Compare commits
131 Commits
Author | SHA1 | Date | |
---|---|---|---|
5f95117dd4 | |||
2f5bc10b8e
|
|||
257f519641
|
|||
5c5ecef3cf
|
|||
d0ebe596f6
|
|||
670b93d0a1
|
|||
306d3a4b55
|
|||
bf08b0de89
|
|||
b976db53c6
|
|||
be39d2dedb
|
|||
4ca770d16b
|
|||
6bf3b939bc
|
|||
7076efc2a1 | |||
9ee388561f
|
|||
70c7d3dd3d
|
|||
400967b4e3
|
|||
c234308701
|
|||
4ded6f51eb
|
|||
b1d317d8f4
|
|||
7876d1a370
|
|||
3bdb14bd65
|
|||
71b05cc1a7
|
|||
a59689272d
|
|||
3d8be79b37
|
|||
619276a5ea
|
|||
e681099360
|
|||
5919fbfd34
|
|||
a26522e62f
|
|||
86cccb6c7b
|
|||
d1b235261e
|
|||
7a8e0391dc
|
|||
6cfbc482d8
|
|||
ca54f799ee
|
|||
06621ea361
|
|||
a70ac3e883
|
|||
b987dcbcc4
|
|||
81fd7df7f0
|
|||
dd98cf159d
|
|||
f658149977
|
|||
fb957ac3fe
|
|||
b90e558238
|
|||
64970cf7f7 | |||
b571a4da4d
|
|||
8a9f329ff9
|
|||
e2781ee525
|
|||
56a2d3ead0
|
|||
dc32a0fc47
|
|||
3d6b4f0614
|
|||
18844c7da7
|
|||
43ceefd2c9
|
|||
e6501502d1
|
|||
d84adf6172
|
|||
268a86cbe0
|
|||
fc4c93b299
|
|||
86f2bc44fc | |||
f0f3d9ad6e
|
|||
9a323cd7a3
|
|||
cb949ac7e5
|
|||
2c297ea15d
|
|||
4e4b6e67f4
|
|||
82847774ee
|
|||
d0955d9369 | |||
2d34eb8c89
|
|||
0159c397fa
|
|||
0bbc8328a9
|
|||
35ca862eca
|
|||
26eb58b104
|
|||
6fcc15d39a
|
|||
9a14133be5
|
|||
59c1cf5b3b
|
|||
8e9090d283
|
|||
02bcab01be
|
|||
716748e18c
|
|||
0b31780d39
|
|||
fa26aa80f7
|
|||
3eb61905fb
|
|||
ca0ae4dacf
|
|||
b34869cc61
|
|||
27a3e5a5e0
|
|||
684443a788
|
|||
6d9badc33b | |||
015b1b0c0f
|
|||
7bb8e4df01
|
|||
53710378de
|
|||
c833e9ba32
|
|||
f5cb46ee29
|
|||
fa35681abe
|
|||
b0bd0e6eee
|
|||
d43be27821
|
|||
a2853dd2e5
|
|||
0341bd5648
|
|||
22b742f068
|
|||
2584e8294d
|
|||
291ba0fb0e
|
|||
80043d5181
|
|||
677ec5613d
|
|||
cccaa6e0af
|
|||
2e3e0e0fc2
|
|||
8784a24898
|
|||
54496c68f1
|
|||
1f236a70db
|
|||
ef3c74633c
|
|||
7efd95095c | |||
0e24135d46
|
|||
521bfd2a8e
|
|||
e2e0fb0c40
|
|||
56b62a67cc
|
|||
c0fc107abb
|
|||
d8c44b3b7c
|
|||
6ab7cd2cbd
|
|||
b578ea8a2d
|
|||
9a752d15dc
|
|||
4992685e94
|
|||
346b693c79
|
|||
164c8bd90c
|
|||
ced29a2c2e
|
|||
0ec53f405f
|
|||
f806015b29
|
|||
8115f25c06
|
|||
618a1e539c
|
|||
7aeffba740
|
|||
e79ea63afb | |||
3c7382a93a
|
|||
b4a222b100
|
|||
23ef0cc5f7
|
|||
793b2d3cd5
|
|||
ae469b8146
|
|||
f014928411
|
|||
c4b563a339
|
|||
49bb0582e6
|
|||
b4c5261e01 |
10
.clang-format
Normal file
10
.clang-format
Normal file
@@ -0,0 +1,10 @@
|
||||
# .clang-format
|
||||
---
|
||||
BasedOnStyle: LLVM
|
||||
AccessModifierOffset: -4
|
||||
BreakBeforeBraces: Linux
|
||||
ColumnLimit: 0
|
||||
FixNamespaceComments: false
|
||||
IndentWidth: 4
|
||||
NamespaceIndentation: All
|
||||
TabWidth: 4
|
@@ -1,4 +1,4 @@
|
||||
compilation_database_dir: build_debug
|
||||
compilation_database_dir: build_Debug
|
||||
output_directory: diagrams
|
||||
diagrams:
|
||||
BayesNet:
|
||||
|
57
.devcontainer/Dockerfile
Normal file
57
.devcontainer/Dockerfile
Normal file
@@ -0,0 +1,57 @@
|
||||
FROM mcr.microsoft.com/devcontainers/cpp:ubuntu22.04
|
||||
|
||||
ARG REINSTALL_CMAKE_VERSION_FROM_SOURCE="3.29.3"
|
||||
|
||||
# Optionally install the cmake for vcpkg
|
||||
COPY ./reinstall-cmake.sh /tmp/
|
||||
|
||||
RUN if [ "${REINSTALL_CMAKE_VERSION_FROM_SOURCE}" != "none" ]; then \
|
||||
chmod +x /tmp/reinstall-cmake.sh && /tmp/reinstall-cmake.sh ${REINSTALL_CMAKE_VERSION_FROM_SOURCE}; \
|
||||
fi \
|
||||
&& rm -f /tmp/reinstall-cmake.sh
|
||||
|
||||
|
||||
# [Optional] Uncomment this section to install additional vcpkg ports.
|
||||
# RUN su vscode -c "${VCPKG_ROOT}/vcpkg install <your-port-name-here>"
|
||||
|
||||
# [Optional] Uncomment this section to install additional packages.
|
||||
RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \
|
||||
&& apt-get -y install --no-install-recommends wget software-properties-common libdatetime-perl libcapture-tiny-perl libdatetime-format-dateparse-perl libgd-perl
|
||||
|
||||
# Add PPA for GCC 13
|
||||
RUN add-apt-repository ppa:ubuntu-toolchain-r/test
|
||||
RUN apt-get update
|
||||
|
||||
# Install GCC 13.1
|
||||
RUN apt-get install -y gcc-13 g++-13 doxygen
|
||||
|
||||
# Install lcov 2.1
|
||||
RUN wget --quiet https://github.com/linux-test-project/lcov/releases/download/v2.1/lcov-2.1.tar.gz && \
|
||||
tar -xvf lcov-2.1.tar.gz && \
|
||||
cd lcov-2.1 && \
|
||||
make install
|
||||
RUN rm lcov-2.1.tar.gz
|
||||
RUN rm -fr lcov-2.1
|
||||
|
||||
# Install Miniconda
|
||||
RUN mkdir -p /opt/conda
|
||||
RUN wget --quiet "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh" -O /opt/conda/miniconda.sh && \
|
||||
bash /opt/conda/miniconda.sh -b -p /opt/miniconda
|
||||
|
||||
# Add conda to PATH
|
||||
ENV PATH=/opt/miniconda/bin:$PATH
|
||||
|
||||
# add CXX and CC to the environment with gcc 13
|
||||
ENV CXX=/usr/bin/g++-13
|
||||
ENV CC=/usr/bin/gcc-13
|
||||
|
||||
# link the last gcov version
|
||||
RUN rm /usr/bin/gcov
|
||||
RUN ln -s /usr/bin/gcov-13 /usr/bin/gcov
|
||||
|
||||
# change ownership of /opt/miniconda to vscode user
|
||||
RUN chown -R vscode:vscode /opt/miniconda
|
||||
|
||||
USER vscode
|
||||
RUN conda init
|
||||
RUN conda install -y -c conda-forge yaml pytorch
|
37
.devcontainer/devcontainer.json
Normal file
37
.devcontainer/devcontainer.json
Normal file
@@ -0,0 +1,37 @@
|
||||
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
|
||||
// README at: https://github.com/devcontainers/templates/tree/main/src/cpp
|
||||
{
|
||||
"name": "C++",
|
||||
"build": {
|
||||
"dockerfile": "Dockerfile"
|
||||
},
|
||||
// "features": {
|
||||
// "ghcr.io/devcontainers/features/conda:1": {}
|
||||
// }
|
||||
// Features to add to the dev container. More info: https://containers.dev/features.
|
||||
// "features": {},
|
||||
// Use 'forwardPorts' to make a list of ports inside the container available locally.
|
||||
// "forwardPorts": [],
|
||||
// Use 'postCreateCommand' to run commands after the container is created.
|
||||
"postCreateCommand": "make release && make debug && echo 'Done!'",
|
||||
// Configure tool-specific properties.
|
||||
// "customizations": {},
|
||||
"customizations": {
|
||||
// Configure properties specific to VS Code.
|
||||
"vscode": {
|
||||
"settings": {},
|
||||
"extensions": [
|
||||
"ms-vscode.cpptools",
|
||||
"ms-vscode.cpptools-extension-pack",
|
||||
"ms-vscode.cpptools-themes",
|
||||
"ms-vscode.cmake-tools",
|
||||
"ms-azuretools.vscode-docker",
|
||||
"jbenden.c-cpp-flylint",
|
||||
"matepek.vscode-catch2-test-adapter",
|
||||
"GitHub.copilot"
|
||||
]
|
||||
}
|
||||
}
|
||||
// Uncomment to connect as root instead. More info: https://aka.ms/dev-containers-non-root.
|
||||
// "remoteUser": "root"
|
||||
}
|
59
.devcontainer/reinstall-cmake.sh
Normal file
59
.devcontainer/reinstall-cmake.sh
Normal file
@@ -0,0 +1,59 @@
|
||||
#!/usr/bin/env bash
|
||||
#-------------------------------------------------------------------------------------------------------------
|
||||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# Licensed under the MIT License. See https://go.microsoft.com/fwlink/?linkid=2090316 for license information.
|
||||
#-------------------------------------------------------------------------------------------------------------
|
||||
#
|
||||
set -e
|
||||
|
||||
CMAKE_VERSION=${1:-"none"}
|
||||
|
||||
if [ "${CMAKE_VERSION}" = "none" ]; then
|
||||
echo "No CMake version specified, skipping CMake reinstallation"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Cleanup temporary directory and associated files when exiting the script.
|
||||
cleanup() {
|
||||
EXIT_CODE=$?
|
||||
set +e
|
||||
if [[ -n "${TMP_DIR}" ]]; then
|
||||
echo "Executing cleanup of tmp files"
|
||||
rm -Rf "${TMP_DIR}"
|
||||
fi
|
||||
exit $EXIT_CODE
|
||||
}
|
||||
trap cleanup EXIT
|
||||
|
||||
|
||||
echo "Installing CMake..."
|
||||
apt-get -y purge --auto-remove cmake
|
||||
mkdir -p /opt/cmake
|
||||
|
||||
architecture=$(dpkg --print-architecture)
|
||||
case "${architecture}" in
|
||||
arm64)
|
||||
ARCH=aarch64 ;;
|
||||
amd64)
|
||||
ARCH=x86_64 ;;
|
||||
*)
|
||||
echo "Unsupported architecture ${architecture}."
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
|
||||
CMAKE_BINARY_NAME="cmake-${CMAKE_VERSION}-linux-${ARCH}.sh"
|
||||
CMAKE_CHECKSUM_NAME="cmake-${CMAKE_VERSION}-SHA-256.txt"
|
||||
TMP_DIR=$(mktemp -d -t cmake-XXXXXXXXXX)
|
||||
|
||||
echo "${TMP_DIR}"
|
||||
cd "${TMP_DIR}"
|
||||
|
||||
curl -sSL "https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/${CMAKE_BINARY_NAME}" -O
|
||||
curl -sSL "https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/${CMAKE_CHECKSUM_NAME}" -O
|
||||
|
||||
sha256sum -c --ignore-missing "${CMAKE_CHECKSUM_NAME}"
|
||||
sh "${TMP_DIR}/${CMAKE_BINARY_NAME}" --prefix=/opt/cmake --skip-license
|
||||
|
||||
ln -s /opt/cmake/bin/cmake /usr/local/bin/cmake
|
||||
ln -s /opt/cmake/bin/ctest /usr/local/bin/ctest
|
12
.github/dependabot.yml
vendored
Normal file
12
.github/dependabot.yml
vendored
Normal file
@@ -0,0 +1,12 @@
|
||||
# To get started with Dependabot version updates, you'll need to specify which
|
||||
# package ecosystems to update and where the package manifests are located.
|
||||
# Please see the documentation for more information:
|
||||
# https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
|
||||
# https://containers.dev/guide/dependabot
|
||||
|
||||
version: 2
|
||||
updates:
|
||||
- package-ecosystem: "devcontainers"
|
||||
directory: "/"
|
||||
schedule:
|
||||
interval: weekly
|
12
.github/workflows/main.yml
vendored
12
.github/workflows/main.yml
vendored
@@ -1,12 +0,0 @@
|
||||
name: CI
|
||||
on: push
|
||||
|
||||
jobs:
|
||||
tests:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- run: sudo apt-get install ninja-build cmake
|
||||
- run: ninja --version
|
||||
- run: cmake --version
|
||||
- run: g++ --version
|
8
.gitignore
vendored
8
.gitignore
vendored
@@ -39,4 +39,10 @@ cmake-build*/**
|
||||
puml/**
|
||||
.vscode/settings.json
|
||||
sample/build
|
||||
|
||||
**/.DS_Store
|
||||
docs/manual
|
||||
docs/man3
|
||||
docs/man
|
||||
docs/Doxyfile
|
||||
.cache
|
||||
vcpkg_installed
|
20
.gitmodules
vendored
20
.gitmodules
vendored
@@ -1,20 +0,0 @@
|
||||
[submodule "lib/mdlp"]
|
||||
path = lib/mdlp
|
||||
url = https://github.com/rmontanana/mdlp
|
||||
main = main
|
||||
update = merge
|
||||
[submodule "lib/catch2"]
|
||||
path = lib/catch2
|
||||
main = v2.x
|
||||
update = merge
|
||||
url = https://github.com/catchorg/Catch2.git
|
||||
[submodule "lib/json"]
|
||||
path = lib/json
|
||||
url = https://github.com/nlohmann/json.git
|
||||
master = master
|
||||
update = merge
|
||||
[submodule "lib/folding"]
|
||||
path = lib/folding
|
||||
url = https://github.com/rmontanana/folding
|
||||
main = main
|
||||
update = merge
|
4
.sonarlint/connectedMode.json
Normal file
4
.sonarlint/connectedMode.json
Normal file
@@ -0,0 +1,4 @@
|
||||
{
|
||||
"sonarCloudOrganization": "rmontanana",
|
||||
"projectKey": "rmontanana_BayesNet"
|
||||
}
|
8
.vscode/launch.json
vendored
8
.vscode/launch.json
vendored
@@ -5,7 +5,7 @@
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "sample",
|
||||
"program": "${workspaceFolder}/build_release/sample/bayesnet_sample",
|
||||
"program": "${workspaceFolder}/sample/build/bayesnet_sample",
|
||||
"args": [
|
||||
"${workspaceFolder}/tests/data/glass.arff"
|
||||
]
|
||||
@@ -14,11 +14,11 @@
|
||||
"type": "lldb",
|
||||
"request": "launch",
|
||||
"name": "test",
|
||||
"program": "${workspaceFolder}/build_debug/tests/TestBayesNet",
|
||||
"program": "${workspaceFolder}/build_Debug/tests/TestBayesNet",
|
||||
"args": [
|
||||
"Block Update"
|
||||
"[XBAODE]"
|
||||
],
|
||||
"cwd": "${workspaceFolder}/build_debug/tests"
|
||||
"cwd": "${workspaceFolder}/build_Debug/tests"
|
||||
},
|
||||
{
|
||||
"name": "(gdb) Launch",
|
||||
|
84
CHANGELOG.md
84
CHANGELOG.md
@@ -5,6 +5,85 @@ All notable changes to this project will be documented in this file.
|
||||
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/),
|
||||
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||
|
||||
## [Unreleased]
|
||||
|
||||
## [1.1.0] - 2025-04-27
|
||||
|
||||
### Internal
|
||||
|
||||
- Add changes to .clang-format to ajust to vscode format style thanks to <https://clang-format-configurator.site/>
|
||||
- Remove all the dependencies as git submodules and add them as vcpkg dependencies.
|
||||
- Fix the dependencies versions for this specific BayesNet version.
|
||||
|
||||
## [1.0.7] 2025-03-16
|
||||
|
||||
### Added
|
||||
|
||||
- A new hyperparameter to the BoostAODE class, *alphablock*, to control the way α is computed, with the last model or with the ensmble built so far. Default value is *false*.
|
||||
- A new hyperparameter to the SPODE class, *parent*, to set the root node of the model. If no value is set the root parameter of the constructor is used.
|
||||
- A new hyperparameter to the TAN class, *parent*, to set the root node of the model. If not set the first feature is used as root.
|
||||
- A new model named XSPODE, an optimized for speed averaged one dependence estimator.
|
||||
- A new model named XSP2DE, an optimized for speed averaged two dependence estimator.
|
||||
- A new model named XBAODE, an optimized for speed BoostAODE model.
|
||||
- A new model named XBA2DE, an optimized for speed BoostA2DE model.
|
||||
|
||||
### Internal
|
||||
|
||||
- Optimize ComputeCPT method in the Node class.
|
||||
- Add methods getCount and getMaxCount to the CountingSemaphore class, returning the current count and the maximum count of threads respectively.
|
||||
|
||||
### Changed
|
||||
|
||||
- Hyperparameter *maxTolerance* in the BoostAODE class is now in [1, 6] range (it was in [1, 4] range before).
|
||||
|
||||
## [1.0.6] 2024-11-23
|
||||
|
||||
### Fixed
|
||||
|
||||
- Prevent existing edges to be added to the network in the `add_edge` method.
|
||||
- Don't allow to add nodes or edges on already fiited networks.
|
||||
- Number of threads spawned
|
||||
- Network class tests
|
||||
|
||||
### Added
|
||||
|
||||
- Library logo generated with <https://openart.ai> to README.md
|
||||
- Link to the coverage report in the README.md coverage label.
|
||||
- *convergence_best* hyperparameter to the BoostAODE class, to control the way the prior accuracy is computed if convergence is set. Default value is *false*.
|
||||
- SPnDE model.
|
||||
- A2DE model.
|
||||
- BoostA2DE model.
|
||||
- A2DE & SPnDE tests.
|
||||
- Add tests to reach 99% of coverage.
|
||||
- Add tests to check the correct version of the mdlp, folding and json libraries.
|
||||
- Library documentation generated with Doxygen.
|
||||
- Link to documentation in the README.md.
|
||||
- Three types of smoothing the Bayesian Network ORIGINAL, LAPLACE and CESTNIK.
|
||||
|
||||
### Internal
|
||||
|
||||
- Fixed doxygen optional dependency
|
||||
- Add env parallel variable to Makefile
|
||||
- Add CountingSemaphore class to manage the number of threads spawned.
|
||||
- Ignore CUDA language in CMake CodeCoverage module.
|
||||
- Update mdlp library as a git submodule.
|
||||
- Create library ShuffleArffFile to limit the number of samples with a parameter and shuffle them.
|
||||
- Refactor catch2 library location to test/lib
|
||||
- Refactor loadDataset function in tests.
|
||||
- Remove conditionalEdgeWeights method in BayesMetrics.
|
||||
- Refactor Coverage Report generation.
|
||||
- Add devcontainer to work on apple silicon.
|
||||
- Change build cmake folder names to Debug & Release.
|
||||
- Add a Makefile target (doc) to generate the documentation.
|
||||
- Add a Makefile target (doc-install) to install the documentation.
|
||||
|
||||
### Libraries versions
|
||||
|
||||
- mdlp: 2.0.1
|
||||
- Folding: 1.1.0
|
||||
- json: 3.11
|
||||
- ArffFiles: 1.1.0
|
||||
|
||||
## [1.0.5] 2024-04-20
|
||||
|
||||
### Added
|
||||
@@ -25,6 +104,11 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
||||
- The worse model count in BoostAODE is reset to 0 every time a new model produces better accuracy, so the tolerance of the model is meant to be the number of **consecutive** models that produce worse accuracy.
|
||||
- Default hyperparameter values in BoostAODE: bisection is true, maxTolerance is 3, convergence is true
|
||||
|
||||
### Removed
|
||||
|
||||
- The 'predict_single' hyperparameter from the BoostAODE class.
|
||||
- The 'repeatSparent' hyperparameter from the BoostAODE class.
|
||||
|
||||
## [1.0.4] 2024-03-06
|
||||
|
||||
### Added
|
||||
|
@@ -1,7 +1,7 @@
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
|
||||
project(BayesNet
|
||||
VERSION 1.0.5
|
||||
VERSION 1.1.0
|
||||
DESCRIPTION "Bayesian Network and basic classifiers Library."
|
||||
HOMEPAGE_URL "https://github.com/rmontanana/bayesnet"
|
||||
LANGUAGES CXX
|
||||
@@ -25,8 +25,12 @@ set(CMAKE_CXX_EXTENSIONS OFF)
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
||||
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fprofile-arcs -ftest-coverage -O0 -g")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -O3")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fprofile-arcs -ftest-coverage -fno-elide-constructors")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -Ofast")
|
||||
if (NOT ${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-default-inline")
|
||||
endif()
|
||||
|
||||
# Options
|
||||
# -------
|
||||
option(ENABLE_CLANG_TIDY "Enable to add clang tidy." OFF)
|
||||
@@ -37,7 +41,6 @@ option(INSTALL_GTEST "Enable installation of googletest." OFF)
|
||||
# CMakes modules
|
||||
# --------------
|
||||
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules ${CMAKE_MODULE_PATH})
|
||||
include(AddGitSubmodule)
|
||||
|
||||
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
|
||||
MESSAGE("Debug mode")
|
||||
@@ -45,11 +48,12 @@ if (CMAKE_BUILD_TYPE STREQUAL "Debug")
|
||||
set(CODE_COVERAGE ON)
|
||||
endif (CMAKE_BUILD_TYPE STREQUAL "Debug")
|
||||
|
||||
|
||||
get_property(LANGUAGES GLOBAL PROPERTY ENABLED_LANGUAGES)
|
||||
message(STATUS "Languages=${LANGUAGES}")
|
||||
if (CODE_COVERAGE)
|
||||
enable_testing()
|
||||
include(CodeCoverage)
|
||||
MESSAGE("Code coverage enabled")
|
||||
MESSAGE(STATUS "Code coverage enabled")
|
||||
SET(GCC_COVERAGE_LINK_FLAGS " ${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||
endif (CODE_COVERAGE)
|
||||
|
||||
@@ -59,21 +63,22 @@ endif (ENABLE_CLANG_TIDY)
|
||||
|
||||
# External libraries - dependencies of BayesNet
|
||||
# ---------------------------------------------
|
||||
# include(FetchContent)
|
||||
add_git_submodule("lib/mdlp")
|
||||
add_git_submodule("lib/json")
|
||||
|
||||
find_package(Torch CONFIG REQUIRED)
|
||||
find_package(fimdlp CONFIG REQUIRED)
|
||||
find_package(nlohmann_json CONFIG REQUIRED)
|
||||
find_package(folding CONFIG REQUIRED)
|
||||
|
||||
# Subdirectories
|
||||
# --------------
|
||||
add_subdirectory(config)
|
||||
add_subdirectory(lib/Files)
|
||||
add_subdirectory(bayesnet)
|
||||
|
||||
# Testing
|
||||
# -------
|
||||
if (ENABLE_TESTING)
|
||||
MESSAGE("Testing enabled")
|
||||
add_git_submodule("lib/catch2")
|
||||
MESSAGE(STATUS "Testing enabled")
|
||||
find_package(Catch2 CONFIG REQUIRED)
|
||||
include(CTest)
|
||||
add_subdirectory(tests)
|
||||
endif (ENABLE_TESTING)
|
||||
@@ -85,4 +90,19 @@ install(TARGETS BayesNet
|
||||
LIBRARY DESTINATION lib
|
||||
CONFIGURATIONS Release)
|
||||
install(DIRECTORY bayesnet/ DESTINATION include/bayesnet FILES_MATCHING CONFIGURATIONS Release PATTERN "*.h")
|
||||
install(FILES ${CMAKE_BINARY_DIR}/configured_files/include/bayesnet/config.h DESTINATION include/bayesnet CONFIGURATIONS Release)
|
||||
install(FILES ${CMAKE_BINARY_DIR}/configured_files/include/bayesnet/config.h DESTINATION include/bayesnet CONFIGURATIONS Release)
|
||||
|
||||
# Documentation
|
||||
# -------------
|
||||
find_package(Doxygen)
|
||||
if (Doxygen_FOUND)
|
||||
set(DOC_DIR ${CMAKE_CURRENT_SOURCE_DIR}/docs)
|
||||
set(doxyfile_in ${DOC_DIR}/Doxyfile.in)
|
||||
set(doxyfile ${DOC_DIR}/Doxyfile)
|
||||
configure_file(${doxyfile_in} ${doxyfile} @ONLY)
|
||||
doxygen_add_docs(doxygen
|
||||
WORKING_DIRECTORY ${DOC_DIR}
|
||||
CONFIG_FILE ${doxyfile})
|
||||
else (Doxygen_FOUND)
|
||||
MESSAGE("* Doxygen not found")
|
||||
endif (Doxygen_FOUND)
|
||||
|
129
Makefile
129
Makefile
@@ -1,16 +1,22 @@
|
||||
SHELL := /bin/bash
|
||||
.DEFAULT_GOAL := help
|
||||
.PHONY: viewcoverage coverage setup help install uninstall diagrams buildr buildd test clean debug release sample updatebadge
|
||||
.PHONY: viewcoverage coverage setup help install uninstall diagrams buildr buildd test clean debug release sample updatebadge doc doc-install init clean-test
|
||||
|
||||
f_release = build_release
|
||||
f_debug = build_debug
|
||||
f_release = build_Release
|
||||
f_debug = build_Debug
|
||||
f_diagrams = diagrams
|
||||
app_targets = BayesNet
|
||||
test_targets = TestBayesNet
|
||||
clang-uml = clang-uml
|
||||
plantuml = plantuml
|
||||
lcov = lcov
|
||||
genhtml = genhtml
|
||||
dot = dot
|
||||
n_procs = -j 16
|
||||
docsrcdir = docs/manual
|
||||
mansrcdir = docs/man3
|
||||
mandestdir = /usr/local/share/man
|
||||
sed_command_link = 's/e">LCOV -/e"><a href="https:\/\/rmontanana.github.io\/bayesnet">Back to manual<\/a> LCOV -/g'
|
||||
sed_command_diagram = 's/Diagram"/Diagram" width="100%" height="100%" /g'
|
||||
|
||||
define ClearTests
|
||||
@for t in $(test_targets); do \
|
||||
@@ -37,7 +43,7 @@ setup: ## Install dependencies for tests and coverage
|
||||
fi
|
||||
@echo "* You should install plantuml & graphviz for the diagrams"
|
||||
|
||||
diagrams: ## Create an UML class diagram & depnendency of the project (diagrams/BayesNet.png)
|
||||
diagrams: ## Create an UML class diagram & dependency of the project (diagrams/BayesNet.png)
|
||||
@which $(plantuml) || (echo ">>> Please install plantuml"; exit 1)
|
||||
@which $(dot) || (echo ">>> Please install graphviz"; exit 1)
|
||||
@which $(clang-uml) || (echo ">>> Please install clang-uml"; exit 1)
|
||||
@@ -52,12 +58,12 @@ diagrams: ## Create an UML class diagram & depnendency of the project (diagrams/
|
||||
@$(dot) -Tsvg $(f_debug)/dependency.dot.BayesNet -o $(f_diagrams)/dependency.svg
|
||||
|
||||
buildd: ## Build the debug targets
|
||||
cmake --build $(f_debug) -t $(app_targets) $(n_procs)
|
||||
cmake --build $(f_debug) -t $(app_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
|
||||
|
||||
buildr: ## Build the release targets
|
||||
cmake --build $(f_release) -t $(app_targets) $(n_procs)
|
||||
cmake --build $(f_release) -t $(app_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
|
||||
|
||||
clean: ## Clean the tests info
|
||||
clean-test: ## Clean the tests info
|
||||
@echo ">>> Cleaning Debug BayesNet tests...";
|
||||
$(call ClearTests)
|
||||
@echo ">>> Done";
|
||||
@@ -73,33 +79,56 @@ install: ## Install library
|
||||
@cmake --install $(f_release) --prefix $(prefix)
|
||||
@echo ">>> Done";
|
||||
|
||||
init: ## Initialize the project installing dependencies
|
||||
@echo ">>> Installing dependencies"
|
||||
@vcpkg install
|
||||
@echo ">>> Done";
|
||||
|
||||
clean: ## Clean the project
|
||||
@echo ">>> Cleaning the project..."
|
||||
@if test -d build_Debug ; then echo "- Deleting build_Debug folder" ; rm -rf build_Debug; fi
|
||||
@if test -d build_Release ; then echo "- Deleting build_Release folder" ; rm -rf build_Release; fi
|
||||
@if test -f CMakeCache.txt ; then echo "- Deleting CMakeCache.txt"; rm -f CMakeCache.txt; fi
|
||||
@if test -d vcpkg_installed ; then echo "- Deleting vcpkg_installed folder" ; rm -rf vcpkg_installed; fi
|
||||
@$(MAKE) clean-test
|
||||
@echo ">>> Done";
|
||||
|
||||
debug: ## Build a debug version of the project
|
||||
@echo ">>> Building Debug BayesNet...";
|
||||
@if [ -d ./$(f_debug) ]; then rm -rf ./$(f_debug); fi
|
||||
@mkdir $(f_debug);
|
||||
@cmake -S . -B $(f_debug) -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON
|
||||
@cmake -S . -B $(f_debug) -D CMAKE_BUILD_TYPE=Debug -D ENABLE_TESTING=ON -D CODE_COVERAGE=ON -DCMAKE_TOOLCHAIN_FILE=${VCPKG_ROOT}/scripts/buildsystems/vcpkg.cmake
|
||||
@echo ">>> Done";
|
||||
|
||||
release: ## Build a Release version of the project
|
||||
@echo ">>> Building Release BayesNet...";
|
||||
@if [ -d ./$(f_release) ]; then rm -rf ./$(f_release); fi
|
||||
@mkdir $(f_release);
|
||||
@cmake -S . -B $(f_release) -D CMAKE_BUILD_TYPE=Release
|
||||
@cmake -S . -B $(f_release) -D CMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=${VCPKG_ROOT}/scripts/buildsystems/vcpkg.cmake
|
||||
@echo ">>> Done";
|
||||
|
||||
fname = "tests/data/iris.arff"
|
||||
sample: ## Build sample
|
||||
@echo ">>> Building Sample...";
|
||||
@if [ -d ./sample/build ]; then rm -rf ./sample/build; fi
|
||||
@cd sample && cmake -B build -S . && cmake --build build -t bayesnet_sample
|
||||
@cd sample && cmake -B build -S . -D CMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=${VCPKG_ROOT}/scripts/buildsystems/vcpkg.cmake && \
|
||||
cmake --build build -t bayesnet_sample
|
||||
sample/build/bayesnet_sample $(fname)
|
||||
@echo ">>> Done";
|
||||
@echo ">>> Done";
|
||||
|
||||
fname = "tests/data/iris.arff"
|
||||
sample2: ## Build sample2
|
||||
@echo ">>> Building Sample...";
|
||||
@if [ -d ./sample/build ]; then rm -rf ./sample/build; fi
|
||||
@cd sample && cmake -B build -S . -D CMAKE_BUILD_TYPE=Debug && cmake --build build -t bayesnet_sample_xspode
|
||||
sample/build/bayesnet_sample_xspode $(fname)
|
||||
@echo ">>> Done";
|
||||
|
||||
opt = ""
|
||||
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
|
||||
@echo ">>> Running BayesNet & Platform tests...";
|
||||
@$(MAKE) clean
|
||||
@cmake --build $(f_debug) -t $(test_targets) $(n_procs)
|
||||
@echo ">>> Running BayesNet tests...";
|
||||
@$(MAKE) clean-test
|
||||
@cmake --build $(f_debug) -t $(test_targets) --parallel $(CMAKE_BUILD_PARALLEL_LEVEL)
|
||||
@for t in $(test_targets); do \
|
||||
echo ">>> Running $$t...";\
|
||||
if [ -f $(f_debug)/tests/$$t ]; then \
|
||||
@@ -112,31 +141,71 @@ test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximu
|
||||
|
||||
coverage: ## Run tests and generate coverage report (build/index.html)
|
||||
@echo ">>> Building tests with coverage..."
|
||||
@$(MAKE) test
|
||||
@gcovr $(f_debug)/tests
|
||||
@echo ">>> Done";
|
||||
|
||||
viewcoverage: ## Run tests, generate coverage report and upload it to codecov (build/index.html)
|
||||
@echo ">>> Building tests with coverage..."
|
||||
@$(MAKE) coverage
|
||||
@which $(lcov) || (echo ">>ease install lcov"; exit 1)
|
||||
@if [ ! -f $(f_debug)/tests/coverage.info ] ; then $(MAKE) test ; fi
|
||||
@echo ">>> Building report..."
|
||||
@cd $(f_debug)/tests; \
|
||||
lcov --directory . --capture --output-file coverage.info >/dev/null 2>&1; \
|
||||
lcov --remove coverage.info '/usr/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
lcov --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
lcov --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
lcov --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
lcov --remove coverage.info 'bayesnet/utils/loguru.*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
genhtml coverage.info --output-directory coverage >/dev/null 2>&1;
|
||||
$(lcov) --directory CMakeFiles --capture --demangle-cpp --ignore-errors source,source --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info '/usr/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'include/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'bayesnet/utils/loguru.*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info '/opt/miniconda/*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --summary coverage.info
|
||||
@$(MAKE) updatebadge
|
||||
@xdg-open $(f_debug)/tests/coverage/index.html || open $(f_debug)/tests/coverage/index.html 2>/dev/null
|
||||
@echo ">>> Done";
|
||||
|
||||
viewcoverage: ## View the html coverage report
|
||||
@which $(genhtml) >/dev/null || (echo ">>> Please install lcov (genhtml not found)"; exit 1)
|
||||
@if [ ! -d $(docsrcdir)/coverage ]; then mkdir -p $(docsrcdir)/coverage; fi
|
||||
@if [ ! -f $(f_debug)/tests/coverage.info ]; then \
|
||||
echo ">>> No coverage.info file found. Run make coverage first!"; \
|
||||
exit 1; \
|
||||
fi
|
||||
@$(genhtml) $(f_debug)/tests/coverage.info --demangle-cpp --output-directory $(docsrcdir)/coverage --title "BayesNet Coverage Report" -s -k -f --legend >/dev/null 2>&1;
|
||||
@xdg-open $(docsrcdir)/coverage/index.html || open $(docsrcdir)/coverage/index.html 2>/dev/null
|
||||
@echo ">>> Done";
|
||||
|
||||
updatebadge: ## Update the coverage badge in README.md
|
||||
@which python || (echo ">>> Please install python"; exit 1)
|
||||
@if [ ! -f $(f_debug)/tests/coverage.info ]; then \
|
||||
echo ">>> No coverage.info file found. Run make coverage first!"; \
|
||||
exit 1; \
|
||||
fi
|
||||
@echo ">>> Updating coverage badge..."
|
||||
@env python update_coverage.py $(f_debug)/tests
|
||||
@echo ">>> Done";
|
||||
|
||||
doc: ## Generate documentation
|
||||
@echo ">>> Generating documentation..."
|
||||
@cmake --build $(f_release) -t doxygen
|
||||
@cp -rp diagrams $(docsrcdir)
|
||||
@
|
||||
@if [ "$(shell uname)" = "Darwin" ]; then \
|
||||
sed -i "" $(sed_command_link) $(docsrcdir)/coverage/index.html ; \
|
||||
sed -i "" $(sed_command_diagram) $(docsrcdir)/index.html ; \
|
||||
else \
|
||||
sed -i $(sed_command_link) $(docsrcdir)/coverage/index.html ; \
|
||||
sed -i $(sed_command_diagram) $(docsrcdir)/index.html ; \
|
||||
fi
|
||||
@echo ">>> Done";
|
||||
|
||||
docdir = ""
|
||||
doc-install: ## Install documentation
|
||||
@echo ">>> Installing documentation..."
|
||||
@if [ "$(docdir)" = "" ]; then \
|
||||
echo "docdir parameter has to be set when calling doc-install, i.e. docdir=../bayesnet_help"; \
|
||||
exit 1; \
|
||||
fi
|
||||
@if [ ! -d $(docdir) ]; then \
|
||||
@$(MAKE) doc; \
|
||||
fi
|
||||
@cp -rp $(docsrcdir)/* $(docdir)
|
||||
@sudo cp -rp $(mansrcdir) $(mandestdir)
|
||||
@echo ">>> Done";
|
||||
|
||||
help: ## Show help message
|
||||
@IFS=$$'\n' ; \
|
||||
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
|
||||
|
151
README.md
151
README.md
@@ -1,39 +1,114 @@
|
||||
# BayesNet
|
||||
# <img src="logo.png" alt="logo" width="50"/> BayesNet
|
||||
|
||||

|
||||
[](<https://opensource.org/licenses/MIT>)
|
||||

|
||||

|
||||
[](https://app.codacy.com/gh/Doctorado-ML/BayesNet/dashboard?utm_source=gh&utm_medium=referral&utm_content=&utm_campaign=Badge_grade)
|
||||

|
||||

|
||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_BayesNet)
|
||||

|
||||
[](https://gitea.rmontanana.es/rmontanana/BayesNet)
|
||||
[](https://doi.org/10.5281/zenodo.14210344)
|
||||
|
||||
Bayesian Network Classifiers using libtorch from scratch
|
||||
|
||||
## Dependencies
|
||||
|
||||
The only external dependency is [libtorch](https://pytorch.org/cppdocs/installing.html) which can be installed with the following commands:
|
||||
|
||||
```bash
|
||||
wget https://download.pytorch.org/libtorch/nightly/cpu/libtorch-shared-with-deps-latest.zip
|
||||
unzip libtorch-shared-with-deps-latest.zips
|
||||
```
|
||||
Bayesian Network Classifiers library
|
||||
|
||||
## Setup
|
||||
|
||||
### Using the vcpkg library
|
||||
|
||||
You can use the library with the vcpkg library manager. In your project you have to add the following files:
|
||||
|
||||
#### vcpkg.json
|
||||
|
||||
```json
|
||||
{
|
||||
"name": "sample-project",
|
||||
"version-string": "0.1.0",
|
||||
"dependencies": [
|
||||
"bayesnet"
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
#### vcpkg-configuration.json
|
||||
|
||||
```json
|
||||
{
|
||||
"registries": [
|
||||
{
|
||||
"kind": "git",
|
||||
"repository": "https://github.com/rmontanana/vcpkg-stash",
|
||||
"baseline": "393efa4e74e053b6f02c4ab03738c8fe796b28e5",
|
||||
"packages": [
|
||||
"folding",
|
||||
"bayesnet",
|
||||
"arff-files",
|
||||
"fimdlp",
|
||||
"libtorch-bin"
|
||||
]
|
||||
}
|
||||
],
|
||||
"default-registry": {
|
||||
"kind": "git",
|
||||
"repository": "https://github.com/microsoft/vcpkg",
|
||||
"baseline": "760bfd0c8d7c89ec640aec4df89418b7c2745605"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### CMakeLists.txt
|
||||
|
||||
You have to include the following lines in your `CMakeLists.txt` file:
|
||||
|
||||
```cmake
|
||||
find_package(bayesnet CONFIG REQUIRED)
|
||||
|
||||
add_executable(myapp main.cpp)
|
||||
|
||||
target_link_libraries(myapp PRIVATE bayesnet::bayesnet)
|
||||
```
|
||||
|
||||
After that, you can use the `vcpkg` command to install the dependencies:
|
||||
|
||||
```bash
|
||||
vcpkg install
|
||||
```
|
||||
|
||||
**Note: In the `sample` folder you can find a sample application that uses the library. You can use it as a reference to create your own application.**
|
||||
|
||||
## Playing with the library
|
||||
|
||||
The dependencies are managed with [vcpkg](https://vcpkg.io/) and supported by a private vcpkg repository in [https://github.com/rmontanana/vcpkg-stash](https://github.com/rmontanana/vcpkg-stash).
