::RESET() << " ) Scoring test dataset" << std::endl << std::endl;
std::cout << Colors::YELLOW() << "Note: fold number in this color means fitting had issues such as not using all features in BoostAODE classifier" << std::endl << std::endl;
std::cout << Colors::GREEN() << left << " # " << setw(max_name) << "Dataset" << " #Samp #Feat Seed Status" << string(3 * nfolds - 2, ' ') << " Time" << std::endl;
std::cout << " --- " << string(max_name, '-') << " ----- ----- ---- " << string(4 + 3 * nfolds, '-') << " ----------" << Colors::RESET() << std::endl;
}
int num = 0;
for (auto fileName : filesToProcess) {
if (!quiet)
std::cout << " " << setw(3) << right << num++ << " " << setw(max_name) << left << fileName << right << flush;
cross_validation(fileName, quiet, no_train_score, generate_fold_files, graph);
if (!quiet)
std::cout << std::endl;
}
if (!quiet)
std::cout << std::endl;
}
std::string getColor(bayesnet::status_t status)
{
switch (status) {
case bayesnet::NORMAL:
return Colors::GREEN();
case bayesnet::WARNING:
return Colors::YELLOW();
case bayesnet::ERROR:
return Colors::RED();
default:
return Colors::RESET();
}
}
score_t Experiment::parse_score() const
{
if (result.getScoreName() == "accuracy")
return score_t::ACCURACY;
if (result.getScoreName() == "roc-auc-ovr")
return score_t::ROC_AUC_OVR;
throw std::runtime_error("Unknown score: " + result.getScoreName());
}
void showProgress(int fold, const std::string& color, const std::string& phase)
{
std::string prefix = phase == "-" ? "" : "\b\b\b\b";
std::cout << prefix << color << fold << Colors::RESET() << "(" << color << phase << Colors::RESET() << ")" << flush;
}
void generate_files(const std::string& fileName, bool discretize, bool stratified, int seed, int nfold, torch::Tensor X_train, torch::Tensor y_train, torch::Tensor X_test, torch::Tensor y_test, std::vector<int>& train, std::vector<int>& test)
{
std::string file_name = Paths::experiment_file(fileName, discretize, stratified, seed, nfold);
auto file = std::ofstream(file_name);
json output;
output["seed"] = seed;
output["nfold"] = nfold;
output["X_train"] = json::array();
auto n = X_train.size(1);
for (int i = 0; i < X_train.size(0); i++) {
if (X_train.dtype() == torch::kFloat32) {
auto xvf_ptr = X_train.index({ i }).data_ptr<float>();
auto feature = std::vector<float>(xvf_ptr, xvf_ptr + n);
output["X_train"].push_back(feature);
} else {
auto feature = std::vector<int>(X_train.index({ i }).data_ptr<int>(), X_train.index({ i }).data_ptr<int>() + n);
output["X_train"].push_back(feature);
}
}
output["y_train"] = std::vector<int>(y_train.data_ptr<int>(), y_train.data_ptr<int>() + n);
output["X_test"] = json::array();
n = X_test.size(1);
for (int i = 0; i < X_test.size(0); i++) {
if (X_train.dtype() == torch::kFloat32) {
auto xvf_ptr = X_test.index({ i }).data_ptr<float>();
auto feature = std::vector<float>(xvf_ptr, xvf_ptr + n);
output["X_test"].push_back(feature);
} else {
auto feature = std::vector<int>(X_test.index({ i }).data_ptr<int>(), X_test.index({ i }).data_ptr<int>() + n);
output["X_test"].push_back(feature);
}
}
output["y_test"] = std::vector<int>(y_test.data_ptr<int>(), y_test.data_ptr<int>() + n);
output["train"] = train;
output["test"] = test;
file << output.dump(4);
file.close();
}
void Experiment::cross_validation(const std::string& fileName, bool quiet, bool no_train_score, bool generate_fold_files, bool graph)
{
//
// Load dataset and prepare data
//
auto datasets = Datasets(discretized, Paths::datasets(), discretization_algo);
auto& dataset = datasets.getDataset(fileName);
dataset.load();
auto [X, y] = dataset.getTensors(); // Only need y for folding
auto features = dataset.getFeatures();
auto n_features = dataset.getNFeatures();
auto n_samples = dataset.getNSamples();
auto className = dataset.getClassName();
auto labels = dataset.getLabels();
int num_classes = dataset.getNClasses();
if (!quiet) {
std::cout << " " << setw(5) << n_samples << " " << setw(5) << n_features << flush;
}
//
// Prepare Result
//
auto partial_result = PartialResult();
partial_result.setSamples(n_samples).setFeatures(n_features).setClasses(num_classes);
partial_result.setHyperparameters(hyperparameters.get(fileName));
//
// Initialize results std::vectors
//
int nResults = nfolds * static_cast<int>(randomSeeds.size());
auto score_test = torch::zeros({ nResults }, torch::kFloat64);
auto score_train = torch::zeros({ nResults }, torch::kFloat64);
auto train_time = torch::zeros({ nResults }, torch::kFloat64);
auto test_time = torch::zeros({ nResults }, torch::kFloat64);
auto nodes = torch::zeros({ nResults }, torch::kFloat64);
auto edges = torch::zeros({ nResults }, torch::kFloat64);
auto num_states = torch::zeros({ nResults }, torch::kFloat64);
json confusion_matrices = json::array();
json confusion_matrices_train = json::array();
std::vector<std::string> notes;
std::vector<std::string> graphs;
Timer train_timer, test_timer, seed_timer;
int item = 0;
bool first_seed = true;
//
// Loop over random seeds
//
auto score = parse_score();
for (auto seed : randomSeeds) {
seed_timer.start();
if (!quiet) {
string prefix = " ";
if (!first_seed) {
prefix = "\n" + string(18 + max_name, ' ');
}
std::cout << prefix << setw(4) << right << seed << " " << flush;
first_seed = false;
}
folding::Fold* fold;
if (stratified)
fold = new folding::StratifiedKFold(nfolds, y, seed);
else
fold = new folding::KFold(nfolds, n_samples, seed);
//
// Loop over folds
//
for (int nfold = 0; nfold < nfolds; nfold++) {
auto clf = Models::instance()->create(result.getModel());
if (!quiet)
showProgress(nfold + 1, getColor(clf->getStatus()), "-");
setModelVersion(clf->getVersion());
auto valid = clf->getValidHyperparameters();
hyperparameters.check(valid, fileName);
clf->setHyperparameters(hyperparameters.get(fileName));
//
// Split train - test dataset
//
train_timer.start();
auto [train, test] = fold->getFold(nfold);
auto [X_train, X_test, y_train, y_test] = dataset.getTrainTestTensors(train, test);
auto states = dataset.getStates(); // Get the states of the features Once they are discretized
if (generate_fold_files)
generate_files(fileName, discretized, stratified, seed, nfold, X_train, y_train, X_test, y_test, train, test);
if (!quiet)
showProgress(nfold + 1, getColor(clf->getStatus()), "a");
//
// Train model
//
clf->fit(X_train, y_train, features, className, states, smooth_type);
if (!quiet)
showProgress(nfold + 1, getColor(clf->getStatus()), "b");
auto clf_notes = clf->getNotes();
std::transform(clf_notes.begin(), clf_notes.end(), std::back_inserter(notes), [nfold](const std::string& note)
{ return "Fold " + std::to_string(nfold) + ": " + note; });
nodes[item] = clf->getNumberOfNodes();
edges[item] = clf->getNumberOfEdges();
num_states[item] = clf->getNumberOfStates();
train_time[item] = train_timer.getDuration();
double score_train_value = 0.0;
//
// Score train
//
if (!no_train_score) {
auto y_proba_train = clf->predict_proba(X_train);
Scores scores(y_train, y_proba_train, num_classes, labels);
score_train_value = score == score_t::ACCURACY ? scores.accuracy() : scores.auc();
confusion_matrices_train.push_back(scores.get_confusion_matrix_json(true));
}
//
// Test model
//
if (!quiet)
showProgress(nfold + 1, getColor(clf->getStatus()), "c");
test_timer.start();
// auto y_predict = clf->predict(X_test);
auto y_proba_test = clf->predict_proba(X_test);
Scores scores(y_test, y_proba_test, num_classes, labels);
auto score_test_value = score == score_t::ACCURACY ? scores.accuracy() : scores.auc();
test_time[item] = test_timer.getDuration();
score_train[item] = score_train_value;
score_test[item] = score_test_value;
confusion_matrices.push_back(scores.get_confusion_matrix_json(true));
if (!quiet)
std::cout << "\b\b\b, " << flush;
//
// Store results and times in std::vector
//
partial_result.addScoreTrain(score_train_value);
partial_result.addScoreTest(score_test_value);
partial_result.addTimeTrain(train_time[item].item<double>());
partial_result.addTimeTest(test_time[item].item<double>());
item++;
if (graph) {
std::string result = "";
for (const auto& line : clf->graph()) {
result += line + "\n";
}
graphs.push_back(result);
}
}
if (!quiet) {
seed_timer.stop();
std::cout << "end. [" << seed_timer.getDurationString() << "]" << std::endl;
}
delete fold;
}
//
// Store result totals in Result
//
partial_result.setGraph(graphs);
partial_result.setScoreTest(torch::mean(score_test).item<double>()).setScoreTrain(torch::mean(score_train).item<double>());
partial_result.setScoreTestStd(torch::std(score_test).item<double>()).setScoreTrainStd(torch::std(score_train).item<double>());
partial_result.setTrainTime(torch::mean(train_time).item<double>()).setTestTime(torch::mean(test_time).item<double>());
partial_result.setTestTimeStd(torch::std(test_time).item<double>()).setTrainTimeStd(torch::std(train_time).item<double>());
partial_result.setNodes(torch::mean(nodes).item<double>()).setLeaves(torch::mean(edges).item<double>()).setDepth(torch::mean(num_states).item<double>());
partial_result.setDataset(fileName).setNotes(notes);
partial_result.setConfusionMatrices(confusion_matrices);
if (!no_train_score)
partial_result.setConfusionMatricesTrain(confusion_matrices_train);
addResult(partial_result);
}
}

