Add confusion matrix to json results

Add Aggregate method to Scores
This commit is contained in:
2024-05-10 13:42:38 +02:00
parent dd94fd51f7
commit ec0268c514
5 changed files with 59 additions and 4 deletions

View File

@@ -2,6 +2,7 @@
#include "reports/ReportConsole.h"
#include "common/Paths.h"
#include "Models.h"
#include "Scores.h"
#include "Experiment.h"
namespace platform {
using json = nlohmann::json;
@@ -96,6 +97,7 @@ namespace platform {
auto nodes = torch::zeros({ nResults }, torch::kFloat64);
auto edges = torch::zeros({ nResults }, torch::kFloat64);
auto num_states = torch::zeros({ nResults }, torch::kFloat64);
json confusion_matrices = json::array();
std::vector<std::string> notes;
Timer train_timer, test_timer;
int item = 0;
@@ -150,10 +152,13 @@ namespace platform {
if (!quiet)
showProgress(nfold + 1, getColor(clf->getStatus()), "c");
test_timer.start();
auto accuracy_test_value = clf->score(X_test, y_test);
auto y_predict = clf->predict(X_test);
Scores scores(y_test, y_predict, states[className].size());
auto accuracy_test_value = scores.accuracy();
test_time[item] = test_timer.getDuration();
accuracy_train[item] = accuracy_train_value;
accuracy_test[item] = accuracy_test_value;
confusion_matrices.push_back(scores.get_confusion_matrix_json());
if (!quiet)
std::cout << "\b\b\b, " << flush;
// Store results and times in std::vector
@@ -173,6 +178,7 @@ namespace platform {
partial_result.setTestTimeStd(torch::std(test_time).item<double>()).setTrainTimeStd(torch::std(train_time).item<double>());
partial_result.setNodes(torch::mean(nodes).item<double>()).setLeaves(torch::mean(edges).item<double>()).setDepth(torch::mean(num_states).item<double>());
partial_result.setDataset(fileName).setNotes(notes);
partial_result.setConfusionMatrices(confusion_matrices);
addResult(partial_result);
}
}

View File

@@ -27,6 +27,7 @@ namespace platform {
data["notes"].insert(data["notes"].end(), notes_.begin(), notes_.end());
return *this;
}
PartialResult& setConfusionMatrices(const json& confusion_matrices) { data["confusion_matrices"] = confusion_matrices; return *this; }
PartialResult& setHyperparameters(const json& hyperparameters) { data["hyperparameters"] = hyperparameters; return *this; }
PartialResult& setSamples(int samples) { data["samples"] = samples; return *this; }
PartialResult& setFeatures(int features) { data["features"] = features; return *this; }

View File

@@ -25,6 +25,15 @@ namespace platform {
labels.push_back("Class " + std::to_string(i));
}
}
void Scores::aggregate(const Scores& a)
{
if (a.num_classes != num_classes)
throw std::invalid_argument("The number of classes must be the same");
confusion_matrix += a.confusion_matrix;
total += a.total;
accuracy_value += a.accuracy_value;
accuracy_value /= 2;
}
Scores::Scores(json& confusion_matrix_)
{
json values;
@@ -46,7 +55,6 @@ namespace platform {
confusion_matrix[i][j] = value_int;
total += value_int;
}
std::cout << std::endl;
i++;
}
// Compute accuracy with the confusion matrix

View File

@@ -19,6 +19,7 @@ namespace platform {
torch::Tensor get_confusion_matrix() { return confusion_matrix; }
std::string classification_report();
json get_confusion_matrix_json(bool labels_as_keys = false);
void aggregate(const Scores& a);
private:
std::string classification_report_line(std::string label, float precision, float recall, float f1_score, int support);
void init_confusion_matrix();

View File

@@ -36,7 +36,7 @@ void make_test_bin(int TP, int TN, int FP, int FN, std::vector<int>& y_test, std
}
}
TEST_CASE("TestScores binary", "[Scores]")
TEST_CASE("Scores binary", "[Scores]")
{
std::vector<int> y_test;
std::vector<int> y_pred;
@@ -59,7 +59,7 @@ TEST_CASE("TestScores binary", "[Scores]")
REQUIRE(confusion_matrix[1][0].item<int>() == 41);
REQUIRE(confusion_matrix[1][1].item<int>() == 197);
}
TEST_CASE("TestScores multiclass", "[Scores]")
TEST_CASE("Scores multiclass", "[Scores]")
{
std::vector<int> y_test = { 0, 2, 2, 2, 2, 0, 1, 2, 0, 2 };
std::vector<int> y_pred = { 0, 1, 2, 2, 1, 1, 1, 0, 0, 2 };
@@ -176,4 +176,43 @@ TEST_CASE("JSON constructor", "[Scores]")
}
REQUIRE(scores.f1_weighted() == scores3.f1_weighted());
REQUIRE(scores.f1_macro() == scores3.f1_macro());
}
TEST_CASE("Aggregate", "[Scores]")
{
std::vector<int> y_test;
std::vector<int> y_pred;
make_test_bin(197, 210, 52, 41, y_test, y_pred);
auto y_test_tensor = torch::tensor(y_test, torch::kInt32);
auto y_pred_tensor = torch::tensor(y_pred, torch::kInt32);
platform::Scores scores(y_test_tensor, y_pred_tensor, 2);
y_test.clear();
y_pred.clear();
make_test_bin(227, 187, 39, 47, y_test, y_pred);
auto y_test_tensor2 = torch::tensor(y_test, torch::kInt32);
auto y_pred_tensor2 = torch::tensor(y_pred, torch::kInt32);
platform::Scores scores2(y_test_tensor2, y_pred_tensor2, 2);
scores.aggregate(scores2);
REQUIRE(scores.accuracy() == Catch::Approx(0.821).epsilon(epsilon));
REQUIRE(scores.f1_score(0) == Catch::Approx(0.8160329));
REQUIRE(scores.f1_score(1) == Catch::Approx(0.8257059));
REQUIRE(scores.precision(0) == Catch::Approx(0.8185567));
REQUIRE(scores.precision(1) == Catch::Approx(0.8233010));
REQUIRE(scores.recall(0) == Catch::Approx(0.8135246));
REQUIRE(scores.recall(1) == Catch::Approx(0.8281250));
REQUIRE(scores.f1_weighted() == Catch::Approx(0.8209856));
REQUIRE(scores.f1_macro() == Catch::Approx(0.8208694));
y_test.clear();
y_pred.clear();
make_test_bin(197 + 227, 210 + 187, 52 + 39, 41 + 47, y_test, y_pred);
y_test_tensor = torch::tensor(y_test, torch::kInt32);
y_pred_tensor = torch::tensor(y_pred, torch::kInt32);
platform::Scores scores3(y_test_tensor, y_pred_tensor, 2);
for (int i = 0; i < 2; ++i) {
REQUIRE(scores3.f1_score(i) == scores.f1_score(i));
REQUIRE(scores3.precision(i) == scores.precision(i));
REQUIRE(scores3.recall(i) == scores.recall(i));
}
REQUIRE(scores3.f1_weighted() == scores.f1_weighted());
REQUIRE(scores3.f1_macro() == scores.f1_macro());
REQUIRE(scores3.accuracy() == scores.accuracy());
}