|
||||
|
||||
### Getting the code
|
||||
|
||||
```bash
|
||||
git clone https://github.com/doctorado-ml/bayesnet
|
||||
```
|
||||
|
||||
Once you have the code, you can use the `make` command to build the project. The `Makefile` is used to manage the build process and it will automatically download and install the dependencies.
|
||||
|
||||
### Release
|
||||
|
||||
```bash
|
||||
make release
|
||||
make buildr
|
||||
sudo make install
|
||||
make init # Install dependencies
|
||||
make release # Build the release version
|
||||
make buildr # compile and link the release version
|
||||
```
|
||||
|
||||
### Debug & Tests
|
||||
|
||||
```bash
|
||||
make debug
|
||||
make test
|
||||
make coverage
|
||||
make init # Install dependencies
|
||||
make debug # Build the debug version
|
||||
make test # Run the tests
|
||||
```
|
||||
|
||||
### Coverage
|
||||
|
||||
```bash
|
||||
make coverage # Run the tests with coverage
|
||||
make viewcoverage # View the coverage report in the browser
|
||||
```
|
||||
|
||||
### Sample app
|
||||
@@ -47,7 +122,41 @@ make sample fname=tests/data/glass.arff
|
||||
|
||||
## Models
|
||||
|
||||
### [BoostAODE](docs/BoostAODE.md)
|
||||
#### - TAN
|
||||
|
||||
#### - KDB
|
||||
|
||||
#### - SPODE
|
||||
|
||||
#### - SPnDE
|
||||
|
||||
#### - AODE
|
||||
|
||||
#### - A2DE
|
||||
|
||||
#### - [BoostAODE](docs/BoostAODE.md)
|
||||
|
||||
#### - XBAODE
|
||||
|
||||
#### - BoostA2DE
|
||||
|
||||
#### - XBA2DE
|
||||
|
||||
### With Local Discretization
|
||||
|
||||
#### - TANLd
|
||||
|
||||
#### - KDBLd
|
||||
|
||||
#### - SPODELd
|
||||
|
||||
#### - AODELd
|
||||
|
||||
## Documentation
|
||||
|
||||
### [Manual](https://rmontanana.github.io/bayesnet/)
|
||||
|
||||
### [Coverage report](https://rmontanana.github.io/bayesnet/coverage/index.html)
|
||||
|
||||
## Diagrams
|
||||
|
||||
|
@@ -8,17 +8,19 @@
|
||||
#include <vector>
|
||||
#include <torch/torch.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "bayesnet/network/Network.h"
|
||||
|
||||
namespace bayesnet {
|
||||
enum status_t { NORMAL, WARNING, ERROR };
|
||||
class BaseClassifier {
|
||||
public:
|
||||
// X is nxm std::vector, y is nx1 std::vector
|
||||
virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
// X is nxm tensor, y is nx1 tensor
|
||||
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) = 0;
|
||||
virtual ~BaseClassifier() = default;
|
||||
// X is nxm std::vector, y is nx1 std::vector
|
||||
virtual BaseClassifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
|
||||
// X is nxm tensor, y is nx1 tensor
|
||||
virtual BaseClassifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) = 0;
|
||||
virtual BaseClassifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing) = 0;
|
||||
torch::Tensor virtual predict(torch::Tensor& X) = 0;
|
||||
std::vector<int> virtual predict(std::vector<std::vector<int >>& X) = 0;
|
||||
torch::Tensor virtual predict_proba(torch::Tensor& X) = 0;
|
||||
@@ -26,8 +28,8 @@ namespace bayesnet {
|
||||
status_t virtual getStatus() const = 0;
|
||||
float virtual score(std::vector<std::vector<int>>& X, std::vector<int>& y) = 0;
|
||||
float virtual score(torch::Tensor& X, torch::Tensor& y) = 0;
|
||||
int virtual getNumberOfNodes()const = 0;
|
||||
int virtual getNumberOfEdges()const = 0;
|
||||
int virtual getNumberOfNodes() const = 0;
|
||||
int virtual getNumberOfEdges() const = 0;
|
||||
int virtual getNumberOfStates() const = 0;
|
||||
int virtual getClassNumStates() const = 0;
|
||||
std::vector<std::string> virtual show() const = 0;
|
||||
@@ -35,11 +37,13 @@ namespace bayesnet {
|
||||
virtual std::string getVersion() = 0;
|
||||
std::vector<std::string> virtual topological_order() = 0;
|
||||
std::vector<std::string> virtual getNotes() const = 0;
|
||||
std::string virtual dump_cpt()const = 0;
|
||||
std::string virtual dump_cpt() const = 0;
|
||||
virtual void setHyperparameters(const nlohmann::json& hyperparameters) = 0;
|
||||
std::vector<std::string>& getValidHyperparameters() { return validHyperparameters; }
|
||||
protected:
|
||||
virtual void trainModel(const torch::Tensor& weights) = 0;
|
||||
virtual void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) = 0;
|
||||
std::vector<std::string> validHyperparameters;
|
||||
std::vector<std::string> notes; // Used to store messages occurred during the fit process
|
||||
status_t status = NORMAL;
|
||||
};
|
||||
}
|
@@ -1,6 +1,6 @@
|
||||
include_directories(
|
||||
${BayesNet_SOURCE_DIR}/lib/mdlp
|
||||
${BayesNet_SOURCE_DIR}/lib/Files
|
||||
${BayesNet_SOURCE_DIR}/lib/log
|
||||
${BayesNet_SOURCE_DIR}/lib/mdlp/src
|
||||
${BayesNet_SOURCE_DIR}/lib/folding
|
||||
${BayesNet_SOURCE_DIR}/lib/json/include
|
||||
${BayesNet_SOURCE_DIR}
|
||||
@@ -10,4 +10,4 @@ include_directories(
|
||||
file(GLOB_RECURSE Sources "*.cc")
|
||||
|
||||
add_library(BayesNet ${Sources})
|
||||
target_link_libraries(BayesNet mdlp "${TORCH_LIBRARIES}")
|
||||
target_link_libraries(BayesNet fimdlp "${TORCH_LIBRARIES}")
|
||||
|
@@ -10,8 +10,7 @@
|
||||
|
||||
namespace bayesnet {
|
||||
Classifier::Classifier(Network model) : model(model), m(0), n(0), metrics(Metrics()), fitted(false) {}
|
||||
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
|
||||
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
||||
Classifier& Classifier::build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
this->features = features;
|
||||
this->className = className;
|
||||
@@ -23,7 +22,7 @@ namespace bayesnet {
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
model.initialize();
|
||||
buildModel(weights);
|
||||
trainModel(weights);
|
||||
trainModel(weights, smoothing);
|
||||
fitted = true;
|
||||
return *this;
|
||||
}
|
||||
@@ -41,20 +40,20 @@ namespace bayesnet {
|
||||
throw std::runtime_error(oss.str());
|
||||
}
|
||||
}
|
||||
void Classifier::trainModel(const torch::Tensor& weights)
|
||||
void Classifier::trainModel(const torch::Tensor& weights, Smoothing_t smoothing)
|
||||
{
|
||||
model.fit(dataset, weights, features, className, states);
|
||||
model.fit(dataset, weights, features, className, states, smoothing);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
Classifier& Classifier::fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
dataset = X;
|
||||
buildDataset(y);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
return build(features, className, states, weights, smoothing);
|
||||
}
|
||||
// X is nxm where n is the number of features and m the number of samples
|
||||
Classifier& Classifier::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
Classifier& Classifier::fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
dataset = torch::zeros({ static_cast<int>(X.size()), static_cast<int>(X[0].size()) }, torch::kInt32);
|
||||
for (int i = 0; i < X.size(); ++i) {
|
||||
@@ -63,18 +62,18 @@ namespace bayesnet {
|
||||
auto ytmp = torch::tensor(y, torch::kInt32);
|
||||
buildDataset(ytmp);
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
return build(features, className, states, weights, smoothing);
|
||||
}
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states)
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
this->dataset = dataset;
|
||||
const torch::Tensor weights = torch::full({ dataset.size(1) }, 1.0 / dataset.size(1), torch::kDouble);
|
||||
return build(features, className, states, weights);
|
||||
return build(features, className, states, weights, smoothing);
|
||||
}
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
||||
Classifier& Classifier::fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
this->dataset = dataset;
|
||||
return build(features, className, states, weights);
|
||||
return build(features, className, states, weights, smoothing);
|
||||
}
|
||||
void Classifier::checkFitParameters()
|
||||
{
|
||||
@@ -191,4 +190,4 @@ namespace bayesnet {
|
||||
throw std::invalid_argument("Invalid hyperparameters" + hyperparameters.dump());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -8,7 +8,6 @@
|
||||
#define CLASSIFIER_H
|
||||
#include <torch/torch.h>
|
||||
#include "bayesnet/utils/BayesMetrics.h"
|
||||
#include "bayesnet/network/Network.h"
|
||||
#include "bayesnet/BaseClassifier.h"
|
||||
|
||||
namespace bayesnet {
|
||||
@@ -16,10 +15,10 @@ namespace bayesnet {
|
||||
public:
|
||||
Classifier(Network model);
|
||||
virtual ~Classifier() = default;
|
||||
Classifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights) override;
|
||||
Classifier& fit(std::vector<std::vector<int>>& X, std::vector<int>& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
Classifier& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
Classifier& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
void addNodes();
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
@@ -47,14 +46,13 @@ namespace bayesnet {
|
||||
std::string className;
|
||||
std::map<std::string, std::vector<int>> states;
|
||||
torch::Tensor dataset; // (n+1)xm tensor
|
||||
status_t status = NORMAL;
|
||||
std::vector<std::string> notes; // Used to store messages occurred during the fit process
|
||||
void checkFitParameters();
|
||||
virtual void buildModel(const torch::Tensor& weights) = 0;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
void buildDataset(torch::Tensor& y);
|
||||
const std::string CLASSIFIER_NOT_FITTED = "Classifier has not been fitted";
|
||||
private:
|
||||
Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
Classifier& build(const std::vector<std::string>& features, const std::string& className, std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing);
|
||||
};
|
||||
}
|
||||
#endif
|
||||
|
@@ -3,7 +3,7 @@
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "bayesnet/utils/bayesnetUtils.h"
|
||||
#include "KDB.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
@@ -7,15 +7,14 @@
|
||||
#ifndef KDB_H
|
||||
#define KDB_H
|
||||
#include <torch/torch.h>
|
||||
#include "bayesnet/utils/bayesnetUtils.h"
|
||||
#include "Classifier.h"
|
||||
namespace bayesnet {
|
||||
class KDB : public Classifier {
|
||||
private:
|
||||
int k;
|
||||
float theta;
|
||||
void add_m_edges(int idx, std::vector<int>& S, torch::Tensor& weights);
|
||||
protected:
|
||||
void add_m_edges(int idx, std::vector<int>& S, torch::Tensor& weights);
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
explicit KDB(int k, float theta = 0.03);
|
||||
@@ -24,4 +23,4 @@ namespace bayesnet {
|
||||
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
||||
};
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
@@ -8,7 +8,7 @@
|
||||
|
||||
namespace bayesnet {
|
||||
KDBLd::KDBLd(int k) : KDB(k), Proposal(dataset, features, className) {}
|
||||
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
KDBLd& KDBLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
@@ -19,7 +19,7 @@ namespace bayesnet {
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal KDB structure, KDB::fit initializes the base Bayesian network
|
||||
KDB::fit(dataset, features, className, states);
|
||||
KDB::fit(dataset, features, className, states, smoothing);
|
||||
states = localDiscretizationProposal(states, model);
|
||||
return *this;
|
||||
}
|
||||
|
@@ -15,7 +15,7 @@ namespace bayesnet {
|
||||
public:
|
||||
explicit KDBLd(int k);
|
||||
virtual ~KDBLd() = default;
|
||||
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
KDBLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
std::vector<std::string> graph(const std::string& name = "KDB") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
|
@@ -4,7 +4,6 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <ArffFiles.h>
|
||||
#include "Proposal.h"
|
||||
|
||||
namespace bayesnet {
|
||||
@@ -12,7 +11,7 @@ namespace bayesnet {
|
||||
Proposal::~Proposal()
|
||||
{
|
||||
for (auto& [key, value] : discretizers) {
|
||||
delete value;
|
||||
delete value;
|
||||
}
|
||||
}
|
||||
void Proposal::checkInput(const torch::Tensor& X, const torch::Tensor& y)
|
||||
@@ -54,8 +53,7 @@ namespace bayesnet {
|
||||
yJoinParents[i] += to_string(pDataset.index({ idx, i }).item<int>());
|
||||
}
|
||||
}
|
||||
auto arff = ArffFiles();
|
||||
auto yxv = arff.factorize(yJoinParents);
|
||||
auto yxv = factorize(yJoinParents);
|
||||
auto xvf_ptr = Xf.index({ index }).data_ptr<float>();
|
||||
auto xvf = std::vector<mdlp::precision_t>(xvf_ptr, xvf_ptr + Xf.size(1));
|
||||
discretizers[feature]->fit(xvf, yxv);
|
||||
@@ -72,7 +70,7 @@ namespace bayesnet {
|
||||
states[pFeatures[index]] = xStates;
|
||||
}
|
||||
const torch::Tensor weights = torch::full({ pDataset.size(1) }, 1.0 / pDataset.size(1), torch::kDouble);
|
||||
model.fit(pDataset, weights, pFeatures, pClassName, states);
|
||||
model.fit(pDataset, weights, pFeatures, pClassName, states, Smoothing_t::ORIGINAL);
|
||||
}
|
||||
return states;
|
||||
}
|
||||
@@ -113,4 +111,19 @@ namespace bayesnet {
|
||||
}
|
||||
return Xtd;
|
||||
}
|
||||
}
|
||||
std::vector<int> Proposal::factorize(const std::vector<std::string>& labels_t)
|
||||
{
|
||||
std::vector<int> yy;
|
||||
yy.reserve(labels_t.size());
|
||||
std::map<std::string, int> labelMap;
|
||||
int i = 0;
|
||||
for (const std::string& label : labels_t) {
|
||||
if (labelMap.find(label) == labelMap.end()) {
|
||||
labelMap[label] = i++;
|
||||
bool allDigits = std::all_of(label.begin(), label.end(), ::isdigit);
|
||||
}
|
||||
yy.push_back(labelMap[label]);
|
||||
}
|
||||
return yy;
|
||||
}
|
||||
}
|
||||
|
@@ -9,7 +9,7 @@
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <torch/torch.h>
|
||||
#include <CPPFImdlp.h>
|
||||
#include <fimdlp/CPPFImdlp.h>
|
||||
#include "bayesnet/network/Network.h"
|
||||
#include "Classifier.h"
|
||||
|
||||
@@ -27,6 +27,7 @@ namespace bayesnet {
|
||||
torch::Tensor y; // y discrete nx1 tensor
|
||||
map<std::string, mdlp::CPPFImdlp*> discretizers;
|
||||
private:
|
||||
std::vector<int> factorize(const std::vector<std::string>& labels_t);
|
||||
torch::Tensor& pDataset; // (n+1)xm tensor
|
||||
std::vector<std::string>& pFeatures;
|
||||
std::string& pClassName;
|
||||
|
@@ -8,14 +8,29 @@
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
SPODE::SPODE(int root) : Classifier(Network()), root(root) {}
|
||||
SPODE::SPODE(int root) : Classifier(Network()), root(root)
|
||||
{
|
||||
validHyperparameters = { "parent" };
|
||||
}
|
||||
|
||||
void SPODE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("parent")) {
|
||||
root = hyperparameters["parent"];
|
||||
hyperparameters.erase("parent");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void SPODE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// 0. Add all nodes to the model
|
||||
addNodes();
|
||||
// 1. Add edges from the class node to all other nodes
|
||||
// 2. Add edges from the root node to all other nodes
|
||||
if (root >= static_cast<int>(features.size())) {
|
||||
throw std::invalid_argument("The parent node is not in the dataset");
|
||||
}
|
||||
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
||||
model.addEdge(className, features[i]);
|
||||
if (i != root) {
|
||||
|
@@ -10,14 +10,15 @@
|
||||
|
||||
namespace bayesnet {
|
||||
class SPODE : public Classifier {
|
||||
private:
|
||||
int root;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
explicit SPODE(int root);
|
||||
virtual ~SPODE() = default;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
int root;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -8,25 +8,25 @@
|
||||
|
||||
namespace bayesnet {
|
||||
SPODELd::SPODELd(int root) : SPODE(root), Proposal(dataset, features, className) {}
|
||||
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
SPODELd& SPODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
checkInput(X_, y_);
|
||||
Xf = X_;
|
||||
y = y_;
|
||||
return commonFit(features_, className_, states_);
|
||||
return commonFit(features_, className_, states_, smoothing);
|
||||
}
|
||||
|
||||
SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
SPODELd& SPODELd::fit(torch::Tensor& dataset, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
if (!torch::is_floating_point(dataset)) {
|
||||
throw std::runtime_error("Dataset must be a floating point tensor");
|
||||
}
|
||||
Xf = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." }).clone();
|
||||
y = dataset.index({ -1, "..." }).clone().to(torch::kInt32);
|
||||
return commonFit(features_, className_, states_);
|
||||
return commonFit(features_, className_, states_, smoothing);
|
||||
}
|
||||
|
||||
SPODELd& SPODELd::commonFit(const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
SPODELd& SPODELd::commonFit(const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
features = features_;
|
||||
className = className_;
|
||||
@@ -34,7 +34,7 @@ namespace bayesnet {
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal SPODE structure, SPODE::fit initializes the base Bayesian network
|
||||
SPODE::fit(dataset, features, className, states);
|
||||
SPODE::fit(dataset, features, className, states, smoothing);
|
||||
states = localDiscretizationProposal(states, model);
|
||||
return *this;
|
||||
}
|
||||
|
@@ -14,10 +14,10 @@ namespace bayesnet {
|
||||
public:
|
||||
explicit SPODELd(int root);
|
||||
virtual ~SPODELd() = default;
|
||||
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
SPODELd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
SPODELd& commonFit(const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states);
|
||||
std::vector<std::string> graph(const std::string& name = "SPODE") const override;
|
||||
SPODELd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
SPODELd& fit(torch::Tensor& dataset, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
SPODELd& commonFit(const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||
std::vector<std::string> graph(const std::string& name = "SPODELd") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
};
|
||||
|
38
bayesnet/classifiers/SPnDE.cc
Normal file
38
bayesnet/classifiers/SPnDE.cc
Normal file
@@ -0,0 +1,38 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "SPnDE.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
SPnDE::SPnDE(std::vector<int> parents) : Classifier(Network()), parents(parents) {}
|
||||
|
||||
void SPnDE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// 0. Add all nodes to the model
|
||||
addNodes();
|
||||
std::vector<int> attributes;
|
||||
for (int i = 0; i < static_cast<int>(features.size()); ++i) {
|
||||
if (std::find(parents.begin(), parents.end(), i) == parents.end()) {
|
||||
attributes.push_back(i);
|
||||
}
|
||||
}
|
||||
// 1. Add edges from the class node to all other nodes
|
||||
// 2. Add edges from the parents nodes to all other nodes
|
||||
for (const auto& attribute : attributes) {
|
||||
model.addEdge(className, features[attribute]);
|
||||
for (const auto& root : parents) {
|
||||
|
||||
model.addEdge(features[root], features[attribute]);
|
||||
}
|
||||
}
|
||||
}
|
||||
std::vector<std::string> SPnDE::graph(const std::string& name) const
|
||||
{
|
||||
return model.graph(name);
|
||||
}
|
||||
|
||||
}
|
26
bayesnet/classifiers/SPnDE.h
Normal file
26
bayesnet/classifiers/SPnDE.h
Normal file
@@ -0,0 +1,26 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef SPnDE_H
|
||||
#define SPnDE_H
|
||||
#include <vector>
|
||||
#include "Classifier.h"
|
||||
|
||||
namespace bayesnet {
|
||||
class SPnDE : public Classifier {
|
||||
public:
|
||||
explicit SPnDE(std::vector<int> parents);
|
||||
virtual ~SPnDE() = default;
|
||||
std::vector<std::string> graph(const std::string& name = "SPnDE") const override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
std::vector<int> parents;
|
||||
|
||||
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -7,8 +7,20 @@
|
||||
#include "TAN.h"
|
||||
|
||||
namespace bayesnet {
|
||||
TAN::TAN() : Classifier(Network()) {}
|
||||
TAN::TAN() : Classifier(Network())
|
||||
{
|
||||
validHyperparameters = { "parent" };
|
||||
}
|
||||
|
||||
void TAN::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("parent")) {
|
||||
parent = hyperparameters["parent"];
|
||||
hyperparameters.erase("parent");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void TAN::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// 0. Add all nodes to the model
|
||||
@@ -23,7 +35,10 @@ namespace bayesnet {
|
||||
mi.push_back({ i, mi_value });
|
||||
}
|
||||
sort(mi.begin(), mi.end(), [](const auto& left, const auto& right) {return left.second < right.second;});
|
||||
auto root = mi[mi.size() - 1].first;
|
||||
auto root = parent == -1 ? mi[mi.size() - 1].first : parent;
|
||||
if (root >= static_cast<int>(features.size())) {
|
||||
throw std::invalid_argument("The parent node is not in the dataset");
|
||||
}
|
||||
// 2. Compute mutual information between each feature and the class
|
||||
auto weights_matrix = metrics.conditionalEdge(weights);
|
||||
// 3. Compute the maximum spanning tree
|
||||
|
@@ -9,13 +9,15 @@
|
||||
#include "Classifier.h"
|
||||
namespace bayesnet {
|
||||
class TAN : public Classifier {
|
||||
private:
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
public:
|
||||
TAN();
|
||||
virtual ~TAN() = default;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
private:
|
||||
int parent = -1;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -8,7 +8,7 @@
|
||||
|
||||
namespace bayesnet {
|
||||
TANLd::TANLd() : TAN(), Proposal(dataset, features, className) {}
|
||||
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
TANLd& TANLd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
@@ -19,7 +19,7 @@ namespace bayesnet {
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
||||
TAN::fit(dataset, features, className, states);
|
||||
TAN::fit(dataset, features, className, states, smoothing);
|
||||
states = localDiscretizationProposal(states, model);
|
||||
return *this;
|
||||
|
||||
|
@@ -15,10 +15,9 @@ namespace bayesnet {
|
||||
public:
|
||||
TANLd();
|
||||
virtual ~TANLd() = default;
|
||||
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states) override;
|
||||
std::vector<std::string> graph(const std::string& name = "TAN") const override;
|
||||
TANLd& fit(torch::Tensor& X, torch::Tensor& y, const std::vector<std::string>& features, const std::string& className, map<std::string, std::vector<int>>& states, const Smoothing_t smoothing) override;
|
||||
std::vector<std::string> graph(const std::string& name = "TANLd") const override;
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
static inline std::string version() { return "0.0.1"; };
|
||||
};
|
||||
}
|
||||
#endif // !TANLD_H
|
575
bayesnet/classifiers/XSP2DE.cc
Normal file
575
bayesnet/classifiers/XSP2DE.cc
Normal file
@@ -0,0 +1,575 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "XSP2DE.h"
|
||||
#include <pthread.h> // for pthread_setname_np on linux
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <stdexcept>
|
||||
#include <iostream>
|
||||
#include "bayesnet/utils/TensorUtils.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
// --------------------------------------
|
||||
// Constructor
|
||||
// --------------------------------------
|
||||
XSp2de::XSp2de(int spIndex1, int spIndex2)
|
||||
: superParent1_{ spIndex1 }
|
||||
, superParent2_{ spIndex2 }
|
||||
, nFeatures_{0}
|
||||
, statesClass_{0}
|
||||
, alpha_{1.0}
|
||||
, initializer_{1.0}
|
||||
, semaphore_{ CountingSemaphore::getInstance() }
|
||||
, Classifier(Network())
|
||||
{
|
||||
validHyperparameters = { "parent1", "parent2" };
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// setHyperparameters
|
||||
// --------------------------------------
|
||||
void XSp2de::setHyperparameters(const nlohmann::json &hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("parent1")) {
|
||||
superParent1_ = hyperparameters["parent1"];
|
||||
hyperparameters.erase("parent1");
|
||||
}
|
||||
if (hyperparameters.contains("parent2")) {
|
||||
superParent2_ = hyperparameters["parent2"];
|
||||
hyperparameters.erase("parent2");
|
||||
}
|
||||
// Hand off anything else to base Classifier
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// fitx
|
||||
// --------------------------------------
|
||||
void XSp2de::fitx(torch::Tensor & X, torch::Tensor & y,
|
||||
torch::Tensor & weights_, const Smoothing_t smoothing)
|
||||
{
|
||||
m = X.size(1); // number of samples
|
||||
n = X.size(0); // number of features
|
||||
dataset = X;
|
||||
|
||||
// Build the dataset in your environment if needed:
|
||||
buildDataset(y);
|
||||
|
||||
// Construct the data structures needed for counting
|
||||
buildModel(weights_);
|
||||
|
||||
// Accumulate counts & convert to probabilities
|
||||
trainModel(weights_, smoothing);
|
||||
fitted = true;
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// buildModel
|
||||
// --------------------------------------
|
||||
void XSp2de::buildModel(const torch::Tensor &weights)
|
||||
{
|
||||
nFeatures_ = n;
|
||||
|
||||
// Derive the number of states for each feature from the dataset
|
||||
// states_[f] = max value in dataset[f] + 1.
|
||||
states_.resize(nFeatures_);
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
// This is naive: we take max in feature f. You might adapt for real data.
|
||||
states_[f] = dataset[f].max().item<int>() + 1;
|
||||
}
|
||||
// Class states:
|
||||
statesClass_ = dataset[-1].max().item<int>() + 1;
|
||||
|
||||
// Initialize the class counts
|
||||
classCounts_.resize(statesClass_, 0.0);
|
||||
|
||||
// For sp1 -> p(sp1Val| c)
|
||||
sp1FeatureCounts_.resize(states_[superParent1_] * statesClass_, 0.0);
|
||||
|
||||
// For sp2 -> p(sp2Val| c)
|
||||
sp2FeatureCounts_.resize(states_[superParent2_] * statesClass_, 0.0);
|
||||
|
||||
// For child features, we store p(childVal | c, sp1Val, sp2Val).
|
||||
// childCounts_ will hold raw counts. We’ll gather them in one big vector.
|
||||
// We need an offset for each feature.
|
||||
childOffsets_.resize(nFeatures_, -1);
|
||||
|
||||
int totalSize = 0;
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
if (f == superParent1_ || f == superParent2_) {
|
||||
// skip the superparents
|
||||
childOffsets_[f] = -1;
|
||||
continue;
|
||||
}
|
||||
childOffsets_[f] = totalSize;
|
||||
// block size for a single child f: states_[f] * statesClass_
|
||||
// * states_[superParent1_]
|
||||
// * states_[superParent2_].
|
||||
totalSize += (states_[f] * statesClass_
|
||||
* states_[superParent1_]
|
||||
* states_[superParent2_]);
|
||||
}
|
||||
childCounts_.resize(totalSize, 0.0);
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// trainModel
|
||||
// --------------------------------------
|
||||
void XSp2de::trainModel(const torch::Tensor &weights,
|
||||
const bayesnet::Smoothing_t smoothing)
|
||||
{
|
||||
// Accumulate raw counts
|
||||
for (int i = 0; i < m; i++) {
|
||||
std::vector<int> instance(nFeatures_ + 1);
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
instance[f] = dataset[f][i].item<int>();
|
||||
}
|
||||
instance[nFeatures_] = dataset[-1][i].item<int>(); // class
|
||||
double w = weights[i].item<double>();
|
||||
addSample(instance, w);
|
||||
}
|
||||
|
||||
// Choose alpha based on smoothing:
|
||||
switch (smoothing) {
|
||||
case bayesnet::Smoothing_t::ORIGINAL:
|
||||
alpha_ = 1.0 / m;
|
||||
break;
|
||||
case bayesnet::Smoothing_t::LAPLACE:
|
||||
alpha_ = 1.0;
|
||||
break;
|
||||
default:
|
||||
alpha_ = 0.0; // no smoothing
|
||||
}
|
||||
|
||||
// Large initializer factor for numerical stability
|
||||
initializer_ = std::numeric_limits<double>::max() / (nFeatures_ * nFeatures_);
|
||||
|
||||
// Convert raw counts to probabilities
|
||||
computeProbabilities();
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// addSample
|
||||
// --------------------------------------
|
||||
void XSp2de::addSample(const std::vector<int> &instance, double weight)
|
||||
{
|
||||
if (weight <= 0.0)
|
||||
return;
|
||||
|
||||
int c = instance.back();
|
||||
// increment classCounts
|
||||
classCounts_[c] += weight;
|
||||
|
||||
int sp1Val = instance[superParent1_];
|
||||
int sp2Val = instance[superParent2_];
|
||||
|
||||
// p(sp1|c)
|
||||
sp1FeatureCounts_[sp1Val * statesClass_ + c] += weight;
|
||||
|
||||
// p(sp2|c)
|
||||
sp2FeatureCounts_[sp2Val * statesClass_ + c] += weight;
|
||||
|
||||
// p(childVal| c, sp1Val, sp2Val)
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
if (f == superParent1_ || f == superParent2_)
|
||||
continue;
|
||||
|
||||
int childVal = instance[f];
|
||||
int offset = childOffsets_[f];
|
||||
// block layout:
|
||||
// offset + (sp1Val*(states_[sp2_]* states_[f]* statesClass_))
|
||||
// + (sp2Val*(states_[f]* statesClass_))
|
||||
// + childVal*(statesClass_)
|
||||
// + c
|
||||
int blockSizeSp2 = states_[superParent2_]
|
||||
* states_[f]
|
||||
* statesClass_;
|
||||
int blockSizeChild = states_[f] * statesClass_;
|
||||
|
||||
int idx = offset
|
||||
+ sp1Val*blockSizeSp2
|
||||
+ sp2Val*blockSizeChild
|
||||
+ childVal*statesClass_
|
||||
+ c;
|
||||
childCounts_[idx] += weight;
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// computeProbabilities
|
||||
// --------------------------------------
|
||||
void XSp2de::computeProbabilities()
|
||||
{
|
||||
double totalCount = std::accumulate(classCounts_.begin(),
|
||||
classCounts_.end(), 0.0);
|
||||
|
||||
// classPriors_
|
||||
classPriors_.resize(statesClass_, 0.0);
|
||||
if (totalCount <= 0.0) {
|
||||
// fallback => uniform
|
||||
double unif = 1.0 / static_cast<double>(statesClass_);
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
classPriors_[c] = unif;
|
||||
}
|
||||
} else {
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
classPriors_[c] =
|
||||
(classCounts_[c] + alpha_)
|
||||
/ (totalCount + alpha_ * statesClass_);
|
||||
}
|
||||
}
|
||||
|
||||
// p(sp1Val| c)
|
||||
sp1FeatureProbs_.resize(sp1FeatureCounts_.size());
|
||||
int sp1Card = states_[superParent1_];
|
||||
for (int spVal = 0; spVal < sp1Card; spVal++) {
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
double denom = classCounts_[c] + alpha_ * sp1Card;
|
||||
double num = sp1FeatureCounts_[spVal * statesClass_ + c] + alpha_;
|
||||
sp1FeatureProbs_[spVal * statesClass_ + c] =
|
||||
(denom <= 0.0 ? 0.0 : num / denom);
|
||||
}
|
||||
}
|
||||
|
||||
// p(sp2Val| c)
|
||||
sp2FeatureProbs_.resize(sp2FeatureCounts_.size());
|
||||
int sp2Card = states_[superParent2_];
|
||||
for (int spVal = 0; spVal < sp2Card; spVal++) {
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
double denom = classCounts_[c] + alpha_ * sp2Card;
|
||||
double num = sp2FeatureCounts_[spVal * statesClass_ + c] + alpha_;
|
||||
sp2FeatureProbs_[spVal * statesClass_ + c] =
|
||||
(denom <= 0.0 ? 0.0 : num / denom);
|
||||
}
|
||||
}
|
||||
|
||||
// p(childVal| c, sp1Val, sp2Val)
|
||||
childProbs_.resize(childCounts_.size());
|
||||
int offset = 0;
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
if (f == superParent1_ || f == superParent2_)
|
||||
continue;
|
||||
|
||||
int fCard = states_[f];
|
||||
int sp1Card_ = states_[superParent1_];
|
||||
int sp2Card_ = states_[superParent2_];
|
||||
int childBlockSizeSp2 = sp2Card_ * fCard * statesClass_;
|
||||
int childBlockSizeF = fCard * statesClass_;
|
||||
|
||||
int blockSize = fCard * sp1Card_ * sp2Card_ * statesClass_;
|
||||
for (int sp1Val = 0; sp1Val < sp1Card_; sp1Val++) {
|
||||
for (int sp2Val = 0; sp2Val < sp2Card_; sp2Val++) {
|
||||
for (int childVal = 0; childVal < fCard; childVal++) {
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
// index in childCounts_
|
||||
int idx = offset
|
||||
+ sp1Val*childBlockSizeSp2
|
||||
+ sp2Val*childBlockSizeF
|
||||
+ childVal*statesClass_
|
||||
+ c;
|
||||
double num = childCounts_[idx] + alpha_;
|
||||
// denominator is the count of (sp1Val,sp2Val,c) plus alpha * fCard
|
||||
// We can find that by summing childVal dimension, but we already
|
||||
// have it in childCounts_[...] or we can re-check the superparent
|
||||
// counts if your approach is purely hierarchical.
|
||||
// Here we'll do it like the XSpode approach: sp1&sp2 are
|
||||
// conditionally independent given c, so denominators come from
|
||||
// summing the relevant block or we treat sp1,sp2 as "parents."
|
||||
// A simpler approach:
|
||||
double sumSp1Sp2C = 0.0;
|
||||
// sum over all childVal:
|
||||
for (int cv = 0; cv < fCard; cv++) {
|
||||
int idx2 = offset
|
||||
+ sp1Val*childBlockSizeSp2
|
||||
+ sp2Val*childBlockSizeF
|
||||
+ cv*statesClass_ + c;
|
||||
sumSp1Sp2C += childCounts_[idx2];
|
||||
}
|
||||
double denom = sumSp1Sp2C + alpha_ * fCard;
|
||||
childProbs_[idx] = (denom <= 0.0 ? 0.0 : num / denom);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
offset += blockSize;
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// predict_proba (single instance)
|
||||
// --------------------------------------
|
||||
std::vector<double> XSp2de::predict_proba(const std::vector<int> &instance) const
|
||||
{
|
||||
if (!fitted) {
|
||||
throw std::logic_error(CLASSIFIER_NOT_FITTED);
|
||||
}
|
||||
std::vector<double> probs(statesClass_, 0.0);
|
||||
|
||||
int sp1Val = instance[superParent1_];
|
||||
int sp2Val = instance[superParent2_];
|
||||
|
||||
// Start with p(c) * p(sp1Val| c) * p(sp2Val| c)
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
double pC = classPriors_[c];
|
||||
double pSp1C = sp1FeatureProbs_[sp1Val * statesClass_ + c];
|
||||
double pSp2C = sp2FeatureProbs_[sp2Val * statesClass_ + c];
|
||||
probs[c] = pC * pSp1C * pSp2C * initializer_;
|
||||
}
|
||||
|
||||
// Multiply by each child feature f
|
||||
int offset = 0;
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
if (f == superParent1_ || f == superParent2_)
|
||||
continue;
|
||||
|
||||
int valF = instance[f];
|
||||
int fCard = states_[f];
|
||||
int sp1Card = states_[superParent1_];
|
||||
int sp2Card = states_[superParent2_];
|
||||
int blockSizeSp2 = sp2Card * fCard * statesClass_;
|
||||
int blockSizeF = fCard * statesClass_;
|
||||
|
||||
// base index for childProbs_ for this child and sp1Val, sp2Val
|
||||
int base = offset
|
||||
+ sp1Val*blockSizeSp2
|
||||
+ sp2Val*blockSizeF
|
||||
+ valF*statesClass_;
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
probs[c] *= childProbs_[base + c];
|
||||
}
|
||||
offset += (fCard * sp1Card * sp2Card * statesClass_);
|
||||
}
|
||||
|
||||
// Normalize
|
||||
normalize(probs);
|
||||
return probs;
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// predict_proba (batch)
|
||||
// --------------------------------------
|
||||
std::vector<std::vector<double>> XSp2de::predict_proba(std::vector<std::vector<int>> &test_data)
|
||||
{
|
||||
int test_size = test_data[0].size(); // each feature is test_data[f], size = #samples
|
||||
int sample_size = test_data.size(); // = nFeatures_
|
||||
std::vector<std::vector<double>> probabilities(
|
||||
test_size, std::vector<double>(statesClass_, 0.0));
|
||||
|
||||
// same concurrency approach
|
||||
int chunk_size = std::min(150, int(test_size / semaphore_.getMaxCount()) + 1);
|
||||
std::vector<std::thread> threads;
|
||||
|
||||
auto worker = [&](const std::vector<std::vector<int>> &samples,
|
||||
int begin,
|
||||
int chunk,
|
||||
int sample_size,
|
||||
std::vector<std::vector<double>> &predictions) {
|
||||
std::string threadName =
|
||||
"XSp2de-" + std::to_string(begin) + "-" + std::to_string(chunk);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
|
||||
std::vector<int> instance(sample_size);
|
||||
for (int sample = begin; sample < begin + chunk; ++sample) {
|
||||
for (int feature = 0; feature < sample_size; ++feature) {
|
||||
instance[feature] = samples[feature][sample];
|
||||
}
|
||||
predictions[sample] = predict_proba(instance);
|
||||
}
|
||||
semaphore_.release();
|
||||
};
|
||||
|
||||
for (int begin = 0; begin < test_size; begin += chunk_size) {
|
||||
int chunk = std::min(chunk_size, test_size - begin);
|
||||
semaphore_.acquire();
|
||||
threads.emplace_back(worker, test_data, begin, chunk, sample_size,
|
||||
std::ref(probabilities));
|
||||
}
|
||||
for (auto &th : threads) {
|
||||
th.join();
|
||||
}
|
||||
return probabilities;
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// predict (single instance)
|
||||
// --------------------------------------
|
||||
int XSp2de::predict(const std::vector<int> &instance) const
|
||||
{
|
||||
auto p = predict_proba(instance);
|
||||
return static_cast<int>(
|
||||
std::distance(p.begin(), std::max_element(p.begin(), p.end()))
|
||||
);
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// predict (batch of data)
|
||||
// --------------------------------------
|
||||
std::vector<int> XSp2de::predict(std::vector<std::vector<int>> &test_data)
|
||||
{
|
||||
auto probabilities = predict_proba(test_data);
|
||||
std::vector<int> predictions(probabilities.size(), 0);
|
||||
|
||||
for (size_t i = 0; i < probabilities.size(); i++) {
|
||||
predictions[i] = static_cast<int>(
|
||||
std::distance(probabilities[i].begin(),
|
||||
std::max_element(probabilities[i].begin(),
|
||||
probabilities[i].end()))
|
||||
);
|
||||
}
|
||||
return predictions;
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// predict (torch::Tensor version)
|
||||
// --------------------------------------
|
||||
torch::Tensor XSp2de::predict(torch::Tensor &X)
|
||||
{
|
||||
auto X_ = TensorUtils::to_matrix(X);
|
||||
auto result_v = predict(X_);
|
||||
return torch::tensor(result_v, torch::kInt32);
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// predict_proba (torch::Tensor version)
|
||||
// --------------------------------------
|
||||
torch::Tensor XSp2de::predict_proba(torch::Tensor &X)
|
||||
{
|
||||
auto X_ = TensorUtils::to_matrix(X);
|
||||
auto result_v = predict_proba(X_);
|
||||
int n_samples = X.size(1);
|
||||
torch::Tensor result =
|
||||
torch::zeros({ n_samples, statesClass_ }, torch::kDouble);
|
||||
for (int i = 0; i < (int)result_v.size(); ++i) {
|
||||
result.index_put_({ i, "..." }, torch::tensor(result_v[i]));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// score (torch::Tensor version)
|
||||
// --------------------------------------
|
||||
float XSp2de::score(torch::Tensor &X, torch::Tensor &y)
|
||||
{
|
||||
torch::Tensor y_pred = predict(X);
|
||||
return (y_pred == y).sum().item<float>() / y.size(0);
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// score (vector version)
|
||||
// --------------------------------------
|
||||
float XSp2de::score(std::vector<std::vector<int>> &X, std::vector<int> &y)
|
||||
{
|
||||
auto y_pred = predict(X);
|
||||
int correct = 0;
|
||||
for (size_t i = 0; i < y_pred.size(); ++i) {
|
||||
if (y_pred[i] == y[i]) {
|
||||
correct++;
|
||||
}
|
||||
}
|
||||
return static_cast<float>(correct) / static_cast<float>(y_pred.size());
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// Utility: normalize
|
||||
// --------------------------------------
|
||||
void XSp2de::normalize(std::vector<double> &v) const
|
||||
{
|
||||
double sum = 0.0;
|
||||
for (auto &val : v) {
|
||||
sum += val;
|
||||
}
|
||||
if (sum > 0.0) {
|
||||
for (auto &val : v) {
|
||||
val /= sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// to_string
|
||||
// --------------------------------------
|
||||
std::string XSp2de::to_string() const
|
||||
{
|
||||
std::ostringstream oss;
|
||||
oss << "----- XSp2de Model -----\n"
|
||||
<< "nFeatures_ = " << nFeatures_ << "\n"
|
||||
<< "superParent1_ = " << superParent1_ << "\n"
|
||||
<< "superParent2_ = " << superParent2_ << "\n"
|
||||
<< "statesClass_ = " << statesClass_ << "\n\n";
|
||||
|
||||
oss << "States: [";
|
||||
for (auto s : states_) oss << s << " ";
|
||||
oss << "]\n";
|
||||
|
||||
oss << "classCounts_:\n";
|
||||
for (auto v : classCounts_) oss << v << " ";
|
||||
oss << "\nclassPriors_:\n";
|
||||
for (auto v : classPriors_) oss << v << " ";
|
||||
oss << "\nsp1FeatureCounts_ (size=" << sp1FeatureCounts_.size() << ")\n";
|
||||
for (auto v : sp1FeatureCounts_) oss << v << " ";
|
||||
oss << "\nsp2FeatureCounts_ (size=" << sp2FeatureCounts_.size() << ")\n";
|
||||
for (auto v : sp2FeatureCounts_) oss << v << " ";
|
||||
oss << "\nchildCounts_ (size=" << childCounts_.size() << ")\n";
|
||||
for (auto v : childCounts_) oss << v << " ";
|
||||
|
||||
oss << "\nchildOffsets_:\n";
|
||||
for (auto c : childOffsets_) oss << c << " ";
|
||||
|
||||
oss << "\n----------------------------------------\n";
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// Some introspection about the graph
|
||||
// --------------------------------------
|
||||
int XSp2de::getNumberOfNodes() const
|
||||
{
|
||||
// nFeatures + 1 class node
|
||||
return nFeatures_ + 1;
|
||||
}
|
||||
|
||||
int XSp2de::getClassNumStates() const
|
||||
{
|
||||
return statesClass_;
|
||||
}
|
||||
|
||||
int XSp2de::getNFeatures() const
|
||||
{
|
||||
return nFeatures_;
|
||||
}
|
||||
|
||||
int XSp2de::getNumberOfStates() const
|
||||
{
|
||||
// purely an example. Possibly you want to sum up actual
|
||||
// cardinalities or something else.