View File

@@ -3,14 +3,15 @@
#include <torch/torch.h>
#include <nlohmann/json.hpp>
#include <string>
#include "folding.hpp"
#include "BaseClassifier.h"
#include <folding.hpp>
#include "bayesnet/BaseClassifier.h"
#include "HyperParameters.h"
#include "Result.h"
#include "results/Result.h"
#include "bayesnet/network/Network.h"
namespace platform {
using json = nlohmann::json;
using json = nlohmann::ordered_json;
enum class score_t { NONE, ACCURACY, ROC_AUC_OVR };
class Experiment {
public:
Experiment() = default;
@@ -20,6 +21,25 @@ namespace platform {
Experiment& setModelVersion(const std::string& model_version) { this->result.setModelVersion(model_version); return *this; }
Experiment& setModel(const std::string& model) { this->result.setModel(model); return *this; }
Experiment& setLanguage(const std::string& language) { this->result.setLanguage(language); return *this; }
Experiment& setDiscretizationAlgorithm(const std::string& discretization_algo)
{
this->discretization_algo = discretization_algo; this->result.setDiscretizationAlgorithm(discretization_algo); return *this;
}
Experiment& setSmoothSrategy(const std::string& smooth_strategy)
{
this->smooth_strategy = smooth_strategy; this->result.setSmoothStrategy(smooth_strategy);
if (smooth_strategy == "ORIGINAL")
smooth_type = bayesnet::Smoothing_t::ORIGINAL;
else if (smooth_strategy == "LAPLACE")
smooth_type = bayesnet::Smoothing_t::LAPLACE;
else if (smooth_strategy == "CESTNIK")
smooth_type = bayesnet::Smoothing_t::CESTNIK;
else {
std::cerr << "Experiment: Unknown smoothing strategy: " << smooth_strategy << std::endl;
exit(1);
}
return *this;
}
Experiment& setLanguageVersion(const std::string& language_version) { this->result.setLanguageVersion(language_version); return *this; }
Experiment& setDiscretized(bool discretized) { this->discretized = discretized; result.setDiscretized(discretized); return *this; }
Experiment& setStratified(bool stratified) { this->stratified = stratified; result.setStratified(stratified); return *this; }
@@ -28,16 +48,21 @@ namespace platform {
Experiment& addRandomSeed(int randomSeed) { randomSeeds.push_back(randomSeed); result.addSeed(randomSeed); return *this; }
Experiment& setDuration(float duration) { this->result.setDuration(duration); return *this; }
Experiment& setHyperparameters(const HyperParameters& hyperparameters_) { this->hyperparameters = hyperparameters_; return *this; }
void cross_validation(const std::string& fileName, bool quiet, bool no_train_score);
void go(std::vector<std::string> filesToProcess, bool quiet, bool no_train_score);
void cross_validation(const std::string& fileName, bool quiet, bool no_train_score, bool generate_fold_files, bool graph);
void go(std::vector<std::string> filesToProcess, bool quiet, bool no_train_score, bool generate_fold_files, bool graph);
void saveResult();
void show();
void report();
void saveGraph();
void report(bool classification_report = false);
private:
score_t parse_score() const;
Result result;
bool discretized{ false }, stratified{ false };
std::vector<PartialResult> results;
std::vector<int> randomSeeds;
std::string discretization_algo;
std::string smooth_strategy;
bayesnet::Smoothing_t smooth_type{ bayesnet::Smoothing_t::NONE };
HyperParameters hyperparameters;
int nfolds{ 0 };
int max_name{ 7 }; // max length of dataset name for formatting (default 7)

View File

@@ -1,7 +1,7 @@
#include "HyperParameters.h"
#include <fstream>
#include <sstream>
#include <iostream>
#include "HyperParameters.h"
namespace platform {
HyperParameters::HyperParameters(const std::vector<std::string>& datasets, const json& hyperparameters_)
@@ -10,16 +10,9 @@ namespace platform {
for (const auto& item : datasets) {
hyperparameters[item] = hyperparameters_;
}
normalize_nested(datasets);
}
// https://www.techiedelight.com/implode-a-vector-of-strings-into-a-comma-separated-string-in-cpp/
std::string join(std::vector<std::string> const& strings, std::string delim)
{
std::stringstream ss;
std::copy(strings.begin(), strings.end(),
std::ostream_iterator<std::string>(ss, delim.c_str()));
return ss.str();
}
HyperParameters::HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file)
HyperParameters::HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file, bool best)
{
// Check if file exists
std::ifstream file(hyperparameters_file);
@@ -28,7 +21,14 @@ namespace platform {
}
// Check if file is a json
json file_hyperparameters = json::parse(file);
auto input_hyperparameters = file_hyperparameters["results"];
json input_hyperparameters;
if (best) {
for (const auto& [key, value] : file_hyperparameters.items()) {
input_hyperparameters[key]["hyperparameters"] = value[1];
}
} else {
input_hyperparameters = file_hyperparameters["results"];
}
// Check if hyperparameters are valid
for (const auto& dataset : datasets) {
if (!input_hyperparameters.contains(dataset)) {
@@ -38,6 +38,24 @@ namespace platform {
}
hyperparameters[dataset] = input_hyperparameters[dataset]["hyperparameters"].get<json>();
}
normalize_nested(datasets);
}
void HyperParameters::normalize_nested(const std::vector<std::string>& datasets)
{
// for (const auto& dataset : datasets) {
// if (hyperparameters[dataset].contains("be_hyperparams")) {
// // Odte has base estimator hyperparameters set this way
// hyperparameters[dataset]["be_hyperparams"] = hyperparameters[dataset]["be_hyperparams"].dump();
// }
// }
}
// https://www.techiedelight.com/implode-a-vector-of-strings-into-a-comma-separated-string-in-cpp/
std::string join(std::vector<std::string> const& strings, std::string delim)
{
std::stringstream ss;
std::copy(strings.begin(), strings.end(),
std::ostream_iterator<std::string>(ss, delim.c_str()));
return ss.str();
}
void HyperParameters::check(const std::vector<std::string>& valid, const std::string& fileName)
{

View File

@@ -6,18 +6,22 @@
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::json;
using json = nlohmann::ordered_json;
class HyperParameters {
public:
HyperParameters() = default;
// Constructor to use command line hyperparameters
explicit HyperParameters(const std::vector<std::string>& datasets, const json& hyperparameters_);
explicit HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file);
// Constructor to use hyperparameters file generated by grid or by best results
explicit HyperParameters(const std::vector<std::string>& datasets, const std::string& hyperparameters_file, bool best = false);
~HyperParameters() = default;
bool notEmpty(const std::string& key) const { return !hyperparameters.at(key).empty(); }
void check(const std::vector<std::string>& valid, const std::string& fileName);
json get(const std::string& fileName);
private:
void normalize_nested(const std::vector<std::string>& datasets);
std::map<std::string, json> hyperparameters;
bool best = false; // Used to separate grid/best hyperparameters as the format of those files are different
};
} /* namespace platform */
#endif /* HYPERPARAMETERS_H */
#endif

View File

@@ -36,13 +36,15 @@ namespace platform {
[](const pair<std::string, function<bayesnet::BaseClassifier* (void)>>& pair) { return pair.first; });
return names;
}
std::string Models::tostring()
std::string Models::toString()
{
std::string result = "";
std::string sep = "";
for (const auto& pair : functionRegistry) {
result += pair.first + ", ";
result += sep + pair.first;
sep = ", ";
}
return "{" + result.substr(0, result.size() - 2) + "}";
return "{" + result + "}";
}
Registrar::Registrar(const std::string& name, function<bayesnet::BaseClassifier* (void)> classFactoryFunction)
{

View File

@@ -1,27 +1,27 @@
#ifndef MODELS_H
#define MODELS_H
#include <map>
#include "BaseClassifier.h"
#include "AODE.h"
#include "TAN.h"
#include "KDB.h"
#include "SPODE.h"
#include "TANLd.h"
#include "KDBLd.h"
#include "SPODELd.h"
#include "AODELd.h"
#include "BoostAODE.h"
#include "STree.h"
#include "ODTE.h"
#include "SVC.h"
#include "XGBoost.h"
#include "RandomForest.h"
#include <bayesnet/BaseClassifier.h>
#include <bayesnet/ensembles/AODE.h>
#include <bayesnet/ensembles/A2DE.h>
#include <bayesnet/ensembles/AODELd.h>
#include <bayesnet/ensembles/BoostAODE.h>
#include <bayesnet/ensembles/BoostA2DE.h>
#include <bayesnet/classifiers/TAN.h>
#include <bayesnet/classifiers/KDB.h>
#include <bayesnet/classifiers/SPODE.h>
#include <bayesnet/classifiers/SPnDE.h>
#include <bayesnet/classifiers/TANLd.h>
#include <bayesnet/classifiers/KDBLd.h>
#include <bayesnet/classifiers/SPODELd.h>
#include <bayesnet/classifiers/SPODELd.h>
#include <pyclassifiers/STree.h>
#include <pyclassifiers/ODTE.h>
#include <pyclassifiers/SVC.h>
#include <pyclassifiers/XGBoost.h>
#include <pyclassifiers/RandomForest.h>
namespace platform {
class Models {
private:
map<std::string, function<bayesnet::BaseClassifier* (void)>> functionRegistry;
static Models* factory; //singleton
Models() {};
public:
Models(Models&) = delete;
void operator=(const Models&) = delete;
@@ -31,8 +31,11 @@ namespace platform {
void registerFactoryFunction(const std::string& name,
function<bayesnet::BaseClassifier* (void)> classFactoryFunction);
std::vector<string> getNames();
std::string tostring();
std::string toString();
private:
map<std::string, function<bayesnet::BaseClassifier* (void)>> functionRegistry;
static Models* factory; //singleton
Models() {};
};
class Registrar {
public:

View File

@@ -1,10 +1,10 @@
#pragma once
#ifndef PARTIAL_RESULT_H
#define PARTIAL_RESULT_H
#include <string>
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::json;
using json = nlohmann::ordered_json;
class PartialResult {
public:
@@ -15,6 +15,7 @@ namespace platform {
data["times_train"] = json::array();
data["times_test"] = json::array();
data["notes"] = json::array();
data["graph"] = json::array();
data["train_time"] = 0.0;
data["train_time_std"] = 0.0;
data["test_time"] = 0.0;
@@ -27,6 +28,14 @@ namespace platform {
data["notes"].insert(data["notes"].end(), notes_.begin(), notes_.end());
return *this;
}
PartialResult& setGraph(const std::vector<std::string>& graph)
{
json graph_ = graph;
data["graph"].insert(data["graph"].end(), graph_.begin(), graph_.end());
return *this;
}
PartialResult& setConfusionMatrices(const json& confusion_matrices) { data["confusion_matrices"] = confusion_matrices; return *this; }
PartialResult& setConfusionMatricesTrain(const json& confusion_matrices) { data["confusion_matrices_train"] = confusion_matrices; return *this; }
PartialResult& setHyperparameters(const json& hyperparameters) { data["hyperparameters"] = hyperparameters; return *this; }
PartialResult& setSamples(int samples) { data["samples"] = samples; return *this; }
PartialResult& setFeatures(int features) { data["features"] = features; return *this; }
@@ -71,3 +80,4 @@ namespace platform {
json data;
};
}
#endif

