Fix json key automatic ordering error when creating Score from json

This commit is contained in:
2024-05-12 18:23:48 +02:00
parent 07a2efb298
commit ebaddf1a6c
23 changed files with 81 additions and 43 deletions

View File

@@ -2,7 +2,7 @@
#include <string>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
using json = nlohmann::ordered_json;
namespace platform {
class BestResults {
public:

View File

@@ -5,7 +5,7 @@
#include <nlohmann/json.hpp>
#include "reports/ExcelFile.h"
using json = nlohmann::json;
using json = nlohmann::ordered_json;
namespace platform {

View File

@@ -5,7 +5,7 @@
#include <map>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
using json = nlohmann::ordered_json;
namespace platform {
struct WTL {

View File

@@ -13,7 +13,7 @@
#include "grid/GridSearch.h"
#include "config.h"
using json = nlohmann::json;
using json = nlohmann::ordered_json;
const int MAXL = 133;
void assignModel(argparse::ArgumentParser& parser)
@@ -29,7 +29,7 @@ void assignModel(argparse::ArgumentParser& parser)
}
throw std::runtime_error("Model must be one of " + models->toString());
}
);
);
}
void add_compute_args(argparse::ArgumentParser& program)
{
@@ -54,23 +54,23 @@ void add_compute_args(argparse::ArgumentParser& program)
catch (...) {
throw std::runtime_error("Number of nested folds must be an integer");
}});
program.add_argument("--score").help("Score used in gridsearch").default_value("accuracy");
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const std::string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw std::runtime_error("Number of folds must be greater than 1");
program.add_argument("--score").help("Score used in gridsearch").default_value("accuracy");
program.add_argument("-f", "--folds").help("Number of folds").default_value(stoi(env.get("n_folds"))).scan<'i', int>().action([](const std::string& value) {
try {
auto k = stoi(value);
if (k < 2) {
throw std::runtime_error("Number of folds must be greater than 1");
}
return k;
}
return k;
}
catch (const runtime_error& err) {
throw std::runtime_error(err.what());
}
catch (...) {
throw std::runtime_error("Number of folds must be an integer");
}});
auto seed_values = env.getSeeds();
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
catch (const runtime_error& err) {
throw std::runtime_error(err.what());
}
catch (...) {
throw std::runtime_error("Number of folds must be an integer");
}});
auto seed_values = env.getSeeds();
program.add_argument("-s", "--seeds").nargs(1, 10).help("Random seeds. Set to -1 to have pseudo random").scan<'i', int>().default_value(seed_values);
}
std::string headerLine(const std::string& text, int utf = 0)
{

View File

@@ -10,7 +10,7 @@
#include "config.h"
using json = nlohmann::json;
using json = nlohmann::ordered_json;
void manageArguments(argparse::ArgumentParser& program)
{

View File

@@ -6,7 +6,7 @@
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::json;
using json = nlohmann::ordered_json;
const std::string ALL_DATASETS = "all";
class GridData {
public:

View File

@@ -10,7 +10,7 @@
#include "GridData.h"
namespace platform {
using json = nlohmann::json;
using json = nlohmann::ordered_json;
struct ConfigGrid {
std::string model;
std::string score;

View File

@@ -5,7 +5,7 @@
#include "Scores.h"
#include "Experiment.h"
namespace platform {
using json = nlohmann::json;
using json = nlohmann::ordered_json;
void Experiment::saveResult()
{

View File

@@ -9,7 +9,7 @@
#include "results/Result.h"
namespace platform {
using json = nlohmann::json;
using json = nlohmann::ordered_json;
class Experiment {
public:

View File

@@ -6,7 +6,7 @@
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::json;
using json = nlohmann::ordered_json;
class HyperParameters {
public:
HyperParameters() = default;

View File

@@ -4,7 +4,7 @@
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::json;
using json = nlohmann::ordered_json;
class PartialResult {
public:

View File

@@ -37,11 +37,16 @@ namespace platform {
}
i++;
}
// Compute accuracy with the confusion matrix
compute_accuracy_value();
}
void Scores::compute_accuracy_value()
{
accuracy_value = 0;
for (int i = 0; i < num_classes; i++) {
accuracy_value += confusion_matrix[i][i].item<int>();
}
accuracy_value /= total;
accuracy_value = std::min(accuracy_value, 1.0f);
}
void Scores::init_confusion_matrix()
{
@@ -59,8 +64,7 @@ namespace platform {
throw std::invalid_argument("The number of classes must be the same");
confusion_matrix += a.confusion_matrix;
total += a.total;
accuracy_value += a.accuracy_value;
accuracy_value /= 2;
compute_accuracy_value();
}
float Scores::accuracy()
{
@@ -71,6 +75,7 @@ namespace platform {
// Compute f1_score in a one vs rest fashion
auto precision_value = precision(num_class);
auto recall_value = recall(num_class);
if (precision_value + recall_value == 0) return 0; // Avoid division by zero (0/0 = 0)
return 2 * precision_value * recall_value / (precision_value + recall_value);
}
float Scores::f1_weighted()
@@ -94,6 +99,7 @@ namespace platform {
int tp = confusion_matrix[num_class][num_class].item<int>();
int fp = confusion_matrix.index({ "...", num_class }).sum().item<int>() - tp;
int fn = confusion_matrix[num_class].sum().item<int>() - tp;
if (tp + fp == 0) return 0; // Avoid division by zero (0/0 = 0
return float(tp) / (tp + fp);
}
float Scores::recall(int num_class)
@@ -101,6 +107,7 @@ namespace platform {
int tp = confusion_matrix[num_class][num_class].item<int>();
int fp = confusion_matrix.index({ "...", num_class }).sum().item<int>() - tp;
int fn = confusion_matrix[num_class].sum().item<int>() - tp;
if (tp + fn == 0) return 0; // Avoid division by zero (0/0 = 0
return float(tp) / (tp + fn);
}
std::string Scores::classification_report_line(std::string label, float precision, float recall, float f1_score, int support)

View File

@@ -5,7 +5,7 @@
#include <torch/torch.h>
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::json;
using json = nlohmann::ordered_json;
class Scores {
public:
Scores(torch::Tensor& y_test, torch::Tensor& y_pred, int num_classes, std::vector<std::string> labels = {});
@@ -24,6 +24,7 @@ namespace platform {
std::string classification_report_line(std::string label, float precision, float recall, float f1_score, int support);
void init_confusion_matrix();
void init_default_labels();
void compute_accuracy_value();
int num_classes;
float accuracy_value;
int total;

View File

@@ -5,7 +5,7 @@
#include <nlohmann/json.hpp>
#include "results/Result.h"
namespace platform {
using json = nlohmann::json;
using json = nlohmann::ordered_json;
enum class SortType {
ASC = 0,
DESC = 1,

View File

@@ -6,7 +6,7 @@
#include "ReportsPaged.h"
namespace platform {
using json = nlohmann::json;
using json = nlohmann::ordered_json;
class DatasetsConsole : public ReportsPaged {

View File

@@ -3,7 +3,7 @@
#include <nlohmann/json.hpp>
#include "reports/ExcelFile.h"
using json = nlohmann::json;
using json = nlohmann::ordered_json;
namespace platform {

View File

@@ -6,7 +6,7 @@
#include "common/Paths.h"
#include "common/Symbols.h"
using json = nlohmann::json;
using json = nlohmann::ordered_json;
namespace platform {
class ReportBase {

View File

@@ -5,7 +5,7 @@
#include <nlohmann/json.hpp>
namespace platform {
using json = nlohmann::json;
using json = nlohmann::ordered_json;
class ReportsPaged {
public:

View File

@@ -9,7 +9,7 @@
#include "main/PartialResult.h"
namespace platform {
using json = nlohmann::json;
using json = nlohmann::ordered_json;
class Result {
public:

View File

@@ -5,7 +5,7 @@
#include <nlohmann/json.hpp>
#include "results/Result.h"
namespace platform {
using json = nlohmann::json;
using json = nlohmann::ordered_json;
class ResultsDataset {
public:
ResultsDataset(const std::string& dataset, const std::string& model, const std::string& score);

View File

@@ -3,7 +3,7 @@
#include <nlohmann/json.hpp>
#include "reports/ExcelFile.h"
using json = nlohmann::json;
using json = nlohmann::ordered_json;
namespace platform {

View File

@@ -19,12 +19,12 @@ TEST_CASE("Test Platform version", "[Platform]")
TEST_CASE("Test Folding library version", "[Folding]")
{
std::string version = folding::KFold(5, 100).version();
REQUIRE(version == "1.0.1");
REQUIRE(version == "1.1.0");
}
TEST_CASE("Test BayesNet version", "[BayesNet]")
{
std::string version = bayesnet::TAN().getVersion();
REQUIRE(version == "1.0.4.1");
REQUIRE(version == "1.0.5.1");
}
TEST_CASE("Test mdlp version", "[mdlp]")
{

View File

@@ -10,6 +10,7 @@
#include "main/Scores.h"
#include "config.h"
using json = nlohmann::ordered_json;
auto epsilon = 1e-4;
void make_test_bin(int TP, int TN, int FP, int FN, std::vector<int>& y_test, std::vector<int>& y_pred)
@@ -157,7 +158,7 @@ TEST_CASE("JSON constructor", "[Scores]")
std::vector<int> y_pred = { 0, 1, 2, 2, 1, 1, 1, 0, 0, 2 };
auto y_test_tensor = torch::tensor(y_test, torch::kInt32);
auto y_pred_tensor = torch::tensor(y_pred, torch::kInt32);
std::vector<std::string> labels = { "Aeroplane", "Boat", "Car" };
std::vector<std::string> labels = { "Car", "Boat", "Aeroplane" };
platform::Scores scores(y_test_tensor, y_pred_tensor, 3, labels);
auto res_json_int = scores.get_confusion_matrix_json();
platform::Scores scores2(res_json_int);
@@ -218,4 +219,33 @@ TEST_CASE("Aggregate", "[Scores]")
REQUIRE(scores3.f1_weighted() == scores.f1_weighted());
REQUIRE(scores3.f1_macro() == scores.f1_macro());
REQUIRE(scores3.accuracy() == scores.accuracy());
}
TEST_CASE("Order of keys", "[Scores]")
{
std::vector<int> y_test = { 0, 2, 2, 2, 2, 0, 1, 2, 0, 2 };
std::vector<int> y_pred = { 0, 1, 2, 2, 1, 1, 1, 0, 0, 2 };
auto y_test_tensor = torch::tensor(y_test, torch::kInt32);
auto y_pred_tensor = torch::tensor(y_pred, torch::kInt32);
std::vector<std::string> labels = { "Car", "Boat", "Aeroplane" };
platform::Scores scores(y_test_tensor, y_pred_tensor, 3, labels);
auto res_json_int = scores.get_confusion_matrix_json(true);
// Make a temp file and store the json
std::string filename = "temp.json";
std::ofstream file(filename);
file << res_json_int;
file.close();
// Read the json from the file
std::ifstream file2(filename);
json res_json_int2;
file2 >> res_json_int2;
file2.close();
// Remove the temp file
std::remove(filename.c_str());
platform::Scores scores2(res_json_int2);
REQUIRE(scores.accuracy() == scores2.accuracy());
for (int i = 0; i < 2; ++i) {
REQUIRE(scores.f1_score(i) == scores2.f1_score(i));
REQUIRE(scores.precision(i) == scores2.precision(i));
REQUIRE(scores.recall(i) == scores2.recall(i));
}
}