|
||||
return std::accumulate(states_.begin(), states_.end(), 0) * nFeatures_;
|
||||
}
|
||||
|
||||
int XSp2de::getNumberOfEdges() const
|
||||
{
|
||||
// In an SPNDE with n=2, for each feature we have edges from class, sp1, sp2.
|
||||
// So that’s 3*(nFeatures_) edges, minus the ones for the superparents themselves,
|
||||
// plus the edges from class->superparent1, class->superparent2.
|
||||
// For a quick approximation:
|
||||
// - class->sp1, class->sp2 => 2 edges
|
||||
// - class->child => (nFeatures -2) edges
|
||||
// - sp1->child, sp2->child => 2*(nFeatures -2) edges
|
||||
// total = 2 + (nFeatures-2) + 2*(nFeatures-2) = 2 + 3*(nFeatures-2)
|
||||
// = 3nFeatures - 4 (just an example).
|
||||
// You can adapt to your liking:
|
||||
return 3 * nFeatures_ - 4;
|
||||
}
|
||||
|
||||
} // namespace bayesnet
|
||||
|
75
bayesnet/classifiers/XSP2DE.h
Normal file
75
bayesnet/classifiers/XSP2DE.h
Normal file
@@ -0,0 +1,75 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef XSP2DE_H
|
||||
#define XSP2DE_H
|
||||
|
||||
#include "Classifier.h"
|
||||
#include "bayesnet/utils/CountingSemaphore.h"
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
class XSp2de : public Classifier {
|
||||
public:
|
||||
XSp2de(int spIndex1, int spIndex2);
|
||||
void setHyperparameters(const nlohmann::json &hyperparameters_) override;
|
||||
void fitx(torch::Tensor &X, torch::Tensor &y, torch::Tensor &weights_, const Smoothing_t smoothing);
|
||||
std::vector<double> predict_proba(const std::vector<int> &instance) const;
|
||||
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>> &test_data) override;
|
||||
int predict(const std::vector<int> &instance) const;
|
||||
std::vector<int> predict(std::vector<std::vector<int>> &test_data) override;
|
||||
torch::Tensor predict(torch::Tensor &X) override;
|
||||
torch::Tensor predict_proba(torch::Tensor &X) override;
|
||||
|
||||
float score(torch::Tensor &X, torch::Tensor &y) override;
|
||||
float score(std::vector<std::vector<int>> &X, std::vector<int> &y) override;
|
||||
std::string to_string() const;
|
||||
std::vector<std::string> graph(const std::string &title) const override {
|
||||
return std::vector<std::string>({title});
|
||||
}
|
||||
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNFeatures() const;
|
||||
int getClassNumStates() const override;
|
||||
int getNumberOfStates() const override;
|
||||
|
||||
protected:
|
||||
void buildModel(const torch::Tensor &weights) override;
|
||||
void trainModel(const torch::Tensor &weights, const bayesnet::Smoothing_t smoothing) override;
|
||||
|
||||
private:
|
||||
void addSample(const std::vector<int> &instance, double weight);
|
||||
void normalize(std::vector<double> &v) const;
|
||||
void computeProbabilities();
|
||||
|
||||
int superParent1_;
|
||||
int superParent2_;
|
||||
int nFeatures_;
|
||||
int statesClass_;
|
||||
double alpha_;
|
||||
double initializer_;
|
||||
|
||||
std::vector<int> states_;
|
||||
std::vector<double> classCounts_;
|
||||
std::vector<double> classPriors_;
|
||||
std::vector<double> sp1FeatureCounts_, sp1FeatureProbs_;
|
||||
std::vector<double> sp2FeatureCounts_, sp2FeatureProbs_;
|
||||
// childOffsets_[f] will be the offset into childCounts_ for feature f.
|
||||
// If f is either superParent1 or superParent2, childOffsets_[f] = -1
|
||||
std::vector<int> childOffsets_;
|
||||
// For each child f, we store p(x_f | c, sp1Val, sp2Val). We'll store the raw
|
||||
// counts in childCounts_, and the probabilities in childProbs_, with a
|
||||
// dimension block of size: states_[f]* statesClass_* states_[sp1]* states_[sp2].
|
||||
std::vector<double> childCounts_;
|
||||
std::vector<double> childProbs_;
|
||||
CountingSemaphore &semaphore_;
|
||||
};
|
||||
|
||||
} // namespace bayesnet
|
||||
#endif // XSP2DE_H
|
450
bayesnet/classifiers/XSPODE.cc
Normal file
450
bayesnet/classifiers/XSPODE.cc
Normal file
@@ -0,0 +1,450 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <numeric>
|
||||
#include <sstream>
|
||||
#include <stdexcept>
|
||||
#include "XSPODE.h"
|
||||
#include "bayesnet/utils/TensorUtils.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
// --------------------------------------
|
||||
// Constructor
|
||||
// --------------------------------------
|
||||
XSpode::XSpode(int spIndex)
|
||||
: superParent_{ spIndex }, nFeatures_{ 0 }, statesClass_{ 0 }, alpha_{ 1.0 },
|
||||
initializer_{ 1.0 }, semaphore_{ CountingSemaphore::getInstance() },
|
||||
Classifier(Network())
|
||||
{
|
||||
validHyperparameters = { "parent" };
|
||||
}
|
||||
|
||||
void XSpode::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("parent")) {
|
||||
superParent_ = hyperparameters["parent"];
|
||||
hyperparameters.erase("parent");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
|
||||
void XSpode::fitx(torch::Tensor & X, torch::Tensor& y, torch::Tensor& weights_, const Smoothing_t smoothing)
|
||||
{
|
||||
m = X.size(1);
|
||||
n = X.size(0);
|
||||
dataset = X;
|
||||
buildDataset(y);
|
||||
buildModel(weights_);
|
||||
trainModel(weights_, smoothing);
|
||||
fitted = true;
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// trainModel
|
||||
// --------------------------------------
|
||||
// Initialize storage needed for the super-parent and child features counts and
|
||||
// probs.
|
||||
// --------------------------------------
|
||||
void XSpode::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
int numInstances = m;
|
||||
nFeatures_ = n;
|
||||
|
||||
// Derive the number of states for each feature and for the class.
|
||||
// (This is just one approach; adapt to match your environment.)
|
||||
// Here, we assume the user also gave us the total #states per feature in e.g.
|
||||
// statesMap. We'll simply reconstruct the integer states_ array. The last
|
||||
// entry is statesClass_.
|
||||
states_.resize(nFeatures_);
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
// Suppose you look up in “statesMap” by the feature name, or read directly
|
||||
// from X. We'll assume states_[f] = max value in X[f] + 1.
|
||||
states_[f] = dataset[f].max().item<int>() + 1;
|
||||
}
|
||||
// For the class: states_.back() = max(y)+1
|
||||
statesClass_ = dataset[-1].max().item<int>() + 1;
|
||||
|
||||
// Initialize counts
|
||||
classCounts_.resize(statesClass_, 0.0);
|
||||
// p(x_sp = spVal | c)
|
||||
// We'll store these counts in spFeatureCounts_[spVal * statesClass_ + c].
|
||||
spFeatureCounts_.resize(states_[superParent_] * statesClass_, 0.0);
|
||||
|
||||
// For each child ≠ sp, we store p(childVal| c, spVal) in a separate block of
|
||||
// childCounts_. childCounts_ will be sized as sum_{child≠sp} (states_[child]
|
||||
// * statesClass_ * states_[sp]). We also need an offset for each child to
|
||||
// index into childCounts_.
|
||||
childOffsets_.resize(nFeatures_, -1);
|
||||
int totalSize = 0;
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
if (f == superParent_)
|
||||
continue; // skip sp
|
||||
childOffsets_[f] = totalSize;
|
||||
// block size for this child's counts: states_[f] * statesClass_ *
|
||||
// states_[superParent_]
|
||||
totalSize += (states_[f] * statesClass_ * states_[superParent_]);
|
||||
}
|
||||
childCounts_.resize(totalSize, 0.0);
|
||||
}
|
||||
// --------------------------------------
|
||||
// buildModel
|
||||
// --------------------------------------
|
||||
//
|
||||
// We only store conditional probabilities for:
|
||||
// p(x_sp| c) (the super-parent feature)
|
||||
// p(x_child| c, x_sp) for all child ≠ sp
|
||||
//
|
||||
// --------------------------------------
|
||||
void XSpode::trainModel(const torch::Tensor& weights,
|
||||
const bayesnet::Smoothing_t smoothing)
|
||||
{
|
||||
// Accumulate raw counts
|
||||
for (int i = 0; i < m; i++) {
|
||||
std::vector<int> instance(nFeatures_ + 1);
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
instance[f] = dataset[f][i].item<int>();
|
||||
}
|
||||
instance[nFeatures_] = dataset[-1][i].item<int>();
|
||||
addSample(instance, weights[i].item<double>());
|
||||
}
|
||||
switch (smoothing) {
|
||||
case bayesnet::Smoothing_t::ORIGINAL:
|
||||
alpha_ = 1.0 / m;
|
||||
break;
|
||||
case bayesnet::Smoothing_t::LAPLACE:
|
||||
alpha_ = 1.0;
|
||||
break;
|
||||
default:
|
||||
alpha_ = 0.0; // No smoothing
|
||||
}
|
||||
initializer_ = std::numeric_limits<double>::max() /
|
||||
(nFeatures_ * nFeatures_); // for numerical stability
|
||||
// Convert raw counts to probabilities
|
||||
computeProbabilities();
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// addSample
|
||||
// --------------------------------------
|
||||
//
|
||||
// instance has size nFeatures_ + 1, with the class at the end.
|
||||
// We add 1 to the appropriate counters for each (c, superParentVal, childVal).
|
||||
//
|
||||
void XSpode::addSample(const std::vector<int>& instance, double weight)
|
||||
{
|
||||
if (weight <= 0.0)
|
||||
return;
|
||||
|
||||
int c = instance.back();
|
||||
// (A) increment classCounts
|
||||
classCounts_[c] += weight;
|
||||
|
||||
// (B) increment super-parent counts => p(x_sp | c)
|
||||
int spVal = instance[superParent_];
|
||||
spFeatureCounts_[spVal * statesClass_ + c] += weight;
|
||||
|
||||
// (C) increment child counts => p(childVal | c, x_sp)
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
if (f == superParent_)
|
||||
continue;
|
||||
int childVal = instance[f];
|
||||
int offset = childOffsets_[f];
|
||||
// Compute index in childCounts_.
|
||||
// Layout: [ offset + (spVal * states_[f] + childVal) * statesClass_ + c ]
|
||||
int blockSize = states_[f] * statesClass_;
|
||||
int idx = offset + spVal * blockSize + childVal * statesClass_ + c;
|
||||
childCounts_[idx] += weight;
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// computeProbabilities
|
||||
// --------------------------------------
|
||||
//
|
||||
// Once all samples are added in COUNTS mode, call this to:
|
||||
// p(c)
|
||||
// p(x_sp = spVal | c)
|
||||
// p(x_child = v | c, x_sp = s_sp)
|
||||
//
|
||||
// --------------------------------------
|
||||
void XSpode::computeProbabilities()
|
||||
{
|
||||
double totalCount =
|
||||
std::accumulate(classCounts_.begin(), classCounts_.end(), 0.0);
|
||||
|
||||
// p(c) => classPriors_
|
||||
classPriors_.resize(statesClass_, 0.0);
|
||||
if (totalCount <= 0.0) {
|
||||
// fallback => uniform
|
||||
double unif = 1.0 / static_cast<double>(statesClass_);
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
classPriors_[c] = unif;
|
||||
}
|
||||
} else {
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
classPriors_[c] =
|
||||
(classCounts_[c] + alpha_) / (totalCount + alpha_ * statesClass_);
|
||||
}
|
||||
}
|
||||
|
||||
// p(x_sp | c)
|
||||
spFeatureProbs_.resize(spFeatureCounts_.size());
|
||||
// denominator for spVal * statesClass_ + c is just classCounts_[c] + alpha_ *
|
||||
// (#states of sp)
|
||||
int spCard = states_[superParent_];
|
||||
for (int spVal = 0; spVal < spCard; spVal++) {
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
double denom = classCounts_[c] + alpha_ * spCard;
|
||||
double num = spFeatureCounts_[spVal * statesClass_ + c] + alpha_;
|
||||
spFeatureProbs_[spVal * statesClass_ + c] = (denom <= 0.0 ? 0.0 : num / denom);
|
||||
}
|
||||
}
|
||||
|
||||
// p(x_child | c, x_sp)
|
||||
childProbs_.resize(childCounts_.size());
|
||||
for (int f = 0; f < nFeatures_; f++) {
|
||||
if (f == superParent_)
|
||||
continue;
|
||||
int offset = childOffsets_[f];
|
||||
int childCard = states_[f];
|
||||
|
||||
// For each spVal, c, childVal in childCounts_:
|
||||
for (int spVal = 0; spVal < spCard; spVal++) {
|
||||
for (int childVal = 0; childVal < childCard; childVal++) {
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
int idx = offset + spVal * (childCard * statesClass_) +
|
||||
childVal * statesClass_ + c;
|
||||
|
||||
double num = childCounts_[idx] + alpha_;
|
||||
// denominator = spFeatureCounts_[spVal * statesClass_ + c] + alpha_ *
|
||||
// (#states of child)
|
||||
double denom =
|
||||
spFeatureCounts_[spVal * statesClass_ + c] + alpha_ * childCard;
|
||||
childProbs_[idx] = (denom <= 0.0 ? 0.0 : num / denom);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// predict_proba
|
||||
// --------------------------------------
|
||||
//
|
||||
// For a single instance x of dimension nFeatures_:
|
||||
// P(c | x) ∝ p(c) × p(x_sp | c) × ∏(child ≠ sp) p(x_child | c, x_sp).
|
||||
//
|
||||
// --------------------------------------
|
||||
std::vector<double> XSpode::predict_proba(const std::vector<int>& instance) const
|
||||
{
|
||||
if (!fitted) {
|
||||
throw std::logic_error(CLASSIFIER_NOT_FITTED);
|
||||
}
|
||||
std::vector<double> probs(statesClass_, 0.0);
|
||||
// Multiply p(c) × p(x_sp | c)
|
||||
int spVal = instance[superParent_];
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
double pc = classPriors_[c];
|
||||
double pSpC = spFeatureProbs_[spVal * statesClass_ + c];
|
||||
probs[c] = pc * pSpC * initializer_;
|
||||
}
|
||||
|
||||
// Multiply by each child’s probability p(x_child | c, x_sp)
|
||||
for (int feature = 0; feature < nFeatures_; feature++) {
|
||||
if (feature == superParent_)
|
||||
continue; // skip sp
|
||||
int sf = instance[feature];
|
||||
int offset = childOffsets_[feature];
|
||||
int childCard = states_[feature]; // not used directly, but for clarity
|
||||
// Index into childProbs_ = offset + spVal*(childCard*statesClass_) +
|
||||
// childVal*statesClass_ + c
|
||||
int base = offset + spVal * (childCard * statesClass_) + sf * statesClass_;
|
||||
for (int c = 0; c < statesClass_; c++) {
|
||||
probs[c] *= childProbs_[base + c];
|
||||
}
|
||||
}
|
||||
|
||||
// Normalize
|
||||
normalize(probs);
|
||||
return probs;
|
||||
}
|
||||
std::vector<std::vector<double>> XSpode::predict_proba(std::vector<std::vector<int>>& test_data)
|
||||
{
|
||||
int test_size = test_data[0].size();
|
||||
int sample_size = test_data.size();
|
||||
auto probabilities = std::vector<std::vector<double>>(
|
||||
test_size, std::vector<double>(statesClass_));
|
||||
|
||||
int chunk_size = std::min(150, int(test_size / semaphore_.getMaxCount()) + 1);
|
||||
std::vector<std::thread> threads;
|
||||
auto worker = [&](const std::vector<std::vector<int>>& samples, int begin,
|
||||
int chunk, int sample_size,
|
||||
std::vector<std::vector<double>>& predictions) {
|
||||
std::string threadName =
|
||||
"(V)PWorker-" + std::to_string(begin) + "-" + std::to_string(chunk);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
|
||||
std::vector<int> instance(sample_size);
|
||||
for (int sample = begin; sample < begin + chunk; ++sample) {
|
||||
for (int feature = 0; feature < sample_size; ++feature) {
|
||||
instance[feature] = samples[feature][sample];
|
||||
}
|
||||
predictions[sample] = predict_proba(instance);
|
||||
}
|
||||
semaphore_.release();
|
||||
};
|
||||
for (int begin = 0; begin < test_size; begin += chunk_size) {
|
||||
int chunk = std::min(chunk_size, test_size - begin);
|
||||
semaphore_.acquire();
|
||||
threads.emplace_back(worker, test_data, begin, chunk, sample_size, std::ref(probabilities));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
return probabilities;
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// Utility: normalize
|
||||
// --------------------------------------
|
||||
void XSpode::normalize(std::vector<double>& v) const
|
||||
{
|
||||
double sum = 0.0;
|
||||
for (auto val : v) {
|
||||
sum += val;
|
||||
}
|
||||
if (sum <= 0.0) {
|
||||
return;
|
||||
}
|
||||
for (auto& val : v) {
|
||||
val /= sum;
|
||||
}
|
||||
}
|
||||
|
||||
// --------------------------------------
|
||||
// representation of the model
|
||||
// --------------------------------------
|
||||
std::string XSpode::to_string() const
|
||||
{
|
||||
std::ostringstream oss;
|
||||
oss << "----- XSpode Model -----" << std::endl
|
||||
<< "nFeatures_ = " << nFeatures_ << std::endl
|
||||
<< "superParent_ = " << superParent_ << std::endl
|
||||
<< "statesClass_ = " << statesClass_ << std::endl
|
||||
<< std::endl;
|
||||
|
||||
oss << "States: [";
|
||||
for (int s : states_)
|
||||
oss << s << " ";
|
||||
oss << "]" << std::endl;
|
||||
oss << "classCounts_: [";
|
||||
for (double c : classCounts_)
|
||||
oss << c << " ";
|
||||
oss << "]" << std::endl;
|
||||
oss << "classPriors_: [";
|
||||
for (double c : classPriors_)
|
||||
oss << c << " ";
|
||||
oss << "]" << std::endl;
|
||||
oss << "spFeatureCounts_: size = " << spFeatureCounts_.size() << std::endl
|
||||
<< "[";
|
||||
for (double c : spFeatureCounts_)
|
||||
oss << c << " ";
|
||||
oss << "]" << std::endl;
|
||||
oss << "spFeatureProbs_: size = " << spFeatureProbs_.size() << std::endl
|
||||
<< "[";
|
||||
for (double c : spFeatureProbs_)
|
||||
oss << c << " ";
|
||||
oss << "]" << std::endl;
|
||||
oss << "childCounts_: size = " << childCounts_.size() << std::endl << "[";
|
||||
for (double cc : childCounts_)
|
||||
oss << cc << " ";
|
||||
oss << "]" << std::endl;
|
||||
|
||||
for (double cp : childProbs_)
|
||||
oss << cp << " ";
|
||||
oss << "]" << std::endl;
|
||||
oss << "childOffsets_: [";
|
||||
for (int co : childOffsets_)
|
||||
oss << co << " ";
|
||||
oss << "]" << std::endl;
|
||||
oss << std::string(40,'-') << std::endl;
|
||||
return oss.str();
|
||||
}
|
||||
int XSpode::getNumberOfNodes() const { return nFeatures_ + 1; }
|
||||
int XSpode::getClassNumStates() const { return statesClass_; }
|
||||
int XSpode::getNFeatures() const { return nFeatures_; }
|
||||
int XSpode::getNumberOfStates() const
|
||||
{
|
||||
return std::accumulate(states_.begin(), states_.end(), 0) * nFeatures_;
|
||||
}
|
||||
int XSpode::getNumberOfEdges() const
|
||||
{
|
||||
return 2 * nFeatures_ + 1;
|
||||
}
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Predict overrides (classifier interface)
|
||||
// ------------------------------------------------------
|
||||
int XSpode::predict(const std::vector<int>& instance) const
|
||||
{
|
||||
auto p = predict_proba(instance);
|
||||
return static_cast<int>(std::distance(p.begin(), std::max_element(p.begin(), p.end())));
|
||||
}
|
||||
std::vector<int> XSpode::predict(std::vector<std::vector<int>>& test_data)
|
||||
{
|
||||
auto probabilities = predict_proba(test_data);
|
||||
std::vector<int> predictions(probabilities.size(), 0);
|
||||
|
||||
for (size_t i = 0; i < probabilities.size(); i++) {
|
||||
predictions[i] = std::distance(
|
||||
probabilities[i].begin(),
|
||||
std::max_element(probabilities[i].begin(), probabilities[i].end()));
|
||||
}
|
||||
return predictions;
|
||||
}
|
||||
torch::Tensor XSpode::predict(torch::Tensor& X)
|
||||
{
|
||||
auto X_ = TensorUtils::to_matrix(X);
|
||||
auto result_v = predict(X_);
|
||||
return torch::tensor(result_v, torch::kInt32);
|
||||
}
|
||||
torch::Tensor XSpode::predict_proba(torch::Tensor& X)
|
||||
{
|
||||
auto X_ = TensorUtils::to_matrix(X);
|
||||
auto result_v = predict_proba(X_);
|
||||
int n_samples = X.size(1);
|
||||
torch::Tensor result =
|
||||
torch::zeros({ n_samples, statesClass_ }, torch::kDouble);
|
||||
for (int i = 0; i < result_v.size(); ++i) {
|
||||
result.index_put_({ i, "..." }, torch::tensor(result_v[i]));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
float XSpode::score(torch::Tensor& X, torch::Tensor& y)
|
||||
{
|
||||
torch::Tensor y_pred = predict(X);
|
||||
return (y_pred == y).sum().item<float>() / y.size(0);
|
||||
}
|
||||
float XSpode::score(std::vector<std::vector<int>>& X, std::vector<int>& y)
|
||||
{
|
||||
auto y_pred = this->predict(X);
|
||||
int correct = 0;
|
||||
for (int i = 0; i < y_pred.size(); ++i) {
|
||||
if (y_pred[i] == y[i]) {
|
||||
correct++;
|
||||
}
|
||||
}
|
||||
return (double)correct / y_pred.size();
|
||||
}
|
||||
} // namespace bayesnet
|
76
bayesnet/classifiers/XSPODE.h
Normal file
76
bayesnet/classifiers/XSPODE.h
Normal file
@@ -0,0 +1,76 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef XSPODE_H
|
||||
#define XSPODE_H
|
||||
|
||||
#include <vector>
|
||||
#include <torch/torch.h>
|
||||
#include "Classifier.h"
|
||||
#include "bayesnet/utils/CountingSemaphore.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
class XSpode : public Classifier {
|
||||
public:
|
||||
explicit XSpode(int spIndex);
|
||||
std::vector<double> predict_proba(const std::vector<int>& instance) const;
|
||||
std::vector<std::vector<double>> predict_proba(std::vector<std::vector<int>>& X) override;
|
||||
int predict(const std::vector<int>& instance) const;
|
||||
void normalize(std::vector<double>& v) const;
|
||||
std::string to_string() const;
|
||||
int getNFeatures() const;
|
||||
int getNumberOfNodes() const override;
|
||||
int getNumberOfEdges() const override;
|
||||
int getNumberOfStates() const override;
|
||||
int getClassNumStates() const override;
|
||||
std::vector<int>& getStates();
|
||||
std::vector<std::string> graph(const std::string& title) const override { return std::vector<std::string>({ title }); }
|
||||
void fitx(torch::Tensor& X, torch::Tensor& y, torch::Tensor& weights_, const Smoothing_t smoothing);
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
|
||||
//
|
||||
// Classifier interface
|
||||
//
|
||||
torch::Tensor predict(torch::Tensor& X) override;
|
||||
std::vector<int> predict(std::vector<std::vector<int>>& X) override;
|
||||
torch::Tensor predict_proba(torch::Tensor& X) override;
|
||||
float score(torch::Tensor& X, torch::Tensor& y) override;
|
||||
float score(std::vector<std::vector<int>>& X, std::vector<int>& y) override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
|
||||
private:
|
||||
void addSample(const std::vector<int>& instance, double weight);
|
||||
void computeProbabilities();
|
||||
int superParent_;
|
||||
int nFeatures_;
|
||||
int statesClass_;
|
||||
std::vector<int> states_; // [states_feat0, ..., states_feat(N-1)] (class not included in this array)
|
||||
|
||||
// Class counts
|
||||
std::vector<double> classCounts_; // [c], accumulative
|
||||
std::vector<double> classPriors_; // [c], after normalization
|
||||
|
||||
// For p(x_sp = spVal | c)
|
||||
std::vector<double> spFeatureCounts_; // [spVal * statesClass_ + c]
|
||||
std::vector<double> spFeatureProbs_; // same shape, after normalization
|
||||
|
||||
// For p(x_child = childVal | x_sp = spVal, c)
|
||||
// childCounts_ is big enough to hold all child features except sp:
|
||||
// For each child f, we store childOffsets_[f] as the start index, then
|
||||
// childVal, spVal, c => the data.
|
||||
std::vector<double> childCounts_;
|
||||
std::vector<double> childProbs_;
|
||||
std::vector<int> childOffsets_;
|
||||
|
||||
double alpha_ = 1.0;
|
||||
double initializer_; // for numerical stability
|
||||
CountingSemaphore& semaphore_;
|
||||
};
|
||||
}
|
||||
|
||||
#endif // XSPODE_H
|
40
bayesnet/ensembles/A2DE.cc
Normal file
40
bayesnet/ensembles/A2DE.cc
Normal file
@@ -0,0 +1,40 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "A2DE.h"
|
||||
|
||||
namespace bayesnet {
|
||||
A2DE::A2DE(bool predict_voting) : Ensemble(predict_voting)
|
||||
{
|
||||
validHyperparameters = { "predict_voting" };
|
||||
}
|
||||
void A2DE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("predict_voting")) {
|
||||
predict_voting = hyperparameters["predict_voting"];
|
||||
hyperparameters.erase("predict_voting");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void A2DE::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
models.clear();
|
||||
significanceModels.clear();
|
||||
for (int i = 0; i < features.size() - 1; ++i) {
|
||||
for (int j = i + 1; j < features.size(); ++j) {
|
||||
auto model = std::make_unique<SPnDE>(std::vector<int>({ i, j }));
|
||||
models.push_back(std::move(model));
|
||||
}
|
||||
}
|
||||
n_models = static_cast<unsigned>(models.size());
|
||||
significanceModels = std::vector<double>(n_models, 1.0);
|
||||
}
|
||||
std::vector<std::string> A2DE::graph(const std::string& title) const
|
||||
{
|
||||
return Ensemble::graph(title);
|
||||
}
|
||||
}
|
22
bayesnet/ensembles/A2DE.h
Normal file
22
bayesnet/ensembles/A2DE.h
Normal file
@@ -0,0 +1,22 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef A2DE_H
|
||||
#define A2DE_H
|
||||
#include "bayesnet/classifiers/SPnDE.h"
|
||||
#include "Ensemble.h"
|
||||
namespace bayesnet {
|
||||
class A2DE : public Ensemble {
|
||||
public:
|
||||
A2DE(bool predict_voting = false);
|
||||
virtual ~A2DE() {};
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters) override;
|
||||
std::vector<std::string> graph(const std::string& title = "A2DE") const override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -10,7 +10,7 @@ namespace bayesnet {
|
||||
AODELd::AODELd(bool predict_voting) : Ensemble(predict_voting), Proposal(dataset, features, className)
|
||||
{
|
||||
}
|
||||
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_)
|
||||
AODELd& AODELd::fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing)
|
||||
{
|
||||
checkInput(X_, y_);
|
||||
features = features_;
|
||||
@@ -20,8 +20,9 @@ namespace bayesnet {
|
||||
// Fills std::vectors Xv & yv with the data from tensors X_ (discretized) & y
|
||||
states = fit_local_discretization(y);
|
||||
// We have discretized the input data
|
||||
// 1st we need to fit the model to build the normal TAN structure, TAN::fit initializes the base Bayesian network
|
||||
Ensemble::fit(dataset, features, className, states);
|
||||
// 1st we need to fit the model to build the normal AODE structure, Ensemble::fit
|
||||
// calls buildModel to initialize the base models
|
||||
Ensemble::fit(dataset, features, className, states, smoothing);
|
||||
return *this;
|
||||
|
||||
}
|
||||
@@ -34,10 +35,10 @@ namespace bayesnet {
|
||||
n_models = models.size();
|
||||
significanceModels = std::vector<double>(n_models, 1.0);
|
||||
}
|
||||
void AODELd::trainModel(const torch::Tensor& weights)
|
||||
void AODELd::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
for (const auto& model : models) {
|
||||
model->fit(Xf, y, features, className, states);
|
||||
model->fit(Xf, y, features, className, states, smoothing);
|
||||
}
|
||||
}
|
||||
std::vector<std::string> AODELd::graph(const std::string& name) const
|
||||
|
@@ -15,10 +15,10 @@ namespace bayesnet {
|
||||
public:
|
||||
AODELd(bool predict_voting = true);
|
||||
virtual ~AODELd() = default;
|
||||
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_) override;
|
||||
AODELd& fit(torch::Tensor& X_, torch::Tensor& y_, const std::vector<std::string>& features_, const std::string& className_, map<std::string, std::vector<int>>& states_, const Smoothing_t smoothing) override;
|
||||
std::vector<std::string> graph(const std::string& name = "AODELd") const override;
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
};
|
||||
}
|
||||
|
268
bayesnet/ensembles/Boost.cc
Normal file
268
bayesnet/ensembles/Boost.cc
Normal file
@@ -0,0 +1,268 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
#include "Boost.h"
|
||||
#include "bayesnet/feature_selection/CFS.h"
|
||||
#include "bayesnet/feature_selection/FCBF.h"
|
||||
#include "bayesnet/feature_selection/IWSS.h"
|
||||
#include <folding.hpp>
|
||||
|
||||
namespace bayesnet {
|
||||
Boost::Boost(bool predict_voting) : Ensemble(predict_voting) {
|
||||
validHyperparameters = {"alpha_block", "order", "convergence", "convergence_best", "bisection",
|
||||
"threshold", "maxTolerance", "predict_voting", "select_features", "block_update"};
|
||||
}
|
||||
void Boost::setHyperparameters(const nlohmann::json &hyperparameters_) {
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("order")) {
|
||||
std::vector<std::string> algos = {Orders.ASC, Orders.DESC, Orders.RAND};
|
||||
order_algorithm = hyperparameters["order"];
|
||||
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC +
|
||||
", " + Orders.RAND + "]");
|
||||
}
|
||||
hyperparameters.erase("order");
|
||||
}
|
||||
if (hyperparameters.contains("alpha_block")) {
|
||||
alpha_block = hyperparameters["alpha_block"];
|
||||
hyperparameters.erase("alpha_block");
|
||||
}
|
||||
if (hyperparameters.contains("convergence")) {
|
||||
convergence = hyperparameters["convergence"];
|
||||
hyperparameters.erase("convergence");
|
||||
}
|
||||
if (hyperparameters.contains("convergence_best")) {
|
||||
convergence_best = hyperparameters["convergence_best"];
|
||||
hyperparameters.erase("convergence_best");
|
||||
}
|
||||
if (hyperparameters.contains("bisection")) {
|
||||
bisection = hyperparameters["bisection"];
|
||||
hyperparameters.erase("bisection");
|
||||
}
|
||||
if (hyperparameters.contains("threshold")) {
|
||||
threshold = hyperparameters["threshold"];
|
||||
hyperparameters.erase("threshold");
|
||||
}
|
||||
if (hyperparameters.contains("maxTolerance")) {
|
||||
maxTolerance = hyperparameters["maxTolerance"];
|
||||
if (maxTolerance < 1 || maxTolerance > 6)
|
||||
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 6]");
|
||||
hyperparameters.erase("maxTolerance");
|
||||
}
|
||||
if (hyperparameters.contains("predict_voting")) {
|
||||
predict_voting = hyperparameters["predict_voting"];
|
||||
hyperparameters.erase("predict_voting");
|
||||
}
|
||||
if (hyperparameters.contains("select_features")) {
|
||||
auto selectedAlgorithm = hyperparameters["select_features"];
|
||||
std::vector<std::string> algos = {SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF};
|
||||
selectFeatures = true;
|
||||
select_features_algorithm = selectedAlgorithm;
|
||||
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " +
|
||||
SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
|
||||
}
|
||||
hyperparameters.erase("select_features");
|
||||
}
|
||||
if (hyperparameters.contains("block_update")) {
|
||||
block_update = hyperparameters["block_update"];
|
||||
hyperparameters.erase("block_update");
|
||||
}
|
||||
if (block_update && alpha_block) {
|
||||
throw std::invalid_argument("alpha_block and block_update cannot be true at the same time");
|
||||
}
|
||||
if (block_update && !bisection) {
|
||||
throw std::invalid_argument("block_update needs bisection to be true");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void Boost::add_model(std::unique_ptr<Classifier> model, double significance) {
|
||||
models.push_back(std::move(model));
|
||||
n_models++;
|
||||
significanceModels.push_back(significance);
|
||||
}
|
||||
void Boost::remove_last_model() {
|
||||
models.pop_back();
|
||||
significanceModels.pop_back();
|
||||
n_models--;
|
||||
}
|
||||
void Boost::buildModel(const torch::Tensor &weights) {
|
||||
// Models shall be built in trainModel
|
||||
models.clear();
|
||||
significanceModels.clear();
|
||||
n_models = 0;
|
||||
// Prepare the validation dataset
|
||||
auto y_ = dataset.index({-1, "..."});
|
||||
if (convergence) {
|
||||
// Prepare train & validation sets from train data
|
||||
auto fold = folding::StratifiedKFold(5, y_, 271);
|
||||
auto [train, test] = fold.getFold(0);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
// Get train and validation sets
|
||||
X_train = dataset.index({torch::indexing::Slice(0, dataset.size(0) - 1), train_t});
|
||||
y_train = dataset.index({-1, train_t});
|
||||
X_test = dataset.index({torch::indexing::Slice(0, dataset.size(0) - 1), test_t});
|
||||
y_test = dataset.index({-1, test_t});
|
||||
dataset = X_train;
|
||||
m = X_train.size(1);
|
||||
auto n_classes = states.at(className).size();
|
||||
// Build dataset with train data
|
||||
buildDataset(y_train);
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
} else {
|
||||
// Use all data to train
|
||||
X_train = dataset.index({torch::indexing::Slice(0, dataset.size(0) - 1), "..."});
|
||||
y_train = y_;
|
||||
}
|
||||
}
|
||||
std::vector<int> Boost::featureSelection(torch::Tensor &weights_) {
|
||||
int maxFeatures = 0;
|
||||
if (select_features_algorithm == SelectFeatures.CFS) {
|
||||
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
|
||||
} else if (select_features_algorithm == SelectFeatures.IWSS) {
|
||||
if (threshold < 0 || threshold > 0.5) {
|
||||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
|
||||
}
|
||||
featureSelector =
|
||||
new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
} else if (select_features_algorithm == SelectFeatures.FCBF) {
|
||||
if (threshold < 1e-7 || threshold > 1) {
|
||||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
|
||||
}
|
||||
featureSelector =
|
||||
new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
}
|
||||
featureSelector->fit();
|
||||
auto featuresUsed = featureSelector->getFeatures();
|
||||
delete featureSelector;
|
||||
return featuresUsed;
|
||||
}
|
||||
std::tuple<torch::Tensor &, double, bool> Boost::update_weights(torch::Tensor &ytrain, torch::Tensor &ypred,
|
||||
torch::Tensor &weights) {
|
||||
bool terminate = false;
|
||||
double alpha_t = 0;
|
||||
auto mask_wrong = ypred != ytrain;
|
||||
auto mask_right = ypred == ytrain;
|
||||
auto masked_weights = weights * mask_wrong.to(weights.dtype());
|
||||
double epsilon_t = masked_weights.sum().item<double>();
|
||||
// std::cout << "epsilon_t: " << epsilon_t << " count wrong: " << mask_wrong.sum().item<int>() << " count right: "
|
||||
// << mask_right.sum().item<int>() << std::endl;
|
||||
if (epsilon_t > 0.5) {
|
||||
// Inverse the weights policy (plot ln(wt))
|
||||
// "In each round of AdaBoost, there is a sanity check to ensure that the current base
|
||||
// learner is better than random guess" (Zhi-Hua Zhou, 2012)
|
||||
terminate = true;
|
||||
} else {
|
||||
double wt = (1 - epsilon_t) / epsilon_t;
|
||||
alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
||||
// Step 3.2: Update weights for next classifier
|
||||
// Step 3.2.1: Update weights of wrong samples
|
||||
weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights;
|
||||
// Step 3.2.2: Update weights of right samples
|
||||
weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights;
|
||||
// Step 3.3: Normalise the weights
|
||||
double totalWeights = torch::sum(weights).item<double>();
|
||||
weights = weights / totalWeights;
|
||||
}
|
||||
return {weights, alpha_t, terminate};
|
||||
}
|
||||
std::tuple<torch::Tensor &, double, bool> Boost::update_weights_block(int k, torch::Tensor &ytrain,
|
||||
torch::Tensor &weights) {
|
||||
/* Update Block algorithm
|
||||
k = # of models in block
|
||||
n_models = # of models in ensemble to make predictions
|
||||
n_models_bak = # models saved
|
||||
models = vector of models to make predictions
|
||||
models_bak = models not used to make predictions
|
||||
significances_bak = backup of significances vector
|
||||
|
||||
Case list
|
||||
A) k = 1, n_models = 1 => n = 0 , n_models = n + k
|
||||
B) k = 1, n_models = n + 1 => n_models = n + k
|
||||
C) k > 1, n_models = k + 1 => n= 1, n_models = n + k
|
||||
D) k > 1, n_models = k => n = 0, n_models = n + k
|
||||
E) k > 1, n_models = k + n => n_models = n + k
|
||||
|
||||
A, D) n=0, k > 0, n_models == k
|
||||
1. n_models_bak <- n_models
|
||||
2. significances_bak <- significances
|
||||
3. significances = vector(k, 1)
|
||||
4. Don’t move any classifiers out of models
|
||||
5. n_models <- k
|
||||
6. Make prediction, compute alpha, update weights
|
||||
7. Don’t restore any classifiers to models
|
||||
8. significances <- significances_bak
|
||||
9. Update last k significances
|
||||
10. n_models <- n_models_bak
|
||||
|
||||
B, C, E) n > 0, k > 0, n_models == n + k
|
||||
1. n_models_bak <- n_models
|
||||
2. significances_bak <- significances
|
||||
3. significances = vector(k, 1)
|
||||
4. Move first n classifiers to models_bak
|
||||
5. n_models <- k
|
||||
6. Make prediction, compute alpha, update weights
|
||||
7. Insert classifiers in models_bak to be the first n models
|
||||
8. significances <- significances_bak
|
||||
9. Update last k significances
|
||||
10. n_models <- n_models_bak
|
||||
*/
|
||||
//
|
||||
// Make predict with only the last k models
|
||||
//
|
||||
std::unique_ptr<Classifier> model;
|
||||
std::vector<std::unique_ptr<Classifier>> models_bak;
|
||||
// 1. n_models_bak <- n_models 2. significances_bak <- significances
|
||||
auto significance_bak = significanceModels;
|
||||
auto n_models_bak = n_models;
|
||||
// 3. significances = vector(k, 1)
|
||||
significanceModels = std::vector<double>(k, 1.0);
|
||||
// 4. Move first n classifiers to models_bak
|
||||
// backup the first n_models - k models (if n_models == k, don't backup any)
|
||||
for (int i = 0; i < n_models - k; ++i) {
|
||||
model = std::move(models[0]);
|
||||
models.erase(models.begin());
|
||||
models_bak.push_back(std::move(model));
|
||||
}
|
||||
assert(models.size() == k);
|
||||
// 5. n_models <- k
|
||||
n_models = k;
|
||||
// 6. Make prediction, compute alpha, update weights
|
||||
auto ypred = predict(X_train);
|
||||
//
|
||||
// Update weights
|
||||
//
|
||||
double alpha_t;
|
||||
bool terminate;
|
||||
std::tie(weights, alpha_t, terminate) = update_weights(y_train, ypred, weights);
|
||||
//
|
||||
// Restore the models if needed
|
||||
//
|
||||
// 7. Insert classifiers in models_bak to be the first n models
|
||||
// if n_models_bak == k, don't restore any, because none of them were moved
|
||||
if (k != n_models_bak) {
|
||||
// Insert in the same order as they were extracted
|
||||
int bak_size = models_bak.size();
|
||||
for (int i = 0; i < bak_size; ++i) {
|
||||
model = std::move(models_bak[bak_size - 1 - i]);
|
||||
models_bak.erase(models_bak.end() - 1);
|
||||
models.insert(models.begin(), std::move(model));
|
||||
}
|
||||
}
|
||||
// 8. significances <- significances_bak
|
||||
significanceModels = significance_bak;
|
||||
//
|
||||
// Update the significance of the last k models
|
||||
//
|
||||
// 9. Update last k significances
|
||||
for (int i = 0; i < k; ++i) {
|
||||
significanceModels[n_models_bak - k + i] = alpha_t;
|
||||
}
|
||||
// 10. n_models <- n_models_bak
|
||||
n_models = n_models_bak;
|
||||
return {weights, alpha_t, terminate};
|
||||
}
|
||||
} // namespace bayesnet
|
57
bayesnet/ensembles/Boost.h
Normal file
57
bayesnet/ensembles/Boost.h
Normal file
@@ -0,0 +1,57 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef BOOST_H
|
||||
#define BOOST_H
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <torch/torch.h>
|
||||
#include "Ensemble.h"
|
||||
#include "bayesnet/feature_selection/FeatureSelect.h"
|
||||
namespace bayesnet {
|
||||
const struct {
|
||||
std::string CFS = "CFS";
|
||||
std::string FCBF = "FCBF";
|
||||
std::string IWSS = "IWSS";
|
||||
}SelectFeatures;
|
||||
const struct {
|
||||
std::string ASC = "asc";
|
||||
std::string DESC = "desc";
|
||||
std::string RAND = "rand";
|
||||
}Orders;
|
||||
class Boost : public Ensemble {
|
||||
public:
|
||||
explicit Boost(bool predict_voting = false);
|
||||
virtual ~Boost() override = default;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
protected:
|
||||
std::vector<int> featureSelection(torch::Tensor& weights_);
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
std::tuple<torch::Tensor&, double, bool> update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights);
|
||||
std::tuple<torch::Tensor&, double, bool> update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights);
|
||||
void add_model(std::unique_ptr<Classifier> model, double significance);
|
||||
void remove_last_model();
|
||||
//
|
||||
// Attributes
|
||||
//
|
||||
torch::Tensor X_train, y_train, X_test, y_test;
|
||||
// Hyperparameters
|
||||
bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble
|
||||
int maxTolerance = 3;
|
||||
std::string order_algorithm = Orders.DESC; // order to process the KBest features asc, desc, rand
|
||||
bool convergence = true; //if true, stop when the model does not improve
|
||||
bool convergence_best = false; // wether to keep the best accuracy to the moment or the last accuracy as prior accuracy
|
||||
bool selectFeatures = false; // if true, use feature selection
|
||||
std::string select_features_algorithm; // Selected feature selection algorithm
|
||||
FeatureSelect* featureSelector = nullptr;
|
||||
double threshold = -1;
|
||||
bool block_update = false; // if true, use block update algorithm, only meaningful if bisection is true
|
||||
bool alpha_block = false; // if true, the alpha is computed with the ensemble built so far and the new model
|
||||
};
|
||||
}
|
||||
#endif
|
165
bayesnet/ensembles/BoostA2DE.cc
Normal file
165
bayesnet/ensembles/BoostA2DE.cc
Normal file
@@ -0,0 +1,165 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <limits.h>
|
||||
#include <tuple>
|
||||
#include <folding.hpp>
|
||||
#include "BoostA2DE.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
BoostA2DE::BoostA2DE(bool predict_voting) : Boost(predict_voting)
|
||||
{
|
||||
}
|
||||
std::vector<int> BoostA2DE::initializeModels(const Smoothing_t smoothing)
|
||||
{
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
std::vector<int> featuresSelected = featureSelection(weights_);
|
||||
if (featuresSelected.size() < 2) {
|
||||
notes.push_back("No features selected in initialization");
|
||||
status = ERROR;
|
||||
return std::vector<int>();
|
||||
}
|
||||
for (int i = 0; i < featuresSelected.size() - 1; i++) {
|
||||
for (int j = i + 1; j < featuresSelected.size(); j++) {
|
||||
auto parents = { featuresSelected[i], featuresSelected[j] };
|
||||
std::unique_ptr<Classifier> model = std::make_unique<SPnDE>(parents);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(1.0); // They will be updated later in trainModel
|
||||
n_models++;
|
||||
}
|
||||
}
|
||||