67
src/main/RocAuc.cpp Normal file
View File

@@ -0,0 +1,67 @@
#include <sstream>
#include <algorithm>
#include <numeric>
#include <utility>
#include "RocAuc.h"
namespace platform {
double RocAuc::compute(const torch::Tensor& y_proba, const torch::Tensor& labels)
{
size_t nClasses = y_proba.size(1);
// In binary classification problem there's no need to calculate the average of the AUCs
if (nClasses == 2)
nClasses = 1;
size_t nSamples = y_proba.size(0);
y_test = tensorToVector(labels);
std::vector<double> aucScores(nClasses, 0.0);
for (size_t classIdx = 0; classIdx < nClasses; ++classIdx) {
scoresAndLabels.clear();
for (size_t i = 0; i < nSamples; ++i) {
scoresAndLabels.emplace_back(y_proba[i][classIdx].item<float>(), y_test[i] == classIdx ? 1 : 0);
}
aucScores[classIdx] = compute_common(nSamples, classIdx);
}
return std::accumulate(aucScores.begin(), aucScores.end(), 0.0) / nClasses;
}
double RocAuc::compute(const std::vector<std::vector<double>>& y_proba, const std::vector<int>& labels)
{
y_test = labels;
size_t nClasses = y_proba[0].size();
// In binary classification problem there's no need to calculate the average of the AUCs
if (nClasses == 2)
nClasses = 1;
size_t nSamples = y_proba.size();
std::vector<double> aucScores(nClasses, 0.0);
for (size_t classIdx = 0; classIdx < nClasses; ++classIdx) {
scoresAndLabels.clear();
for (size_t i = 0; i < nSamples; ++i) {
scoresAndLabels.emplace_back(y_proba[i][classIdx], labels[i] == classIdx ? 1 : 0);
}
aucScores[classIdx] = compute_common(nSamples, classIdx);
}
return std::accumulate(aucScores.begin(), aucScores.end(), 0.0) / nClasses;
}
double RocAuc::compute_common(size_t nSamples, size_t classIdx)
{
std::sort(scoresAndLabels.begin(), scoresAndLabels.end(), std::greater<>());
std::vector<double> tpr, fpr;
double tp = 0, fp = 0;
double totalPos = std::count(y_test.begin(), y_test.end(), classIdx);
double totalNeg = nSamples - totalPos;
for (const auto& [score, label] : scoresAndLabels) {
if (label == 1) {
tp += 1;
} else {
fp += 1;
}
tpr.push_back(tp / totalPos);
fpr.push_back(fp / totalNeg);
}
double auc = 0.0;
for (size_t i = 1; i < tpr.size(); ++i) {
auc += 0.5 * (fpr[i] - fpr[i - 1]) * (tpr[i] + tpr[i - 1]);
}
return auc;
}
}

21
src/main/RocAuc.h Normal file
View File

@@ -0,0 +1,21 @@
#ifndef ROCAUC_H
#define ROCAUC_H
#include <torch/torch.h>
#include <vector>
#include <string>
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::ordered_json;
class RocAuc {
public:
RocAuc() = default;
double compute(const std::vector<std::vector<double>>& y_proba, const std::vector<int>& y_test);
double compute(const torch::Tensor& y_proba, const torch::Tensor& y_test);
private:
double compute_common(size_t nSamples, size_t classIdx);
std::vector<std::pair<double, int>> scoresAndLabels;
std::vector<int> y_test;
};
}
#endif

270
src/main/Scores.cpp Normal file
View File

@@ -0,0 +1,270 @@
#include <sstream>
#include "Scores.h"
#include "common/Utils.h" // tensorToVector
#include "common/Colors.h"
namespace platform {
Scores::Scores(torch::Tensor& y_test, torch::Tensor& y_proba, int num_classes, std::vector<std::string> labels) : num_classes(num_classes), labels(labels), y_test(y_test), y_proba(y_proba)
{
if (labels.size() == 0) {
init_default_labels();
}
total = y_test.size(0);
auto y_pred = y_proba.argmax(1);
accuracy_value = (y_pred == y_test).sum().item<float>() / total;
init_confusion_matrix();
for (int i = 0; i < total; i++) {
int actual = y_test[i].item<int>();
int predicted = y_pred[i].item<int>();
confusion_matrix[actual][predicted] += 1;
}
}
Scores::Scores(const json& confusion_matrix_)
{
json values;
total = 0;
num_classes = confusion_matrix_.size();
init_confusion_matrix();
int i = 0;
for (const auto& item : confusion_matrix_.items()) {
values = item.value();
json key = item.key();
if (key.is_number_integer()) {
labels.push_back("Class " + std::to_string(key.get<int>()));
} else {
labels.push_back(key.get<std::string>());
}
for (int j = 0; j < num_classes; ++j) {
int value_int = values[j].get<int>();
confusion_matrix[i][j] = value_int;
total += value_int;
}
i++;
}
compute_accuracy_value();
}
float Scores::auc()
{
size_t nSamples = y_test.numel();
if (nSamples == 0) return 0;
// In binary classification problem there's no need to calculate the average of the AUCs
auto nClasses = num_classes;
if (num_classes == 2)
nClasses = 1;
auto y_testv = tensorToVector<int>(y_test);
std::vector<double> aucScores(nClasses, 0.0);
std::vector<std::pair<double, int>> scoresAndLabels;
for (size_t classIdx = 0; classIdx < nClasses; ++classIdx) {
if (classIdx >= y_proba.size(1)) {
std::cerr << "AUC warning - class index out of range" << std::endl;
return 0;
}
scoresAndLabels.clear();
for (size_t i = 0; i < nSamples; ++i) {
scoresAndLabels.emplace_back(y_proba[i][classIdx].item<float>(), y_testv[i] == classIdx ? 1 : 0);
}
std::sort(scoresAndLabels.begin(), scoresAndLabels.end(), std::greater<>());
std::vector<double> tpr, fpr;
double tp = 0, fp = 0;
double totalPos = std::count(y_testv.begin(), y_testv.end(), classIdx);
double totalNeg = nSamples - totalPos;
for (const auto& [score, label] : scoresAndLabels) {
if (label == 1) {
tp += 1;
} else {
fp += 1;
}
tpr.push_back(tp / totalPos);
fpr.push_back(fp / totalNeg);
}
double auc = 0.0;
for (size_t i = 1; i < tpr.size(); ++i) {
auc += 0.5 * (fpr[i] - fpr[i - 1]) * (tpr[i] + tpr[i - 1]);
}
aucScores[classIdx] = auc;
}
return std::accumulate(aucScores.begin(), aucScores.end(), 0.0) / nClasses;
}
Scores Scores::create_aggregate(const json& data, const std::string key)
{
auto scores = Scores(data[key][0]);
for (int i = 1; i < data[key].size(); i++) {
auto score = Scores(data[key][i]);
scores.aggregate(score);
}
return scores;
}
void Scores::compute_accuracy_value()
{
accuracy_value = 0;
for (int i = 0; i < num_classes; i++) {
accuracy_value += confusion_matrix[i][i].item<int>();
}
accuracy_value /= total;
accuracy_value = std::min(accuracy_value, 1.0f);
}
void Scores::init_confusion_matrix()
{
confusion_matrix = torch::zeros({ num_classes, num_classes }, torch::kInt32);
}
void Scores::init_default_labels()
{
for (int i = 0; i < num_classes; i++) {
labels.push_back("Class " + std::to_string(i));
}
}
void Scores::aggregate(const Scores& a)
{
if (a.num_classes != num_classes)
throw std::invalid_argument("The number of classes must be the same");
confusion_matrix += a.confusion_matrix;
total += a.total;
compute_accuracy_value();
}
float Scores::accuracy()
{
return accuracy_value;
}
float Scores::f1_score(int num_class)
{
// Compute f1_score in a one vs rest fashion
auto precision_value = precision(num_class);
auto recall_value = recall(num_class);
if (precision_value + recall_value == 0) return 0; // Avoid division by zero (0/0 = 0)
return 2 * precision_value * recall_value / (precision_value + recall_value);
}
float Scores::f1_weighted()
{
float f1_weighted = 0;
for (int i = 0; i < num_classes; i++) {
f1_weighted += confusion_matrix[i].sum().item<int>() * f1_score(i);
}
return f1_weighted / total;
}
float Scores::f1_macro()
{
float f1_macro = 0;
for (int i = 0; i < num_classes; i++) {
f1_macro += f1_score(i);
}
return f1_macro / num_classes;
}
float Scores::precision(int num_class)
{
int tp = confusion_matrix[num_class][num_class].item<int>();
int fp = confusion_matrix.index({ "...", num_class }).sum().item<int>() - tp;
int fn = confusion_matrix[num_class].sum().item<int>() - tp;
if (tp + fp == 0) return 0; // Avoid division by zero (0/0 = 0
return float(tp) / (tp + fp);
}
float Scores::recall(int num_class)
{
int tp = confusion_matrix[num_class][num_class].item<int>();
int fp = confusion_matrix.index({ "...", num_class }).sum().item<int>() - tp;
int fn = confusion_matrix[num_class].sum().item<int>() - tp;
if (tp + fn == 0) return 0; // Avoid division by zero (0/0 = 0
return float(tp) / (tp + fn);
}
std::string Scores::classification_report_line(std::string label, float precision, float recall, float f1_score, int support)
{
std::stringstream oss;
oss << std::right << std::setw(label_len) << label << " ";
if (precision == 0) {
oss << std::string(dlen, ' ') << " ";
} else {
oss << std::setw(dlen) << std::setprecision(ndec) << std::fixed << precision << " ";
}
if (recall == 0) {
oss << std::string(dlen, ' ') << " ";
} else {
oss << std::setw(dlen) << std::setprecision(ndec) << std::fixed << recall << " ";
}
oss << std::setw(dlen) << std::setprecision(ndec) << std::fixed << f1_score << " "
<< std::setw(dlen) << std::right << support;
return oss.str();
}
std::tuple<float, float, float, float> Scores::compute_averages()
{
float precision_avg = 0;
float recall_avg = 0;
float precision_wavg = 0;
float recall_wavg = 0;
for (int i = 0; i < num_classes; i++) {
int support = confusion_matrix[i].sum().item<int>();
precision_avg += precision(i);
precision_wavg += precision(i) * support;
recall_avg += recall(i);
recall_wavg += recall(i) * support;
}
precision_wavg /= total;
recall_wavg /= total;
precision_avg /= num_classes;
recall_avg /= num_classes;
return { precision_avg, recall_avg, precision_wavg, recall_wavg };
}
std::vector<std::string> Scores::classification_report(std::string color, std::string title)
{
std::stringstream oss;
std::vector<std::string> report;
for (int i = 0; i < num_classes; i++) {
label_len = std::max(label_len, (int)labels[i].size());
}
report.push_back("Classification Report using " + title + " dataset");
report.push_back("=========================================");
oss << std::string(label_len, ' ') << " precision recall f1-score support";
report.push_back(oss.str()); oss.str("");
oss << std::string(label_len, ' ') << " ========= ========= ========= =========";
report.push_back(oss.str()); oss.str("");
for (int i = 0; i < num_classes; i++) {
report.push_back(classification_report_line(labels[i], precision(i), recall(i), f1_score(i), confusion_matrix[i].sum().item<int>()));
}
report.push_back(" ");
oss << classification_report_line("accuracy", 0, 0, accuracy(), total);
report.push_back(oss.str()); oss.str("");
auto [precision_avg, recall_avg, precision_wavg, recall_wavg] = compute_averages();
report.push_back(classification_report_line("macro avg", precision_avg, recall_avg, f1_macro(), total));
report.push_back(classification_report_line("weighted avg", precision_wavg, recall_wavg, f1_weighted(), total));
report.push_back("");
report.push_back("Confusion Matrix");
report.push_back("================");
auto number = total > 1000 ? 4 : 3;
for (int i = 0; i < num_classes; i++) {
oss << std::right << std::setw(label_len) << labels[i] << " ";
for (int j = 0; j < num_classes; j++) {
if (i == j) oss << Colors::GREEN();
oss << std::setw(number) << confusion_matrix[i][j].item<int>() << " ";
if (i == j) oss << color;
}
report.push_back(oss.str()); oss.str("");
}
return report;
}
json Scores::classification_report_json(std::string title)
{
json output;
output["title"] = "Classification Report using " + title + " dataset";
output["headers"] = { " ", "precision", "recall", "f1-score", "support" };
output["body"] = {};
for (int i = 0; i < num_classes; i++) {
output["body"].push_back({ labels[i], precision(i), recall(i), f1_score(i), confusion_matrix[i].sum().item<int>() });
}
output["accuracy"] = { "accuracy", 0, 0, accuracy(), total };
auto [precision_avg, recall_avg, precision_wavg, recall_wavg] = compute_averages();
output["averages"] = { "macro avg", precision_avg, recall_avg, f1_macro(), total };
output["weighted"] = { "weighted avg", precision_wavg, recall_wavg, f1_weighted(), total };
output["confusion_matrix"] = get_confusion_matrix_json();
return output;
}
json Scores::get_confusion_matrix_json(bool labels_as_keys)
{
json output;
for (int i = 0; i < num_classes; i++) {
auto r_ptr = confusion_matrix[i].data_ptr<int>();
if (labels_as_keys) {
output[labels[i]] = std::vector<int>(r_ptr, r_ptr + num_classes);
} else {
output[i] = std::vector<int>(r_ptr, r_ptr + num_classes);
}
}
return output;
}
}