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||
return featuresSelected;
|
||||
}
|
||||
void BoostA2DE::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
//
|
||||
// Logging setup
|
||||
//
|
||||
// loguru::set_thread_name("BoostA2DE");
|
||||
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||||
// loguru::add_file("boostA2DE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||||
|
||||
// Algorithm based on the adaboost algorithm for classification
|
||||
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||
fitted = true;
|
||||
double alpha_t = 0;
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
bool finished = false;
|
||||
std::vector<int> featuresUsed;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels(smoothing);
|
||||
if (featuresUsed.size() == 0) {
|
||||
return;
|
||||
}
|
||||
auto ypred = predict(X_train);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
// Update significance of the models
|
||||
for (int i = 0; i < n_models; ++i) {
|
||||
significanceModels[i] = alpha_t;
|
||||
}
|
||||
if (finished) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
int numItemsPack = 0; // The counter of the models inserted in the current pack
|
||||
// Variables to control the accuracy finish condition
|
||||
double priorAccuracy = 0.0;
|
||||
double improvement = 1.0;
|
||||
double convergence_threshold = 1e-4;
|
||||
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
|
||||
// Step 0: Set the finish condition
|
||||
// epsilon sub t > 0.5 => inverse the weights policy
|
||||
// validation error is not decreasing
|
||||
// run out of features
|
||||
bool ascending = order_algorithm == Orders.ASC;
|
||||
std::mt19937 g{ 173 };
|
||||
std::vector<std::pair<int, int>> pairSelection;
|
||||
while (!finished) {
|
||||
// Step 1: Build ranking with mutual information
|
||||
pairSelection = metrics.SelectKPairs(weights_, featuresUsed, ascending, 0); // Get all the pairs sorted
|
||||
if (order_algorithm == Orders.RAND) {
|
||||
std::shuffle(pairSelection.begin(), pairSelection.end(), g);
|
||||
}
|
||||
int k = bisection ? pow(2, tolerance) : 1;
|
||||
int counter = 0; // The model counter of the current pack
|
||||
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||
while (counter++ < k && pairSelection.size() > 0) {
|
||||
auto feature_pair = pairSelection[0];
|
||||
pairSelection.erase(pairSelection.begin());
|
||||
std::unique_ptr<Classifier> model;
|
||||
model = std::make_unique<SPnDE>(std::vector<int>({ feature_pair.first, feature_pair.second }));
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
alpha_t = 0.0;
|
||||
if (!block_update) {
|
||||
auto ypred = model->predict(X_train);
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
}
|
||||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
numItemsPack++;
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(alpha_t);
|
||||
n_models++;
|
||||
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
|
||||
}
|
||||
if (block_update) {
|
||||
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
||||
}
|
||||
if (convergence && !finished) {
|
||||
auto y_val_predict = predict(X_test);
|
||||
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||||
if (priorAccuracy == 0) {
|
||||
priorAccuracy = accuracy;
|
||||
} else {
|
||||
improvement = accuracy - priorAccuracy;
|
||||
}
|
||||
if (improvement < convergence_threshold) {
|
||||
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance++;
|
||||
} else {
|
||||
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance = 0; // Reset the counter if the model performs better
|
||||
numItemsPack = 0;
|
||||
}
|
||||
if (convergence_best) {
|
||||
// Keep the best accuracy until now as the prior accuracy
|
||||
priorAccuracy = std::max(accuracy, priorAccuracy);
|
||||
} else {
|
||||
// Keep the last accuray obtained as the prior accuracy
|
||||
priorAccuracy = accuracy;
|
||||
}
|
||||
}
|
||||
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
||||
finished = finished || tolerance > maxTolerance || pairSelection.size() == 0;
|
||||
}
|
||||
if (tolerance > maxTolerance) {
|
||||
if (numItemsPack < n_models) {
|
||||
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
||||
for (int i = 0; i < numItemsPack; ++i) {
|
||||
significanceModels.pop_back();
|
||||
models.pop_back();
|
||||
n_models--;
|
||||
}
|
||||
} else {
|
||||
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||
}
|
||||
}
|
||||
if (pairSelection.size() > 0) {
|
||||
notes.push_back("Pairs not used in train: " + std::to_string(pairSelection.size()));
|
||||
status = WARNING;
|
||||
}
|
||||
notes.push_back("Number of models: " + std::to_string(n_models));
|
||||
}
|
||||
std::vector<std::string> BoostA2DE::graph(const std::string& title) const
|
||||
{
|
||||
return Ensemble::graph(title);
|
||||
}
|
||||
}
|
25
bayesnet/ensembles/BoostA2DE.h
Normal file
25
bayesnet/ensembles/BoostA2DE.h
Normal file
@@ -0,0 +1,25 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef BOOSTA2DE_H
|
||||
#define BOOSTA2DE_H
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "bayesnet/classifiers/SPnDE.h"
|
||||
#include "Boost.h"
|
||||
namespace bayesnet {
|
||||
class BoostA2DE : public Boost {
|
||||
public:
|
||||
explicit BoostA2DE(bool predict_voting = false);
|
||||
virtual ~BoostA2DE() = default;
|
||||
std::vector<std::string> graph(const std::string& title = "BoostA2DE") const override;
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
private:
|
||||
std::vector<int> initializeModels(const Smoothing_t smoothing);
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -4,264 +4,43 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <set>
|
||||
#include <functional>
|
||||
#include <limits.h>
|
||||
#include <tuple>
|
||||
#include <folding.hpp>
|
||||
#include "bayesnet/feature_selection/CFS.h"
|
||||
#include "bayesnet/feature_selection/FCBF.h"
|
||||
#include "bayesnet/feature_selection/IWSS.h"
|
||||
#include "BoostAODE.h"
|
||||
#include "bayesnet/classifiers/SPODE.h"
|
||||
#include <limits.h>
|
||||
// #include <loguru.cpp>
|
||||
// #include <loguru.hpp>
|
||||
#include <random>
|
||||
#include <set>
|
||||
#include <tuple>
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
BoostAODE::BoostAODE(bool predict_voting) : Ensemble(predict_voting)
|
||||
BoostAODE::BoostAODE(bool predict_voting) : Boost(predict_voting)
|
||||
{
|
||||
validHyperparameters = {
|
||||
"maxModels", "bisection", "order", "convergence", "threshold",
|
||||
"select_features", "maxTolerance", "predict_voting", "block_update"
|
||||
};
|
||||
|
||||
}
|
||||
void BoostAODE::buildModel(const torch::Tensor& weights)
|
||||
std::vector<int> BoostAODE::initializeModels(const Smoothing_t smoothing)
|
||||
{
|
||||
// Models shall be built in trainModel
|
||||
models.clear();
|
||||
significanceModels.clear();
|
||||
n_models = 0;
|
||||
// Prepare the validation dataset
|
||||
auto y_ = dataset.index({ -1, "..." });
|
||||
if (convergence) {
|
||||
// Prepare train & validation sets from train data
|
||||
auto fold = folding::StratifiedKFold(5, y_, 271);
|
||||
auto [train, test] = fold.getFold(0);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
// Get train and validation sets
|
||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
|
||||
y_train = dataset.index({ -1, train_t });
|
||||
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
|
||||
y_test = dataset.index({ -1, test_t });
|
||||
dataset = X_train;
|
||||
m = X_train.size(1);
|
||||
auto n_classes = states.at(className).size();
|
||||
// Build dataset with train data
|
||||
buildDataset(y_train);
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
} else {
|
||||
// Use all data to train
|
||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
||||
y_train = y_;
|
||||
}
|
||||
}
|
||||
void BoostAODE::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("order")) {
|
||||
std::vector<std::string> algos = { Orders.ASC, Orders.DESC, Orders.RAND };
|
||||
order_algorithm = hyperparameters["order"];
|
||||
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC + ", " + Orders.RAND + "]");
|
||||
}
|
||||
hyperparameters.erase("order");
|
||||
}
|
||||
if (hyperparameters.contains("convergence")) {
|
||||
convergence = hyperparameters["convergence"];
|
||||
hyperparameters.erase("convergence");
|
||||
}
|
||||
if (hyperparameters.contains("bisection")) {
|
||||
bisection = hyperparameters["bisection"];
|
||||
hyperparameters.erase("bisection");
|
||||
}
|
||||
if (hyperparameters.contains("threshold")) {
|
||||
threshold = hyperparameters["threshold"];
|
||||
hyperparameters.erase("threshold");
|
||||
}
|
||||
if (hyperparameters.contains("maxTolerance")) {
|
||||
maxTolerance = hyperparameters["maxTolerance"];
|
||||
if (maxTolerance < 1 || maxTolerance > 4)
|
||||
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 4]");
|
||||
hyperparameters.erase("maxTolerance");
|
||||
}
|
||||
if (hyperparameters.contains("predict_voting")) {
|
||||
predict_voting = hyperparameters["predict_voting"];
|
||||
hyperparameters.erase("predict_voting");
|
||||
}
|
||||
if (hyperparameters.contains("select_features")) {
|
||||
auto selectedAlgorithm = hyperparameters["select_features"];
|
||||
std::vector<std::string> algos = { SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF };
|
||||
selectFeatures = true;
|
||||
select_features_algorithm = selectedAlgorithm;
|
||||
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " + SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
|
||||
}
|
||||
hyperparameters.erase("select_features");
|
||||
}
|
||||
if (hyperparameters.contains("block_update")) {
|
||||
block_update = hyperparameters["block_update"];
|
||||
hyperparameters.erase("block_update");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
std::tuple<torch::Tensor&, double, bool> update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights)
|
||||
{
|
||||
bool terminate = false;
|
||||
double alpha_t = 0;
|
||||
auto mask_wrong = ypred != ytrain;
|
||||
auto mask_right = ypred == ytrain;
|
||||
auto masked_weights = weights * mask_wrong.to(weights.dtype());
|
||||
double epsilon_t = masked_weights.sum().item<double>();
|
||||
if (epsilon_t > 0.5) {
|
||||
// Inverse the weights policy (plot ln(wt))
|
||||
// "In each round of AdaBoost, there is a sanity check to ensure that the current base
|
||||
// learner is better than random guess" (Zhi-Hua Zhou, 2012)
|
||||
terminate = true;
|
||||
} else {
|
||||
double wt = (1 - epsilon_t) / epsilon_t;
|
||||
alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
||||
// Step 3.2: Update weights for next classifier
|
||||
// Step 3.2.1: Update weights of wrong samples
|
||||
weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights;
|
||||
// Step 3.2.2: Update weights of right samples
|
||||
weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights;
|
||||
// Step 3.3: Normalise the weights
|
||||
double totalWeights = torch::sum(weights).item<double>();
|
||||
weights = weights / totalWeights;
|
||||
}
|
||||
return { weights, alpha_t, terminate };
|
||||
}
|
||||
std::tuple<torch::Tensor&, double, bool> BoostAODE::update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights)
|
||||
{
|
||||
/* Update Block algorithm
|
||||
k = # of models in block
|
||||
n_models = # of models in ensemble to make predictions
|
||||
n_models_bak = # models saved
|
||||
models = vector of models to make predictions
|
||||
models_bak = models not used to make predictions
|
||||
significances_bak = backup of significances vector
|
||||
|
||||
Case list
|
||||
A) k = 1, n_models = 1 => n = 0 , n_models = n + k
|
||||
B) k = 1, n_models = n + 1 => n_models = n + k
|
||||
C) k > 1, n_models = k + 1 => n= 1, n_models = n + k
|
||||
D) k > 1, n_models = k => n = 0, n_models = n + k
|
||||
E) k > 1, n_models = k + n => n_models = n + k
|
||||
|
||||
A, D) n=0, k > 0, n_models == k
|
||||
1. n_models_bak <- n_models
|
||||
2. significances_bak <- significances
|
||||
3. significances = vector(k, 1)
|
||||
4. Don’t move any classifiers out of models
|
||||
5. n_models <- k
|
||||
6. Make prediction, compute alpha, update weights
|
||||
7. Don’t restore any classifiers to models
|
||||
8. significances <- significances_bak
|
||||
9. Update last k significances
|
||||
10. n_models <- n_models_bak
|
||||
|
||||
B, C, E) n > 0, k > 0, n_models == n + k
|
||||
1. n_models_bak <- n_models
|
||||
2. significances_bak <- significances
|
||||
3. significances = vector(k, 1)
|
||||
4. Move first n classifiers to models_bak
|
||||
5. n_models <- k
|
||||
6. Make prediction, compute alpha, update weights
|
||||
7. Insert classifiers in models_bak to be the first n models
|
||||
8. significances <- significances_bak
|
||||
9. Update last k significances
|
||||
10. n_models <- n_models_bak
|
||||
*/
|
||||
//
|
||||
// Make predict with only the last k models
|
||||
//
|
||||
std::unique_ptr<Classifier> model;
|
||||
std::vector<std::unique_ptr<Classifier>> models_bak;
|
||||
// 1. n_models_bak <- n_models 2. significances_bak <- significances
|
||||
auto significance_bak = significanceModels;
|
||||
auto n_models_bak = n_models;
|
||||
// 3. significances = vector(k, 1)
|
||||
significanceModels = std::vector<double>(k, 1.0);
|
||||
// 4. Move first n classifiers to models_bak
|
||||
// backup the first n_models - k models (if n_models == k, don't backup any)
|
||||
for (int i = 0; i < n_models - k; ++i) {
|
||||
model = std::move(models[0]);
|
||||
models.erase(models.begin());
|
||||
models_bak.push_back(std::move(model));
|
||||
}
|
||||
assert(models.size() == k);
|
||||
// 5. n_models <- k
|
||||
n_models = k;
|
||||
// 6. Make prediction, compute alpha, update weights
|
||||
auto ypred = predict(X_train);
|
||||
//
|
||||
// Update weights
|
||||
//
|
||||
double alpha_t;
|
||||
bool terminate;
|
||||
std::tie(weights, alpha_t, terminate) = update_weights(y_train, ypred, weights);
|
||||
//
|
||||
// Restore the models if needed
|
||||
//
|
||||
// 7. Insert classifiers in models_bak to be the first n models
|
||||
// if n_models_bak == k, don't restore any, because none of them were moved
|
||||
if (k != n_models_bak) {
|
||||
// Insert in the same order as they were extracted
|
||||
int bak_size = models_bak.size();
|
||||
for (int i = 0; i < bak_size; ++i) {
|
||||
model = std::move(models_bak[bak_size - 1 - i]);
|
||||
models_bak.erase(models_bak.end() - 1);
|
||||
models.insert(models.begin(), std::move(model));
|
||||
}
|
||||
}
|
||||
// 8. significances <- significances_bak
|
||||
significanceModels = significance_bak;
|
||||
//
|
||||
// Update the significance of the last k models
|
||||
//
|
||||
// 9. Update last k significances
|
||||
for (int i = 0; i < k; ++i) {
|
||||
significanceModels[n_models_bak - k + i] = alpha_t;
|
||||
}
|
||||
// 10. n_models <- n_models_bak
|
||||
n_models = n_models_bak;
|
||||
return { weights, alpha_t, terminate };
|
||||
}
|
||||
std::vector<int> BoostAODE::initializeModels()
|
||||
{
|
||||
std::vector<int> featuresUsed;
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
int maxFeatures = 0;
|
||||
if (select_features_algorithm == SelectFeatures.CFS) {
|
||||
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
|
||||
} else if (select_features_algorithm == SelectFeatures.IWSS) {
|
||||
if (threshold < 0 || threshold >0.5) {
|
||||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
|
||||
}
|
||||
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
} else if (select_features_algorithm == SelectFeatures.FCBF) {
|
||||
if (threshold < 1e-7 || threshold > 1) {
|
||||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
|
||||
}
|
||||
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
}
|
||||
featureSelector->fit();
|
||||
auto cfsFeatures = featureSelector->getFeatures();
|
||||
auto scores = featureSelector->getScores();
|
||||
for (const int& feature : cfsFeatures) {
|
||||
featuresUsed.push_back(feature);
|
||||
std::vector<int> featuresSelected = featureSelection(weights_);
|
||||
for (const int& feature : featuresSelected) {
|
||||
std::unique_ptr<Classifier> model = std::make_unique<SPODE>(feature);
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(1.0); // They will be updated later in trainModel
|
||||
n_models++;
|
||||
}
|
||||
notes.push_back("Used features in initialization: " + std::to_string(featuresUsed.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||
delete featureSelector;
|
||||
return featuresUsed;
|
||||
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " + std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||
return featuresSelected;
|
||||
}
|
||||
void BoostAODE::trainModel(const torch::Tensor& weights)
|
||||
void BoostAODE::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
//
|
||||
// Logging setup
|
||||
//
|
||||
// loguru::set_thread_name("BoostAODE");
|
||||
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||||
// loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||||
|
||||
// Algorithm based on the adaboost algorithm for classification
|
||||
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||
fitted = true;
|
||||
@@ -269,14 +48,16 @@ namespace bayesnet {
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
bool finished = false;
|
||||
std::vector<int> featuresUsed;
|
||||
n_models = 0;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels();
|
||||
featuresUsed = initializeModels(smoothing);
|
||||
auto ypred = predict(X_train);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
// Update significance of the models
|
||||
for (int i = 0; i < n_models; ++i) {
|
||||
significanceModels[i] = alpha_t;
|
||||
significanceModels.push_back(alpha_t);
|
||||
}
|
||||
// VLOG_SCOPE_F(1, "SelectFeatures. alpha_t: %f n_models: %d", alpha_t, n_models);
|
||||
if (finished) {
|
||||
return;
|
||||
}
|
||||
@@ -300,21 +81,38 @@ namespace bayesnet {
|
||||
std::shuffle(featureSelection.begin(), featureSelection.end(), g);
|
||||
}
|
||||
// Remove used features
|
||||
featureSelection.erase(remove_if(begin(featureSelection), end(featureSelection), [&](auto x)
|
||||
{ return std::find(begin(featuresUsed), end(featuresUsed), x) != end(featuresUsed);}),
|
||||
end(featureSelection)
|
||||
);
|
||||
int k = pow(2, tolerance);
|
||||
featureSelection.erase(remove_if(begin(featureSelection), end(featureSelection), [&](auto x) { return std::find(begin(featuresUsed), end(featuresUsed), x) != end(featuresUsed); }),
|
||||
end(featureSelection));
|
||||
int k = bisection ? pow(2, tolerance) : 1;
|
||||
int counter = 0; // The model counter of the current pack
|
||||
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||
while (counter++ < k && featureSelection.size() > 0) {
|
||||
auto feature = featureSelection[0];
|
||||
featureSelection.erase(featureSelection.begin());
|
||||
std::unique_ptr<Classifier> model;
|
||||
model = std::make_unique<SPODE>(feature);
|
||||
model->fit(dataset, features, className, states, weights_);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
alpha_t = 0.0;
|
||||
if (!block_update) {
|
||||
auto ypred = model->predict(X_train);
|
||||
torch::Tensor ypred;
|
||||
if (alpha_block) {
|
||||
//
|
||||
// Compute the prediction with the current ensemble + model
|
||||
//
|
||||
// Add the model to the ensemble
|
||||
n_models++;
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(1);
|
||||
// Compute the prediction
|
||||
ypred = predict(X_train);
|
||||
// Remove the model from the ensemble
|
||||
model = std::move(models.back());
|
||||
models.pop_back();
|
||||
significanceModels.pop_back();
|
||||
n_models--;
|
||||
} else {
|
||||
ypred = model->predict(X_train);
|
||||
}
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
}
|
||||
@@ -324,6 +122,7 @@ namespace bayesnet {
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(alpha_t);
|
||||
n_models++;
|
||||
// VLOG_SCOPE_F(2, "finished: %d numItemsPack: %d n_models: %d featuresUsed: %zu", finished, numItemsPack, n_models, featuresUsed.size());
|
||||
}
|
||||
if (block_update) {
|
||||
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
||||
@@ -337,20 +136,28 @@ namespace bayesnet {
|
||||
improvement = accuracy - priorAccuracy;
|
||||
}
|
||||
if (improvement < convergence_threshold) {
|
||||
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance++;
|
||||
} else {
|
||||
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance = 0; // Reset the counter if the model performs better
|
||||
numItemsPack = 0;
|
||||
}
|
||||
// Keep the best accuracy until now as the prior accuracy
|
||||
priorAccuracy = std::max(accuracy, priorAccuracy);
|
||||
// priorAccuracy = accuracy;
|
||||
if (convergence_best) {
|
||||
// Keep the best accuracy until now as the prior accuracy
|
||||
priorAccuracy = std::max(accuracy, priorAccuracy);
|
||||
} else {
|
||||
// Keep the last accuray obtained as the prior accuracy
|
||||
priorAccuracy = accuracy;
|
||||
}
|
||||
}
|
||||
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
||||
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
|
||||
}
|
||||
if (tolerance > maxTolerance) {
|
||||
if (numItemsPack < n_models) {
|
||||
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
||||
for (int i = 0; i < numItemsPack; ++i) {
|
||||
significanceModels.pop_back();
|
||||
models.pop_back();
|
||||
@@ -358,6 +165,7 @@ namespace bayesnet {
|
||||
}
|
||||
} else {
|
||||
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||
// VLG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||
}
|
||||
}
|
||||
if (featuresUsed.size() != features.size()) {
|
||||
@@ -370,4 +178,4 @@ namespace bayesnet {
|
||||
{
|
||||
return Ensemble::graph(title);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -6,44 +6,20 @@
|
||||
|
||||
#ifndef BOOSTAODE_H
|
||||
#define BOOSTAODE_H
|
||||
#include <map>
|
||||
#include "bayesnet/classifiers/SPODE.h"
|
||||
#include "bayesnet/feature_selection/FeatureSelect.h"
|
||||
#include "Ensemble.h"
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "Boost.h"
|
||||
|
||||
namespace bayesnet {
|
||||
struct {
|
||||
std::string CFS = "CFS";
|
||||
std::string FCBF = "FCBF";
|
||||
std::string IWSS = "IWSS";
|
||||
}SelectFeatures;
|
||||
struct {
|
||||
std::string ASC = "asc";
|
||||
std::string DESC = "desc";
|
||||
std::string RAND = "rand";
|
||||
}Orders;
|
||||
class BoostAODE : public Ensemble {
|
||||
class BoostAODE : public Boost {
|
||||
public:
|
||||
BoostAODE(bool predict_voting = false);
|
||||
explicit BoostAODE(bool predict_voting = false);
|
||||
virtual ~BoostAODE() = default;
|
||||
std::vector<std::string> graph(const std::string& title = "BoostAODE") const override;
|
||||
void setHyperparameters(const nlohmann::json& hyperparameters_) override;
|
||||
protected:
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
private:
|
||||
std::tuple<torch::Tensor&, double, bool> update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights);
|
||||
std::vector<int> initializeModels();
|
||||
torch::Tensor X_train, y_train, X_test, y_test;
|
||||
// Hyperparameters
|
||||
bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble
|
||||
int maxTolerance = 3;
|
||||
std::string order_algorithm; // order to process the KBest features asc, desc, rand
|
||||
bool convergence = true; //if true, stop when the model does not improve
|
||||
bool selectFeatures = false; // if true, use feature selection
|
||||
std::string select_features_algorithm = Orders.DESC; // Selected feature selection algorithm
|
||||
FeatureSelect* featureSelector = nullptr;
|
||||
double threshold = -1;
|
||||
bool block_update = false;
|
||||
std::vector<int> initializeModels(const Smoothing_t smoothing);
|
||||
};
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
@@ -3,22 +3,20 @@
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "Ensemble.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
Ensemble::Ensemble(bool predict_voting) : Classifier(Network()), n_models(0), predict_voting(predict_voting)
|
||||
{
|
||||
|
||||
};
|
||||
const std::string ENSEMBLE_NOT_FITTED = "Ensemble has not been fitted";
|
||||
void Ensemble::trainModel(const torch::Tensor& weights)
|
||||
void Ensemble::trainModel(const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
n_models = models.size();
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
// fit with std::vectors
|
||||
models[i]->fit(dataset, features, className, states);
|
||||
models[i]->fit(dataset, features, className, states, smoothing);
|
||||
}
|
||||
}
|
||||
std::vector<int> Ensemble::compute_arg_max(std::vector<std::vector<double>>& X)
|
||||
@@ -85,17 +83,10 @@ namespace bayesnet {
|
||||
{
|
||||
auto n_states = models[0]->getClassNumStates();
|
||||
torch::Tensor y_pred = torch::zeros({ X.size(1), n_states }, torch::kFloat32);
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
y_pred += ypredict * significanceModels[i];
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
/*std::cout << "model " << i << " prediction: " << ypredict << " significance " << significanceModels[i] << std::endl;*/
|
||||
y_pred += ypredict * significanceModels[i];
|
||||
}
|
||||
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
||||
y_pred /= sum;
|
||||
@@ -105,23 +96,15 @@ namespace bayesnet {
|
||||
{
|
||||
auto n_states = models[0]->getClassNumStates();
|
||||
std::vector<std::vector<double>> y_pred(X[0].size(), std::vector<double>(n_states, 0.0));
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
assert(ypredict.size() == y_pred.size());
|
||||
assert(ypredict[0].size() == y_pred[0].size());
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
// Multiply each prediction by the significance of the model and then add it to the final prediction
|
||||
for (auto j = 0; j < ypredict.size(); ++j) {
|
||||
std::transform(y_pred[j].begin(), y_pred[j].end(), ypredict[j].begin(), y_pred[j].begin(),
|
||||
[significanceModels = significanceModels[i]](double x, double y) { return x + y * significanceModels; });
|
||||
}
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
auto ypredict = models[i]->predict_proba(X);
|
||||
assert(ypredict.size() == y_pred.size());
|
||||
assert(ypredict[0].size() == y_pred[0].size());
|
||||
// Multiply each prediction by the significance of the model and then add it to the final prediction
|
||||
for (auto j = 0; j < ypredict.size(); ++j) {
|
||||
std::transform(y_pred[j].begin(), y_pred[j].end(), ypredict[j].begin(), y_pred[j].begin(),
|
||||
[significanceModels = significanceModels[i]](double x, double y) { return x + y * significanceModels; });
|
||||
}
|
||||
}
|
||||
auto sum = std::reduce(significanceModels.begin(), significanceModels.end());
|
||||
//Divide each element of the prediction by the sum of the significances
|
||||
@@ -141,17 +124,9 @@ namespace bayesnet {
|
||||
{
|
||||
// Build a m x n_models tensor with the predictions of each model
|
||||
torch::Tensor y_pred = torch::zeros({ X.size(1), n_models }, torch::kInt32);
|
||||
auto threads{ std::vector<std::thread>() };
|
||||
std::mutex mtx;
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(std::thread([&, i]() {
|
||||
auto ypredict = models[i]->predict(X);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
y_pred.index_put_({ "...", i }, ypredict);
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
auto ypredict = models[i]->predict(X);
|
||||
y_pred.index_put_({ "...", i }, ypredict);
|
||||
}
|
||||
return voting(y_pred);
|
||||
}
|
||||
@@ -219,4 +194,4 @@ namespace bayesnet {
|
||||
}
|
||||
return nstates;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -33,9 +33,15 @@ namespace bayesnet {
|
||||
}
|
||||
std::string dump_cpt() const override
|
||||
{
|
||||
return "";
|
||||
std::string output;
|
||||
for (auto& model : models) {
|
||||
output += model->dump_cpt();
|
||||
output += std::string(80, '-') + "\n";
|
||||
}
|
||||
return output;
|
||||
}
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
torch::Tensor predict_average_voting(torch::Tensor& X);
|
||||
std::vector<std::vector<double>> predict_average_voting(std::vector<std::vector<int>>& X);
|
||||
torch::Tensor predict_average_proba(torch::Tensor& X);
|
||||
@@ -43,10 +49,10 @@ namespace bayesnet {
|
||||
torch::Tensor compute_arg_max(torch::Tensor& X);
|
||||
std::vector<int> compute_arg_max(std::vector<std::vector<double>>& X);
|
||||
torch::Tensor voting(torch::Tensor& votes);
|
||||
// Attributes
|
||||
unsigned n_models;
|
||||
std::vector<std::unique_ptr<Classifier>> models;
|
||||
std::vector<double> significanceModels;
|
||||
void trainModel(const torch::Tensor& weights) override;
|
||||
bool predict_voting;
|
||||
};
|
||||
}
|
||||
|
168
bayesnet/ensembles/XBA2DE.cc
Normal file
168
bayesnet/ensembles/XBA2DE.cc
Normal file
@@ -0,0 +1,168 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <folding.hpp>
|
||||
#include <limits.h>
|
||||
#include "XBA2DE.h"
|
||||
#include "bayesnet/classifiers/XSP2DE.h"
|
||||
#include "bayesnet/utils/TensorUtils.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
XBA2DE::XBA2DE(bool predict_voting) : Boost(predict_voting) {}
|
||||
std::vector<int> XBA2DE::initializeModels(const Smoothing_t smoothing) {
|
||||
torch::Tensor weights_ = torch::full({m}, 1.0 / m, torch::kFloat64);
|
||||
std::vector<int> featuresSelected = featureSelection(weights_);
|
||||
if (featuresSelected.size() < 2) {
|
||||
notes.push_back("No features selected in initialization");
|
||||
status = ERROR;
|
||||
return std::vector<int>();
|
||||
}
|
||||
for (int i = 0; i < featuresSelected.size() - 1; i++) {
|
||||
for (int j = i + 1; j < featuresSelected.size(); j++) {
|
||||
std::unique_ptr<Classifier> model = std::make_unique<XSp2de>(featuresSelected[i], featuresSelected[j]);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
add_model(std::move(model), 1.0);
|
||||
}
|
||||
}
|
||||
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " +
|
||||
std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||
return featuresSelected;
|
||||
}
|
||||
void XBA2DE::trainModel(const torch::Tensor &weights, const Smoothing_t smoothing) {
|
||||
//
|
||||
// Logging setup
|
||||
//
|
||||
// loguru::set_thread_name("XBA2DE");
|
||||
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||||
// loguru::add_file("boostA2DE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||||
|
||||
// Algorithm based on the adaboost algorithm for classification
|
||||
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||
X_train_ = TensorUtils::to_matrix(X_train);
|
||||
y_train_ = TensorUtils::to_vector<int>(y_train);
|
||||
if (convergence) {
|
||||
X_test_ = TensorUtils::to_matrix(X_test);
|
||||
y_test_ = TensorUtils::to_vector<int>(y_test);
|
||||
}
|
||||
fitted = true;
|
||||
double alpha_t = 0;
|
||||
torch::Tensor weights_ = torch::full({m}, 1.0 / m, torch::kFloat64);
|
||||
bool finished = false;
|
||||
std::vector<int> featuresUsed;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels(smoothing);
|
||||
if (featuresUsed.size() == 0) {
|
||||
return;
|
||||
}
|
||||
auto ypred = predict(X_train);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
// Update significance of the models
|
||||
for (int i = 0; i < n_models; ++i) {
|
||||
significanceModels[i] = alpha_t;
|
||||
}
|
||||
if (finished) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
int numItemsPack = 0; // The counter of the models inserted in the current pack
|
||||
// Variables to control the accuracy finish condition
|
||||
double priorAccuracy = 0.0;
|
||||
double improvement = 1.0;
|
||||
double convergence_threshold = 1e-4;
|
||||
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
|
||||
// Step 0: Set the finish condition
|
||||
// epsilon sub t > 0.5 => inverse the weights policy
|
||||
// validation error is not decreasing
|
||||
// run out of features
|
||||
bool ascending = order_algorithm == Orders.ASC;
|
||||
std::mt19937 g{173};
|
||||
std::vector<std::pair<int, int>> pairSelection;
|
||||
while (!finished) {
|
||||
// Step 1: Build ranking with mutual information
|
||||
pairSelection = metrics.SelectKPairs(weights_, featuresUsed, ascending, 0); // Get all the pairs sorted
|
||||
if (order_algorithm == Orders.RAND) {
|
||||
std::shuffle(pairSelection.begin(), pairSelection.end(), g);
|
||||
}
|
||||
int k = bisection ? pow(2, tolerance) : 1;
|
||||
int counter = 0; // The model counter of the current pack
|
||||
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||
while (counter++ < k && pairSelection.size() > 0) {
|
||||
auto feature_pair = pairSelection[0];
|
||||
pairSelection.erase(pairSelection.begin());
|
||||
std::unique_ptr<Classifier> model;
|
||||
model = std::make_unique<XSp2de>(feature_pair.first, feature_pair.second);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
alpha_t = 0.0;
|
||||
if (!block_update) {
|
||||
auto ypred = model->predict(X_train);
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
}
|
||||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
numItemsPack++;
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(alpha_t);
|
||||
n_models++;
|
||||
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models,
|
||||
// featuresUsed.size());
|
||||
}
|
||||
if (block_update) {
|
||||
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
||||
}
|
||||
if (convergence && !finished) {
|
||||
auto y_val_predict = predict(X_test);
|
||||
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||||
if (priorAccuracy == 0) {
|
||||
priorAccuracy = accuracy;
|
||||
} else {
|
||||
improvement = accuracy - priorAccuracy;
|
||||
}
|
||||
if (improvement < convergence_threshold) {
|
||||
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f
|
||||
// current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance++;
|
||||
} else {
|
||||
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f
|
||||
// prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance = 0; // Reset the counter if the model performs better
|
||||
numItemsPack = 0;
|
||||
}
|
||||
if (convergence_best) {
|
||||
// Keep the best accuracy until now as the prior accuracy
|
||||
priorAccuracy = std::max(accuracy, priorAccuracy);
|
||||
} else {
|
||||
// Keep the last accuray obtained as the prior accuracy
|
||||
priorAccuracy = accuracy;
|
||||
}
|
||||
}
|
||||
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(),
|
||||
// features.size());
|
||||
finished = finished || tolerance > maxTolerance || pairSelection.size() == 0;
|
||||
}
|
||||
if (tolerance > maxTolerance) {
|
||||
if (numItemsPack < n_models) {
|
||||
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
||||
for (int i = 0; i < numItemsPack; ++i) {
|
||||
significanceModels.pop_back();
|
||||
models.pop_back();
|
||||
n_models--;
|
||||
}
|
||||
} else {
|
||||
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d",
|
||||
// n_models, numItemsPack);
|
||||
}
|
||||
}
|
||||
if (pairSelection.size() > 0) {
|
||||
notes.push_back("Pairs not used in train: " + std::to_string(pairSelection.size()));
|
||||
status = WARNING;
|
||||
}
|
||||
notes.push_back("Number of models: " + std::to_string(n_models));
|
||||
}
|
||||
std::vector<std::string> XBA2DE::graph(const std::string &title) const { return Ensemble::graph(title); }
|
||||
} // namespace bayesnet
|
28
bayesnet/ensembles/XBA2DE.h
Normal file
28
bayesnet/ensembles/XBA2DE.h
Normal file
@@ -0,0 +1,28 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef XBA2DE_H
|
||||
#define XBA2DE_H
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "Boost.h"
|
||||
namespace bayesnet {
|
||||
class XBA2DE : public Boost {
|
||||
public:
|
||||
explicit XBA2DE(bool predict_voting = false);
|
||||
virtual ~XBA2DE() = default;
|
||||
std::vector<std::string> graph(const std::string& title = "XBA2DE") const override;
|
||||
std::string getVersion() override { return version; };
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
private:
|
||||
std::vector<int> initializeModels(const Smoothing_t smoothing);
|
||||
std::vector<std::vector<int>> X_train_, X_test_;
|
||||
std::vector<int> y_train_, y_test_;
|
||||
std::string version = "0.9.7";
|
||||
};
|
||||
}
|
||||
#endif
|
184
bayesnet/ensembles/XBAODE.cc
Normal file
184
bayesnet/ensembles/XBAODE.cc
Normal file
@@ -0,0 +1,184 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
#include "XBAODE.h"
|
||||
#include "bayesnet/classifiers/XSPODE.h"
|
||||
#include "bayesnet/utils/TensorUtils.h"
|
||||
#include <limits.h>
|
||||
#include <random>
|
||||
#include <tuple>
|
||||
|
||||
namespace bayesnet
|
||||
{
|
||||
XBAODE::XBAODE() : Boost(false) {}
|
||||
std::vector<int> XBAODE::initializeModels(const Smoothing_t smoothing)
|
||||
{
|
||||
torch::Tensor weights_ = torch::full({m}, 1.0 / m, torch::kFloat64);
|
||||
std::vector<int> featuresSelected = featureSelection(weights_);
|
||||
for (const int &feature : featuresSelected) {
|
||||
std::unique_ptr<Classifier> model = std::make_unique<XSpode>(feature);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
add_model(std::move(model), 1.0);
|
||||
}
|
||||
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " +
|
||||
std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||
return featuresSelected;
|
||||
}
|
||||
void XBAODE::trainModel(const torch::Tensor &weights, const bayesnet::Smoothing_t smoothing)
|
||||
{
|
||||
X_train_ = TensorUtils::to_matrix(X_train);
|
||||
y_train_ = TensorUtils::to_vector<int>(y_train);
|
||||
if (convergence) {
|
||||
X_test_ = TensorUtils::to_matrix(X_test);
|
||||
y_test_ = TensorUtils::to_vector<int>(y_test);
|
||||
}
|
||||
fitted = true;
|
||||
double alpha_t;
|
||||
torch::Tensor weights_ = torch::full({m}, 1.0 / m, torch::kFloat64);
|
||||
bool finished = false;
|
||||
std::vector<int> featuresUsed;
|
||||
n_models = 0;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels(smoothing);
|
||||
auto ypred = predict(X_train_);
|
||||
auto ypred_t = torch::tensor(ypred);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred_t, weights_);
|
||||
// Update significance of the models
|
||||
for (const int &feature : featuresUsed) {
|
||||
significanceModels.pop_back();
|
||||
}
|
||||
for (const int &feature : featuresUsed) {
|
||||
significanceModels.push_back(alpha_t);
|
||||
}
|
||||
// VLOG_SCOPE_F(1, "SelectFeatures. alpha_t: %f n_models: %d", alpha_t,
|
||||
// n_models);
|
||||
if (finished) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
int numItemsPack = 0; // The counter of the models inserted in the current pack
|
||||
// Variables to control the accuracy finish condition
|
||||
double priorAccuracy = 0.0;
|
||||
double improvement = 1.0;
|
||||
double convergence_threshold = 1e-4;
|
||||
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
|
||||
// Step 0: Set the finish condition
|
||||
// epsilon sub t > 0.5 => inverse the weights_ policy
|
||||
// validation error is not decreasing
|
||||
// run out of features
|
||||
bool ascending = order_algorithm == bayesnet::Orders.ASC;
|
||||
std::mt19937 g{173};
|
||||
while (!finished) {
|
||||
// Step 1: Build ranking with mutual information
|
||||
auto featureSelection = metrics.SelectKBestWeighted(weights_, ascending, n); // Get all the features sorted
|
||||
if (order_algorithm == bayesnet::Orders.RAND) {
|
||||
std::shuffle(featureSelection.begin(), featureSelection.end(), g);
|
||||
}
|
||||
// Remove used features
|
||||
featureSelection.erase(remove_if(featureSelection.begin(), featureSelection.end(),
|
||||
[&](auto x) {
|
||||
return std::find(featuresUsed.begin(), featuresUsed.end(), x) !=
|
||||
featuresUsed.end();
|
||||
}),
|
||||
featureSelection.end());
|
||||
int k = bisection ? pow(2, tolerance) : 1;
|
||||
int counter = 0; // The model counter of the current pack
|
||||
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k,
|
||||
// featureSelection.size());
|
||||
while (counter++ < k && featureSelection.size() > 0) {
|
||||
auto feature = featureSelection[0];
|
||||
featureSelection.erase(featureSelection.begin());
|
||||
std::unique_ptr<Classifier> model;
|
||||
model = std::make_unique<XSpode>(feature);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
/*dynamic_cast<XSpode*>(model.get())->fitx(X_train, y_train, weights_,
|
||||
* smoothing); // using exclusive XSpode fit method*/
|
||||
// DEBUG
|
||||
/*std::cout << dynamic_cast<XSpode*>(model.get())->to_string() <<
|
||||
* std::endl;*/
|
||||
// DEBUG
|
||||
std::vector<int> ypred;
|
||||
if (alpha_block) {
|
||||
//
|
||||
// Compute the prediction with the current ensemble + model
|
||||
//
|
||||
// Add the model to the ensemble
|
||||
add_model(std::move(model), 1.0);
|
||||
// Compute the prediction
|
||||
ypred = predict(X_train_);
|
||||
model = std::move(models.back());
|
||||
// Remove the model from the ensemble
|
||||
remove_last_model();
|
||||
} else {
|
||||
ypred = model->predict(X_train_);
|
||||
}
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
auto ypred_t = torch::tensor(ypred);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred_t, weights_);
|
||||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
numItemsPack++;
|
||||
featuresUsed.push_back(feature);
|
||||
add_model(std::move(model), alpha_t);
|
||||
// VLOG_SCOPE_F(2, "finished: %d numItemsPack: %d n_models: %d
|
||||
// featuresUsed: %zu", finished, numItemsPack, n_models,
|
||||
// featuresUsed.size());
|
||||
} // End of the pack
|
||||
if (convergence && !finished) {
|
||||
auto y_val_predict = predict(X_test);
|
||||
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||||
if (priorAccuracy == 0) {
|
||||
priorAccuracy = accuracy;
|
||||
} else {
|
||||