46
src/main/Scores.h Normal file
View File

@@ -0,0 +1,46 @@
#ifndef SCORES_H
#define SCORES_H
#include <torch/torch.h>
#include <vector>
#include <string>
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::ordered_json;
class Scores {
public:
Scores(torch::Tensor& y_test, torch::Tensor& y_proba, int num_classes, std::vector<std::string> labels = {});
explicit Scores(const json& confusion_matrix_);
static Scores create_aggregate(const json& data, const std::string key);
float accuracy();
float auc();
float f1_score(int num_class);
float f1_weighted();
float f1_macro();
float precision(int num_class);
float recall(int num_class);
torch::Tensor get_confusion_matrix() { return confusion_matrix; }
std::vector<std::string> classification_report(std::string color = "", std::string title = "");
json classification_report_json(std::string title = "");
json get_confusion_matrix_json(bool labels_as_keys = false);
void aggregate(const Scores& a);
private:
std::string classification_report_line(std::string label, float precision, float recall, float f1_score, int support);
void init_confusion_matrix();
void init_default_labels();
void compute_accuracy_value();
std::tuple<float, float, float, float> compute_averages();
int num_classes;
float accuracy_value;
int total;
std::vector<std::string> labels;
torch::Tensor confusion_matrix; // Rows ar actual, columns are predicted
torch::Tensor null_t; // Covenient null tensor needed when confusion_matrix constructor is used
torch::Tensor& y_test = null_t; // for ROC AUC
torch::Tensor& y_proba = null_t; // for ROC AUC
int label_len = 16;
int dlen = 9;
int ndec = 7;
};
}
#endif

View File

@@ -1,137 +0,0 @@
#include <iostream>
#include <argparse/argparse.hpp>
#include <nlohmann/json.hpp>
#include "Experiment.h"
#include "Datasets.h"
#include "DotEnv.h"
#include "Models.h"
#include "modelRegister.h"
#include "Paths.h"
#include "config.h"
using json = nlohmann::json;
void manageArguments(argparse::ArgumentParser& program)
{
auto env = platform::DotEnv();
program.add_argument("-d", "--dataset").default_value("").help("Dataset file name");
program.add_argument("--hyperparameters").default_value("{}").help("Hyperparameters passed to the model in Experiment");
program.add_argument("--hyper-file").default_value("").help("Hyperparameters file name." \
"Mutually exclusive with hyperparameters. This file should contain hyperparameters for each dataset in json format.");
program.add_argument("-m", "--model")
.help("Model to use " + platform::Models::instance()->tostring())
.action([](const std::string& value) {
static const std::vector<std::string> choices = platform::Models::instance()->getNames();
if (find(choices.begin(), choices.end(), value) != choices.end()) {
return value;
}
throw std::runtime_error("Model must be one of " + platform::Models::instance()->tostring());
}
);
program.add_argument("--title").default_value("").help("Experiment title");
program.add_argument("--discretize").help("Discretize input dataset").default_value((bool)stoi(env.get("discretize"))).implicit_value(true);
program.add_argument("--no-train-score").help("Don't compute train score").default_value(false).implicit_value(true);
program.add_argument("--quiet").help("Don't display detailed progress").default_value(false).implicit_value(true);
program.add_argument("--save").help("Save result (always save if no dataset is supplied)").default_value(false).implicit_value(true);
program.add_argument("--stratified").help("If Stratified KFold is to be done").default_value((bool)stoi(env.get("stratified"))).implicit_value(true);
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const std::string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw std::runtime_error("Number of folds must be greater than 1");
}
return k;
}
catch (const runtime_error& err) {
throw std::runtime_error(err.what());
}
catch (...) {
throw std::runtime_error("Number of folds must be an integer");
}});
auto seed_values = env.getSeeds();
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
}
int main(int argc, char** argv)
{
argparse::ArgumentParser program("b_main", { project_version.begin(), project_version.end() });
manageArguments(program);
std::string file_name, model_name, title, hyperparameters_file;
json hyperparameters_json;
bool discretize_dataset, stratified, saveResults, quiet, no_train_score;
std::vector<int> seeds;
std::vector<std::string> filesToTest;
int n_folds;
try {
program.parse_args(argc, argv);
file_name = program.get<std::string>("dataset");
model_name = program.get<std::string>("model");
discretize_dataset = program.get<bool>("discretize");
stratified = program.get<bool>("stratified");
quiet = program.get<bool>("quiet");
n_folds = program.get<int>("folds");
seeds = program.get<std::vector<int>>("seeds");
auto hyperparameters = program.get<std::string>("hyperparameters");
hyperparameters_json = json::parse(hyperparameters);
hyperparameters_file = program.get<std::string>("hyper-file");
no_train_score = program.get<bool>("no-train-score");
if (hyperparameters_file != "" && hyperparameters != "{}") {
throw runtime_error("hyperparameters and hyper_file are mutually exclusive");
}
title = program.get<std::string>("title");
if (title == "" && file_name == "") {
throw runtime_error("title is mandatory if dataset is not provided");
}
saveResults = program.get<bool>("save");
}
catch (const exception& err) {
cerr << err.what() << std::endl;
cerr << program;
exit(1);
}
auto datasets = platform::Datasets(discretize_dataset, platform::Paths::datasets());
if (file_name != "") {
if (!datasets.isDataset(file_name)) {
cerr << "Dataset " << file_name << " not found" << std::endl;
exit(1);
}
if (title == "") {
title = "Test " + file_name + " " + model_name + " " + to_string(n_folds) + " folds";
}
filesToTest.push_back(file_name);
} else {
filesToTest = datasets.getNames();
saveResults = true;
}
platform::HyperParameters test_hyperparams;
if (hyperparameters_file != "") {
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_file);
} else {
test_hyperparams = platform::HyperParameters(datasets.getNames(), hyperparameters_json);
}
/*
* Begin Processing
*/
auto env = platform::DotEnv();
auto experiment = platform::Experiment();
experiment.setTitle(title).setLanguage("cpp").setLanguageVersion("14.0.3");
experiment.setDiscretized(discretize_dataset).setModel(model_name).setPlatform(env.get("platform"));
experiment.setStratified(stratified).setNFolds(n_folds).setScoreName("accuracy");
experiment.setHyperparameters(test_hyperparams);
for (auto seed : seeds) {
experiment.addRandomSeed(seed);
}
platform::Timer timer;
timer.start();
experiment.go(filesToTest, quiet, no_train_score);
experiment.setDuration(timer.getDuration());
if (saveResults) {
experiment.saveResult();
}
if (!quiet)
experiment.report();
std::cout << "Done!" << std::endl;
return 0;
}

View File

@@ -1,11 +1,14 @@
#ifndef MODEL_REGISTER_H
#define MODEL_REGISTER_H
#ifndef MODELREGISTER_H
#define MODELREGISTER_H
static platform::Registrar registrarT("TAN",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TAN();});
static platform::Registrar registrarTLD("TANLd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::TANLd();});
static platform::Registrar registrarS("SPODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODE(2);});
static platform::Registrar registrarSn("SPnDE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPnDE({ 0, 1 });});
static platform::Registrar registrarSLD("SPODELd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::SPODELd(2);});
static platform::Registrar registrarK("KDB",
@@ -14,10 +17,14 @@ static platform::Registrar registrarKLD("KDBLd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::KDBLd(2);});
static platform::Registrar registrarA("AODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODE();});
static platform::Registrar registrarA2("A2DE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::A2DE();});
static platform::Registrar registrarALD("AODELd",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::AODELd();});
static platform::Registrar registrarBA("BoostAODE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::BoostAODE();});
static platform::Registrar registrarBA2("BoostA2DE",
[](void) -> bayesnet::BaseClassifier* { return new bayesnet::BoostA2DE();});
static platform::Registrar registrarSt("STree",
[](void) -> bayesnet::BaseClassifier* { return new pywrap::STree();});
static platform::Registrar registrarOdte("Odte",
@@ -28,4 +35,5 @@ static platform::Registrar registrarRaF("RandomForest",
[](void) -> bayesnet::BaseClassifier* { return new pywrap::RandomForest();});
static platform::Registrar registrarXGB("XGBoost",
[](void) -> bayesnet::BaseClassifier* { return new pywrap::XGBoost();});
#endif

View File

@@ -1,87 +0,0 @@
#include "CommandParser.h"
#include <iostream>
#include <sstream>
#include <algorithm>
#include "Colors.h"
#include "Utils.h"
namespace platform {
void CommandParser::messageError(const std::string& message)
{
std::cout << Colors::RED() << message << Colors::RESET() << std::endl;
}
std::pair<char, int> CommandParser::parse(const std::string& color, const std::vector<std::tuple<std::string, char, bool>>& options, const char defaultCommand, const int maxIndex)
{
bool finished = false;
while (!finished) {
std::stringstream oss;
std::string line;
oss << color << "Choose option (";
bool first = true;
for (auto& option : options) {
if (first) {
first = false;
} else {
oss << ", ";
}
oss << std::get<char>(option) << "=" << std::get<std::string>(option);
}
oss << "): ";
std::cout << oss.str();
getline(std::cin, line);
std::cout << Colors::RESET();
line = trim(line);
if (line.size() == 0)
continue;
if (all_of(line.begin(), line.end(), ::isdigit)) {
command = defaultCommand;
index = stoi(line);
if (index > maxIndex || index < 0) {
messageError("Index out of range");
continue;
}
finished = true;
break;
}
bool found = false;
for (auto& option : options) {
if (line[0] == std::get<char>(option)) {
found = true;
// it's a match
line.erase(line.begin());
line = trim(line);
if (std::get<bool>(option)) {
// The option requires a value
if (line.size() == 0) {
messageError("Option " + std::get<std::string>(option) + " requires a value");
break;
}
try {
index = stoi(line);
if (index > maxIndex || index < 0) {
messageError("Index out of range");
break;
}
}
catch (const std::invalid_argument& ia) {
messageError("Invalid value: " + line);
break;
}
} else {
if (line.size() > 0) {
messageError("option " + std::get<std::string>(option) + " doesn't accept values");
break;
}
}
command = std::get<char>(option);
finished = true;
break;
}
}
if (!found) {
messageError("I don't know " + line);
}
}
return { command, index };
}
} /* namespace platform */

View File

@@ -1,20 +0,0 @@
#ifndef COMMAND_PARSER_H
#define COMMAND_PARSER_H
#include <string>
#include <vector>
#include <tuple>
namespace platform {
class CommandParser {
public:
CommandParser() = default;
std::pair<char, int> parse(const std::string& color, const std::vector<std::tuple<std::string, char, bool>>& options, const char defaultCommand, const int maxIndex);
char getCommand() const { return command; };
int getIndex() const { return index; };
private:
void messageError(const std::string& message);
char command;
int index;
};
} /* namespace platform */
#endif /* COMMAND_PARSER_H */

View File

@@ -1,225 +0,0 @@
#include "ManageResults.h"
#include "CommandParser.h"
#include <filesystem>
#include <tuple>
#include "Colors.h"
#include "CLocale.h"
#include "Paths.h"
#include "ReportConsole.h"
#include "ReportExcel.h"
namespace platform {
ManageResults::ManageResults(int numFiles, const std::string& model, const std::string& score, bool complete, bool partial, bool compare) :
numFiles{ numFiles }, complete{ complete }, partial{ partial }, compare{ compare }, results(Results(Paths::results(), model, score, complete, partial))
{
indexList = true;
openExcel = false;
workbook = NULL;
if (numFiles == 0) {
this->numFiles = results.size();
}
}
void ManageResults::doMenu()
{
if (results.empty()) {
std::cout << Colors::MAGENTA() << "No results found!" << Colors::RESET() << std::endl;
return;
}
results.sortDate();
list();
menu();
if (openExcel) {
workbook_close(workbook);
}
std::cout << Colors::RESET() << "Done!" << std::endl;
}
void ManageResults::list()
{
auto temp = ConfigLocale();
std::string suffix = numFiles != results.size() ? " of " + std::to_string(results.size()) : "";
std::stringstream oss;
oss << "Results on screen: " << numFiles << suffix;
std::cout << Colors::GREEN() << oss.str() << std::endl;
std::cout << std::string(oss.str().size(), '-') << std::endl;
if (complete) {
std::cout << Colors::MAGENTA() << "Only listing complete results" << std::endl;
}
if (partial) {
std::cout << Colors::MAGENTA() << "Only listing partial results" << std::endl;
}
auto i = 0;
int maxModel = results.maxModelSize();
std::cout << Colors::GREEN() << " # Date " << std::setw(maxModel) << std::left << "Model" << " Score Name Score C/P Duration Title" << std::endl;
std::cout << "=== ========== " << std::string(maxModel, '=') << " =========== =========== === ========= =============================================================" << std::endl;
bool odd = true;
for (auto& result : results) {
auto color = odd ? Colors::BLUE() : Colors::CYAN();
std::cout << color << std::setw(3) << std::fixed << std::right << i++ << " ";
std::cout << result.to_string(maxModel) << std::endl;
if (i == numFiles) {
break;
}
odd = !odd;
}
}
bool ManageResults::confirmAction(const std::string& intent, const std::string& fileName) const
{
std::string color;
if (intent == "delete") {
color = Colors::RED();
} else {
color = Colors::YELLOW();
}
std::string line;
bool finished = false;
while (!finished) {
std::cout << color << "Really want to " << intent << " " << fileName << "? (y/n): ";
getline(std::cin, line);
finished = line.size() == 1 && (tolower(line[0]) == 'y' || tolower(line[0] == 'n'));
}
if (tolower(line[0]) == 'y') {
return true;
}
std::cout << "Not done!" << std::endl;
return false;
}
void ManageResults::report(const int index, const bool excelReport)
{
std::cout << Colors::YELLOW() << "Reporting " << results.at(index).getFilename() << std::endl;
auto data = results.at(index).getJson();
if (excelReport) {
ReportExcel reporter(data, compare, workbook);
reporter.show();
openExcel = true;
workbook = reporter.getWorkbook();
std::cout << "Adding sheet to " << Paths::excel() + Paths::excelResults() << std::endl;
} else {
ReportConsole reporter(data, compare);
reporter.show();
}
}
void ManageResults::showIndex(const int index, const int idx)
{
// Show a dataset result inside a report
auto data = results.at(index).getJson();
std::cout << Colors::YELLOW() << "Showing " << results.at(index).getFilename() << std::endl;
ReportConsole reporter(data, compare, idx);
reporter.show();
}
void ManageResults::sortList()
{
std::cout << Colors::YELLOW() << "Choose sorting field (date='d', score='s', duration='u', model='m'): ";
std::string line;
char option;
getline(std::cin, line);
if (line.size() == 0)
return;
if (line.size() > 1) {
std::cout << "Invalid option" << std::endl;
return;
}
option = line[0];
switch (option) {
case 'd':
results.sortDate();
break;
case 's':
results.sortScore();
break;
case 'u':
results.sortDuration();
break;
case 'm':
results.sortModel();
break;
default:
std::cout << "Invalid option" << std::endl;
}
}
void ManageResults::menu()
{
char option;
int index, subIndex;
bool finished = false;
std::string filename;
// tuple<Option, digit, requires value>
std::vector<std::tuple<std::string, char, bool>> mainOptions = {
{"quit", 'q', false},
{"list", 'l', false},
{"delete", 'd', true},
{"hide", 'h', true},
{"sort", 's', false},
{"report", 'r', true},
{"excel", 'e', true},
{"title", 't', true}
};
std::vector<std::tuple<std::string, char, bool>> listOptions = {
{"report", 'r', true},
{"list", 'l', false},
{"quit", 'q', false}
};
auto parser = CommandParser();
while (!finished) {
if (indexList) {
std::tie(option, index) = parser.parse(Colors::GREEN(), mainOptions, 'r', numFiles - 1);
} else {
std::tie(option, subIndex) = parser.parse(Colors::CYAN(), listOptions, 'r', results.at(index).getJson()["results"].size() - 1);
}
switch (option) {
case 'q':
finished = true;
break;
case 'l':
list();
indexList = true;
break;
case 'd':
filename = results.at(index).getFilename();
if (!confirmAction("delete", filename))
break;
std::cout << "Deleting " << filename << std::endl;
results.deleteResult(index);
std::cout << "File: " + filename + " deleted!" << std::endl;
list();
break;
case 'h':
filename = results.at(index).getFilename();
if (!confirmAction("hide", filename))
break;
filename = results.at(index).getFilename();
std::cout << "Hiding " << filename << std::endl;
results.hideResult(index, Paths::hiddenResults());
std::cout << "File: " + filename + " hidden! (moved to " << Paths::hiddenResults() << ")" << std::endl;
list();
break;
case 's':
sortList();
list();
break;
case 'r':
if (indexList) {
report(index, false);
indexList = false;
} else {
showIndex(index, subIndex);
}
break;
case 'e':
report(index, true);
break;
case 't':
std::cout << "Title: " << results.at(index).getTitle() << std::endl;
std::cout << "New title: ";
std::string newTitle;
getline(std::cin, newTitle);
if (!newTitle.empty()) {
results.at(index).setTitle(newTitle);
results.at(index).save();
std::cout << "Title changed to " << newTitle << std::endl;
}
break;
}
}
}
} /* namespace platform */

View File

@@ -1,31 +0,0 @@
#ifndef MANAGE_RESULTS_H
#define MANAGE_RESULTS_H
#include "Results.h"
#include "xlsxwriter.h"
namespace platform {
class ManageResults {
public:
ManageResults(int numFiles, const std::string& model, const std::string& score, bool complete, bool partial, bool compare);
~ManageResults() = default;
void doMenu();
private:
void list();
bool confirmAction(const std::string& intent, const std::string& fileName) const;
void report(const int index, const bool excelReport);
void showIndex(const int index, const int idx);
void sortList();
void menu();
int numFiles;
bool indexList;
bool openExcel;
bool complete;
bool partial;
bool compare;
Results results;
lxw_workbook* workbook;
};
}
#endif /* MANAGE_RESULTS_H */