improvement = accuracy - priorAccuracy;
|
||||
}
|
||||
if (improvement < convergence_threshold) {
|
||||
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d
|
||||
// numItemsPack: %d improvement: %f prior: %f current: %f", tolerance,
|
||||
// numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance++;
|
||||
} else {
|
||||
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d
|
||||
// numItemsPack: %d improvement: %f prior: %f current: %f", tolerance,
|
||||
// numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance = 0; // Reset the counter if the model performs better
|
||||
numItemsPack = 0;
|
||||
}
|
||||
if (convergence_best) {
|
||||
// Keep the best accuracy until now as the prior accuracy
|
||||
priorAccuracy = std::max(accuracy, priorAccuracy);
|
||||
} else {
|
||||
// Keep the last accuray obtained as the prior accuracy
|
||||
priorAccuracy = accuracy;
|
||||
}
|
||||
}
|
||||
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size:
|
||||
// %zu", tolerance, featuresUsed.size(), features.size());
|
||||
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
|
||||
}
|
||||
if (tolerance > maxTolerance) {
|
||||
if (numItemsPack < n_models) {
|
||||
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated
|
||||
// of %d", numItemsPack, n_models);
|
||||
for (int i = featuresUsed.size() - 1; i >= featuresUsed.size() - numItemsPack; --i) {
|
||||
remove_last_model();
|
||||
}
|
||||
// VLOG_SCOPE_F(4, "*Convergence threshold %d models left & %d features
|
||||
// used.", n_models, featuresUsed.size());
|
||||
} else {
|
||||
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated
|
||||
// n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||
}
|
||||
}
|
||||
if (featuresUsed.size() != features.size()) {
|
||||
notes.push_back("Used features in train: " + std::to_string(featuresUsed.size()) + " of " +
|
||||
std::to_string(features.size()));
|
||||
status = bayesnet::WARNING;
|
||||
}
|
||||
notes.push_back("Number of models: " + std::to_string(n_models));
|
||||
return;
|
||||
}
|
||||
} // namespace bayesnet
|
27
bayesnet/ensembles/XBAODE.h
Normal file
27
bayesnet/ensembles/XBAODE.h
Normal file
@@ -0,0 +1,27 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef XBAODE_H
|
||||
#define XBAODE_H
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
#include "Boost.h"
|
||||
|
||||
namespace bayesnet {
|
||||
class XBAODE : public Boost {
|
||||
public:
|
||||
XBAODE();
|
||||
std::string getVersion() override { return version; };
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
|
||||
private:
|
||||
std::vector<int> initializeModels(const Smoothing_t smoothing);
|
||||
std::vector<std::vector<int>> X_train_, X_test_;
|
||||
std::vector<int> y_train_, y_test_;
|
||||
std::string version = "0.9.7";
|
||||
};
|
||||
}
|
||||
#endif // XBAODE_H
|
@@ -5,20 +5,20 @@
|
||||
// ***************************************************************
|
||||
|
||||
#include <thread>
|
||||
#include <mutex>
|
||||
#include <sstream>
|
||||
#include <numeric>
|
||||
#include <algorithm>
|
||||
#include "Network.h"
|
||||
#include "bayesnet/utils/bayesnetUtils.h"
|
||||
#include "bayesnet/utils/CountingSemaphore.h"
|
||||
#include <pthread.h>
|
||||
#include <fstream>
|
||||
namespace bayesnet {
|
||||
Network::Network() : fitted{ false }, maxThreads{ 0.95 }, classNumStates{ 0 }, laplaceSmoothing{ 0 }
|
||||
Network::Network() : fitted{ false }, classNumStates{ 0 }
|
||||
{
|
||||
}
|
||||
Network::Network(float maxT) : fitted{ false }, maxThreads{ maxT }, classNumStates{ 0 }, laplaceSmoothing{ 0 }
|
||||
{
|
||||
|
||||
}
|
||||
Network::Network(const Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()),
|
||||
maxThreads(other.getMaxThreads()), fitted(other.fitted), samples(other.samples)
|
||||
Network::Network(const Network& other) : features(other.features), className(other.className), classNumStates(other.getClassNumStates()),
|
||||
fitted(other.fitted), samples(other.samples)
|
||||
{
|
||||
if (samples.defined())
|
||||
samples = samples.clone();
|
||||
@@ -35,16 +35,15 @@ namespace bayesnet {
|
||||
nodes.clear();
|
||||
samples = torch::Tensor();
|
||||
}
|
||||
float Network::getMaxThreads() const
|
||||
{
|
||||
return maxThreads;
|
||||
}
|
||||
torch::Tensor& Network::getSamples()
|
||||
{
|
||||
return samples;
|
||||
}
|
||||
void Network::addNode(const std::string& name)
|
||||
{
|
||||
if (fitted) {
|
||||
throw std::invalid_argument("Cannot add node to a fitted network. Initialize first.");
|
||||
}
|
||||
if (name == "") {
|
||||
throw std::invalid_argument("Node name cannot be empty");
|
||||
}
|
||||
@@ -94,12 +93,21 @@ namespace bayesnet {
|
||||
}
|
||||
void Network::addEdge(const std::string& parent, const std::string& child)
|
||||
{
|
||||
if (fitted) {
|
||||
throw std::invalid_argument("Cannot add edge to a fitted network. Initialize first.");
|
||||
}
|
||||
if (nodes.find(parent) == nodes.end()) {
|
||||
throw std::invalid_argument("Parent node " + parent + " does not exist");
|
||||
}
|
||||
if (nodes.find(child) == nodes.end()) {
|
||||
throw std::invalid_argument("Child node " + child + " does not exist");
|
||||
}
|
||||
// Check if the edge is already in the graph
|
||||
for (auto& node : nodes[parent]->getChildren()) {
|
||||
if (node->getName() == child) {
|
||||
throw std::invalid_argument("Edge " + parent + " -> " + child + " already exists");
|
||||
}
|
||||
}
|
||||
// Temporarily add edge to check for cycles
|
||||
nodes[parent]->addChild(nodes[child].get());
|
||||
nodes[child]->addParent(nodes[parent].get());
|
||||
@@ -155,7 +163,7 @@ namespace bayesnet {
|
||||
classNumStates = nodes.at(className)->getNumStates();
|
||||
}
|
||||
// X comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
||||
void Network::fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
checkFitData(X.size(1), X.size(0), y.size(0), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
@@ -164,17 +172,17 @@ namespace bayesnet {
|
||||
for (int i = 0; i < featureNames.size(); ++i) {
|
||||
auto row_feature = X.index({ i, "..." });
|
||||
}
|
||||
completeFit(states, weights);
|
||||
completeFit(states, weights, smoothing);
|
||||
}
|
||||
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
||||
void Network::fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
checkFitData(samples.size(1), samples.size(0) - 1, samples.size(1), featureNames, className, states, weights);
|
||||
this->className = className;
|
||||
this->samples = samples;
|
||||
completeFit(states, weights);
|
||||
completeFit(states, weights, smoothing);
|
||||
}
|
||||
// input_data comes in nxm, where n is the number of features and m the number of samples
|
||||
void Network::fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights_, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states)
|
||||
void Network::fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights_, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing)
|
||||
{
|
||||
const torch::Tensor weights = torch::tensor(weights_, torch::kFloat64);
|
||||
checkFitData(input_data[0].size(), input_data.size(), labels.size(), featureNames, className, states, weights);
|
||||
@@ -185,17 +193,43 @@ namespace bayesnet {
|
||||
samples.index_put_({ i, "..." }, torch::tensor(input_data[i], torch::kInt32));
|
||||
}
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
completeFit(states, weights);
|
||||
completeFit(states, weights, smoothing);
|
||||
}
|
||||
void Network::completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights)
|
||||
void Network::completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing)
|
||||
{
|
||||
setStates(states);
|
||||
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
|
||||
std::vector<std::thread> threads;
|
||||
auto& semaphore = CountingSemaphore::getInstance();
|
||||
const double n_samples = static_cast<double>(samples.size(1));
|
||||
auto worker = [&](std::pair<const std::string, std::unique_ptr<Node>>& node, int i) {
|
||||
std::string threadName = "FitWorker-" + std::to_string(i);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
double numStates = static_cast<double>(node.second->getNumStates());
|
||||
double smoothing_factor;
|
||||
switch (smoothing) {
|
||||
case Smoothing_t::ORIGINAL:
|
||||
smoothing_factor = 1.0 / n_samples;
|
||||
break;
|
||||
case Smoothing_t::LAPLACE:
|
||||
smoothing_factor = 1.0;
|
||||
break;
|
||||
case Smoothing_t::CESTNIK:
|
||||
smoothing_factor = 1 / numStates;
|
||||
break;
|
||||
default:
|
||||
smoothing_factor = 0.0; // No smoothing
|
||||
}
|
||||
node.second->computeCPT(samples, features, smoothing_factor, weights);
|
||||
semaphore.release();
|
||||
};
|
||||
int i = 0;
|
||||
for (auto& node : nodes) {
|
||||
threads.emplace_back([this, &node, &weights]() {
|
||||
node.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||
});
|
||||
semaphore.acquire();
|
||||
threads.emplace_back(worker, std::ref(node), i++);
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
@@ -207,14 +241,38 @@ namespace bayesnet {
|
||||
if (!fitted) {
|
||||
throw std::logic_error("You must call fit() before calling predict()");
|
||||
}
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (samples.size(0) != features.size() - 1) {
|
||||
throw std::invalid_argument("(T) Sample size (" + std::to_string(samples.size(0)) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
torch::Tensor result;
|
||||
std::vector<std::thread> threads;
|
||||
std::mutex mtx;
|
||||
auto& semaphore = CountingSemaphore::getInstance();
|
||||
result = torch::zeros({ samples.size(1), classNumStates }, torch::kFloat64);
|
||||
for (int i = 0; i < samples.size(1); ++i) {
|
||||
const torch::Tensor sample = samples.index({ "...", i });
|
||||
auto worker = [&](const torch::Tensor& sample, int i) {
|
||||
std::string threadName = "PredictWorker-" + std::to_string(i);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
auto psample = predict_sample(sample);
|
||||
auto temp = torch::tensor(psample, torch::kFloat64);
|
||||
// result.index_put_({ i, "..." }, torch::tensor(predict_sample(sample), torch::kFloat64));
|
||||
result.index_put_({ i, "..." }, temp);
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
result.index_put_({ i, "..." }, temp);
|
||||
}
|
||||
semaphore.release();
|
||||
};
|
||||
for (int i = 0; i < samples.size(1); ++i) {
|
||||
semaphore.acquire();
|
||||
const torch::Tensor sample = samples.index({ "...", i });
|
||||
threads.emplace_back(worker, sample, i);
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
if (proba)
|
||||
return result;
|
||||
@@ -239,18 +297,38 @@ namespace bayesnet {
|
||||
if (!fitted) {
|
||||
throw std::logic_error("You must call fit() before calling predict()");
|
||||
}
|
||||
std::vector<int> predictions;
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (tsamples.size() != features.size() - 1) {
|
||||
throw std::invalid_argument("(V) Sample size (" + std::to_string(tsamples.size()) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
std::vector<int> predictions(tsamples[0].size(), 0);
|
||||
std::vector<int> sample;
|
||||
std::vector<std::thread> threads;
|
||||
auto& semaphore = CountingSemaphore::getInstance();
|
||||
auto worker = [&](const std::vector<int>& sample, const int row, int& prediction) {
|
||||
std::string threadName = "(V)PWorker-" + std::to_string(row);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
auto classProbabilities = predict_sample(sample);
|
||||
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
|
||||
int predictedClass = distance(classProbabilities.begin(), maxElem);
|
||||
prediction = predictedClass;
|
||||
semaphore.release();
|
||||
};
|
||||
for (int row = 0; row < tsamples[0].size(); ++row) {
|
||||
sample.clear();
|
||||
for (int col = 0; col < tsamples.size(); ++col) {
|
||||
sample.push_back(tsamples[col][row]);
|
||||
}
|
||||
std::vector<double> classProbabilities = predict_sample(sample);
|
||||
// Find the class with the maximum posterior probability
|
||||
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
|
||||
int predictedClass = distance(classProbabilities.begin(), maxElem);
|
||||
predictions.push_back(predictedClass);
|
||||
semaphore.acquire();
|
||||
threads.emplace_back(worker, sample, row, std::ref(predictions[row]));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
return predictions;
|
||||
}
|
||||
@@ -261,14 +339,36 @@ namespace bayesnet {
|
||||
if (!fitted) {
|
||||
throw std::logic_error("You must call fit() before calling predict_proba()");
|
||||
}
|
||||
std::vector<std::vector<double>> predictions;
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (tsamples.size() != features.size() - 1) {
|
||||
throw std::invalid_argument("(V) Sample size (" + std::to_string(tsamples.size()) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
std::vector<std::vector<double>> predictions(tsamples[0].size(), std::vector<double>(classNumStates, 0.0));
|
||||
std::vector<int> sample;
|
||||
std::vector<std::thread> threads;
|
||||
auto& semaphore = CountingSemaphore::getInstance();
|
||||
auto worker = [&](const std::vector<int>& sample, int row, std::vector<double>& predictions) {
|
||||
std::string threadName = "(V)PWorker-" + std::to_string(row);
|
||||
#if defined(__linux__)
|
||||
pthread_setname_np(pthread_self(), threadName.c_str());
|
||||
#else
|
||||
pthread_setname_np(threadName.c_str());
|
||||
#endif
|
||||
std::vector<double> classProbabilities = predict_sample(sample);
|
||||
predictions = classProbabilities;
|
||||
semaphore.release();
|
||||
};
|
||||
for (int row = 0; row < tsamples[0].size(); ++row) {
|
||||
sample.clear();
|
||||
for (int col = 0; col < tsamples.size(); ++col) {
|
||||
sample.push_back(tsamples[col][row]);
|
||||
}
|
||||
predictions.push_back(predict_sample(sample));
|
||||
semaphore.acquire();
|
||||
threads.emplace_back(worker, sample, row, std::ref(predictions[row]));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
return predictions;
|
||||
}
|
||||
@@ -286,11 +386,6 @@ namespace bayesnet {
|
||||
// Return 1xn std::vector of probabilities
|
||||
std::vector<double> Network::predict_sample(const std::vector<int>& sample)
|
||||
{
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (sample.size() != features.size() - 1) {
|
||||
throw std::invalid_argument("Sample size (" + std::to_string(sample.size()) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
std::map<std::string, int> evidence;
|
||||
for (int i = 0; i < sample.size(); ++i) {
|
||||
evidence[features[i]] = sample[i];
|
||||
@@ -300,44 +395,26 @@ namespace bayesnet {
|
||||
// Return 1xn std::vector of probabilities
|
||||
std::vector<double> Network::predict_sample(const torch::Tensor& sample)
|
||||
{
|
||||
// Ensure the sample size is equal to the number of features
|
||||
if (sample.size(0) != features.size() - 1) {
|
||||
throw std::invalid_argument("Sample size (" + std::to_string(sample.size(0)) +
|
||||
") does not match the number of features (" + std::to_string(features.size() - 1) + ")");
|
||||
}
|
||||
std::map<std::string, int> evidence;
|
||||
for (int i = 0; i < sample.size(0); ++i) {
|
||||
evidence[features[i]] = sample[i].item<int>();
|
||||
}
|
||||
return exactInference(evidence);
|
||||
}
|
||||
double Network::computeFactor(std::map<std::string, int>& completeEvidence)
|
||||
{
|
||||
double result = 1.0;
|
||||
for (auto& node : getNodes()) {
|
||||
result *= node.second->getFactorValue(completeEvidence);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
std::vector<double> Network::exactInference(std::map<std::string, int>& evidence)
|
||||
{
|
||||
std::vector<double> result(classNumStates, 0.0);
|
||||
std::vector<std::thread> threads;
|
||||
std::mutex mtx;
|
||||
auto completeEvidence = std::map<std::string, int>(evidence);
|
||||
for (int i = 0; i < classNumStates; ++i) {
|
||||
threads.emplace_back([this, &result, &evidence, i, &mtx]() {
|
||||
auto completeEvidence = std::map<std::string, int>(evidence);
|
||||
completeEvidence[getClassName()] = i;
|
||||
double factor = computeFactor(completeEvidence);
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
result[i] = factor;
|
||||
});
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
completeEvidence[getClassName()] = i;
|
||||
double partial = 1.0;
|
||||
for (auto& node : getNodes()) {
|
||||
partial *= node.second->getFactorValue(completeEvidence);
|
||||
}
|
||||
result[i] = partial;
|
||||
}
|
||||
// Normalize result
|
||||
double sum = accumulate(result.begin(), result.end(), 0.0);
|
||||
double sum = std::accumulate(result.begin(), result.end(), 0.0);
|
||||
transform(result.begin(), result.end(), result.begin(), [sum](const double& value) { return value / sum; });
|
||||
return result;
|
||||
}
|
||||
@@ -410,11 +487,7 @@ namespace bayesnet {
|
||||
result.insert(it2, fatherName);
|
||||
ending = false;
|
||||
}
|
||||
} else {
|
||||
throw std::logic_error("Error in topological sort because of node " + feature + " is not in result");
|
||||
}
|
||||
} else {
|
||||
throw std::logic_error("Error in topological sort because of node father " + fatherName + " is not in result");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -10,16 +10,16 @@
|
||||
#include <vector>
|
||||
#include "bayesnet/config.h"
|
||||
#include "Node.h"
|
||||
#include "Smoothing.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
class Network {
|
||||
public:
|
||||
Network();
|
||||
explicit Network(float);
|
||||
explicit Network(const Network&);
|
||||
~Network() = default;
|
||||
torch::Tensor& getSamples();
|
||||
float getMaxThreads() const;
|
||||
void addNode(const std::string&);
|
||||
void addEdge(const std::string&, const std::string&);
|
||||
std::map<std::string, std::unique_ptr<Node>>& getNodes();
|
||||
@@ -32,9 +32,9 @@ namespace bayesnet {
|
||||
/*
|
||||
Notice: Nodes have to be inserted in the same order as they are in the dataset, i.e., first node is first column and so on.
|
||||
*/
|
||||
void fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
||||
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
||||
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states);
|
||||
void fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
|
||||
std::vector<int> predict(const std::vector<std::vector<int>>&); // Return mx1 std::vector of predictions
|
||||
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
|
||||
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
|
||||
@@ -50,19 +50,16 @@ namespace bayesnet {
|
||||
private:
|
||||
std::map<std::string, std::unique_ptr<Node>> nodes;
|
||||
bool fitted;
|
||||
float maxThreads = 0.95;
|
||||
int classNumStates;
|
||||
std::vector<std::string> features; // Including classname
|
||||
std::string className;
|
||||
double laplaceSmoothing;
|
||||
torch::Tensor samples; // n+1xm tensor used to fit the model
|
||||
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
|
||||
std::vector<double> predict_sample(const std::vector<int>&);
|
||||
std::vector<double> predict_sample(const torch::Tensor&);
|
||||
std::vector<double> exactInference(std::map<std::string, int>&);
|
||||
double computeFactor(std::map<std::string, int>&);
|
||||
void completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
void checkFitData(int n_features, int n_samples, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
void completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing);
|
||||
void checkFitData(int n_samples, int n_features, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
|
||||
void setStates(const std::map<std::string, std::vector<int>>&);
|
||||
};
|
||||
}
|
||||
|
@@ -9,7 +9,7 @@
|
||||
namespace bayesnet {
|
||||
|
||||
Node::Node(const std::string& name)
|
||||
: name(name), numStates(0), cpTable(torch::Tensor()), parents(std::vector<Node*>()), children(std::vector<Node*>())
|
||||
: name(name)
|
||||
{
|
||||
}
|
||||
void Node::clear()
|
||||
@@ -90,52 +90,60 @@ namespace bayesnet {
|
||||
}
|
||||
return result;
|
||||
}
|
||||
void Node::computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights)
|
||||
void Node::computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double smoothing, const torch::Tensor& weights)
|
||||
{
|
||||
dimensions.clear();
|
||||
dimensions.reserve(parents.size() + 1);
|
||||
// Get dimensions of the CPT
|
||||
dimensions.push_back(numStates);
|
||||
transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
|
||||
|
||||
// Create a tensor of zeros with the dimensions of the CPT
|
||||
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
|
||||
// Fill table with counts
|
||||
auto pos = find(features.begin(), features.end(), name);
|
||||
if (pos == features.end()) {
|
||||
throw std::logic_error("Feature " + name + " not found in dataset");
|
||||
for (const auto& parent : parents) {
|
||||
dimensions.push_back(parent->getNumStates());
|
||||
}
|
||||
int name_index = pos - features.begin();
|
||||
//transform(parents.begin(), parents.end(), back_inserter(dimensions), [](const auto& parent) { return parent->getNumStates(); });
|
||||
// Create a tensor initialized with smoothing
|
||||
cpTable = torch::full(dimensions, smoothing, torch::kDouble);
|
||||
// Create a map for quick feature index lookup
|
||||
std::unordered_map<std::string, int> featureIndexMap;
|
||||
for (size_t i = 0; i < features.size(); ++i) {
|
||||
featureIndexMap[features[i]] = i;
|
||||
}
|
||||
// Fill table with counts
|
||||
// Get the index of this node's feature
|
||||
int name_index = featureIndexMap[name];
|
||||
// Get parent indices in dataset
|
||||
std::vector<int> parent_indices;
|
||||
parent_indices.reserve(parents.size());
|
||||
for (const auto& parent : parents) {
|
||||
parent_indices.push_back(featureIndexMap[parent->getName()]);
|
||||
}
|
||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||
for (int n_sample = 0; n_sample < dataset.size(1); ++n_sample) {
|
||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||
coordinates.push_back(dataset.index({ name_index, n_sample }));
|
||||
for (auto parent : parents) {
|
||||
pos = find(features.begin(), features.end(), parent->getName());
|
||||
if (pos == features.end()) {
|
||||
throw std::logic_error("Feature parent " + parent->getName() + " not found in dataset");
|
||||
}
|
||||
int parent_index = pos - features.begin();
|
||||
coordinates.push_back(dataset.index({ parent_index, n_sample }));
|
||||
coordinates.clear();
|
||||
auto sample = dataset.index({ "...", n_sample });
|
||||
coordinates.push_back(sample[name_index]);
|
||||
for (size_t i = 0; i < parent_indices.size(); ++i) {
|
||||
coordinates.push_back(sample[parent_indices[i]]);
|
||||
}
|
||||
// Increment the count of the corresponding coordinate
|
||||
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + weights.index({ n_sample }).item<double>());
|
||||
cpTable.index_put_({ coordinates }, weights.index({ n_sample }), true);
|
||||
}
|
||||
// Normalize the counts
|
||||
cpTable = cpTable / cpTable.sum(0);
|
||||
// Normalize the counts (dividing each row by the sum of the row)
|
||||
cpTable /= cpTable.sum(0, true);
|
||||
}
|
||||
float Node::getFactorValue(std::map<std::string, int>& evidence)
|
||||
double Node::getFactorValue(std::map<std::string, int>& evidence)
|
||||
{
|
||||
c10::List<c10::optional<at::Tensor>> coordinates;
|
||||
// following predetermined order of indices in the cpTable (see Node.h)
|
||||
coordinates.push_back(at::tensor(evidence[name]));
|
||||
transform(parents.begin(), parents.end(), std::back_inserter(coordinates), [&evidence](const auto& parent) { return at::tensor(evidence[parent->getName()]); });
|
||||
return cpTable.index({ coordinates }).item<float>();
|
||||
return cpTable.index({ coordinates }).item<double>();
|
||||
}
|
||||
std::vector<std::string> Node::graph(const std::string& className)
|
||||
{
|
||||
auto output = std::vector<std::string>();
|
||||
auto suffix = name == className ? ", fontcolor=red, fillcolor=lightblue, style=filled " : "";
|
||||
output.push_back(name + " [shape=circle" + suffix + "] \n");
|
||||
transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return name + " -> " + child->getName(); });
|
||||
output.push_back("\"" + name + "\" [shape=circle" + suffix + "] \n");
|
||||
transform(children.begin(), children.end(), back_inserter(output), [this](const auto& child) { return "\"" + name + "\" -> \"" + child->getName() + "\""; });
|
||||
return output;
|
||||
}
|
||||
}
|
@@ -12,14 +12,6 @@
|
||||
#include <torch/torch.h>
|
||||
namespace bayesnet {
|
||||
class Node {
|
||||
private:
|
||||
std::string name;
|
||||
std::vector<Node*> parents;
|
||||
std::vector<Node*> children;
|
||||
int numStates; // number of states of the variable
|
||||
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
|
||||
std::vector<int64_t> dimensions; // dimensions of the cpTable
|
||||
std::vector<std::pair<std::string, std::string>> combinations(const std::vector<std::string>&);
|
||||
public:
|
||||
explicit Node(const std::string&);
|
||||
void clear();
|
||||
@@ -31,12 +23,20 @@ namespace bayesnet {
|
||||
std::vector<Node*>& getParents();
|
||||
std::vector<Node*>& getChildren();
|
||||
torch::Tensor& getCPT();
|
||||
void computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double laplaceSmoothing, const torch::Tensor& weights);
|
||||
void computeCPT(const torch::Tensor& dataset, const std::vector<std::string>& features, const double smoothing, const torch::Tensor& weights);
|
||||
int getNumStates() const;
|
||||
void setNumStates(int);
|
||||
unsigned minFill();
|
||||
std::vector<std::string> graph(const std::string& clasName); // Returns a std::vector of std::strings representing the graph in graphviz format
|
||||
float getFactorValue(std::map<std::string, int>&);
|
||||
double getFactorValue(std::map<std::string, int>&);
|
||||
private:
|
||||
std::string name;
|
||||
std::vector<Node*> parents;
|
||||
std::vector<Node*> children;
|
||||
int numStates = 0; // number of states of the variable
|
||||
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
|
||||
std::vector<int64_t> dimensions; // dimensions of the cpTable
|
||||
std::vector<std::pair<std::string, std::string>> combinations(const std::vector<std::string>&);
|
||||
};
|
||||
}
|
||||
#endif
|
17
bayesnet/network/Smoothing.h
Normal file
17
bayesnet/network/Smoothing.h
Normal file
@@ -0,0 +1,17 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef SMOOTHING_H
|
||||
#define SMOOTHING_H
|
||||
namespace bayesnet {
|
||||
enum class Smoothing_t {
|
||||
NONE = -1,
|
||||
ORIGINAL = 0,
|
||||
LAPLACE,
|
||||
CESTNIK
|
||||
};
|
||||
}
|
||||
#endif // SMOOTHING_H
|
@@ -4,29 +4,79 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <map>
|
||||
#include <unordered_map>
|
||||
#include <tuple>
|
||||
#include "Mst.h"
|
||||
#include "BayesMetrics.h"
|
||||
namespace bayesnet {
|
||||
//samples is n+1xm tensor used to fit the model
|
||||
Metrics::Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
|
||||
: samples(samples)
|
||||
, features(features)
|
||||
, className(className)
|
||||
, features(features)
|
||||
, classNumStates(classNumStates)
|
||||
{
|
||||
}
|
||||
//samples is n+1xm std::vector used to fit the model
|
||||
Metrics::Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates)
|
||||
: features(features)
|
||||
: samples(torch::zeros({ static_cast<int>(vsamples.size() + 1), static_cast<int>(vsamples[0].size()) }, torch::kInt32))
|
||||
, className(className)
|
||||
, features(features)
|
||||
, classNumStates(classNumStates)
|
||||
, samples(torch::zeros({ static_cast<int>(vsamples.size() + 1), static_cast<int>(vsamples[0].size()) }, torch::kInt32))
|
||||
{
|
||||
for (int i = 0; i < vsamples.size(); ++i) {
|
||||
samples.index_put_({ i, "..." }, torch::tensor(vsamples[i], torch::kInt32));
|
||||
}
|
||||
samples.index_put_({ -1, "..." }, torch::tensor(labels, torch::kInt32));
|
||||
}
|
||||
std::vector<std::pair<int, int>> Metrics::SelectKPairs(const torch::Tensor& weights, std::vector<int>& featuresExcluded, bool ascending, unsigned k)
|
||||
{
|
||||
// Return the K Best features
|
||||
auto n = features.size();
|
||||
// compute scores
|
||||
scoresKPairs.clear();
|
||||
pairsKBest.clear();
|
||||
auto labels = samples.index({ -1, "..." });
|
||||
for (int i = 0; i < n - 1; ++i) {
|
||||
if (std::find(featuresExcluded.begin(), featuresExcluded.end(), i) != featuresExcluded.end()) {
|
||||
continue;
|
||||
}
|
||||
for (int j = i + 1; j < n; ++j) {
|
||||
if (std::find(featuresExcluded.begin(), featuresExcluded.end(), j) != featuresExcluded.end()) {
|
||||
continue;
|
||||
}
|
||||
auto key = std::make_pair(i, j);
|
||||
auto value = conditionalMutualInformation(samples.index({ i, "..." }), samples.index({ j, "..." }), labels, weights);
|
||||
scoresKPairs.push_back({ key, value });
|
||||
}
|
||||
}
|
||||
// sort scores
|
||||
if (ascending) {
|
||||
sort(scoresKPairs.begin(), scoresKPairs.end(), [](auto& a, auto& b)
|
||||
{ return a.second < b.second; });
|
||||
|
||||
} else {
|
||||
sort(scoresKPairs.begin(), scoresKPairs.end(), [](auto& a, auto& b)
|
||||
{ return a.second > b.second; });
|
||||
}
|
||||
for (auto& [pairs, score] : scoresKPairs) {
|
||||
pairsKBest.push_back(pairs);
|
||||
}
|
||||
if (k != 0 && k < pairsKBest.size()) {
|
||||
if (ascending) {
|
||||
int limit = pairsKBest.size() - k;
|
||||
for (int i = 0; i < limit; i++) {
|
||||
pairsKBest.erase(pairsKBest.begin());
|
||||
scoresKPairs.erase(scoresKPairs.begin());
|
||||
}
|
||||
} else {
|
||||
pairsKBest.resize(k);
|
||||
scoresKPairs.resize(k);
|
||||
}
|
||||
}
|
||||
return pairsKBest;
|
||||
}
|
||||
std::vector<int> Metrics::SelectKBestWeighted(const torch::Tensor& weights, bool ascending, unsigned k)
|
||||
{
|
||||
// Return the K Best features
|
||||
@@ -66,7 +116,10 @@ namespace bayesnet {
|
||||
{
|
||||
return scoresKBest;
|
||||
}
|
||||
|
||||
std::vector<std::pair<std::pair<int, int>, double>> Metrics::getScoresKPairs() const
|
||||
{
|
||||
return scoresKPairs;
|
||||
}
|
||||
torch::Tensor Metrics::conditionalEdge(const torch::Tensor& weights)
|
||||
{
|
||||
auto result = std::vector<double>();
|
||||
@@ -105,14 +158,8 @@ namespace bayesnet {
|
||||
}
|
||||
return matrix;
|
||||
}
|
||||
// To use in Python
|
||||
std::vector<float> Metrics::conditionalEdgeWeights(std::vector<float>& weights_)
|
||||
{
|
||||
const torch::Tensor weights = torch::tensor(weights_);
|
||||
auto matrix = conditionalEdge(weights);
|
||||
std::vector<float> v(matrix.data_ptr<float>(), matrix.data_ptr<float>() + matrix.numel());
|
||||
return v;
|
||||
}
|
||||
// Measured in nats (natural logarithm (log) base e)
|
||||
// Elements of Information Theory, 2nd Edition, Thomas M. Cover, Joy A. Thomas p. 14
|
||||
double Metrics::entropy(const torch::Tensor& feature, const torch::Tensor& weights)
|
||||
{
|
||||
torch::Tensor counts = feature.bincount(weights);
|
||||
@@ -151,10 +198,54 @@ namespace bayesnet {
|
||||
}
|
||||
return entropyValue;
|
||||
}
|
||||
// I(X;Y) = H(Y) - H(Y|X)
|
||||
// H(X|Y,C) = sum_{y in Y, c in C} p(x,c) H(X|Y=y,C=c)
|
||||
double Metrics::conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights)
|
||||
{
|
||||
// Ensure the tensors are of the same length
|
||||
assert(firstFeature.size(0) == secondFeature.size(0) && firstFeature.size(0) == labels.size(0) && firstFeature.size(0) == weights.size(0));
|
||||
// Convert tensors to vectors for easier processing
|
||||
auto firstFeatureData = firstFeature.accessor<int, 1>();
|
||||
auto secondFeatureData = secondFeature.accessor<int, 1>();
|
||||
auto labelsData = labels.accessor<int, 1>();
|
||||
auto weightsData = weights.accessor<double, 1>();
|
||||
int numSamples = firstFeature.size(0);
|
||||
// Maps for joint and marginal probabilities
|
||||
std::map<std::tuple<int, int, int>, double> jointCount;
|
||||
std::map<std::tuple<int, int>, double> marginalCount;
|
||||
// Compute joint and marginal counts
|
||||
for (int i = 0; i < numSamples; ++i) {
|
||||
auto keyJoint = std::make_tuple(firstFeatureData[i], labelsData[i], secondFeatureData[i]);
|
||||
auto keyMarginal = std::make_tuple(firstFeatureData[i], labelsData[i]);
|
||||
|
||||
jointCount[keyJoint] += weightsData[i];
|
||||
marginalCount[keyMarginal] += weightsData[i];
|
||||
}
|
||||
// Total weight sum
|
||||
double totalWeight = torch::sum(weights).item<double>();
|
||||
if (totalWeight == 0)
|
||||
return 0;
|
||||
// Compute the conditional entropy
|
||||
double conditionalEntropy = 0.0;
|
||||
for (const auto& [keyJoint, jointFreq] : jointCount) {
|
||||
auto [x, c, y] = keyJoint;
|
||||
auto keyMarginal = std::make_tuple(x, c);
|
||||
//double p_xc = marginalCount[keyMarginal] / totalWeight;
|
||||
double p_y_given_xc = jointFreq / marginalCount[keyMarginal];
|
||||
if (p_y_given_xc > 0) {
|
||||
conditionalEntropy -= (jointFreq / totalWeight) * std::log(p_y_given_xc);
|
||||
}
|
||||
}
|
||||
return conditionalEntropy;
|
||||
}
|
||||
// I(X;Y) = H(Y) - H(Y|X) ; I(X;Y) >= 0
|
||||
double Metrics::mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights)
|
||||
{
|
||||
return entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights);
|
||||
return std::max(entropy(firstFeature, weights) - conditionalEntropy(firstFeature, secondFeature, weights), 0.0);
|
||||
}
|
||||
// I(X;Y|C) = H(X|C) - H(X|Y,C) >= 0
|
||||
double Metrics::conditionalMutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights)
|
||||
{
|
||||
return std::max(conditionalEntropy(firstFeature, labels, weights) - conditionalEntropy(firstFeature, secondFeature, labels, weights), 0.0);
|
||||
}
|
||||
/*
|
||||
Compute the maximum spanning tree considering the weights as distances
|
||||
|
@@ -16,21 +16,26 @@ namespace bayesnet {
|
||||
Metrics(const torch::Tensor& samples, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
||||
Metrics(const std::vector<std::vector<int>>& vsamples, const std::vector<int>& labels, const std::vector<std::string>& features, const std::string& className, const int classNumStates);
|
||||
std::vector<int> SelectKBestWeighted(const torch::Tensor& weights, bool ascending = false, unsigned k = 0);
|
||||
std::vector<std::pair<int, int>> SelectKPairs(const torch::Tensor& weights, std::vector<int>& featuresExcluded, bool ascending = false, unsigned k = 0);
|
||||
std::vector<double> getScoresKBest() const;
|
||||
std::vector<std::pair<std::pair<int, int>, double>> getScoresKPairs() const;
|
||||
double mutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
||||
std::vector<float> conditionalEdgeWeights(std::vector<float>& weights); // To use in Python
|
||||
double conditionalMutualInformation(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights);
|
||||
torch::Tensor conditionalEdge(const torch::Tensor& weights);
|
||||
std::vector<std::pair<int, int>> maximumSpanningTree(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
|
||||
// Measured in nats (natural logarithm (log) base e)
|
||||
// Elements of Information Theory, 2nd Edition, Thomas M. Cover, Joy A. Thomas p. 14
|
||||
double entropy(const torch::Tensor& feature, const torch::Tensor& weights);
|
||||
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& labels, const torch::Tensor& weights);
|
||||
protected:
|
||||
torch::Tensor samples; // n+1xm torch::Tensor used to fit the model where samples[-1] is the y std::vector
|
||||
std::string className;
|
||||
double entropy(const torch::Tensor& feature, const torch::Tensor& weights);
|
||||
std::vector<std::string> features;
|
||||
template <class T>
|
||||
std::vector<std::pair<T, T>> doCombinations(const std::vector<T>& source)
|
||||
{
|
||||
std::vector<std::pair<T, T>> result;
|
||||
for (int i = 0; i < source.size(); ++i) {
|
||||
for (int i = 0; i < source.size() - 1; ++i) {
|
||||
T temp = source[i];
|
||||
for (int j = i + 1; j < source.size(); ++j) {
|
||||
result.push_back({ temp, source[j] });
|
||||
@@ -49,6 +54,8 @@ namespace bayesnet {
|
||||
int classNumStates = 0;
|
||||
std::vector<double> scoresKBest;
|
||||
std::vector<int> featuresKBest; // sorted indices of the features
|
||||
std::vector<std::pair<int, int>> pairsKBest; // sorted indices of the pairs
|
||||
std::vector<std::pair<std::pair<int, int>, double>> scoresKPairs;
|
||||
double conditionalEntropy(const torch::Tensor& firstFeature, const torch::Tensor& secondFeature, const torch::Tensor& weights);
|
||||
};
|
||||
}
|
||||
|
54
bayesnet/utils/CountingSemaphore.h
Normal file
54
bayesnet/utils/CountingSemaphore.h
Normal file
@@ -0,0 +1,54 @@
|
||||
#ifndef COUNTING_SEMAPHORE_H
|
||||
#define COUNTING_SEMAPHORE_H
|
||||
#include <mutex>
|
||||
#include <condition_variable>
|
||||
#include <algorithm>
|
||||
#include <thread>
|
||||
#include <mutex>
|
||||
#include <condition_variable>
|
||||
#include <thread>
|
||||
|
||||
class CountingSemaphore {
|
||||
public:
|
||||
static CountingSemaphore& getInstance()
|
||||
{
|
||||
static CountingSemaphore instance;
|
||||
return instance;
|
||||
}
|
||||
// Delete copy constructor and assignment operator
|
||||
CountingSemaphore(const CountingSemaphore&) = delete;
|
||||
CountingSemaphore& operator=(const CountingSemaphore&) = delete;
|
||||
void acquire()
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mtx_);
|
||||
cv_.wait(lock, [this]() { return count_ > 0; });
|
||||
--count_;
|
||||
}
|
||||
void release()
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mtx_);
|
||||
++count_;
|
||||
if (count_ <= max_count_) {
|
||||
cv_.notify_one();
|
||||
}
|
||||
}
|
||||
uint getCount() const
|
||||
{
|
||||
return count_;
|
||||
}
|
||||
uint getMaxCount() const
|
||||
{
|
||||
return max_count_;
|
||||
}
|
||||
private:
|
||||
CountingSemaphore()
|
||||
: max_count_(std::max(1u, static_cast<uint>(0.95 * std::thread::hardware_concurrency()))),
|
||||
count_(max_count_)
|
||||
{
|
||||
}
|
||||
std::mutex mtx_;
|
||||
std::condition_variable cv_;
|
||||
const uint max_count_;
|
||||
uint count_;
|
||||
};
|
||||
#endif
|
@@ -53,14 +53,14 @@ namespace bayesnet {
|
||||
}
|
||||
}
|
||||
|
||||
void insertElement(std::list<int>& variables, int variable)
|
||||
void MST::insertElement(std::list<int>& variables, int variable)
|
||||
{
|
||||
if (std::find(variables.begin(), variables.end(), variable) == variables.end()) {
|
||||
variables.push_front(variable);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::pair<int, int>> reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original)
|
||||
std::vector<std::pair<int, int>> MST::reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original)
|
||||
{
|
||||
// Create the edges of a DAG from the MST
|
||||
// replacing unordered_set with list because unordered_set cannot guarantee the order of the elements inserted
|
||||
|
@@ -14,6 +14,8 @@ namespace bayesnet {
|
||||
public:
|
||||
MST() = default;
|
||||
MST(const std::vector<std::string>& features, const torch::Tensor& weights, const int root);
|
||||
void insertElement(std::list<int>& variables, int variable);
|
||||
std::vector<std::pair<int, int>> reorder(std::vector<std::pair<float, std::pair<int, int>>> T, int root_original);
|
||||
std::vector<std::pair<int, int>> maximumSpanningTree();
|
||||
private:
|
||||
torch::Tensor weights;
|
||||
|
51
bayesnet/utils/TensorUtils.h
Normal file
51
bayesnet/utils/TensorUtils.h
Normal file
@@ -0,0 +1,51 @@
|
||||
#ifndef TENSORUTILS_H
|
||||
#define TENSORUTILS_H
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
namespace bayesnet {
|
||||
class TensorUtils {
|
||||
public:
|
||||
static std::vector<std::vector<int>> to_matrix(const torch::Tensor& X)
|
||||
{
|
||||
// Ensure tensor is contiguous in memory
|
||||
auto X_contig = X.contiguous();
|
||||
|
||||
// Access tensor data pointer directly
|
||||
auto data_ptr = X_contig.data_ptr<int>();
|
||||
|
||||
// IF you are using int64_t as the data type, use the following line
|
||||
//auto data_ptr = X_contig.data_ptr<int64_t>();
|
||||
//std::vector<std::vector<int64_t>> data(X.size(0), std::vector<int64_t>(X.size(1)));
|
||||
|
||||
// Prepare output container
|
||||
std::vector<std::vector<int>> data(X.size(0), std::vector<int>(X.size(1)));
|
||||
|
||||
// Fill the 2D vector in a single loop using pointer arithmetic
|
||||
int rows = X.size(0);
|
||||
int cols = X.size(1);
|
||||
for (int i = 0; i < rows; ++i) {
|
||||
std::copy(data_ptr + i * cols, data_ptr + (i + 1) * cols, data[i].begin());
|
||||
}
|
||||
return data;
|
||||
}
|
||||
template <typename T>
|
||||
static std::vector<T> to_vector(const torch::Tensor& y)
|
||||
{
|
||||
// Ensure the tensor is contiguous in memory
|
||||
auto y_contig = y.contiguous();
|
||||
|
||||
// Access data pointer
|
||||
auto data_ptr = y_contig.data_ptr<T>();
|
||||
|
||||
// Prepare output container
|
||||
std::vector<T> data(y.size(0));
|
||||
|
||||
// Copy data efficiently
|
||||
std::copy(data_ptr, data_ptr + y.size(0), data.begin());
|
||||
|
||||
return data;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#endif // TENSORUTILS_H
|
@@ -137,7 +137,7 @@
|
||||
|
||||
include(CMakeParseArguments)
|
||||
|
||||
option(CODE_COVERAGE_VERBOSE "Verbose information" FALSE)
|
||||
option(CODE_COVERAGE_VERBOSE "Verbose information" TRUE)
|
||||
|
||||
# Check prereqs
|
||||
find_program( GCOV_PATH gcov )
|
||||
@@ -160,7 +160,11 @@ foreach(LANG ${LANGUAGES})
|
||||
endif()
|
||||
elseif(NOT "${CMAKE_${LANG}_COMPILER_ID}" MATCHES "GNU"
|
||||
AND NOT "${CMAKE_${LANG}_COMPILER_ID}" MATCHES "(LLVM)?[Ff]lang")
|
||||
message(FATAL_ERROR "Compiler is not GNU or Flang! Aborting...")