564
src/manage/ManageScreen.cpp Normal file
View File

@@ -0,0 +1,564 @@
#include <filesystem>
#include <tuple>
#include <string>
#include <algorithm>
#include "folding.hpp"
#include "common/CLocale.h"
#include "common/Paths.h"
#include "OptionsMenu.h"
#include "ManageScreen.h"
#include "reports/DatasetsConsole.h"
#include "reports/ReportConsole.h"
#include "reports/ReportExcel.h"
#include "reports/ReportExcelCompared.h"
#include <bayesnet/classifiers/TAN.h>
#include <fimdlp/CPPFImdlp.h>
namespace platform {
const std::string STATUS_OK = "Ok.";
const std::string STATUS_COLOR = Colors::GREEN();
ManageScreen::ManageScreen(int rows, int cols, const std::string& model, const std::string& score, const std::string& platform, bool complete, bool partial, bool compare) :
rows{ rows }, cols{ cols }, complete{ complete }, partial{ partial }, compare{ compare }, didExcel(false), results(ResultsManager(model, score, platform, complete, partial))
{
results.load();
openExcel = false;
workbook = NULL;
maxModel = results.maxModelSize();
maxTitle = results.maxTitleSize();
header_lengths = { 3, 10, maxModel, 11, 10, 12, 2, 3, 7, maxTitle };
header_labels = { " #", "Date", "Model", "Score Name", "Score", "Platform", "SD", "C/P", "Time", "Title" };
sort_fields = { "Date", "Model", "Score", "Time" };
updateSize(rows, cols);
// Initializes the paginator for each output type (experiments, datasets, result)
for (int i = 0; i < static_cast<int>(OutputType::Count); i++) {
paginator.push_back(Paginator(this->rows, results.size()));
}
index_A = -1;
index_B = -1;
index = -1;
subIndex = -1;
output_type = OutputType::EXPERIMENTS;
}
void ManageScreen::computeSizes()
{
int minTitle = 10;
// set 10 chars as minimum for Title
auto header_title = header_lengths[header_lengths.size() - 1];
min_columns = std::accumulate(header_lengths.begin(), header_lengths.end(), 0) + header_lengths.size() - header_title + minTitle;
maxTitle = minTitle + cols - min_columns;
header_lengths[header_lengths.size() - 1] = maxTitle;
cols = std::min(cols, min_columns + maxTitle);
for (auto& paginator_ : paginator) {
paginator_.setPageSize(rows);
}
}
bool ManageScreen::checkWrongColumns()
{
if (min_columns > cols) {
std::cerr << Colors::MAGENTA() << "Make screen bigger to fit the results! " + std::to_string(min_columns - cols) + " columns needed! " << std::endl;
return true;
}
return false;
}
void ManageScreen::updateSize(int rows_, int cols_)
{
rows = std::max(6, rows_ - 6); // 6 is the number of lines used by the menu & header
cols = cols_;
computeSizes();
}
void ManageScreen::doMenu()
{
if (results.empty()) {
std::cerr << Colors::MAGENTA() << "No results found!" << Colors::RESET() << std::endl;
return;
}
if (checkWrongColumns())
return;
results.sortResults(sort_field, sort_type);
list(STATUS_OK, STATUS_COLOR);
menu();
if (openExcel) {
workbook_close(workbook);
}
if (didExcel) {
std::cout << Colors::MAGENTA() << "Excel file created: " << Paths::excel() + Paths::excelResults() << std::endl;
}
std::cout << Colors::RESET() << "Done!" << std::endl;
}
std::string ManageScreen::getVersions()
{
std::string kfold_version = folding::KFold(5, 100).version();
std::string bayesnet_version = bayesnet::TAN().getVersion();
std::string mdlp_version = mdlp::CPPFImdlp::version();
return " BayesNet: " + bayesnet_version + " Folding: " + kfold_version + " MDLP: " + mdlp_version + " ";
}
void ManageScreen::header()
{
auto [index_from, index_to] = paginator[static_cast<int>(output_type)].getOffset();
std::string suffix = "";
if (complete) {
suffix = " Only listing complete results ";
}
if (partial) {
suffix = " Only listing partial results ";
}
auto page = paginator[static_cast<int>(output_type)].getPage();
auto pages = paginator[static_cast<int>(output_type)].getPages();
auto lines = paginator[static_cast<int>(output_type)].getLines();
auto total = paginator[static_cast<int>(output_type)].getTotal();
std::string header = " Lines " + std::to_string(lines) + " of "
+ std::to_string(total) + " - Page " + std::to_string(page) + " of "
+ std::to_string(pages) + " ";
std::string versions = getVersions();
int filler = std::max(cols - versions.size() - suffix.size() - header.size(), size_t(0));
std::string prefix = std::string(filler, ' ');
std::cout << Colors::CLRSCR() << Colors::REVERSE() << Colors::WHITE() << header
<< prefix << Colors::GREEN() << versions << Colors::MAGENTA() << suffix << Colors::RESET() << std::endl;
}
void ManageScreen::footer(const std::string& status, const std::string& status_color)
{
std::stringstream oss;
oss << " A: " << (index_A == -1 ? "<notset>" : std::to_string(index_A)) <<
" B: " << (index_B == -1 ? "<notset>" : std::to_string(index_B)) << " ";
int status_length = std::max(oss.str().size(), cols - oss.str().size());
auto status_message = status.substr(0, status_length - 1);
std::string status_line = status_message + std::string(std::max(size_t(0), status_length - status_message.size() - 1), ' ');
auto color = (index_A != -1 && index_B != -1) ? Colors::IGREEN() : Colors::IYELLOW();
std::cout << color << Colors::REVERSE() << oss.str() << Colors::RESET() << Colors::WHITE()
<< Colors::REVERSE() << status_color << " " << status_line << Colors::IWHITE()
<< Colors::RESET() << std::endl;
}
void ManageScreen::list(const std::string& status_message, const std::string& status_color)
{
switch (static_cast<int>(output_type)) {
case static_cast<int>(OutputType::RESULT):
list_result(status_message, status_color);
break;
case static_cast<int>(OutputType::DETAIL):
list_detail(status_message, status_color);
break;
case static_cast<int>(OutputType::DATASETS):
list_datasets(status_message, status_color);
break;
case static_cast<int>(OutputType::EXPERIMENTS):
list_experiments(status_message, status_color);
break;
}
}
void ManageScreen::list_result(const std::string& status_message, const std::string& status_color)
{
auto data = results.at(index).getJson();
ReportConsole report(data, compare);
auto header_text = report.getHeader();
auto body = report.getBody();
paginator[static_cast<int>(output_type)].setTotal(body.size());
// We need to subtract 8 from the page size to make room for the extra header in report
auto page_size = paginator[static_cast<int>(OutputType::EXPERIMENTS)].getPageSize();
paginator[static_cast<int>(output_type)].setPageSize(page_size - 8);
//
// header
//
header();
//
// Results
//
std::cout << header_text;
auto [index_from, index_to] = paginator[static_cast<int>(output_type)].getOffset();
for (int i = index_from; i <= index_to; i++) {
std::cout << body[i];
}
//
// Status Area
//
footer(status_message, status_color);
}
void ManageScreen::list_detail(const std::string& status_message, const std::string& status_color)
{
auto data = results.at(index).getJson();
ReportConsole report(data, compare, subIndex);
auto header_text = report.getHeader();
auto body = report.getBody();
paginator[static_cast<int>(output_type)].setTotal(body.size());
// We need to subtract 8 from the page size to make room for the extra header in report
auto page_size = paginator[static_cast<int>(OutputType::EXPERIMENTS)].getPageSize();
paginator[static_cast<int>(output_type)].setPageSize(page_size - 8);
//
// header
//
header();
//
// Results
//
std::cout << header_text;
auto [index_from, index_to] = paginator[static_cast<int>(output_type)].getOffset();
for (int i = index_from; i <= index_to; i++) {
std::cout << body[i];
}
//
// Status Area
//
footer(status_message, status_color);
}
void ManageScreen::list_datasets(const std::string& status_message, const std::string& status_color)
{
auto report = DatasetsConsole();
report.report();
paginator[static_cast<int>(output_type)].setTotal(report.getNumLines());
//
// header
//
header();
//
// Results
//
auto body = report.getBody();
std::cout << report.getHeader();
auto [index_from, index_to] = paginator[static_cast<int>(output_type)].getOffset();
for (int i = index_from; i <= index_to; i++) {
std::cout << body[i];
}
//
// Status Area
//
footer(status_message, status_color);
}
void ManageScreen::list_experiments(const std::string& status_message, const std::string& status_color)
{
//
// header
//
header();
std::cout << Colors::RESET();
std::string arrow_dn = Symbols::down_arrow + " ";
std::string arrow_up = Symbols::up_arrow + " ";
for (int i = 0; i < header_labels.size(); i++) {
std::string suffix = "", color = Colors::GREEN();
int diff = 0;
if (header_labels[i] == sort_fields[static_cast<int>(sort_field)]) {
color = Colors::YELLOW();
diff = 2;
suffix = sort_type == SortType::ASC ? arrow_up : arrow_dn;
}
std::cout << color << std::setw(header_lengths[i] + diff) << std::left << std::string(header_labels[i] + suffix) << " ";
}
std::cout << std::endl;
for (int i = 0; i < header_labels.size(); i++) {
std::cout << std::string(header_lengths[i], '=') << " ";
}
std::cout << Colors::RESET() << std::endl;
//
// Results
//
if (results.empty()) {
std::cout << "No results found!" << std::endl;
return;
}
auto [index_from, index_to] = paginator[static_cast<int>(output_type)].getOffset();
for (int i = index_from; i <= index_to; i++) {
auto color = (i % 2) ? Colors::BLUE() : Colors::CYAN();
std::cout << color << std::setw(3) << std::fixed << std::right << i << " ";
std::cout << results.at(i).to_string(maxModel, maxTitle) << std::endl;
}
//
// Status Area
//
footer(status_message, status_color);
}
bool ManageScreen::confirmAction(const std::string& intent, const std::string& fileName) const
{
std::string color;
if (intent == "delete") {
color = Colors::RED();
} else {
color = Colors::YELLOW();
}
std::string line;
bool finished = false;
while (!finished) {
std::cout << color << "Really want to " << intent << " " << fileName << "? (y/n): ";
getline(std::cin, line);
finished = line.size() == 1 && (tolower(line[0]) == 'y' || tolower(line[0]) == 'n');
}
if (tolower(line[0]) == 'y') {
return true;
}
std::cout << "Not done!" << std::endl;
return false;
}
std::string ManageScreen::report_compared()
{
auto data_A = results.at(index_A).getJson();
auto data_B = results.at(index_B).getJson();
ReportExcelCompared reporter(data_A, data_B);
reporter.report();
didExcel = true;
return results.at(index_A).getFilename() + " Vs " + results.at(index_B).getFilename();
}
std::string ManageScreen::report(const int index, const bool excelReport)
{
auto data = results.at(index).getJson();
if (excelReport) {
didExcel = true;
ReportExcel reporter(data, compare, workbook);
reporter.show();
openExcel = true;
workbook = reporter.getWorkbook();
return results.at(index).getFilename() + "->" + Paths::excel() + Paths::excelResults();
} else {
ReportConsole reporter(data, compare);
std::cout << Colors::CLRSCR() << reporter.fileReport();
return "Reporting " + results.at(index).getFilename();
}
}
std::pair<std::string, std::string> ManageScreen::sortList()
{
std::vector<std::tuple<std::string, char, bool>> sortOptions = {
{"date", 'd', false},
{"score", 's', false},
{"time", 't', false},
{"model", 'm', false},
{"ascending+", '+', false},
{"descending-", '-', false}
};
auto sortMenu = OptionsMenu(sortOptions, Colors::YELLOW(), Colors::RED(), cols);
std::string invalid_option = "Invalid sorting option";
char option;
bool parserError = true; // force the first iteration
while (parserError) {
if (checkWrongColumns())
return { Colors::RED(), "Invalid column size" };
auto [min_index, max_index] = paginator[static_cast<int>(output_type)].getOffset();
std::tie(option, index, parserError) = sortMenu.parse(' ', 0, 0);
sortMenu.updateColumns(cols);
if (parserError) {
return { Colors::RED(), invalid_option };
}
}
switch (option) {
case 'd':
sort_field = SortField::DATE;
break;
case 's':
sort_field = SortField::SCORE;
break;
case 't':
sort_field = SortField::DURATION;
break;
case 'm':
sort_field = SortField::MODEL;
break;
case '+':
sort_type = SortType::ASC;
break;
case '-':
sort_type = SortType::DESC;
break;
default:
return { Colors::RED(), invalid_option };
}
results.sortResults(sort_field, sort_type);
return { Colors::GREEN(), "Sorted by " + sort_fields[static_cast<int>(sort_field)] + " " + (sort_type == SortType::ASC ? "ascending" : "descending") };
}
void ManageScreen::menu()
{
char option;
bool finished = false;
std::string filename;
// tuple<Option, digit, requires value>
std::vector<std::tuple<std::string, char, bool>> mainOptions = {
{"quit", 'q', false},
{"list", 'l', false},
{"Delete", 'D', true},
{"datasets", 'd', false},
{"hide", 'h', true},
{"sort", 's', false},
{"report", 'r', true},
{"excel", 'e', true},
{"title", 't', true},
{"set A", 'A', true},
{"set B", 'B', true},
{"compare A~B", 'c', false},
{"page", 'p', true},
{"Page+", '+', false },
{"Page-", '-', false}
};
// tuple<Option, digit, requires value>
std::vector<std::tuple<std::string, char, bool>> listOptions = {
{"quit", 'q', false},
{"report", 'r', true},
{"list", 'l', false},
{"excel", 'e', true},
{"back", 'b', false},
{"page", 'p', true},
{"Page+", '+', false},
{"Page-", '-', false}
};
while (!finished) {
auto main_menu = OptionsMenu(mainOptions, Colors::IGREEN(), Colors::YELLOW(), cols);
auto list_menu = OptionsMenu(listOptions, Colors::IBLUE(), Colors::YELLOW(), cols);
OptionsMenu& menu = output_type == OutputType::EXPERIMENTS ? main_menu : list_menu;
bool parserError = true; // force the first iteration
while (parserError) {
int index_menu;
auto [min_index, max_index] = paginator[static_cast<int>(output_type)].getOffset();
std::tie(option, index_menu, parserError) = menu.parse('r', min_index, max_index);
if (output_type == OutputType::EXPERIMENTS) {
index = index_menu;
} else {
subIndex = index_menu;
}
if (min_columns > cols) {
std::cerr << "Make screen bigger to fit the results! " + std::to_string(min_columns - cols) + " columns needed! " << std::endl;
return;
}
menu.updateColumns(cols);
if (parserError) {
list(menu.getErrorMessage(), Colors::RED());
}
}
switch (option) {
case 'd':
output_type = OutputType::DATASETS;
list_datasets(STATUS_OK, STATUS_COLOR);
break;
case 'p':
{
auto page = output_type == OutputType::EXPERIMENTS ? index : subIndex;
if (paginator[static_cast<int>(output_type)].setPage(page)) {
list(STATUS_OK, STATUS_COLOR);
} else {
list("Invalid page! (" + std::to_string(page) + ")", Colors::RED());
}
}
break;
case '+':
if (paginator[static_cast<int>(output_type)].addPage()) {
list(STATUS_OK, STATUS_COLOR);
} else {
list("No more pages!", Colors::RED());
}
break;
case '-':
if (paginator[static_cast<int>(output_type)].subPage()) {
list(STATUS_OK, STATUS_COLOR);
} else {
list("First page already!", Colors::RED());
}
break;
case 'q':
finished = true;
break;
case 'A':
if (index == index_B) {
list("A and B cannot be the same!", Colors::RED());
break;
}
index_A = index;
list("A set to " + std::to_string(index), Colors::GREEN());
break;
case 'B': // set_b or back to list
if (output_type == OutputType::EXPERIMENTS) {
if (index == index_A) {
list("A and B cannot be the same!", Colors::RED());
break;
}
index_B = index;
list("B set to " + std::to_string(index), Colors::GREEN());
} else {
// back to show the report
output_type = OutputType::RESULT;
paginator[static_cast<int>(OutputType::DETAIL)].setPage(1);
list(STATUS_OK, STATUS_COLOR);
}
break;
case 'c':
if (index_A == -1 || index_B == -1) {
list("Need to set A and B first!", Colors::RED());
break;
}
list(report_compared(), Colors::GREEN());
break;
case 'l':
output_type = OutputType::EXPERIMENTS;
paginator[static_cast<int>(OutputType::DATASETS)].setPage(1);
paginator[static_cast<int>(OutputType::RESULT)].setPage(1);
paginator[static_cast<int>(OutputType::DETAIL)].setPage(1);
list(STATUS_OK, STATUS_COLOR);
break;
case 'D':
filename = results.at(index).getFilename();
if (!confirmAction("delete", filename)) {
list(filename + " not deleted!", Colors::YELLOW());
break;
}
std::cout << "Deleting " << filename << std::endl;
results.deleteResult(index);
paginator[static_cast<int>(OutputType::EXPERIMENTS)].setTotal(results.size());
list(filename + " deleted!", Colors::RED());
break;
case 'h':
{
std::string status_message;
filename = results.at(index).getFilename();
if (!confirmAction("hide", filename)) {
list(filename + " not hidden!", Colors::YELLOW());
break;
}
filename = results.at(index).getFilename();
std::cout << "Hiding " << filename << std::endl;
results.hideResult(index, Paths::hiddenResults());
status_message = filename + " hidden! (moved to " + Paths::hiddenResults() + ")";
paginator[static_cast<int>(OutputType::EXPERIMENTS)].setTotal(results.size());
list(status_message, Colors::YELLOW());
}
break;
case 's':
{
std::string status_message, status_color;
tie(status_color, status_message) = sortList();
list(status_message, status_color);
}
break;
case 'r':
if (output_type == OutputType::DATASETS) {
list(STATUS_OK, STATUS_COLOR);
break;
}
if (output_type == OutputType::EXPERIMENTS) {
output_type = OutputType::RESULT;
paginator[static_cast<int>(OutputType::DETAIL)].setPage(1);
list(STATUS_OK, STATUS_COLOR);
} else {
output_type = OutputType::DETAIL;
list(STATUS_OK, STATUS_COLOR);
}
break;
case 'e':
if (output_type == OutputType::EXPERIMENTS) {
list(report(index, true), Colors::GREEN());
break;
}
list(report(subIndex, true), Colors::GREEN());
break;
case 't':
{
std::string status_message;
std::cout << "Title: " << results.at(index).getTitle() << std::endl;
std::cout << "New title: ";
std::string newTitle;
getline(std::cin, newTitle);
if (!newTitle.empty()) {
results.at(index).setTitle(newTitle);
results.at(index).save();
status_message = "Title changed to " + newTitle;
list(status_message, Colors::GREEN());
break;
}
list("No title change!", Colors::YELLOW());
}
break;
}
}
}
} /* namespace platform */