|
||||
if ("${LANG}" MATCHES "CUDA")
|
||||
message(STATUS "Ignoring CUDA")
|
||||
else()
|
||||
message(FATAL_ERROR "Compiler is not GNU or Flang! Aborting...")
|
||||
endif()
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
|
@@ -1,36 +1,16 @@
|
||||
@startuml
|
||||
title clang-uml class diagram model
|
||||
class "bayesnet::Metrics" as C_0000736965376885623323
|
||||
class C_0000736965376885623323 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Metrics() = default : void
|
||||
+Metrics(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
||||
+Metrics(const std::vector<std::vector<int>> & vsamples, const std::vector<int> & labels, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
||||
..
|
||||
+SelectKBestWeighted(const torch::Tensor & weights, bool ascending = false, unsigned int k = 0) : std::vector<int>
|
||||
+conditionalEdge(const torch::Tensor & weights) : torch::Tensor
|
||||
+conditionalEdgeWeights(std::vector<float> & weights) : std::vector<float>
|
||||
#doCombinations<T>(const std::vector<T> & source) : std::vector<std::pair<T, T> >
|
||||
#entropy(const torch::Tensor & feature, const torch::Tensor & weights) : double
|
||||
+getScoresKBest() const : std::vector<double>
|
||||
+maximumSpanningTree(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : std::vector<std::pair<int,int>>
|
||||
+mutualInformation(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & weights) : double
|
||||
#pop_first<T>(std::vector<T> & v) : T
|
||||
__
|
||||
#className : std::string
|
||||
#features : std::vector<std::string>
|
||||
#samples : torch::Tensor
|
||||
}
|
||||
class "bayesnet::Node" as C_0001303524929067080934
|
||||
class C_0001303524929067080934 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::Node" as C_0010428199432536647474
|
||||
class C_0010428199432536647474 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Node(const std::string &) : void
|
||||
..
|
||||
+addChild(Node *) : void
|
||||
+addParent(Node *) : void
|
||||
+clear() : void
|
||||
+computeCPT(const torch::Tensor & dataset, const std::vector<std::string> & features, const double laplaceSmoothing, const torch::Tensor & weights) : void
|
||||
+computeCPT(const torch::Tensor & dataset, const std::vector<std::string> & features, const double smoothing, const torch::Tensor & weights) : void
|
||||
+getCPT() : torch::Tensor &
|
||||
+getChildren() : std::vector<Node *> &
|
||||
+getFactorValue(std::map<std::string,int> &) : float
|
||||
+getFactorValue(std::map<std::string,int> &) : double
|
||||
+getName() const : std::string
|
||||
+getNumStates() const : int
|
||||
+getParents() : std::vector<Node *> &
|
||||
@@ -41,24 +21,29 @@ class C_0001303524929067080934 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+setNumStates(int) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::Network" as C_0001186707649890429575
|
||||
class C_0001186707649890429575 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
enum "bayesnet::Smoothing_t" as C_0013393078277439680282
|
||||
enum C_0013393078277439680282 {
|
||||
NONE
|
||||
ORIGINAL
|
||||
LAPLACE
|
||||
CESTNIK
|
||||
}
|
||||
class "bayesnet::Network" as C_0009493661199123436603
|
||||
class C_0009493661199123436603 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Network() : void
|
||||
+Network(float) : void
|
||||
+Network(const Network &) : void
|
||||
+~Network() = default : void
|
||||
..
|
||||
+addEdge(const std::string &, const std::string &) : void
|
||||
+addNode(const std::string &) : void
|
||||
+dump_cpt() const : std::string
|
||||
+fit(const torch::Tensor & samples, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states) : void
|
||||
+fit(const torch::Tensor & X, const torch::Tensor & y, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states) : void
|
||||
+fit(const std::vector<std::vector<int>> & input_data, const std::vector<int> & labels, const std::vector<double> & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states) : void
|
||||
+fit(const torch::Tensor & samples, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : void
|
||||
+fit(const torch::Tensor & X, const torch::Tensor & y, const torch::Tensor & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : void
|
||||
+fit(const std::vector<std::vector<int>> & input_data, const std::vector<int> & labels, const std::vector<double> & weights, const std::vector<std::string> & featureNames, const std::string & className, const std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : void
|
||||
+getClassName() const : std::string
|
||||
+getClassNumStates() const : int
|
||||
+getEdges() const : std::vector<std::pair<std::string,std::string>>
|
||||
+getFeatures() const : std::vector<std::string>
|
||||
+getMaxThreads() const : float
|
||||
+getNodes() : std::map<std::string,std::unique_ptr<Node>> &
|
||||
+getNumEdges() const : int
|
||||
+getSamples() : torch::Tensor &
|
||||
@@ -76,21 +61,21 @@ class C_0001186707649890429575 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+version() : std::string
|
||||
__
|
||||
}
|
||||
enum "bayesnet::status_t" as C_0000738420730783851375
|
||||
enum C_0000738420730783851375 {
|
||||
enum "bayesnet::status_t" as C_0005907365846270811004
|
||||
enum C_0005907365846270811004 {
|
||||
NORMAL
|
||||
WARNING
|
||||
ERROR
|
||||
}
|
||||
abstract "bayesnet::BaseClassifier" as C_0000327135989451974539
|
||||
abstract C_0000327135989451974539 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
abstract "bayesnet::BaseClassifier" as C_0002617087915615796317
|
||||
abstract C_0002617087915615796317 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+~BaseClassifier() = default : void
|
||||
..
|
||||
{abstract} +dump_cpt() const = 0 : std::string
|
||||
{abstract} +fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) = 0 : BaseClassifier &
|
||||
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) = 0 : BaseClassifier &
|
||||
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights) = 0 : BaseClassifier &
|
||||
{abstract} +fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) = 0 : BaseClassifier &
|
||||
{abstract} +fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
||||
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
||||
{abstract} +fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
||||
{abstract} +fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) = 0 : BaseClassifier &
|
||||
{abstract} +getClassNumStates() const = 0 : int
|
||||
{abstract} +getNotes() const = 0 : std::vector<std::string>
|
||||
{abstract} +getNumberOfEdges() const = 0 : int
|
||||
@@ -109,12 +94,37 @@ abstract C_0000327135989451974539 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
{abstract} +setHyperparameters(const nlohmann::json & hyperparameters) = 0 : void
|
||||
{abstract} +show() const = 0 : std::vector<std::string>
|
||||
{abstract} +topological_order() = 0 : std::vector<std::string>
|
||||
{abstract} #trainModel(const torch::Tensor & weights) = 0 : void
|
||||
{abstract} #trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) = 0 : void
|
||||
__
|
||||
#notes : std::vector<std::string>
|
||||
#status : status_t
|
||||
#validHyperparameters : std::vector<std::string>
|
||||
}
|
||||
abstract "bayesnet::Classifier" as C_0002043996622900301644
|
||||
abstract C_0002043996622900301644 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::Metrics" as C_0005895723015084986588
|
||||
class C_0005895723015084986588 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Metrics() = default : void
|
||||
+Metrics(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
||||
+Metrics(const std::vector<std::vector<int>> & vsamples, const std::vector<int> & labels, const std::vector<std::string> & features, const std::string & className, const int classNumStates) : void
|
||||
..
|
||||
+SelectKBestWeighted(const torch::Tensor & weights, bool ascending = false, unsigned int k = 0) : std::vector<int>
|
||||
+SelectKPairs(const torch::Tensor & weights, std::vector<int> & featuresExcluded, bool ascending = false, unsigned int k = 0) : std::vector<std::pair<int,int>>
|
||||
+conditionalEdge(const torch::Tensor & weights) : torch::Tensor
|
||||
+conditionalEntropy(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & labels, const torch::Tensor & weights) : double
|
||||
+conditionalMutualInformation(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & labels, const torch::Tensor & weights) : double
|
||||
#doCombinations<T>(const std::vector<T> & source) : std::vector<std::pair<T, T> >
|
||||
+entropy(const torch::Tensor & feature, const torch::Tensor & weights) : double
|
||||
+getScoresKBest() const : std::vector<double>
|
||||
+getScoresKPairs() const : std::vector<std::pair<std::pair<int,int>,double>>
|
||||
+maximumSpanningTree(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : std::vector<std::pair<int,int>>
|
||||
+mutualInformation(const torch::Tensor & firstFeature, const torch::Tensor & secondFeature, const torch::Tensor & weights) : double
|
||||
#pop_first<T>(std::vector<T> & v) : T
|
||||
__
|
||||
#className : std::string
|
||||
#features : std::vector<std::string>
|
||||
#samples : torch::Tensor
|
||||
}
|
||||
abstract "bayesnet::Classifier" as C_0016351972983202413152
|
||||
abstract C_0016351972983202413152 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Classifier(Network model) : void
|
||||
+~Classifier() = default : void
|
||||
..
|
||||
@@ -123,10 +133,10 @@ abstract C_0002043996622900301644 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
{abstract} #buildModel(const torch::Tensor & weights) = 0 : void
|
||||
#checkFitParameters() : void
|
||||
+dump_cpt() const : std::string
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : Classifier &
|
||||
+fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : Classifier &
|
||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : Classifier &
|
||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights) : Classifier &
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : Classifier &
|
||||
+fit(std::vector<std::vector<int>> & X, std::vector<int> & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : Classifier &
|
||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : Classifier &
|
||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const torch::Tensor & weights, const Smoothing_t smoothing) : Classifier &
|
||||
+getClassNumStates() const : int
|
||||
+getNotes() const : std::vector<std::string>
|
||||
+getNumberOfEdges() const : int
|
||||
@@ -143,8 +153,9 @@ abstract C_0002043996622900301644 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
||||
+show() const : std::vector<std::string>
|
||||
+topological_order() : std::vector<std::string>
|
||||
#trainModel(const torch::Tensor & weights) : void
|
||||
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||
__
|
||||
#CLASSIFIER_NOT_FITTED : const std::string
|
||||
#className : std::string
|
||||
#dataset : torch::Tensor
|
||||
#features : std::vector<std::string>
|
||||
@@ -153,31 +164,10 @@ __
|
||||
#metrics : Metrics
|
||||
#model : Network
|
||||
#n : unsigned int
|
||||
#notes : std::vector<std::string>
|
||||
#states : std::map<std::string,std::vector<int>>
|
||||
#status : status_t
|
||||
}
|
||||
class "bayesnet::KDB" as C_0001112865019015250005
|
||||
class C_0001112865019015250005 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+KDB(int k, float theta = 0.03) : void
|
||||
+~KDB() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & name = "KDB") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::TAN" as C_0001760994424884323017
|
||||
class C_0001760994424884323017 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+TAN() : void
|
||||
+~TAN() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & name = "TAN") const : std::vector<std::string>
|
||||
__
|
||||
}
|
||||
class "bayesnet::Proposal" as C_0002219995589162262979
|
||||
class C_0002219995589162262979 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::Proposal" as C_0017759964713298103839
|
||||
class C_0017759964713298103839 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Proposal(torch::Tensor & pDataset, std::vector<std::string> & features_, std::string & className_) : void
|
||||
+~Proposal() : void
|
||||
..
|
||||
@@ -190,74 +180,140 @@ __
|
||||
#discretizers : map<std::string,mdlp::CPPFImdlp *>
|
||||
#y : torch::Tensor
|
||||
}
|
||||
class "bayesnet::TANLd" as C_0001668829096702037834
|
||||
class C_0001668829096702037834 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+TANLd() : void
|
||||
+~TANLd() = default : void
|
||||
class "bayesnet::KDB" as C_0008902920152122000044
|
||||
class C_0008902920152122000044 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+KDB(int k, float theta = 0.03) : void
|
||||
+~KDB() = default : void
|
||||
..
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : TANLd &
|
||||
+graph(const std::string & name = "TAN") const : std::vector<std::string>
|
||||
#add_m_edges(int idx, std::vector<int> & S, torch::Tensor & weights) : void
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & name = "KDB") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::KDBLd" as C_0002756018222998454702
|
||||
class C_0002756018222998454702 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+KDBLd(int k) : void
|
||||
+~KDBLd() = default : void
|
||||
..
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : KDBLd &
|
||||
+graph(const std::string & name = "KDB") const : std::vector<std::string>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
{static} +version() : std::string
|
||||
__
|
||||
}
|
||||
abstract "bayesnet::FeatureSelect" as C_0001695326193250580823
|
||||
abstract C_0001695326193250580823 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+FeatureSelect(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
||||
+~FeatureSelect() : void
|
||||
..
|
||||
#computeMeritCFS() : double
|
||||
#computeSuFeatures(const int a, const int b) : double
|
||||
#computeSuLabels() : void
|
||||
{abstract} +fit() = 0 : void
|
||||
+getFeatures() const : std::vector<int>
|
||||
+getScores() const : std::vector<double>
|
||||
#initialize() : void
|
||||
#symmetricalUncertainty(int a, int b) : double
|
||||
__
|
||||
#fitted : bool
|
||||
#maxFeatures : int
|
||||
#selectedFeatures : std::vector<int>
|
||||
#selectedScores : std::vector<double>
|
||||
#suFeatures : std::map<std::pair<int,int>,double>
|
||||
#suLabels : std::vector<double>
|
||||
#weights : const torch::Tensor &
|
||||
}
|
||||
class "bayesnet::CFS" as C_0000011627355691342494
|
||||
class C_0000011627355691342494 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+CFS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
||||
+~CFS() : void
|
||||
..
|
||||
+fit() : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::FCBF" as C_0000144682015341746929
|
||||
class C_0000144682015341746929 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+FCBF(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
||||
+~FCBF() : void
|
||||
..
|
||||
+fit() : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::IWSS" as C_0000008268514674428553
|
||||
class C_0000008268514674428553 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+IWSS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
||||
+~IWSS() : void
|
||||
..
|
||||
+fit() : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::SPODE" as C_0000512022813807538451
|
||||
class C_0000512022813807538451 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::SPODE" as C_0004096182510460307610
|
||||
class C_0004096182510460307610 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+SPODE(int root) : void
|
||||
+~SPODE() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & name = "SPODE") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::Ensemble" as C_0001985241386355360576
|
||||
class C_0001985241386355360576 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::SPODELd" as C_0010957245114062042836
|
||||
class C_0010957245114062042836 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+SPODELd(int root) : void
|
||||
+~SPODELd() = default : void
|
||||
..
|
||||
+commonFit(const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : SPODELd &
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : SPODELd &
|
||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : SPODELd &
|
||||
+graph(const std::string & name = "SPODELd") const : std::vector<std::string>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
{static} +version() : std::string
|
||||
__
|
||||
}
|
||||
class "bayesnet::SPnDE" as C_0016268916386101512883
|
||||
class C_0016268916386101512883 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+SPnDE(std::vector<int> parents) : void
|
||||
+~SPnDE() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & name = "SPnDE") const : std::vector<std::string>
|
||||
__
|
||||
}
|
||||
class "bayesnet::TAN" as C_0014087955399074584137
|
||||
class C_0014087955399074584137 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+TAN() : void
|
||||
+~TAN() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & name = "TAN") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::TANLd" as C_0013350632773616302678
|
||||
class C_0013350632773616302678 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+TANLd() : void
|
||||
+~TANLd() = default : void
|
||||
..
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states, const Smoothing_t smoothing) : TANLd &
|
||||
+graph(const std::string & name = "TANLd") const : std::vector<std::string>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
__
|
||||
}
|
||||
class "bayesnet::XSp2de" as C_0007640742442325463418
|
||||
class C_0007640742442325463418 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+XSp2de(int spIndex1, int spIndex2) : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+fitx(torch::Tensor & X, torch::Tensor & y, torch::Tensor & weights_, const Smoothing_t smoothing) : void
|
||||
+getClassNumStates() const : int
|
||||
+getNFeatures() const : int
|
||||
+getNumberOfEdges() const : int
|
||||
+getNumberOfNodes() const : int
|
||||
+getNumberOfStates() const : int
|
||||
+graph(const std::string & title) const : std::vector<std::string>
|
||||
+predict(const std::vector<int> & instance) const : int
|
||||
+predict(std::vector<std::vector<int>> & test_data) : std::vector<int>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
+predict_proba(const std::vector<int> & instance) const : std::vector<double>
|
||||
+predict_proba(std::vector<std::vector<int>> & test_data) : std::vector<std::vector<double>>
|
||||
+predict_proba(torch::Tensor & X) : torch::Tensor
|
||||
+score(std::vector<std::vector<int>> & X, std::vector<int> & y) : float
|
||||
+score(torch::Tensor & X, torch::Tensor & y) : float
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
+to_string() const : std::string
|
||||
#trainModel(const torch::Tensor & weights, const bayesnet::Smoothing_t smoothing) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::XSpode" as C_0015654113248178830206
|
||||
class C_0015654113248178830206 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+XSpode(int spIndex) : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+fitx(torch::Tensor & X, torch::Tensor & y, torch::Tensor & weights_, const Smoothing_t smoothing) : void
|
||||
+getClassNumStates() const : int
|
||||
+getNFeatures() const : int
|
||||
+getNumberOfEdges() const : int
|
||||
+getNumberOfNodes() const : int
|
||||
+getNumberOfStates() const : int
|
||||
+getStates() : std::vector<int> &
|
||||
+graph(const std::string & title) const : std::vector<std::string>
|
||||
+normalize(std::vector<double> & v) const : void
|
||||
+predict(const std::vector<int> & instance) const : int
|
||||
+predict(std::vector<std::vector<int>> & X) : std::vector<int>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
+predict_proba(std::vector<std::vector<int>> & X) : std::vector<std::vector<double>>
|
||||
+predict_proba(torch::Tensor & X) : torch::Tensor
|
||||
+predict_proba(const std::vector<int> & instance) const : std::vector<double>
|
||||
+score(torch::Tensor & X, torch::Tensor & y) : float
|
||||
+score(std::vector<std::vector<int>> & X, std::vector<int> & y) : float
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
+to_string() const : std::string
|
||||
#trainModel(const torch::Tensor & weights, const bayesnet::Smoothing_t smoothing) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::TensorUtils" as C_0010304804115474100819
|
||||
class C_0010304804115474100819 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
{static} +to_matrix(const torch::Tensor & X) : std::vector<std::vector<int>>
|
||||
{static} +to_vector<T>(const torch::Tensor & y) : std::vector<T>
|
||||
__
|
||||
}
|
||||
class "bayesnet::Ensemble" as C_0015881931090842884611
|
||||
class C_0015881931090842884611 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Ensemble(bool predict_voting = true) : void
|
||||
+~Ensemble() = default : void
|
||||
..
|
||||
@@ -280,7 +336,7 @@ class C_0001985241386355360576 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+score(torch::Tensor & X, torch::Tensor & y) : float
|
||||
+show() const : std::vector<std::string>
|
||||
+topological_order() : std::vector<std::string>
|
||||
#trainModel(const torch::Tensor & weights) : void
|
||||
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||
#voting(torch::Tensor & votes) : torch::Tensor
|
||||
__
|
||||
#models : std::vector<std::unique_ptr<Classifier>>
|
||||
@@ -288,41 +344,244 @@ __
|
||||
#predict_voting : bool
|
||||
#significanceModels : std::vector<double>
|
||||
}
|
||||
class "bayesnet::(anonymous_45089536)" as C_0001186398587753535158
|
||||
class C_0001186398587753535158 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::A2DE" as C_0001410789567057647859
|
||||
class C_0001410789567057647859 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+A2DE(bool predict_voting = false) : void
|
||||
+~A2DE() : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & title = "A2DE") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::AODE" as C_0006288892608974306258
|
||||
class C_0006288892608974306258 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+AODE(bool predict_voting = false) : void
|
||||
+~AODE() : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & title = "AODE") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::AODELd" as C_0003898187834670349177
|
||||
class C_0003898187834670349177 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+AODELd(bool predict_voting = true) : void
|
||||
+~AODELd() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+fit(torch::Tensor & X_, torch::Tensor & y_, const std::vector<std::string> & features_, const std::string & className_, std::map<std::string,std::vector<int>> & states_, const Smoothing_t smoothing) : AODELd &
|
||||
+graph(const std::string & name = "AODELd") const : std::vector<std::string>
|
||||
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||
__
|
||||
}
|
||||
abstract "bayesnet::FeatureSelect" as C_0013562609546004646591
|
||||
abstract C_0013562609546004646591 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+FeatureSelect(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
||||
+~FeatureSelect() : void
|
||||
..
|
||||
#computeMeritCFS() : double
|
||||
#computeSuFeatures(const int a, const int b) : double
|
||||
#computeSuLabels() : void
|
||||
{abstract} +fit() = 0 : void
|
||||
+getFeatures() const : std::vector<int>
|
||||
+getScores() const : std::vector<double>
|
||||
#initialize() : void
|
||||
#symmetricalUncertainty(int a, int b) : double
|
||||
__
|
||||
#fitted : bool
|
||||
#maxFeatures : int
|
||||
#selectedFeatures : std::vector<int>
|
||||
#selectedScores : std::vector<double>
|
||||
#suFeatures : std::map<std::pair<int,int>,double>
|
||||
#suLabels : std::vector<double>
|
||||
#weights : const torch::Tensor &
|
||||
}
|
||||
class "bayesnet::(anonymous_60357672)" as C_0006397015156479549697
|
||||
class C_0006397015156479549697 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+CFS : std::string
|
||||
+FCBF : std::string
|
||||
+IWSS : std::string
|
||||
}
|
||||
class "bayesnet::(anonymous_45090163)" as C_0000602764946063116717
|
||||
class C_0000602764946063116717 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::(anonymous_60358326)" as C_0013066254331852347304
|
||||
class C_0013066254331852347304 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+ASC : std::string
|
||||
+DESC : std::string
|
||||
+RAND : std::string
|
||||
}
|
||||
class "bayesnet::BoostAODE" as C_0000358471592399852382
|
||||
class C_0000358471592399852382 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::Boost" as C_0009819322948617116148
|
||||
class C_0009819322948617116148 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Boost(bool predict_voting = false) : void
|
||||
+~Boost() = default : void
|
||||
..
|
||||
#add_model(std::unique_ptr<Classifier> model, double significance) : void
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
#featureSelection(torch::Tensor & weights_) : std::vector<int>
|
||||
#remove_last_model() : void
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
#update_weights(torch::Tensor & ytrain, torch::Tensor & ypred, torch::Tensor & weights) : std::tuple<torch::Tensor &,double,bool>
|
||||
#update_weights_block(int k, torch::Tensor & ytrain, torch::Tensor & weights) : std::tuple<torch::Tensor &,double,bool>
|
||||
__
|
||||
#X_test : torch::Tensor
|
||||
#X_train : torch::Tensor
|
||||
#alpha_block : bool
|
||||
#bisection : bool
|
||||
#block_update : bool
|
||||
#convergence : bool
|
||||
#convergence_best : bool
|
||||
#featureSelector : FeatureSelect *
|
||||
#maxTolerance : int
|
||||
#order_algorithm : std::string
|
||||
#selectFeatures : bool
|
||||
#select_features_algorithm : std::string
|
||||
#threshold : double
|
||||
#y_test : torch::Tensor
|
||||
#y_train : torch::Tensor
|
||||
}
|
||||
class "bayesnet::BoostA2DE" as C_0000272055465257861326
|
||||
class C_0000272055465257861326 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+BoostA2DE(bool predict_voting = false) : void
|
||||
+~BoostA2DE() = default : void
|
||||
..
|
||||
+graph(const std::string & title = "BoostA2DE") const : std::vector<std::string>
|
||||
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::(anonymous_60425028)" as C_0000461144706913711531
|
||||
class C_0000461144706913711531 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+CFS : std::string
|
||||
+FCBF : std::string
|
||||
+IWSS : std::string
|
||||
}
|
||||
class "bayesnet::(anonymous_60425682)" as C_0014849589915262463453
|
||||
class C_0014849589915262463453 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+ASC : std::string
|
||||
+DESC : std::string
|
||||
+RAND : std::string
|
||||
}
|
||||
class "bayesnet::BoostAODE" as C_0002867772739198819061
|
||||
class C_0002867772739198819061 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+BoostAODE(bool predict_voting = false) : void
|
||||
+~BoostAODE() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & title = "BoostAODE") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters_) : void
|
||||
#trainModel(const torch::Tensor & weights) : void
|
||||
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::MST" as C_0000131858426172291700
|
||||
class C_0000131858426172291700 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::XBA2DE" as C_0008480973840710001141
|
||||
class C_0008480973840710001141 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+XBA2DE(bool predict_voting = false) : void
|
||||
+~XBA2DE() = default : void
|
||||
..
|
||||
+getVersion() : std::string
|
||||
+graph(const std::string & title = "XBA2DE") const : std::vector<std::string>
|
||||
#trainModel(const torch::Tensor & weights, const Smoothing_t smoothing) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::(anonymous_60414016)" as C_0008746994658440620779
|
||||
class C_0008746994658440620779 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+CFS : std::string
|
||||
+FCBF : std::string
|
||||
+IWSS : std::string
|
||||
}
|
||||
class "bayesnet::(anonymous_60414670)" as C_0008030559132212449356
|
||||
class C_0008030559132212449356 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+ASC : std::string
|
||||
+DESC : std::string
|
||||
+RAND : std::string
|
||||
}
|
||||
class "bayesnet::XBAODE" as C_0005198482342493966768
|
||||
class C_0005198482342493966768 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+XBAODE() : void
|
||||
..
|
||||
+getVersion() : std::string
|
||||
#trainModel(const torch::Tensor & weights, const bayesnet::Smoothing_t smoothing) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::CFS" as C_0000093018845530739957
|
||||
class C_0000093018845530739957 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+CFS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights) : void
|
||||
+~CFS() : void
|
||||
..
|
||||
+fit() : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::FCBF" as C_0001157456122733975432
|
||||
class C_0001157456122733975432 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+FCBF(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
||||
+~FCBF() : void
|
||||
..
|
||||
+fit() : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::IWSS" as C_0000066148117395428429
|
||||
class C_0000066148117395428429 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+IWSS(const torch::Tensor & samples, const std::vector<std::string> & features, const std::string & className, const int maxFeatures, const int classNumStates, const torch::Tensor & weights, const double threshold) : void
|
||||
+~IWSS() : void
|
||||
..
|
||||
+fit() : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::(anonymous_60810808)" as C_0012002108046995621535
|
||||
class C_0012002108046995621535 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+CFS : std::string
|
||||
+FCBF : std::string
|
||||
+IWSS : std::string
|
||||
}
|
||||
class "bayesnet::(anonymous_60811462)" as C_0004735044229422764240
|
||||
class C_0004735044229422764240 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+ASC : std::string
|
||||
+DESC : std::string
|
||||
+RAND : std::string
|
||||
}
|
||||
class "bayesnet::(anonymous_60804220)" as C_0007082100550474633839
|
||||
class C_0007082100550474633839 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+CFS : std::string
|
||||
+FCBF : std::string
|
||||
+IWSS : std::string
|
||||
}
|
||||
class "bayesnet::(anonymous_60804874)" as C_0003669430095936529648
|
||||
class C_0003669430095936529648 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+ASC : std::string
|
||||
+DESC : std::string
|
||||
+RAND : std::string
|
||||
}
|
||||
class "bayesnet::(anonymous_60809706)" as C_0012336951062058157227
|
||||
class C_0012336951062058157227 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+CFS : std::string
|
||||
+FCBF : std::string
|
||||
+IWSS : std::string
|
||||
}
|
||||
class "bayesnet::(anonymous_60810360)" as C_0002435892998884329673
|
||||
class C_0002435892998884329673 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
__
|
||||
+ASC : std::string
|
||||
+DESC : std::string
|
||||
+RAND : std::string
|
||||
}
|
||||
class "bayesnet::MST" as C_0001054867409378333602
|
||||
class C_0001054867409378333602 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+MST() = default : void
|
||||
+MST(const std::vector<std::string> & features, const torch::Tensor & weights, const int root) : void
|
||||
..
|
||||
+insertElement(std::list<int> & variables, int variable) : void
|
||||
+maximumSpanningTree() : std::vector<std::pair<int,int>>
|
||||
+reorder(std::vector<std::pair<float,std::pair<int,int>>> T, int root_original) : std::vector<std::pair<int,int>>
|
||||
__
|
||||
}
|
||||
class "bayesnet::Graph" as C_0001197041682001898467
|
||||
class C_0001197041682001898467 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
class "bayesnet::Graph" as C_0009576333456015187741
|
||||
class C_0009576333456015187741 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+Graph(int V) : void
|
||||
..
|
||||
+addEdge(int u, int v, float wt) : void
|
||||
@@ -332,81 +591,86 @@ class C_0001197041682001898467 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+union_set(int u, int v) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::KDBLd" as C_0000344502277874806837
|
||||
class C_0000344502277874806837 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+KDBLd(int k) : void
|
||||
+~KDBLd() = default : void
|
||||
..
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : KDBLd &
|
||||
+graph(const std::string & name = "KDB") const : std::vector<std::string>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
{static} +version() : std::string
|
||||
__
|
||||
}
|
||||
class "bayesnet::AODE" as C_0000786111576121788282
|
||||
class C_0000786111576121788282 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+AODE(bool predict_voting = false) : void
|
||||
+~AODE() : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+graph(const std::string & title = "AODE") const : std::vector<std::string>
|
||||
+setHyperparameters(const nlohmann::json & hyperparameters) : void
|
||||
__
|
||||
}
|
||||
class "bayesnet::SPODELd" as C_0001369655639257755354
|
||||
class C_0001369655639257755354 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+SPODELd(int root) : void
|
||||
+~SPODELd() = default : void
|
||||
..
|
||||
+commonFit(const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : SPODELd &
|
||||
+fit(torch::Tensor & X, torch::Tensor & y, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : SPODELd &
|
||||
+fit(torch::Tensor & dataset, const std::vector<std::string> & features, const std::string & className, std::map<std::string,std::vector<int>> & states) : SPODELd &
|
||||
+graph(const std::string & name = "SPODE") const : std::vector<std::string>
|
||||
+predict(torch::Tensor & X) : torch::Tensor
|
||||
{static} +version() : std::string
|
||||
__
|
||||
}
|
||||
class "bayesnet::AODELd" as C_0000487273479333793647
|
||||
class C_0000487273479333793647 #aliceblue;line:blue;line.dotted;text:blue {
|
||||
+AODELd(bool predict_voting = true) : void
|
||||
+~AODELd() = default : void
|
||||
..
|
||||
#buildModel(const torch::Tensor & weights) : void
|
||||
+fit(torch::Tensor & X_, torch::Tensor & y_, const std::vector<std::string> & features_, const std::string & className_, std::map<std::string,std::vector<int>> & states_) : AODELd &
|
||||
+graph(const std::string & name = "AODELd") const : std::vector<std::string>
|
||||
#trainModel(const torch::Tensor & weights) : void
|
||||
__
|
||||
}
|
||||
C_0001303524929067080934 --> C_0001303524929067080934 : -parents
|
||||
C_0001303524929067080934 --> C_0001303524929067080934 : -children
|
||||
C_0001186707649890429575 o-- C_0001303524929067080934 : -nodes
|
||||
C_0000327135989451974539 ..> C_0000738420730783851375
|
||||
C_0002043996622900301644 o-- C_0001186707649890429575 : #model
|
||||
C_0002043996622900301644 o-- C_0000736965376885623323 : #metrics
|
||||
C_0002043996622900301644 o-- C_0000738420730783851375 : #status
|
||||
C_0000327135989451974539 <|-- C_0002043996622900301644
|
||||
C_0002043996622900301644 <|-- C_0001112865019015250005
|
||||
C_0002043996622900301644 <|-- C_0001760994424884323017
|
||||
C_0002219995589162262979 ..> C_0001186707649890429575
|
||||
C_0001760994424884323017 <|-- C_0001668829096702037834
|
||||
C_0002219995589162262979 <|-- C_0001668829096702037834
|
||||
C_0000736965376885623323 <|-- C_0001695326193250580823
|
||||
C_0001695326193250580823 <|-- C_0000011627355691342494
|
||||
C_0001695326193250580823 <|-- C_0000144682015341746929
|
||||
C_0001695326193250580823 <|-- C_0000008268514674428553
|
||||
C_0002043996622900301644 <|-- C_0000512022813807538451
|
||||
C_0001985241386355360576 o-- C_0002043996622900301644 : #models
|
||||
C_0002043996622900301644 <|-- C_0001985241386355360576
|
||||
C_0000358471592399852382 --> C_0001695326193250580823 : -featureSelector
|
||||
C_0001985241386355360576 <|-- C_0000358471592399852382
|
||||
C_0001112865019015250005 <|-- C_0000344502277874806837
|
||||
C_0002219995589162262979 <|-- C_0000344502277874806837
|
||||
C_0001985241386355360576 <|-- C_0000786111576121788282
|
||||
C_0000512022813807538451 <|-- C_0001369655639257755354
|
||||
C_0002219995589162262979 <|-- C_0001369655639257755354
|
||||
C_0001985241386355360576 <|-- C_0000487273479333793647
|
||||
C_0002219995589162262979 <|-- C_0000487273479333793647
|
||||
C_0010428199432536647474 --> C_0010428199432536647474 : -parents
|
||||
C_0010428199432536647474 --> C_0010428199432536647474 : -children
|
||||
C_0009493661199123436603 ..> C_0013393078277439680282
|
||||
C_0009493661199123436603 o-- C_0010428199432536647474 : -nodes
|
||||
C_0002617087915615796317 ..> C_0013393078277439680282
|
||||
C_0002617087915615796317 o-- C_0005907365846270811004 : #status
|
||||
C_0016351972983202413152 ..> C_0013393078277439680282
|
||||
C_0016351972983202413152 ..> C_0005907365846270811004
|
||||
C_0016351972983202413152 o-- C_0009493661199123436603 : #model
|
||||
C_0016351972983202413152 o-- C_0005895723015084986588 : #metrics
|
||||
C_0002617087915615796317 <|-- C_0016351972983202413152
|
||||
|
||||
'Generated with clang-uml, version 0.5.1
|
||||
'LLVM version clang version 17.0.6 (Fedora 17.0.6-2.fc39)
|
||||
C_0017759964713298103839 ..> C_0009493661199123436603
|
||||
C_0016351972983202413152 <|-- C_0008902920152122000044
|
||||
|
||||
C_0002756018222998454702 ..> C_0013393078277439680282
|
||||
C_0008902920152122000044 <|-- C_0002756018222998454702
|
||||
|
||||
C_0017759964713298103839 <|-- C_0002756018222998454702
|
||||
|
||||
C_0016351972983202413152 <|-- C_0004096182510460307610
|
||||
|
||||
C_0010957245114062042836 ..> C_0013393078277439680282
|
||||
C_0004096182510460307610 <|-- C_0010957245114062042836
|
||||
|
||||
C_0017759964713298103839 <|-- C_0010957245114062042836
|
||||
|
||||
C_0016351972983202413152 <|-- C_0016268916386101512883
|
||||
|
||||
C_0016351972983202413152 <|-- C_0014087955399074584137
|
||||
|
||||
C_0013350632773616302678 ..> C_0013393078277439680282
|
||||
C_0014087955399074584137 <|-- C_0013350632773616302678
|
||||
|
||||
C_0017759964713298103839 <|-- C_0013350632773616302678
|
||||
|
||||
C_0007640742442325463418 ..> C_0013393078277439680282
|
||||
C_0016351972983202413152 <|-- C_0007640742442325463418
|
||||
|
||||
C_0015654113248178830206 ..> C_0013393078277439680282
|
||||
C_0016351972983202413152 <|-- C_0015654113248178830206
|
||||
|
||||
C_0015881931090842884611 ..> C_0013393078277439680282
|
||||
C_0015881931090842884611 o-- C_0016351972983202413152 : #models
|
||||
C_0016351972983202413152 <|-- C_0015881931090842884611
|
||||
|
||||
C_0015881931090842884611 <|-- C_0001410789567057647859
|
||||
|
||||
C_0015881931090842884611 <|-- C_0006288892608974306258
|
||||
|
||||
C_0003898187834670349177 ..> C_0013393078277439680282
|
||||
C_0015881931090842884611 <|-- C_0003898187834670349177
|
||||
|
||||
C_0017759964713298103839 <|-- C_0003898187834670349177
|
||||
|
||||
C_0005895723015084986588 <|-- C_0013562609546004646591
|
||||
|
||||
C_0009819322948617116148 ..> C_0016351972983202413152
|
||||
C_0009819322948617116148 --> C_0013562609546004646591 : #featureSelector
|
||||
C_0015881931090842884611 <|-- C_0009819322948617116148
|
||||
|
||||
C_0000272055465257861326 ..> C_0013393078277439680282
|
||||
C_0009819322948617116148 <|-- C_0000272055465257861326
|
||||
|
||||
C_0002867772739198819061 ..> C_0013393078277439680282
|
||||
C_0009819322948617116148 <|-- C_0002867772739198819061
|
||||
|
||||
C_0008480973840710001141 ..> C_0013393078277439680282
|
||||
C_0009819322948617116148 <|-- C_0008480973840710001141
|
||||
|
||||
C_0005198482342493966768 ..> C_0013393078277439680282
|
||||
C_0009819322948617116148 <|-- C_0005198482342493966768
|
||||
|
||||
C_0013562609546004646591 <|-- C_0000093018845530739957
|
||||
|
||||
C_0013562609546004646591 <|-- C_0001157456122733975432
|
||||
|
||||
C_0013562609546004646591 <|-- C_0000066148117395428429
|
||||
|
||||
|
||||
'Generated with clang-uml, version 0.5.5
|
||||
'LLVM version clang version 18.1.8 (Fedora 18.1.8-5.fc41)
|
||||
@enduml
|
||||
|
File diff suppressed because one or more lines are too long
Before Width: | Height: | Size: 139 KiB After Width: | Height: | Size: 229 KiB |
@@ -1,128 +1,314 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
|
||||
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||
<!-- Generated by graphviz version 8.1.0 (20230707.0739)
|
||||
<!-- Generated by graphviz version 12.1.0 (20240811.2233)
|
||||
-->
|
||||
<!-- Title: BayesNet Pages: 1 -->
|
||||
<svg width="1632pt" height="288pt"
|
||||
viewBox="0.00 0.00 1631.95 287.80" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||
<g id="graph0" class="graph" transform="scale(1 1) rotate(0) translate(4 283.8)">
|
||||
<svg width="3725pt" height="432pt"
|
||||
viewBox="0.00 0.00 3724.84 431.80" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||
<g id="graph0" class="graph" transform="scale(1 1) rotate(0) translate(4 427.8)">
|
||||
<title>BayesNet</title>
|
||||
<polygon fill="white" stroke="none" points="-4,4 -4,-283.8 1627.95,-283.8 1627.95,4 -4,4"/>
|
||||
<!-- node1 -->
|
||||
<polygon fill="white" stroke="none" points="-4,4 -4,-427.8 3720.84,-427.8 3720.84,4 -4,4"/>
|
||||
<!-- node0 -->
|
||||
<g id="node1" class="node">
|
||||
<title>node0</title>
|
||||
<polygon fill="none" stroke="black" points="1655.43,-398.35 1655.43,-413.26 1625.69,-423.8 1583.63,-423.8 1553.89,-413.26 1553.89,-398.35 1583.63,-387.8 1625.69,-387.8 1655.43,-398.35"/>
|
||||
<text text-anchor="middle" x="1604.66" y="-401.53" font-family="Times,serif" font-size="12.00">BayesNet</text>
|
||||
</g>
|
||||
<!-- node1 -->
|
||||
<g id="node2" class="node">
|
||||
<title>node1</title>
|
||||
<polygon fill="none" stroke="black" points="826.43,-254.35 826.43,-269.26 796.69,-279.8 754.63,-279.8 724.89,-269.26 724.89,-254.35 754.63,-243.8 796.69,-243.8 826.43,-254.35"/>
|
||||
<text text-anchor="middle" x="775.66" y="-257.53" font-family="Times,serif" font-size="12.00">BayesNet</text>
|
||||
<polygon fill="none" stroke="black" points="413.32,-257.8 372.39,-273.03 206.66,-279.8 40.93,-273.03 0,-257.8 114.69,-245.59 298.64,-245.59 413.32,-257.8"/>
|
||||
<text text-anchor="middle" x="206.66" y="-257.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libc10.so</text>
|
||||
</g>
|
||||
<!-- node0->node1 -->
|
||||
<g id="edge1" class="edge">
|
||||
<title>node0->node1</title>
|
||||
<path fill="none" stroke="black" d="M1553.59,-400.53C1451.65,-391.91 1215.69,-371.61 1017.66,-351.8 773.36,-327.37 488.07,-295.22 329.31,-277.01"/>
|
||||
<polygon fill="black" stroke="black" points="329.93,-273.56 319.6,-275.89 329.14,-280.51 329.93,-273.56"/>
|
||||
</g>
|
||||
<!-- node2 -->
|
||||
<g id="node2" class="node">
|
||||
<g id="node3" class="node">
|
||||
<title>node2</title>
|
||||
<polygon fill="none" stroke="black" points="413.32,-185.8 372.39,-201.03 206.66,-207.8 40.93,-201.03 0,-185.8 114.69,-173.59 298.64,-173.59 413.32,-185.8"/>
|
||||
<text text-anchor="middle" x="206.66" y="-185.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libc10.so</text>
|
||||
<polygon fill="none" stroke="black" points="894.21,-257.8 848.35,-273.03 662.66,-279.8 476.98,-273.03 431.12,-257.8 559.61,-245.59 765.71,-245.59 894.21,-257.8"/>
|
||||
<text text-anchor="middle" x="662.66" y="-257.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libc10_cuda.so</text>
|
||||
</g>
|
||||
<!-- node1->node2 -->
|
||||
<g id="edge1" class="edge">
|
||||
<title>node1->node2</title>
|
||||
<path fill="none" stroke="black" d="M724.41,-254.5C634.7,-243.46 447.04,-220.38 324.01,-205.24"/>
|
||||
<polygon fill="black" stroke="black" points="324.77,-201.69 314.42,-203.94 323.92,-208.63 324.77,-201.69"/>
|
||||
<!-- node0->node2 -->
|
||||
<g id="edge2" class="edge">
|
||||
<title>node0->node2</title>
|
||||
<path fill="none" stroke="black" d="M1555.34,-397.37C1408.12,-375.18 969.52,-309.06 767.13,-278.55"/>
|
||||
<polygon fill="black" stroke="black" points="767.81,-275.12 757.4,-277.09 766.77,-282.04 767.81,-275.12"/>
|
||||
</g>
|
||||
<!-- node3 -->
|
||||
<g id="node3" class="node">
|
||||
<g id="node4" class="node">
|
||||
<title>node3</title>
|
||||
<polygon fill="none" stroke="black" points="857.68,-185.8 815.49,-201.03 644.66,-207.8 473.84,-201.03 431.65,-185.8 549.86,-173.59 739.46,-173.59 857.68,-185.8"/>
|
||||
<text text-anchor="middle" x="644.66" y="-185.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libkineto.a</text>
|
||||
<polygon fill="none" stroke="black" points="1338.68,-257.8 1296.49,-273.03 1125.66,-279.8 954.84,-273.03 912.65,-257.8 1030.86,-245.59 1220.46,-245.59 1338.68,-257.8"/>
|
||||
<text text-anchor="middle" x="1125.66" y="-257.53" font-family="Times,serif" font-size="12.00">/home/rmontanana/Code/libtorch/lib/libkineto.a</text>
|
||||
</g>
|
||||
<!-- node1->node3 -->
|
||||
<g id="edge2" class="edge">
|
||||
<title>node1->node3</title>
|
||||
<path fill="none" stroke="black" d="M747.56,-245.79C729.21,-235.98 704.97,-223.03 684.63,-212.16"/>
|
||||
<polygon fill="black" stroke="black" points="686.47,-208.64 676,-207.02 683.17,-214.82 686.47,-208.64"/>
|
||||
<!-- node0->node3 -->
|
||||
<g id="edge3" class="edge">
|
||||
<title>node0->node3</title>
|
||||
<path fill="none" stroke="black" d="M1566.68,-393.54C1484.46,-369.17 1289.3,-311.32 1188.44,-281.41"/>
|
||||
<polygon fill="black" stroke="black" points="1189.53,-278.09 1178.95,-278.6 1187.54,-284.8 1189.53,-278.09"/>
|
||||
</g>
|
||||
<!-- node4 -->
|
||||
<g id="node4" class="node">
|
||||
<title>node4</title>
|
||||
<polygon fill="none" stroke="black" points="939.33,-182.35 939.33,-197.26 920.78,-207.8 894.54,-207.8 875.99,-197.26 875.99,-182.35 894.54,-171.8 920.78,-171.8 939.33,-182.35"/>
|
||||
<text text-anchor="middle" x="907.66" y="-185.53" font-family="Times,serif" font-size="12.00">mdlp</text>
|
||||
</g>
|
||||
<!-- node1->node4 -->
|
||||
<g id="edge3" class="edge">
|
||||
<title>node1->node4</title>
|
||||
<path fill="none" stroke="black" d="M803.66,-245.96C824.66,-234.82 853.45,-219.56 875.41,-207.91"/>
|
||||
<polygon fill="black" stroke="black" points="876.78,-210.61 883.97,-202.84 873.5,-204.43 876.78,-210.61"/>
|
||||
</g>
|
||||
<!-- node9 -->
|
||||
<g id="node5" class="node">
|
||||
<title>node9</title>
|
||||
<polygon fill="none" stroke="black" points="1107.74,-195.37 1032.66,-207.8 957.58,-195.37 986.26,-175.24 1079.06,-175.24 1107.74,-195.37"/>
|
||||
<text text-anchor="middle" x="1032.66" y="-185.53" font-family="Times,serif" font-size="12.00">torch_library</text>
|
||||
<title>node4</title>
|
||||
<polygon fill="none" stroke="black" points="1552.26,-257.8 1532.93,-273.03 1454.66,-279.8 1376.4,-273.03 1357.07,-257.8 1411.23,-245.59 1498.1,-245.59 1552.26,-257.8"/>
|
||||
<text text-anchor="middle" x="1454.66" y="-257.53" font-family="Times,serif" font-size="12.00">/usr/lib64/libcuda.so</text>
|
||||
</g>
|
||||
<!-- node1->node9 -->
|
||||
<!-- node0->node4 -->
|
||||
<g id="edge4" class="edge">
|
||||
<title>node1->node9</title>
|
||||
<path fill="none" stroke="black" d="M815.25,-250.02C860.25,-237.77 933.77,-217.74 982.68,-204.42"/>
|
||||
<polygon fill="black" stroke="black" points="983.3,-207.61 992.02,-201.6 981.46,-200.85 983.3,-207.61"/>
|
||||
</g>
|
||||
<!-- node10 -->
|
||||
<g id="node6" class="node">
|
||||
<title>node10</title>
|
||||
<polygon fill="none" stroke="black" points="1159.81,-113.8 1086.89,-129.03 791.66,-135.8 496.43,-129.03 423.52,-113.8 627.82,-101.59 955.5,-101.59 1159.81,-113.8"/>
|
||||
<text text-anchor="middle" x="791.66" y="-113.53" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch.so" -Wl,--as-needed</text>
|
||||
</g>
|
||||
<!-- node9->node10 -->
|
||||
<g id="edge5" class="edge">
|
||||
<title>node9->node10</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M985.62,-175.14C949.2,-164.56 898.31,-149.78 857.79,-138.01"/>
|
||||
<polygon fill="black" stroke="black" points="859.04,-134.44 848.46,-135.01 857.09,-141.16 859.04,-134.44"/>
|
||||
<title>node0->node4</title>
|
||||
<path fill="none" stroke="black" d="M1586.27,-387.39C1559.5,-362.05 1509.72,-314.92 1479.65,-286.46"/>
|
||||
<polygon fill="black" stroke="black" points="1482.13,-283.99 1472.46,-279.65 1477.31,-289.07 1482.13,-283.99"/>
|
||||
</g>
|
||||
<!-- node5 -->
|
||||
<g id="node7" class="node">
|
||||
<g id="node6" class="node">
|
||||
<title>node5</title>
|
||||
<polygon fill="none" stroke="black" points="1371.56,-123.37 1274.66,-135.8 1177.77,-123.37 1214.78,-103.24 1334.55,-103.24 1371.56,-123.37"/>
|
||||
<text text-anchor="middle" x="1274.66" y="-113.53" font-family="Times,serif" font-size="12.00">torch_cpu_library</text>
|
||||
<polygon fill="none" stroke="black" points="1873.26,-257.8 1843.23,-273.03 1721.66,-279.8 1600.09,-273.03 1570.06,-257.8 1654.19,-245.59 1789.13,-245.59 1873.26,-257.8"/>
|
||||
<text text-anchor="middle" x="1721.66" y="-257.53" font-family="Times,serif" font-size="12.00">/usr/local/cuda/lib64/libcudart.so</text>
|
||||
</g>
|
||||
<!-- node9->node5 -->
|
||||
<g id="edge6" class="edge">
|
||||
<title>node9->node5</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1079.61,-175.22C1120.66,-163.35 1180.2,-146.13 1222.68,-133.84"/>
|
||||
<polygon fill="black" stroke="black" points="1223.46,-136.97 1232.09,-130.83 1221.51,-130.24 1223.46,-136.97"/>
|
||||
<!-- node0->node5 -->
|
||||
<g id="edge5" class="edge">
|
||||
<title>node0->node5</title>
|
||||
<path fill="none" stroke="black" d="M1619.76,-387.77C1628.83,-377.46 1640.53,-363.98 1650.66,-351.8 1668.32,-330.59 1687.84,-306.03 1701.94,-288.1"/>
|
||||
<polygon fill="black" stroke="black" points="1704.43,-290.59 1707.84,-280.56 1698.92,-286.27 1704.43,-290.59"/>
|
||||
</g>
|
||||
<!-- node6 -->
|
||||
<g id="node8" class="node">
|
||||
<g id="node7" class="node">
|
||||
<title>node6</title>
|
||||
<polygon fill="none" stroke="black" points="1191.4,-27.9 1114.6,-43.12 803.66,-49.9 492.72,-43.12 415.93,-27.9 631.1,-15.68 976.22,-15.68 1191.4,-27.9"/>
|
||||
<text text-anchor="middle" x="803.66" y="-27.63" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch_cpu.so" -Wl,--as-needed</text>
|
||||
<polygon fill="none" stroke="black" points="2231.79,-257.8 2198.1,-273.03 2061.66,-279.8 1925.23,-273.03 1891.53,-257.8 1985.95,-245.59 2137.38,-245.59 2231.79,-257.8"/>
|
||||
<text text-anchor="middle" x="2061.66" y="-257.53" font-family="Times,serif" font-size="12.00">/usr/local/cuda/lib64/libnvToolsExt.so</text>
|
||||
</g>
|
||||
<!-- node5->node6 -->
|
||||
<g id="edge7" class="edge">
|
||||
<title>node5->node6</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1210.16,-105.31C1130.55,-91.13 994.37,-66.87 901.77,-50.38"/>
|
||||
<polygon fill="black" stroke="black" points="902.44,-46.77 891.98,-48.46 901.22,-53.66 902.44,-46.77"/>
|
||||
<!-- node0->node6 -->
|
||||
<g id="edge6" class="edge">
|
||||
<title>node0->node6</title>
|
||||
<path fill="none" stroke="black" d="M1642.06,-393.18C1721.31,-368.56 1906.71,-310.95 2002.32,-281.24"/>
|
||||
<polygon fill="black" stroke="black" points="2003.28,-284.61 2011.79,-278.3 2001.21,-277.92 2003.28,-284.61"/>
|
||||
</g>
|
||||
<!-- node7 -->
|
||||
<g id="node9" class="node">
|
||||
<g id="node8" class="node">
|
||||
<title>node7</title>
|
||||
<polygon fill="none" stroke="black" points="1339.72,-37.46 1274.66,-49.9 1209.61,-37.46 1234.46,-17.34 1314.87,-17.34 1339.72,-37.46"/>
|
||||
<text text-anchor="middle" x="1274.66" y="-27.63" font-family="Times,serif" font-size="12.00">caffe2::mkl</text>
|
||||
<polygon fill="none" stroke="black" points="2541.44,-257.8 2512.56,-273.03 2395.66,-279.8 2278.76,-273.03 2249.89,-257.8 2330.79,-245.59 2460.54,-245.59 2541.44,-257.8"/>
|
||||
<text text-anchor="middle" x="2395.66" y="-257.53" font-family="Times,serif" font-size="12.00">/usr/local/cuda/lib64/libnvrtc.so</text>
|
||||
</g>
|
||||
<!-- node5->node7 -->
|
||||
<g id="edge8" class="edge">
|
||||
<title>node5->node7</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1274.66,-102.95C1274.66,-91.56 1274.66,-75.07 1274.66,-60.95"/>
|
||||
<polygon fill="black" stroke="black" points="1278.16,-61.27 1274.66,-51.27 1271.16,-61.27 1278.16,-61.27"/>
|
||||
<!-- node0->node7 -->
|
||||
<g id="edge7" class="edge">
|
||||
<title>node0->node7</title>
|
||||
<path fill="none" stroke="black" d="M1651.19,-396.45C1780.36,-373.26 2144.76,-307.85 2311.05,-277.99"/>
|
||||
<polygon fill="black" stroke="black" points="2311.47,-281.47 2320.7,-276.26 2310.24,-274.58 2311.47,-281.47"/>
|
||||
</g>
|
||||
<!-- node8 -->
|
||||
<g id="node10" class="node">
|
||||
<g id="node9" class="node">
|
||||
<title>node8</title>
|
||||
<polygon fill="none" stroke="black" points="1623.95,-41.76 1490.66,-63.8 1357.37,-41.76 1408.28,-6.09 1573.04,-6.09 1623.95,-41.76"/>
|
||||
<text text-anchor="middle" x="1490.66" y="-34.75" font-family="Times,serif" font-size="12.00">dummy</text>
|
||||
<text text-anchor="middle" x="1490.66" y="-20.5" font-family="Times,serif" font-size="12.00">(protobuf::libprotobuf)</text>
|
||||
<polygon fill="none" stroke="black" points="1642.01,-326.35 1642.01,-341.26 1620.13,-351.8 1589.19,-351.8 1567.31,-341.26 1567.31,-326.35 1589.19,-315.8 1620.13,-315.8 1642.01,-326.35"/>
|
||||
<text text-anchor="middle" x="1604.66" y="-329.53" font-family="Times,serif" font-size="12.00">fimdlp</text>
|
||||
</g>
|
||||
<!-- node5->node8 -->
|
||||
<!-- node0->node8 -->
|
||||
<g id="edge8" class="edge">
|
||||
<title>node0->node8</title>
|
||||
<path fill="none" stroke="black" d="M1604.66,-387.5C1604.66,-380.21 1604.66,-371.53 1604.66,-363.34"/>
|
||||
<polygon fill="black" stroke="black" points="1608.16,-363.42 1604.66,-353.42 1601.16,-363.42 1608.16,-363.42"/>
|
||||
</g>
|
||||
<!-- node19 -->
|
||||
<g id="node10" class="node">
|
||||
<title>node19</title>
|
||||
<polygon fill="none" stroke="black" points="2709.74,-267.37 2634.66,-279.8 2559.58,-267.37 2588.26,-247.24 2681.06,-247.24 2709.74,-267.37"/>
|
||||
<text text-anchor="middle" x="2634.66" y="-257.53" font-family="Times,serif" font-size="12.00">torch_library</text>
|
||||
</g>
|
||||
<!-- node0->node19 -->
|
||||
<g id="edge29" class="edge">
|
||||
<title>node0->node19</title>
|
||||
<path fill="none" stroke="black" d="M1655.87,-399.32C1798.23,-383.79 2210.64,-336.94 2550.66,-279.8 2559.43,-278.33 2568.68,-276.62 2577.72,-274.86"/>
|
||||
<polygon fill="black" stroke="black" points="2578.38,-278.3 2587.5,-272.92 2577.01,-271.43 2578.38,-278.3"/>
|
||||
</g>
|
||||
<!-- node8->node1 -->
|
||||
<g id="edge9" class="edge">
|
||||
<title>node5->node8</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M1310.82,-102.76C1341.68,-90.77 1386.88,-73.21 1424.25,-58.7"/>
|
||||
<polygon fill="black" stroke="black" points="1425.01,-61.77 1433.06,-54.89 1422.47,-55.25 1425.01,-61.77"/>
|
||||
<title>node8->node1</title>
|
||||
<path fill="none" stroke="black" d="M1566.84,-331.58C1419.81,-326.72 872.06,-307.69 421.66,-279.8 401.07,-278.53 379.38,-277.02 358.03,-275.43"/>
|
||||
<polygon fill="black" stroke="black" points="358.3,-271.94 348.06,-274.67 357.77,-278.92 358.3,-271.94"/>
|
||||
</g>
|
||||
<!-- node8->node2 -->
|
||||
<g id="edge10" class="edge">
|
||||
<title>node8->node2</title>
|
||||
<path fill="none" stroke="black" d="M1566.86,-330C1445.11,-320.95 1057.97,-292.18 831.67,-275.36"/>
|
||||
<polygon fill="black" stroke="black" points="832.09,-271.89 821.86,-274.63 831.57,-278.87 832.09,-271.89"/>
|
||||
</g>
|
||||
<!-- node8->node3 -->
|
||||
<g id="edge11" class="edge">
|
||||
<title>node8->node3</title>
|
||||
<path fill="none" stroke="black" d="M1567.08,-327.31C1495.4,-316.84 1336.86,-293.67 1230.62,-278.14"/>
|
||||
<polygon fill="black" stroke="black" points="1231.44,-274.72 1221.04,-276.74 1230.42,-281.65 1231.44,-274.72"/>
|
||||
</g>
|
||||
<!-- node8->node4 -->
|
||||
<g id="edge12" class="edge">
|
||||
<title>node8->node4</title>
|
||||
<path fill="none" stroke="black" d="M1578.53,-320.61C1555.96,-310.08 1522.92,-294.66 1496.64,-282.4"/>
|
||||
<polygon fill="black" stroke="black" points="1498.12,-279.22 1487.58,-278.17 1495.16,-285.57 1498.12,-279.22"/>
|
||||
</g>
|
||||
<!-- node8->node5 -->
|
||||
<g id="edge13" class="edge">
|
||||
<title>node8->node5</title>
|
||||
<path fill="none" stroke="black" d="M1627.78,-318.97C1644.15,-309.18 1666.44,-295.84 1685.2,-284.62"/>
|
||||
<polygon fill="black" stroke="black" points="1686.83,-287.73 1693.61,-279.59 1683.23,-281.72 1686.83,-287.73"/>
|
||||
</g>
|
||||
<!-- node8->node6 -->
|
||||
<g id="edge14" class="edge">
|
||||
<title>node8->node6</title>
|
||||
<path fill="none" stroke="black" d="M1642.45,-327.02C1712.36,-316.31 1863.89,-293.1 1964.32,-277.71"/>
|
||||
<polygon fill="black" stroke="black" points="1964.84,-281.18 1974.2,-276.2 1963.78,-274.26 1964.84,-281.18"/>
|
||||
</g>
|
||||
<!-- node8->node7 -->
|
||||
<g id="edge15" class="edge">
|
||||
<title>node8->node7</title>
|
||||
<path fill="none" stroke="black" d="M1642.33,-330.01C1740.75,-322.64 2013.75,-301.7 2240.66,-279.8 2254.16,-278.5 2268.32,-277.06 2282.35,-275.58"/>
|
||||
<polygon fill="black" stroke="black" points="2282.49,-279.08 2292.06,-274.54 2281.75,-272.12 2282.49,-279.08"/>
|
||||
</g>
|
||||
<!-- node8->node19 -->
|
||||
<g id="edge16" class="edge">
|
||||
<title>node8->node19</title>
|
||||
<path fill="none" stroke="black" d="M1642.25,-332.63C1770.06,-331.64 2199.48,-324.94 2550.66,-279.8 2560.1,-278.59 2570.07,-276.92 2579.71,-275.1"/>
|
||||
<polygon fill="black" stroke="black" points="2580.21,-278.57 2589.34,-273.21 2578.86,-271.7 2580.21,-278.57"/>
|
||||
</g>
|
||||
<!-- node20 -->
|
||||
<g id="node11" class="node">
|
||||
<title>node20</title>
|
||||
<polygon fill="none" stroke="black" points="2606.81,-185.8 2533.89,-201.03 2238.66,-207.8 1943.43,-201.03 1870.52,-185.8 2074.82,-173.59 2402.5,-173.59 2606.81,-185.8"/>
|
||||
<text text-anchor="middle" x="2238.66" y="-185.53" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch.so" -Wl,--as-needed</text>
|
||||
</g>
|
||||
<!-- node19->node20 -->
|
||||
<g id="edge17" class="edge">
|
||||
<title>node19->node20</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2583.63,-250.21C2572.76,-248.03 2561.34,-245.79 2550.66,-243.8 2482.14,-231.05 2404.92,-217.93 2344.44,-207.93"/>
|
||||
<polygon fill="black" stroke="black" points="2345.28,-204.52 2334.84,-206.34 2344.14,-211.42 2345.28,-204.52"/>
|
||||
</g>
|
||||
<!-- node9 -->
|
||||
<g id="node12" class="node">
|
||||
<title>node9</title>
|
||||
<polygon fill="none" stroke="black" points="2542.56,-123.37 2445.66,-135.8 2348.77,-123.37 2385.78,-103.24 2505.55,-103.24 2542.56,-123.37"/>
|
||||
<text text-anchor="middle" x="2445.66" y="-113.53" font-family="Times,serif" font-size="12.00">torch_cpu_library</text>
|
||||
</g>
|
||||
<!-- node19->node9 -->
|
||||
<g id="edge18" class="edge">
|
||||
<title>node19->node9</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2635.72,-246.84C2636.4,-227.49 2634.61,-192.58 2615.66,-171.8 2601.13,-155.87 2551.93,-141.56 2510.18,-131.84"/>
|
||||
<polygon fill="black" stroke="black" points="2511.2,-128.48 2500.67,-129.68 2509.65,-135.31 2511.2,-128.48"/>
|
||||
</g>
|
||||
<!-- node13 -->
|
||||
<g id="node16" class="node">
|
||||
<title>node13</title>
|
||||
<polygon fill="none" stroke="black" points="3056.45,-195.37 2953.66,-207.8 2850.87,-195.37 2890.13,-175.24 3017.19,-175.24 3056.45,-195.37"/>
|
||||
<text text-anchor="middle" x="2953.66" y="-185.53" font-family="Times,serif" font-size="12.00">torch_cuda_library</text>
|
||||
</g>
|
||||
<!-- node19->node13 -->
|
||||
<g id="edge22" class="edge">
|
||||
<title>node19->node13</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2685.21,-249.71C2741.11,-237.45 2831.21,-217.67 2891.42,-204.46"/>
|
||||
<polygon fill="black" stroke="black" points="2891.8,-207.96 2900.82,-202.4 2890.3,-201.13 2891.8,-207.96"/>
|
||||
</g>
|
||||
<!-- node10 -->
|
||||
<g id="node13" class="node">
|
||||
<title>node10</title>
|
||||
<polygon fill="none" stroke="black" points="2362.4,-27.9 2285.6,-43.12 1974.66,-49.9 1663.72,-43.12 1586.93,-27.9 1802.1,-15.68 2147.22,-15.68 2362.4,-27.9"/>
|
||||
<text text-anchor="middle" x="1974.66" y="-27.63" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch_cpu.so" -Wl,--as-needed</text>
|
||||
</g>
|
||||
<!-- node9->node10 -->
|
||||
<g id="edge19" class="edge">
|
||||
<title>node9->node10</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2381.16,-105.31C2301.63,-91.15 2165.65,-66.92 2073.05,-50.43"/>
|
||||
<polygon fill="black" stroke="black" points="2073.93,-47.03 2063.48,-48.72 2072.71,-53.92 2073.93,-47.03"/>
|
||||
</g>
|
||||
<!-- node11 -->
|
||||
<g id="node14" class="node">
|
||||
<title>node11</title>
|
||||
<polygon fill="none" stroke="black" points="2510.72,-37.46 2445.66,-49.9 2380.61,-37.46 2405.46,-17.34 2485.87,-17.34 2510.72,-37.46"/>
|
||||
<text text-anchor="middle" x="2445.66" y="-27.63" font-family="Times,serif" font-size="12.00">caffe2::mkl</text>
|
||||
</g>
|
||||
<!-- node9->node11 -->
|
||||
<g id="edge20" class="edge">
|
||||
<title>node9->node11</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2445.66,-102.95C2445.66,-91.68 2445.66,-75.4 2445.66,-61.37"/>
|
||||
<polygon fill="black" stroke="black" points="2449.16,-61.78 2445.66,-51.78 2442.16,-61.78 2449.16,-61.78"/>
|
||||
</g>
|
||||
<!-- node12 -->
|
||||
<g id="node15" class="node">
|
||||
<title>node12</title>
|
||||
<polygon fill="none" stroke="black" points="2794.95,-41.76 2661.66,-63.8 2528.37,-41.76 2579.28,-6.09 2744.04,-6.09 2794.95,-41.76"/>
|
||||
<text text-anchor="middle" x="2661.66" y="-34.75" font-family="Times,serif" font-size="12.00">dummy</text>
|
||||
<text text-anchor="middle" x="2661.66" y="-20.5" font-family="Times,serif" font-size="12.00">(protobuf::libprotobuf)</text>
|
||||
</g>
|
||||
<!-- node9->node12 -->
|
||||
<g id="edge21" class="edge">
|
||||
<title>node9->node12</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2481.82,-102.76C2512.55,-90.82 2557.5,-73.36 2594.77,-58.89"/>
|
||||
<polygon fill="black" stroke="black" points="2595.6,-62.32 2603.65,-55.44 2593.06,-55.79 2595.6,-62.32"/>
|
||||
</g>
|
||||
<!-- node13->node9 -->
|
||||
<g id="edge28" class="edge">
|
||||
<title>node13->node9</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2880.59,-179.79C2799.97,-169.71 2666.42,-152.57 2551.66,-135.8 2540.2,-134.13 2528.06,-132.27 2516.24,-130.41"/>
|
||||
<polygon fill="black" stroke="black" points="2516.96,-126.98 2506.54,-128.86 2515.87,-133.89 2516.96,-126.98"/>
|
||||
</g>
|
||||
<!-- node14 -->
|
||||
<g id="node17" class="node">
|
||||
<title>node14</title>
|
||||
<polygon fill="none" stroke="black" points="3346.69,-113.8 3268.85,-129.03 2953.66,-135.8 2638.48,-129.03 2560.63,-113.8 2778.75,-101.59 3128.58,-101.59 3346.69,-113.8"/>
|
||||
<text text-anchor="middle" x="2953.66" y="-113.53" font-family="Times,serif" font-size="12.00">-Wl,--no-as-needed,"/home/rmontanana/Code/libtorch/lib/libtorch_cuda.so" -Wl,--as-needed</text>
|
||||
</g>
|
||||
<!-- node13->node14 -->
|
||||
<g id="edge23" class="edge">
|
||||
<title>node13->node14</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M2953.66,-174.97C2953.66,-167.13 2953.66,-157.01 2953.66,-147.53"/>
|
||||
<polygon fill="black" stroke="black" points="2957.16,-147.59 2953.66,-137.59 2950.16,-147.59 2957.16,-147.59"/>
|
||||
</g>
|
||||
<!-- node15 -->
|
||||
<g id="node18" class="node">
|
||||
<title>node15</title>
|
||||
<polygon fill="none" stroke="black" points="3514.74,-123.37 3439.66,-135.8 3364.58,-123.37 3393.26,-103.24 3486.06,-103.24 3514.74,-123.37"/>
|
||||
<text text-anchor="middle" x="3439.66" y="-113.53" font-family="Times,serif" font-size="12.00">torch::cudart</text>
|
||||
</g>
|
||||
<!-- node13->node15 -->
|
||||
<g id="edge24" class="edge">
|
||||
<title>node13->node15</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M3028.35,-180.51C3109.24,-171.17 3241.96,-154.78 3355.66,-135.8 3364.43,-134.34 3373.69,-132.63 3382.72,-130.88"/>
|
||||
<polygon fill="black" stroke="black" points="3383.38,-134.31 3392.51,-128.93 3382.02,-127.45 3383.38,-134.31"/>
|
||||
</g>
|
||||
<!-- node17 -->
|
||||
<g id="node20" class="node">
|
||||
<title>node17</title>
|
||||
<polygon fill="none" stroke="black" points="3716.84,-123.37 3624.66,-135.8 3532.48,-123.37 3567.69,-103.24 3681.63,-103.24 3716.84,-123.37"/>
|
||||
<text text-anchor="middle" x="3624.66" y="-113.53" font-family="Times,serif" font-size="12.00">torch::nvtoolsext</text>
|
||||
</g>
|
||||
<!-- node13->node17 -->
|
||||
<g id="edge26" class="edge">
|
||||
<title>node13->node17</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M3033.64,-183.25C3144.1,-175.14 3349.47,-158.53 3523.66,-135.8 3534.84,-134.35 3546.67,-132.57 3558.15,-130.72"/>
|
||||
<polygon fill="black" stroke="black" points="3558.68,-134.18 3567.98,-129.1 3557.54,-127.27 3558.68,-134.18"/>
|
||||
</g>
|
||||
<!-- node16 -->
|
||||
<g id="node19" class="node">
|
||||
<title>node16</title>
|
||||
<polygon fill="none" stroke="black" points="3510.78,-27.9 3496.7,-43.12 3439.66,-49.9 3382.63,-43.12 3368.54,-27.9 3408.01,-15.68 3471.31,-15.68 3510.78,-27.9"/>
|
||||
<text text-anchor="middle" x="3439.66" y="-27.63" font-family="Times,serif" font-size="12.00">CUDA::cudart</text>
|
||||
</g>
|
||||
<!-- node15->node16 -->
|
||||
<g id="edge25" class="edge">
|
||||
<title>node15->node16</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M3439.66,-102.95C3439.66,-91.68 3439.66,-75.4 3439.66,-61.37"/>
|
||||
<polygon fill="black" stroke="black" points="3443.16,-61.78 3439.66,-51.78 3436.16,-61.78 3443.16,-61.78"/>
|
||||
</g>
|
||||
<!-- node18 -->
|
||||
<g id="node21" class="node">
|
||||
<title>node18</title>
|
||||
<polygon fill="none" stroke="black" points="3714.32,-27.9 3696.56,-43.12 3624.66,-49.9 3552.77,-43.12 3535.01,-27.9 3584.76,-15.68 3664.56,-15.68 3714.32,-27.9"/>
|
||||
<text text-anchor="middle" x="3624.66" y="-27.63" font-family="Times,serif" font-size="12.00">CUDA::nvToolsExt</text>
|
||||
</g>
|
||||
<!-- node17->node18 -->
|
||||
<g id="edge27" class="edge">
|
||||
<title>node17->node18</title>
|
||||
<path fill="none" stroke="black" stroke-dasharray="5,2" d="M3624.66,-102.95C3624.66,-91.68 3624.66,-75.4 3624.66,-61.37"/>
|
||||
<polygon fill="black" stroke="black" points="3628.16,-61.78 3624.66,-51.78 3621.16,-61.78 3628.16,-61.78"/>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
||||
|
Before Width: | Height: | Size: 7.1 KiB After Width: | Height: | Size: 18 KiB |
@@ -5,6 +5,7 @@
|
||||
The hyperparameters defined in the algorithm are:
|
||||
|
||||
- ***bisection*** (*boolean*): If set to true allows the algorithm to add *k* models at once (as specified in the algorithm) to the ensemble. Default value: *true*.
|
||||
- ***bisection_best*** (*boolean*): If set to *true*, the algorithm will take as *priorAccuracy* the best accuracy computed. If set to *false⁺ it will take the last accuracy as *priorAccuracy*. Default value: *false*.