62
src/manage/ManageScreen.h Normal file
View File

@@ -0,0 +1,62 @@
#ifndef MANAGE_SCREEN_H
#define MANAGE_SCREEN_H
#include <xlsxwriter.h>
#include "ResultsManager.h"
#include "common/Colors.h"
#include "Paginator.hpp"
namespace platform {
enum class OutputType {
EXPERIMENTS = 0,
DATASETS = 1,
RESULT = 2,
DETAIL = 3,
Count
};
class ManageScreen {
public:
ManageScreen(int rows, int cols, const std::string& model, const std::string& score, const std::string& platform, bool complete, bool partial, bool compare);
~ManageScreen() = default;
void doMenu();
void updateSize(int rows, int cols);
private:
void list(const std::string& status, const std::string& color);
void list_experiments(const std::string& status, const std::string& color);
void list_result(const std::string& status, const std::string& color);
void list_detail(const std::string& status, const std::string& color);
void list_datasets(const std::string& status, const std::string& color);
bool confirmAction(const std::string& intent, const std::string& fileName) const;
std::string report(const int index, const bool excelReport);
std::string report_compared();
std::pair<std::string, std::string> sortList();
std::string getVersions();
void computeSizes();
bool checkWrongColumns();
void menu();
void header();
void footer(const std::string& status, const std::string& color);
OutputType output_type;
int rows;
int cols;
int min_columns;
int index;
int subIndex;
int index_A, index_B; // used for comparison of experiments
bool indexList;
bool openExcel;
bool didExcel;
bool complete;
bool partial;
bool compare;
int maxModel, maxTitle;
std::vector<std::string> header_labels;
std::vector<int> header_lengths;
std::vector<std::string> sort_fields;
SortField sort_field = SortField::DATE;
SortType sort_type = SortType::DESC;
std::vector<Paginator> paginator;
ResultsManager results;
lxw_workbook* workbook;
};
}
#endif

102
src/manage/OptionsMenu.cpp Normal file
View File

@@ -0,0 +1,102 @@
#include "OptionsMenu.h"
#include <iostream>
#include <sstream>
#include <algorithm>
#include "common/Utils.h"
namespace platform {
std::string OptionsMenu::to_string()
{
bool first = true;
std::string result = color_normal + "Options: (";
size_t size = 10; // Size of "Options: ("
for (auto& option : options) {
if (!first) {
result += ", ";
size += 2;
}
std::string title = std::get<0>(option);
auto pos = title.find(std::get<1>(option));
result += color_normal + title.substr(0, pos) + color_bold + title.substr(pos, 1) + color_normal + title.substr(pos + 1);
size += title.size();
first = false;
}
if (size + 3 > cols) { // 3 is the size of the "): " at the end
result = "";
first = true;
for (auto& option : options) {
if (!first) {
result += color_normal + ", ";
}
result += color_bold + std::get<1>(option);
first = false;
}
}
result += "): ";
return result;
}
std::tuple<char, int, bool> OptionsMenu::parse(char defaultCommand, int minIndex, int maxIndex)
{
bool finished = false;
while (!finished) {
std::cout << to_string();
std::string line;
getline(std::cin, line);
line = trim(line);
if (line.size() == 0) {
errorMessage = "No command";
return { defaultCommand, 0, true };
}
if (all_of(line.begin(), line.end(), ::isdigit)) {
command = defaultCommand;
index = stoi(line);
if (index > maxIndex || index < minIndex) {
errorMessage = "Index out of range";
return { ' ', -1, true };
}
finished = true;
break;
}
bool found = false;
for (auto& option : options) {
if (line[0] == std::get<char>(option)) {
found = true;
// it's a match
line.erase(line.begin());
line = trim(line);
if (std::get<bool>(option)) {
// The option requires a value
if (line.size() == 0) {
errorMessage = "Option " + std::get<std::string>(option) + " requires a value";
return { command, index, true };
}
try {
index = stoi(line);
if (index > maxIndex || index < 0) {
errorMessage = "Index out of range";
return { command, index, true };
}
}
catch (const std::invalid_argument& ia) {
errorMessage = "Invalid value: " + line;
return { command, index, true };
}
} else {
if (line.size() > 0) {
errorMessage = "option " + std::get<std::string>(option) + " doesn't accept values";
return { command, index, true };
}
}
command = std::get<char>(option);
finished = true;
break;
}
}
if (!found) {
errorMessage = "I don't know " + line;
return { command, index, true };
}
}
return { command, index, false };
}
} /* namespace platform */

26
src/manage/OptionsMenu.h Normal file
View File

@@ -0,0 +1,26 @@
#ifndef OPTIONS_MENU_H
#define OPTIONS_MENU_H
#include <string>
#include <vector>
#include <tuple>
namespace platform {
class OptionsMenu {
public:
OptionsMenu(std::vector<std::tuple<std::string, char, bool>>& options, std::string color_normal, std::string color_bold, int cols) : options(options), color_normal(color_normal), color_bold(color_bold), cols(cols) {}
std::string to_string();
std::tuple<char, int, bool> parse(char defaultCommand, int minIndex, int maxIndex);
char getCommand() const { return command; };
int getIndex() const { return index; };
std::string getErrorMessage() const { return errorMessage; };
void updateColumns(int cols) { this->cols = cols; }
private:
std::vector<std::tuple<std::string, char, bool>>& options;
std::string color_normal, color_bold;
int cols;
std::string errorMessage;
char command;
int index;
};
} /* namespace platform */
#endif

57
src/manage/Paginator.hpp Normal file
View File

@@ -0,0 +1,57 @@
#ifndef PAGINATOR_HPP
#define PAGINATOR_HPP
#include <utility>
class Paginator {
public:
Paginator() = default;
Paginator(int pageSize, int total, int page = 1) : pageSize(pageSize), total(total), page(page)
{
computePages();
};
~Paginator() = default;
// Getters
int getPageSize() const { return pageSize; }
int getLines() const
{
auto [start, end] = getOffset();
return std::min(pageSize, end - start + 1);
}
int getPage() const { return page; }
int getTotal() const { return total; }
int getPages() const { return numPages; }
std::pair<int, int> getOffset() const
{
return { (page - 1) * pageSize, std::min(total - 1, page * pageSize - 1) };
}
// Setters
void setTotal(int total) { this->total = total; computePages(); }
void setPageSize(int page) { this->pageSize = page; computePages(); }
bool setPage(int page) { return valid(page) ? this->page = page, true : false; }
// Utils
bool valid(int page) const { return page > 0 && page <= numPages; }
bool hasPrev(int page) const { return page > 1; }
bool hasNext(int page) const { return page < getPages(); }
bool addPage() { return page < numPages ? ++page, true : false; }
bool subPage() { return page > 1 ? --page, true : false; }
std::string to_string() const
{
auto offset = getOffset();
return "Paginator: { pageSize: " + std::to_string(pageSize) + ", total: " + std::to_string(total)
+ ", page: " + std::to_string(page) + ", numPages: " + std::to_string(numPages)
+ " Offset [" + std::to_string(offset.first) + ", " + std::to_string(offset.second) + "]}";
}
private:
void computePages()
{
numPages = pageSize > 0 ? (total + pageSize - 1) / pageSize : 0;
if (page > numPages) {
page = numPages;
}
}
int pageSize;
int total;
int page;
int numPages;
};
#endif

View File

@@ -1,75 +0,0 @@
#include "Results.h"
#include <algorithm>
namespace platform {
Results::Results(const std::string& path, const std::string& model, const std::string& score, bool complete, bool partial) :
path(path), model(model), scoreName(score), complete(complete), partial(partial)
{
load();
if (!files.empty()) {
maxModel = (*max_element(files.begin(), files.end(), [](const Result& a, const Result& b) { return a.getModel().size() < b.getModel().size(); })).getModel().size();
} else {
maxModel = 0;
}
}
void Results::load()
{
using std::filesystem::directory_iterator;
for (const auto& file : directory_iterator(path)) {
auto filename = file.path().filename().string();
if (filename.find(".json") != std::string::npos && filename.find("results_") == 0) {
auto result = Result();
result.load(path, filename);
bool addResult = true;
if (model != "any" && result.getModel() != model || scoreName != "any" && scoreName != result.getScoreName() || complete && !result.isComplete() || partial && result.isComplete())
addResult = false;
if (addResult)
files.push_back(result);
}
}
}
void Results::hideResult(int index, const std::string& pathHidden)
{
auto filename = files.at(index).getFilename();
rename((path + "/" + filename).c_str(), (pathHidden + "/" + filename).c_str());
files.erase(files.begin() + index);
}
void Results::deleteResult(int index)
{
auto filename = files.at(index).getFilename();
remove((path + "/" + filename).c_str());
files.erase(files.begin() + index);
}
int Results::size() const
{
return files.size();
}
void Results::sortDate()
{
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
return a.getDate() > b.getDate();
});
}
void Results::sortModel()
{
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
return a.getModel() > b.getModel();
});
}
void Results::sortDuration()
{
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
return a.getDuration() > b.getDuration();
});
}
void Results::sortScore()
{
sort(files.begin(), files.end(), [](const Result& a, const Result& b) {
return a.getScore() > b.getScore();
});
}
bool Results::empty() const
{
return files.empty();
}
}

View File

@@ -0,0 +1,130 @@
#include <algorithm>
#include "common/Paths.h"
#include "ResultsManager.h"
namespace platform {
ResultsManager::ResultsManager(const std::string& model, const std::string& score, const std::string& platform, bool complete, bool partial) :
path(Paths::results()), model(model), scoreName(score), platform(platform), complete(complete), partial(partial), maxModel(0), maxTitle(0)
{
}
void ResultsManager::load()
{
using std::filesystem::directory_iterator;
bool found = false;
for (const auto& file : directory_iterator(path)) {
auto filename = file.path().filename().string();
if (filename.find(".json") != std::string::npos && filename.find("results_") == 0) {
auto result = Result();
result.load(path, filename);
bool addResult = true;
if (platform != "any" && result.getPlatform() != platform
|| model != "any" && result.getModel() != model
|| scoreName != "any" && scoreName != result.getScoreName()
|| complete && !result.isComplete()
|| partial && result.isComplete())
addResult = false;
if (addResult) {
files.push_back(result);
found = true;
}
}
}
if (found) {
maxModel = std::max(size_t(5), (*max_element(files.begin(), files.end(), [](const Result& a, const Result& b) { return a.getModel().size() < b.getModel().size(); })).getModel().size());
maxTitle = std::max(size_t(5), (*max_element(files.begin(), files.end(), [](const Result& a, const Result& b) { return a.getTitle().size() < b.getTitle().size(); })).getTitle().size());
}
}
void ResultsManager::hideResult(int index, const std::string& pathHidden)
{
auto filename = files.at(index).getFilename();
rename((path + "/" + filename).c_str(), (pathHidden + "/" + filename).c_str());
files.erase(files.begin() + index);
}
void ResultsManager::deleteResult(int index)
{
auto filename = files.at(index).getFilename();
remove((path + "/" + filename).c_str());
files.erase(files.begin() + index);
}
int ResultsManager::size() const
{
return files.size();
}
void ResultsManager::sortDate(SortType type)
{
if (empty())
return;
sort(files.begin(), files.end(), [type](const Result& a, const Result& b) {
if (a.getDate() == b.getDate()) {
if (type == SortType::ASC)
return a.getModel() < b.getModel();
return a.getModel() > b.getModel();
}
if (type == SortType::ASC)
return a.getDate() < b.getDate();
return a.getDate() > b.getDate();
});
}
void ResultsManager::sortModel(SortType type)
{
if (empty())
return;
sort(files.begin(), files.end(), [type](const Result& a, const Result& b) {
if (a.getModel() == b.getModel()) {
if (type == SortType::ASC)
return a.getDate() < b.getDate();
return a.getDate() > b.getDate();
}
if (type == SortType::ASC)
return a.getModel() < b.getModel();
return a.getModel() > b.getModel();
});
}
void ResultsManager::sortDuration(SortType type)
{
if (empty())
return;
sort(files.begin(), files.end(), [type](const Result& a, const Result& b) {
if (type == SortType::ASC)
return a.getDuration() < b.getDuration();
return a.getDuration() > b.getDuration();
});
}
void ResultsManager::sortScore(SortType type)
{
if (empty())
return;
sort(files.begin(), files.end(), [type](const Result& a, const Result& b) {
if (a.getScore() == b.getScore()) {
if (type == SortType::ASC)
return a.getDate() < b.getDate();
return a.getDate() > b.getDate();
}
if (type == SortType::ASC)
return a.getScore() < b.getScore();
return a.getScore() > b.getScore();
});
}
void ResultsManager::sortResults(SortField field, SortType type)
{
switch (field) {
case SortField::DATE:
sortDate(type);
break;
case SortField::MODEL:
sortModel(type);
break;
case SortField::SCORE:
sortScore(type);
break;
case SortField::DURATION:
sortDuration(type);
break;
}
}
bool ResultsManager::empty() const
{
return files.empty();
}
}

View File

@@ -0,0 +1,49 @@
#ifndef RESULTSMANAGER_H
#define RESULTSMANAGER_H
#include <vector>
#include <string>
#include <nlohmann/json.hpp>
#include "results/Result.h"
namespace platform {
using json = nlohmann::ordered_json;
enum class SortType {
ASC = 0,
DESC = 1,
};
enum class SortField {
DATE = 0,
MODEL = 1,
SCORE = 2,
DURATION = 3,
};
class ResultsManager {
public:
ResultsManager(const std::string& model, const std::string& score, const std::string& platform, bool complete, bool partial);
void load(); // Loads the list of results
void sortResults(SortField field, SortType type); // Sorts the list of results
void sortDate(SortType type);
void sortScore(SortType type);
void sortModel(SortType type);
void sortDuration(SortType type);
int maxModelSize() const { return maxModel; };
int maxTitleSize() const { return maxTitle; };
void hideResult(int index, const std::string& pathHidden);
void deleteResult(int index);
int size() const;
bool empty() const;
std::vector<Result>::iterator begin() { return files.begin(); };
std::vector<Result>::iterator end() { return files.end(); };
Result& at(int index) { return files.at(index); };
private:
std::string path;
std::string model;
std::string scoreName;
std::string platform;
bool complete;
bool partial;
int maxModel;
int maxTitle;
std::vector<Result> files;
};
};
#endif

Some files were not shown because too many files have changed in this diff Show More