|
||||
|
||||
- ***order*** (*{"asc", "desc", "rand"}*): Sets the order (ascending/descending/random) in which dataset variables will be processed to choose the parents of the *SPODEs*. Default value: *"desc"*.
|
||||
|
||||
@@ -26,4 +27,4 @@ The hyperparameters defined in the algorithm are:
|
||||
|
||||
## Operation
|
||||
|
||||
### [Algorithm](./algorithm.md)
|
||||
### [Base Algorithm](./algorithm.md)
|
||||
|
2912
docs/Doxyfile.in
Normal file
2912
docs/Doxyfile.in
Normal file
File diff suppressed because it is too large
Load Diff
@@ -105,8 +105,7 @@
|
||||
|
||||
2. $numItemsPack \leftarrow 0$
|
||||
|
||||
10. If
|
||||
$(Vars == \emptyset \lor tolerance>maxTolerance) \; finished \leftarrow True$
|
||||
10. If $(Vars == \emptyset \lor tolerance>maxTolerance) \; finished \leftarrow True$
|
||||
|
||||
11. $lastAccuracy \leftarrow max(lastAccuracy, actualAccuracy)$
|
||||
|
||||
|
BIN
docs/logo_small.png
Normal file
BIN
docs/logo_small.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 11 KiB |
@@ -1,5 +0,0 @@
|
||||
filter = bayesnet/
|
||||
exclude-directories = build_debug/lib/
|
||||
exclude = bayesnet/utils/loguru.*
|
||||
print-summary = yes
|
||||
sort = uncovered-percent
|
@@ -1,168 +0,0 @@
|
||||
#include "ArffFiles.h"
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <map>
|
||||
#include <iostream>
|
||||
|
||||
ArffFiles::ArffFiles() = default;
|
||||
|
||||
std::vector<std::string> ArffFiles::getLines() const
|
||||
{
|
||||
return lines;
|
||||
}
|
||||
|
||||
unsigned long int ArffFiles::getSize() const
|
||||
{
|
||||
return lines.size();
|
||||
}
|
||||
|
||||
std::vector<std::pair<std::string, std::string>> ArffFiles::getAttributes() const
|
||||
{
|
||||
return attributes;
|
||||
}
|
||||
|
||||
std::string ArffFiles::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
|
||||
std::string ArffFiles::getClassType() const
|
||||
{
|
||||
return classType;
|
||||
}
|
||||
|
||||
std::vector<std::vector<float>>& ArffFiles::getX()
|
||||
{
|
||||
return X;
|
||||
}
|
||||
|
||||
std::vector<int>& ArffFiles::getY()
|
||||
{
|
||||
return y;
|
||||
}
|
||||
|
||||
void ArffFiles::loadCommon(std::string fileName)
|
||||
{
|
||||
std::ifstream file(fileName);
|
||||
if (!file.is_open()) {
|
||||
throw std::invalid_argument("Unable to open file");
|
||||
}
|
||||
std::string line;
|
||||
std::string keyword;
|
||||
std::string attribute;
|
||||
std::string type;
|
||||
std::string type_w;
|
||||
while (getline(file, line)) {
|
||||
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
|
||||
continue;
|
||||
}
|
||||
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
|
||||
std::stringstream ss(line);
|
||||
ss >> keyword >> attribute;
|
||||
type = "";
|
||||
while (ss >> type_w)
|
||||
type += type_w + " ";
|
||||
attributes.emplace_back(trim(attribute), trim(type));
|
||||
continue;
|
||||
}
|
||||
if (line[0] == '@') {
|
||||
continue;
|
||||
}
|
||||
lines.push_back(line);
|
||||
}
|
||||
file.close();
|
||||
if (attributes.empty())
|
||||
throw std::invalid_argument("No attributes found");
|
||||
}
|
||||
|
||||
void ArffFiles::load(const std::string& fileName, bool classLast)
|
||||
{
|
||||
int labelIndex;
|
||||
loadCommon(fileName);
|
||||
if (classLast) {
|
||||
className = std::get<0>(attributes.back());
|
||||
classType = std::get<1>(attributes.back());
|
||||
attributes.pop_back();
|
||||
labelIndex = static_cast<int>(attributes.size());
|
||||
} else {
|
||||
className = std::get<0>(attributes.front());
|
||||
classType = std::get<1>(attributes.front());
|
||||
attributes.erase(attributes.begin());
|
||||
labelIndex = 0;
|
||||
}
|
||||
generateDataset(labelIndex);
|
||||
}
|
||||
void ArffFiles::load(const std::string& fileName, const std::string& name)
|
||||
{
|
||||
int labelIndex;
|
||||
loadCommon(fileName);
|
||||
bool found = false;
|
||||
for (int i = 0; i < attributes.size(); ++i) {
|
||||
if (attributes[i].first == name) {
|
||||
className = std::get<0>(attributes[i]);
|
||||
classType = std::get<1>(attributes[i]);
|
||||
attributes.erase(attributes.begin() + i);
|
||||
labelIndex = i;
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
throw std::invalid_argument("Class name not found");
|
||||
}
|
||||
generateDataset(labelIndex);
|
||||
}
|
||||
|
||||
void ArffFiles::generateDataset(int labelIndex)
|
||||
{
|
||||
X = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(lines.size()));
|
||||
auto yy = std::vector<std::string>(lines.size(), "");
|
||||
auto removeLines = std::vector<int>(); // Lines with missing values
|
||||
for (size_t i = 0; i < lines.size(); i++) {
|
||||
std::stringstream ss(lines[i]);
|
||||
std::string value;
|
||||
int pos = 0;
|
||||
int xIndex = 0;
|
||||
while (getline(ss, value, ',')) {
|
||||
if (pos++ == labelIndex) {
|
||||
yy[i] = value;
|
||||
} else {
|
||||
if (value == "?") {
|
||||
X[xIndex++][i] = -1;
|
||||
removeLines.push_back(i);
|
||||
} else
|
||||
X[xIndex++][i] = stof(value);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (auto i : removeLines) {
|
||||
yy.erase(yy.begin() + i);
|
||||
for (auto& x : X) {
|
||||
x.erase(x.begin() + i);
|
||||
}
|
||||
}
|
||||
y = factorize(yy);
|
||||
}
|
||||
|
||||
std::string ArffFiles::trim(const std::string& source)
|
||||
{
|
||||
std::string s(source);
|
||||
s.erase(0, s.find_first_not_of(" '\n\r\t"));
|
||||
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
|
||||
return s;
|
||||
}
|
||||
|
||||
std::vector<int> ArffFiles::factorize(const std::vector<std::string>& labels_t)
|
||||
{
|
||||
std::vector<int> yy;
|
||||
yy.reserve(labels_t.size());
|
||||
std::map<std::string, int> labelMap;
|
||||
int i = 0;
|
||||
for (const std::string& label : labels_t) {
|
||||
if (labelMap.find(label) == labelMap.end()) {
|
||||
labelMap[label] = i++;
|
||||
}
|
||||
yy.push_back(labelMap[label]);
|
||||
}
|
||||
return yy;
|
||||
}
|
@@ -1,32 +0,0 @@
|
||||
#ifndef ARFFFILES_H
|
||||
#define ARFFFILES_H
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
class ArffFiles {
|
||||
private:
|
||||
std::vector<std::string> lines;
|
||||
std::vector<std::pair<std::string, std::string>> attributes;
|
||||
std::string className;
|
||||
std::string classType;
|
||||
std::vector<std::vector<float>> X;
|
||||
std::vector<int> y;
|
||||
void generateDataset(int);
|
||||
void loadCommon(std::string);
|
||||
public:
|
||||
ArffFiles();
|
||||
void load(const std::string&, bool = true);
|
||||
void load(const std::string&, const std::string&);
|
||||
std::vector<std::string> getLines() const;
|
||||
unsigned long int getSize() const;
|
||||
std::string getClassName() const;
|
||||
std::string getClassType() const;
|
||||
static std::string trim(const std::string&);
|
||||
std::vector<std::vector<float>>& getX();
|
||||
std::vector<int>& getY();
|
||||
std::vector<std::pair<std::string, std::string>> getAttributes() const;
|
||||
static std::vector<int> factorize(const std::vector<std::string>& labels_t);
|
||||
};
|
||||
|
||||
#endif
|
@@ -1 +0,0 @@
|
||||
add_library(ArffFiles ArffFiles.cc)
|
Submodule lib/catch2 deleted from bff6e35e2b
Submodule lib/folding deleted from 71d6055be4
1
lib/json
1
lib/json
Submodule lib/json deleted from 199dea11b1
1
lib/mdlp
1
lib/mdlp
Submodule lib/mdlp deleted from 5708dc3de9
@@ -4,17 +4,19 @@ project(bayesnet_sample)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
|
||||
find_package(Torch REQUIRED)
|
||||
find_library(BayesNet NAMES BayesNet.a libBayesNet.a REQUIRED)
|
||||
find_package(Torch CONFIG REQUIRED)
|
||||
find_package(bayesnet CONFIG REQUIRED)
|
||||
find_package(fimdlp CONFIG REQUIRED)
|
||||
find_package(folding CONFIG REQUIRED)
|
||||
find_package(arff-files CONFIG REQUIRED)
|
||||
find_package(nlohman_json CONFIG REQUIRED)
|
||||
|
||||
include_directories(
|
||||
lib/Files
|
||||
lib/mdlp
|
||||
lib/json/include
|
||||
/usr/local/include
|
||||
)
|
||||
|
||||
add_subdirectory(lib/Files)
|
||||
add_subdirectory(lib/mdlp)
|
||||
add_executable(bayesnet_sample sample.cc)
|
||||
target_link_libraries(bayesnet_sample ArffFiles mdlp "${TORCH_LIBRARIES}" "${BayesNet}")
|
||||
target_link_libraries(bayesnet_sample PRIVATE
|
||||
fimdlp::fimdlp
|
||||
arff-files::arff-files
|
||||
"${TORCH_LIBRARIES}"
|
||||
bayesnet::bayesnet
|
||||
nlohmann_json::nlohmann_json
|
||||
folding::folding
|
||||
)
|
||||
|
@@ -1,174 +0,0 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include "ArffFiles.h"
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <map>
|
||||
#include <iostream>
|
||||
|
||||
ArffFiles::ArffFiles() = default;
|
||||
|
||||
std::vector<std::string> ArffFiles::getLines() const
|
||||
{
|
||||
return lines;
|
||||
}
|
||||
|
||||
unsigned long int ArffFiles::getSize() const
|
||||
{
|
||||
return lines.size();
|
||||
}
|
||||
|
||||
std::vector<std::pair<std::string, std::string>> ArffFiles::getAttributes() const
|
||||
{
|
||||
return attributes;
|
||||
}
|
||||
|
||||
std::string ArffFiles::getClassName() const
|
||||
{
|
||||
return className;
|
||||
}
|
||||
|
||||
std::string ArffFiles::getClassType() const
|
||||
{
|
||||
return classType;
|
||||
}
|
||||
|
||||
std::vector<std::vector<float>>& ArffFiles::getX()
|
||||
{
|
||||
return X;
|
||||
}
|
||||
|
||||
std::vector<int>& ArffFiles::getY()
|
||||
{
|
||||
return y;
|
||||
}
|
||||
|
||||
void ArffFiles::loadCommon(std::string fileName)
|
||||
{
|
||||
std::ifstream file(fileName);
|
||||
if (!file.is_open()) {
|
||||
throw std::invalid_argument("Unable to open file");
|
||||
}
|
||||
std::string line;
|
||||
std::string keyword;
|
||||
std::string attribute;
|
||||
std::string type;
|
||||
std::string type_w;
|
||||
while (getline(file, line)) {
|
||||
if (line.empty() || line[0] == '%' || line == "\r" || line == " ") {
|
||||
continue;
|
||||
}
|
||||
if (line.find("@attribute") != std::string::npos || line.find("@ATTRIBUTE") != std::string::npos) {
|
||||
std::stringstream ss(line);
|
||||
ss >> keyword >> attribute;
|
||||
type = "";
|
||||
while (ss >> type_w)
|
||||
type += type_w + " ";
|
||||
attributes.emplace_back(trim(attribute), trim(type));
|
||||
continue;
|
||||
}
|
||||
if (line[0] == '@') {
|
||||
continue;
|
||||
}
|
||||
lines.push_back(line);
|
||||
}
|
||||
file.close();
|
||||
if (attributes.empty())
|
||||
throw std::invalid_argument("No attributes found");
|
||||
}
|
||||
|
||||
void ArffFiles::load(const std::string& fileName, bool classLast)
|
||||
{
|
||||
int labelIndex;
|
||||
loadCommon(fileName);
|
||||
if (classLast) {
|
||||
className = std::get<0>(attributes.back());
|
||||
classType = std::get<1>(attributes.back());
|
||||
attributes.pop_back();
|
||||
labelIndex = static_cast<int>(attributes.size());
|
||||
} else {
|
||||
className = std::get<0>(attributes.front());
|
||||
classType = std::get<1>(attributes.front());
|
||||
attributes.erase(attributes.begin());
|
||||
labelIndex = 0;
|
||||
}
|
||||
generateDataset(labelIndex);
|
||||
}
|
||||
void ArffFiles::load(const std::string& fileName, const std::string& name)
|
||||
{
|
||||
int labelIndex;
|
||||
loadCommon(fileName);
|
||||
bool found = false;
|
||||
for (int i = 0; i < attributes.size(); ++i) {
|
||||
if (attributes[i].first == name) {
|
||||
className = std::get<0>(attributes[i]);
|
||||
classType = std::get<1>(attributes[i]);
|
||||
attributes.erase(attributes.begin() + i);
|
||||
labelIndex = i;
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
throw std::invalid_argument("Class name not found");
|
||||
}
|
||||
generateDataset(labelIndex);
|
||||
}
|
||||
|
||||
void ArffFiles::generateDataset(int labelIndex)
|
||||
{
|
||||
X = std::vector<std::vector<float>>(attributes.size(), std::vector<float>(lines.size()));
|
||||
auto yy = std::vector<std::string>(lines.size(), "");
|
||||
auto removeLines = std::vector<int>(); // Lines with missing values
|
||||
for (size_t i = 0; i < lines.size(); i++) {
|
||||
std::stringstream ss(lines[i]);
|
||||
std::string value;
|
||||
int pos = 0;
|
||||
int xIndex = 0;
|
||||
while (getline(ss, value, ',')) {
|
||||
if (pos++ == labelIndex) {
|
||||
yy[i] = value;
|
||||
} else {
|
||||
if (value == "?") {
|
||||
X[xIndex++][i] = -1;
|
||||
removeLines.push_back(i);
|
||||
} else
|
||||
X[xIndex++][i] = stof(value);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (auto i : removeLines) {
|
||||
yy.erase(yy.begin() + i);
|
||||
for (auto& x : X) {
|
||||
x.erase(x.begin() + i);
|
||||
}
|
||||
}
|
||||
y = factorize(yy);
|
||||
}
|
||||
|
||||
std::string ArffFiles::trim(const std::string& source)
|
||||
{
|
||||
std::string s(source);
|
||||
s.erase(0, s.find_first_not_of(" '\n\r\t"));
|
||||
s.erase(s.find_last_not_of(" '\n\r\t") + 1);
|
||||
return s;
|
||||
}
|
||||
|
||||
std::vector<int> ArffFiles::factorize(const std::vector<std::string>& labels_t)
|
||||
{
|
||||
std::vector<int> yy;
|
||||
yy.reserve(labels_t.size());
|
||||
std::map<std::string, int> labelMap;
|
||||
int i = 0;
|
||||
for (const std::string& label : labels_t) {
|
||||
if (labelMap.find(label) == labelMap.end()) {
|
||||
labelMap[label] = i++;
|
||||
}
|
||||
yy.push_back(labelMap[label]);
|
||||
}
|
||||
return yy;
|
||||
}
|
@@ -1,38 +0,0 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef ARFFFILES_H
|
||||
#define ARFFFILES_H
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
class ArffFiles {
|
||||
private:
|
||||
std::vector<std::string> lines;
|
||||
std::vector<std::pair<std::string, std::string>> attributes;
|
||||
std::string className;
|
||||
std::string classType;
|
||||
std::vector<std::vector<float>> X;
|
||||
std::vector<int> y;
|
||||
void generateDataset(int);
|
||||
void loadCommon(std::string);
|
||||
public:
|
||||
ArffFiles();
|
||||
void load(const std::string&, bool = true);
|
||||
void load(const std::string&, const std::string&);
|
||||
std::vector<std::string> getLines() const;
|
||||
unsigned long int getSize() const;
|
||||
std::string getClassName() const;
|
||||
std::string getClassType() const;
|
||||
static std::string trim(const std::string&);
|
||||
std::vector<std::vector<float>>& getX();
|
||||
std::vector<int>& getY();
|
||||
std::vector<std::pair<std::string, std::string>> getAttributes() const;
|
||||
static std::vector<int> factorize(const std::vector<std::string>& labels_t);
|
||||
};
|
||||
|
||||
#endif
|
@@ -1 +0,0 @@
|
||||
add_library(ArffFiles ArffFiles.cc)
|
@@ -1,55 +0,0 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <utility>
|
||||
|
||||
#include <nlohmann/detail/abi_macros.hpp>
|
||||
#include <nlohmann/detail/conversions/from_json.hpp>
|
||||
#include <nlohmann/detail/conversions/to_json.hpp>
|
||||
#include <nlohmann/detail/meta/identity_tag.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
|
||||
/// @sa https://json.nlohmann.me/api/adl_serializer/
|
||||
template<typename ValueType, typename>
|
||||
struct adl_serializer
|
||||
{
|
||||
/// @brief convert a JSON value to any value type
|
||||
/// @sa https://json.nlohmann.me/api/adl_serializer/from_json/
|
||||
template<typename BasicJsonType, typename TargetType = ValueType>
|
||||
static auto from_json(BasicJsonType && j, TargetType& val) noexcept(
|
||||
noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), val)))
|
||||
-> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), val), void())
|
||||
{
|
||||
::nlohmann::from_json(std::forward<BasicJsonType>(j), val);
|
||||
}
|
||||
|
||||
/// @brief convert a JSON value to any value type
|
||||
/// @sa https://json.nlohmann.me/api/adl_serializer/from_json/
|
||||
template<typename BasicJsonType, typename TargetType = ValueType>
|
||||
static auto from_json(BasicJsonType && j) noexcept(
|
||||
noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {})))
|
||||
-> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {}))
|
||||
{
|
||||
return ::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {});
|
||||
}
|
||||
|
||||
/// @brief convert any value type to a JSON value
|
||||
/// @sa https://json.nlohmann.me/api/adl_serializer/to_json/
|
||||
template<typename BasicJsonType, typename TargetType = ValueType>
|
||||
static auto to_json(BasicJsonType& j, TargetType && val) noexcept(
|
||||
noexcept(::nlohmann::to_json(j, std::forward<TargetType>(val))))
|
||||
-> decltype(::nlohmann::to_json(j, std::forward<TargetType>(val)), void())
|
||||
{
|
||||
::nlohmann::to_json(j, std::forward<TargetType>(val));
|
||||
}
|
||||
};
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
@@ -1,103 +0,0 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint> // uint8_t, uint64_t
|
||||
#include <tuple> // tie
|
||||
#include <utility> // move
|
||||
|
||||
#include <nlohmann/detail/abi_macros.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
|
||||
/// @brief an internal type for a backed binary type
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/
|
||||
template<typename BinaryType>
|
||||
class byte_container_with_subtype : public BinaryType
|
||||
{
|
||||
public:
|
||||
using container_type = BinaryType;
|
||||
using subtype_type = std::uint64_t;
|
||||
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
|
||||
byte_container_with_subtype() noexcept(noexcept(container_type()))
|
||||
: container_type()
|
||||
{}
|
||||
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
|
||||
byte_container_with_subtype(const container_type& b) noexcept(noexcept(container_type(b)))
|
||||
: container_type(b)
|
||||
{}
|
||||
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
|
||||
byte_container_with_subtype(container_type&& b) noexcept(noexcept(container_type(std::move(b))))
|
||||
: container_type(std::move(b))
|
||||
{}
|
||||
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
|
||||
byte_container_with_subtype(const container_type& b, subtype_type subtype_) noexcept(noexcept(container_type(b)))
|
||||
: container_type(b)
|
||||
, m_subtype(subtype_)
|
||||
, m_has_subtype(true)
|
||||
{}
|
||||
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
|
||||
byte_container_with_subtype(container_type&& b, subtype_type subtype_) noexcept(noexcept(container_type(std::move(b))))
|
||||
: container_type(std::move(b))
|
||||
, m_subtype(subtype_)
|
||||
, m_has_subtype(true)
|
||||
{}
|
||||
|
||||
bool operator==(const byte_container_with_subtype& rhs) const
|
||||
{
|
||||
return std::tie(static_cast<const BinaryType&>(*this), m_subtype, m_has_subtype) ==
|
||||
std::tie(static_cast<const BinaryType&>(rhs), rhs.m_subtype, rhs.m_has_subtype);
|
||||
}
|
||||
|
||||
bool operator!=(const byte_container_with_subtype& rhs) const
|
||||
{
|
||||
return !(rhs == *this);
|
||||
}
|
||||
|
||||
/// @brief sets the binary subtype
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/set_subtype/
|
||||
void set_subtype(subtype_type subtype_) noexcept
|
||||
{
|
||||
m_subtype = subtype_;
|
||||
m_has_subtype = true;
|
||||
}
|
||||
|
||||
/// @brief return the binary subtype
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/subtype/
|
||||
constexpr subtype_type subtype() const noexcept
|
||||
{
|
||||
return m_has_subtype ? m_subtype : static_cast<subtype_type>(-1);
|
||||
}
|
||||
|
||||
/// @brief return whether the value has a subtype
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/has_subtype/
|
||||
constexpr bool has_subtype() const noexcept
|
||||
{
|
||||
return m_has_subtype;
|
||||
}
|
||||
|
||||
/// @brief clears the binary subtype
|
||||
/// @sa https://json.nlohmann.me/api/byte_container_with_subtype/clear_subtype/
|
||||
void clear_subtype() noexcept
|
||||
{
|
||||
m_subtype = 0;
|
||||
m_has_subtype = false;
|
||||
}
|
||||
|
||||
private:
|
||||
subtype_type m_subtype = 0;
|
||||
bool m_has_subtype = false;
|
||||
};
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
@@ -1,100 +0,0 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
// This file contains all macro definitions affecting or depending on the ABI
|
||||
|
||||
#ifndef JSON_SKIP_LIBRARY_VERSION_CHECK
|
||||
#if defined(NLOHMANN_JSON_VERSION_MAJOR) && defined(NLOHMANN_JSON_VERSION_MINOR) && defined(NLOHMANN_JSON_VERSION_PATCH)
|
||||
#if NLOHMANN_JSON_VERSION_MAJOR != 3 || NLOHMANN_JSON_VERSION_MINOR != 11 || NLOHMANN_JSON_VERSION_PATCH != 3
|
||||
#warning "Already included a different version of the library!"
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define NLOHMANN_JSON_VERSION_MAJOR 3 // NOLINT(modernize-macro-to-enum)
|
||||
#define NLOHMANN_JSON_VERSION_MINOR 11 // NOLINT(modernize-macro-to-enum)
|
||||
#define NLOHMANN_JSON_VERSION_PATCH 3 // NOLINT(modernize-macro-to-enum)
|
||||
|
||||
#ifndef JSON_DIAGNOSTICS
|
||||
#define JSON_DIAGNOSTICS 0
|
||||
#endif
|
||||
|
||||
#ifndef JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON
|
||||
#define JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON 0
|
||||
#endif
|
||||
|
||||
#if JSON_DIAGNOSTICS
|
||||
#define NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS _diag
|
||||
#else
|
||||
#define NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS
|
||||
#endif
|
||||
|
||||
#if JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON
|
||||
#define NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON _ldvcmp
|
||||
#else
|
||||
#define NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON
|
||||
#endif
|
||||
|
||||
#ifndef NLOHMANN_JSON_NAMESPACE_NO_VERSION
|
||||
#define NLOHMANN_JSON_NAMESPACE_NO_VERSION 0
|
||||
#endif
|
||||
|
||||
// Construct the namespace ABI tags component
|
||||
#define NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b) json_abi ## a ## b
|
||||
#define NLOHMANN_JSON_ABI_TAGS_CONCAT(a, b) \
|
||||
NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b)
|
||||
|
||||
#define NLOHMANN_JSON_ABI_TAGS \
|
||||
NLOHMANN_JSON_ABI_TAGS_CONCAT( \
|
||||
NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS, \
|
||||
NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON)
|
||||
|
||||
// Construct the namespace version component
|
||||
#define NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT_EX(major, minor, patch) \
|
||||
_v ## major ## _ ## minor ## _ ## patch
|
||||
#define NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT(major, minor, patch) \
|
||||
NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT_EX(major, minor, patch)
|
||||
|
||||
#if NLOHMANN_JSON_NAMESPACE_NO_VERSION
|
||||
#define NLOHMANN_JSON_NAMESPACE_VERSION
|
||||
#else
|
||||
#define NLOHMANN_JSON_NAMESPACE_VERSION \
|
||||
NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT(NLOHMANN_JSON_VERSION_MAJOR, \
|
||||
NLOHMANN_JSON_VERSION_MINOR, \
|
||||
NLOHMANN_JSON_VERSION_PATCH)
|
||||
#endif
|
||||
|
||||
// Combine namespace components
|
||||
#define NLOHMANN_JSON_NAMESPACE_CONCAT_EX(a, b) a ## b
|
||||
#define NLOHMANN_JSON_NAMESPACE_CONCAT(a, b) \
|
||||
NLOHMANN_JSON_NAMESPACE_CONCAT_EX(a, b)
|
||||
|
||||
#ifndef NLOHMANN_JSON_NAMESPACE
|
||||
#define NLOHMANN_JSON_NAMESPACE \
|
||||
nlohmann::NLOHMANN_JSON_NAMESPACE_CONCAT( \
|
||||
NLOHMANN_JSON_ABI_TAGS, \
|
||||
NLOHMANN_JSON_NAMESPACE_VERSION)
|
||||
#endif
|
||||
|
||||
#ifndef NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
#define NLOHMANN_JSON_NAMESPACE_BEGIN \
|
||||
namespace nlohmann \
|
||||
{ \
|
||||
inline namespace NLOHMANN_JSON_NAMESPACE_CONCAT( \
|
||||
NLOHMANN_JSON_ABI_TAGS, \
|
||||
NLOHMANN_JSON_NAMESPACE_VERSION) \
|
||||
{
|
||||
#endif
|
||||
|
||||
#ifndef NLOHMANN_JSON_NAMESPACE_END
|
||||
#define NLOHMANN_JSON_NAMESPACE_END \
|
||||
} /* namespace (inline namespace) NOLINT(readability/namespace) */ \
|
||||
} // namespace nlohmann
|
||||
#endif
|
@@ -1,497 +0,0 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm> // transform
|
||||
#include <array> // array
|
||||
#include <forward_list> // forward_list
|
||||
#include <iterator> // inserter, front_inserter, end
|
||||
#include <map> // map
|
||||
#include <string> // string
|
||||
#include <tuple> // tuple, make_tuple
|
||||
#include <type_traits> // is_arithmetic, is_same, is_enum, underlying_type, is_convertible
|
||||
#include <unordered_map> // unordered_map
|
||||
#include <utility> // pair, declval
|
||||
#include <valarray> // valarray
|
||||
|
||||
#include <nlohmann/detail/exceptions.hpp>
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
#include <nlohmann/detail/meta/cpp_future.hpp>
|
||||
#include <nlohmann/detail/meta/identity_tag.hpp>
|
||||
#include <nlohmann/detail/meta/std_fs.hpp>
|
||||
#include <nlohmann/detail/meta/type_traits.hpp>
|
||||
#include <nlohmann/detail/string_concat.hpp>
|
||||
#include <nlohmann/detail/value_t.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json(const BasicJsonType& j, typename std::nullptr_t& n)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_null()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be null, but is ", j.type_name()), &j));
|
||||
}
|
||||
n = nullptr;
|
||||
}
|
||||
|
||||
// overloads for basic_json template parameters
|
||||
template < typename BasicJsonType, typename ArithmeticType,
|
||||
enable_if_t < std::is_arithmetic<ArithmeticType>::value&&
|
||||
!std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
|
||||
int > = 0 >
|
||||
void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val)
|
||||
{
|
||||
switch (static_cast<value_t>(j))
|
||||
{
|
||||
case value_t::number_unsigned:
|
||||
{
|
||||
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
|
||||
break;
|
||||
}
|
||||
case value_t::number_integer:
|
||||
{
|
||||
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
|
||||
break;
|
||||
}
|
||||
case value_t::number_float:
|
||||
{
|
||||
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::null:
|
||||
case value_t::object:
|
||||
case value_t::array:
|
||||
case value_t::string:
|
||||
case value_t::boolean:
|
||||
case value_t::binary:
|
||||
case value_t::discarded:
|
||||
default:
|
||||
JSON_THROW(type_error::create(302, concat("type must be number, but is ", j.type_name()), &j));
|
||||
}
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_boolean()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be boolean, but is ", j.type_name()), &j));
|
||||
}
|
||||
b = *j.template get_ptr<const typename BasicJsonType::boolean_t*>();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
|
||||
}
|
||||
s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
|
||||
}
|
||||
|
||||
template <
|
||||
typename BasicJsonType, typename StringType,
|
||||
enable_if_t <
|
||||
std::is_assignable<StringType&, const typename BasicJsonType::string_t>::value
|
||||
&& is_detected_exact<typename BasicJsonType::string_t::value_type, value_type_t, StringType>::value
|
||||
&& !std::is_same<typename BasicJsonType::string_t, StringType>::value
|
||||
&& !is_json_ref<StringType>::value, int > = 0 >
|
||||
inline void from_json(const BasicJsonType& j, StringType& s)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
|
||||
}
|
||||
|
||||
s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val)
|
||||
{
|
||||
get_arithmetic_value(j, val);
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val)
|
||||
{
|
||||
get_arithmetic_value(j, val);
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val)
|
||||
{
|
||||
get_arithmetic_value(j, val);
|
||||
}
|
||||
|
||||
#if !JSON_DISABLE_ENUM_SERIALIZATION
|
||||
template<typename BasicJsonType, typename EnumType,
|
||||
enable_if_t<std::is_enum<EnumType>::value, int> = 0>
|
||||
inline void from_json(const BasicJsonType& j, EnumType& e)
|
||||
{
|
||||
typename std::underlying_type<EnumType>::type val;
|
||||
get_arithmetic_value(j, val);
|
||||
e = static_cast<EnumType>(val);
|
||||
}
|
||||
#endif // JSON_DISABLE_ENUM_SERIALIZATION
|
||||
|
||||
// forward_list doesn't have an insert method
|
||||
template<typename BasicJsonType, typename T, typename Allocator,
|
||||
enable_if_t<is_getable<BasicJsonType, T>::value, int> = 0>
|
||||
inline void from_json(const BasicJsonType& j, std::forward_list<T, Allocator>& l)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||
}
|
||||
l.clear();
|
||||
std::transform(j.rbegin(), j.rend(),
|
||||
std::front_inserter(l), [](const BasicJsonType & i)
|
||||
{
|
||||
return i.template get<T>();
|
||||
});
|
||||
}
|
||||
|
||||
// valarray doesn't have an insert method
|
||||
template<typename BasicJsonType, typename T,
|
||||
enable_if_t<is_getable<BasicJsonType, T>::value, int> = 0>
|
||||
inline void from_json(const BasicJsonType& j, std::valarray<T>& l)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||
}
|
||||
l.resize(j.size());
|
||||
std::transform(j.begin(), j.end(), std::begin(l),
|
||||
[](const BasicJsonType & elem)
|
||||
{
|
||||
return elem.template get<T>();
|
||||
});
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename T, std::size_t N>
|
||||
auto from_json(const BasicJsonType& j, T (&arr)[N]) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
|
||||
-> decltype(j.template get<T>(), void())
|
||||
{
|
||||
for (std::size_t i = 0; i < N; ++i)
|
||||
{
|
||||
arr[i] = j.at(i).template get<T>();
|
||||
}
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json_array_impl(const BasicJsonType& j, typename BasicJsonType::array_t& arr, priority_tag<3> /*unused*/)
|
||||
{
|
||||
arr = *j.template get_ptr<const typename BasicJsonType::array_t*>();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename T, std::size_t N>
|
||||
auto from_json_array_impl(const BasicJsonType& j, std::array<T, N>& arr,
|
||||
priority_tag<2> /*unused*/)
|
||||
-> decltype(j.template get<T>(), void())
|
||||
{
|
||||
for (std::size_t i = 0; i < N; ++i)
|
||||
{
|
||||
arr[i] = j.at(i).template get<T>();
|
||||
}
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename ConstructibleArrayType,
|
||||
enable_if_t<
|
||||
std::is_assignable<ConstructibleArrayType&, ConstructibleArrayType>::value,
|
||||
int> = 0>
|
||||
auto from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr, priority_tag<1> /*unused*/)
|
||||
-> decltype(
|
||||
arr.reserve(std::declval<typename ConstructibleArrayType::size_type>()),
|
||||
j.template get<typename ConstructibleArrayType::value_type>(),
|
||||
void())
|
||||
{
|
||||
using std::end;
|
||||
|
||||
ConstructibleArrayType ret;
|
||||
ret.reserve(j.size());
|
||||
std::transform(j.begin(), j.end(),
|
||||
std::inserter(ret, end(ret)), [](const BasicJsonType & i)
|
||||
{
|
||||
// get<BasicJsonType>() returns *this, this won't call a from_json
|
||||
// method when value_type is BasicJsonType
|
||||
return i.template get<typename ConstructibleArrayType::value_type>();
|
||||
});
|
||||
arr = std::move(ret);
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename ConstructibleArrayType,
|
||||
enable_if_t<
|
||||
std::is_assignable<ConstructibleArrayType&, ConstructibleArrayType>::value,
|
||||
int> = 0>
|
||||
inline void from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr,
|
||||
priority_tag<0> /*unused*/)
|
||||
{
|
||||
using std::end;
|
||||
|
||||
ConstructibleArrayType ret;
|
||||
std::transform(
|
||||
j.begin(), j.end(), std::inserter(ret, end(ret)),
|
||||
[](const BasicJsonType & i)
|
||||
{
|
||||
// get<BasicJsonType>() returns *this, this won't call a from_json
|
||||
// method when value_type is BasicJsonType
|
||||
return i.template get<typename ConstructibleArrayType::value_type>();
|
||||
});
|
||||
arr = std::move(ret);
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename ConstructibleArrayType,
|
||||
enable_if_t <
|
||||
is_constructible_array_type<BasicJsonType, ConstructibleArrayType>::value&&
|
||||
!is_constructible_object_type<BasicJsonType, ConstructibleArrayType>::value&&
|
||||
!is_constructible_string_type<BasicJsonType, ConstructibleArrayType>::value&&
|
||||
!std::is_same<ConstructibleArrayType, typename BasicJsonType::binary_t>::value&&
|
||||
!is_basic_json<ConstructibleArrayType>::value,
|
||||
int > = 0 >
|
||||
auto from_json(const BasicJsonType& j, ConstructibleArrayType& arr)
|
||||
-> decltype(from_json_array_impl(j, arr, priority_tag<3> {}),
|
||||
j.template get<typename ConstructibleArrayType::value_type>(),
|
||||
void())
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||
}
|
||||
|
||||
from_json_array_impl(j, arr, priority_tag<3> {});
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename T, std::size_t... Idx >
|
||||
std::array<T, sizeof...(Idx)> from_json_inplace_array_impl(BasicJsonType&& j,
|
||||
identity_tag<std::array<T, sizeof...(Idx)>> /*unused*/, index_sequence<Idx...> /*unused*/)
|
||||
{
|
||||
return { { std::forward<BasicJsonType>(j).at(Idx).template get<T>()... } };
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename T, std::size_t N >
|
||||
auto from_json(BasicJsonType&& j, identity_tag<std::array<T, N>> tag)
|
||||
-> decltype(from_json_inplace_array_impl(std::forward<BasicJsonType>(j), tag, make_index_sequence<N> {}))
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||
}
|
||||
|
||||
return from_json_inplace_array_impl(std::forward<BasicJsonType>(j), tag, make_index_sequence<N> {});
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json(const BasicJsonType& j, typename BasicJsonType::binary_t& bin)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_binary()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be binary, but is ", j.type_name()), &j));
|
||||
}
|
||||
|
||||
bin = *j.template get_ptr<const typename BasicJsonType::binary_t*>();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename ConstructibleObjectType,
|
||||
enable_if_t<is_constructible_object_type<BasicJsonType, ConstructibleObjectType>::value, int> = 0>
|
||||
inline void from_json(const BasicJsonType& j, ConstructibleObjectType& obj)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_object()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be object, but is ", j.type_name()), &j));
|
||||
}
|
||||
|
||||
ConstructibleObjectType ret;
|
||||
const auto* inner_object = j.template get_ptr<const typename BasicJsonType::object_t*>();
|
||||
using value_type = typename ConstructibleObjectType::value_type;
|
||||
std::transform(
|
||||
inner_object->begin(), inner_object->end(),
|
||||
std::inserter(ret, ret.begin()),
|
||||
[](typename BasicJsonType::object_t::value_type const & p)
|
||||
{
|
||||
return value_type(p.first, p.second.template get<typename ConstructibleObjectType::mapped_type>());
|
||||
});
|
||||
obj = std::move(ret);
|
||||
}
|
||||
|
||||
// overload for arithmetic types, not chosen for basic_json template arguments
|
||||
// (BooleanType, etc..); note: Is it really necessary to provide explicit
|
||||
// overloads for boolean_t etc. in case of a custom BooleanType which is not
|
||||
// an arithmetic type?
|
||||
template < typename BasicJsonType, typename ArithmeticType,
|
||||
enable_if_t <
|
||||
std::is_arithmetic<ArithmeticType>::value&&
|
||||
!std::is_same<ArithmeticType, typename BasicJsonType::number_unsigned_t>::value&&
|
||||
!std::is_same<ArithmeticType, typename BasicJsonType::number_integer_t>::value&&
|
||||
!std::is_same<ArithmeticType, typename BasicJsonType::number_float_t>::value&&
|
||||
!std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
|
||||
int > = 0 >
|
||||
inline void from_json(const BasicJsonType& j, ArithmeticType& val)
|
||||
{
|
||||
switch (static_cast<value_t>(j))
|
||||
{
|
||||
case value_t::number_unsigned:
|
||||
{
|
||||
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
|
||||
break;
|
||||
}
|
||||
case value_t::number_integer:
|
||||
{
|
||||
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
|
||||
break;
|
||||
}
|
||||
case value_t::number_float:
|
||||
{
|
||||
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
|
||||
break;
|
||||
}
|
||||
case value_t::boolean:
|
||||
{
|
||||
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::boolean_t*>());
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::null:
|
||||
case value_t::object:
|
||||
case value_t::array:
|
||||
case value_t::string:
|
||||
case value_t::binary:
|
||||
case value_t::discarded:
|
||||
default:
|
||||
JSON_THROW(type_error::create(302, concat("type must be number, but is ", j.type_name()), &j));
|
||||
}
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename... Args, std::size_t... Idx>
|
||||
std::tuple<Args...> from_json_tuple_impl_base(BasicJsonType&& j, index_sequence<Idx...> /*unused*/)
|
||||
{
|
||||
return std::make_tuple(std::forward<BasicJsonType>(j).at(Idx).template get<Args>()...);
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, class A1, class A2 >
|
||||
std::pair<A1, A2> from_json_tuple_impl(BasicJsonType&& j, identity_tag<std::pair<A1, A2>> /*unused*/, priority_tag<0> /*unused*/)
|
||||
{
|
||||
return {std::forward<BasicJsonType>(j).at(0).template get<A1>(),
|
||||
std::forward<BasicJsonType>(j).at(1).template get<A2>()};
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename A1, typename A2>
|
||||
inline void from_json_tuple_impl(BasicJsonType&& j, std::pair<A1, A2>& p, priority_tag<1> /*unused*/)
|
||||
{
|
||||
p = from_json_tuple_impl(std::forward<BasicJsonType>(j), identity_tag<std::pair<A1, A2>> {}, priority_tag<0> {});
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename... Args>
|
||||
std::tuple<Args...> from_json_tuple_impl(BasicJsonType&& j, identity_tag<std::tuple<Args...>> /*unused*/, priority_tag<2> /*unused*/)
|
||||
{
|
||||
return from_json_tuple_impl_base<BasicJsonType, Args...>(std::forward<BasicJsonType>(j), index_sequence_for<Args...> {});
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename... Args>
|
||||
inline void from_json_tuple_impl(BasicJsonType&& j, std::tuple<Args...>& t, priority_tag<3> /*unused*/)
|
||||
{
|
||||
t = from_json_tuple_impl_base<BasicJsonType, Args...>(std::forward<BasicJsonType>(j), index_sequence_for<Args...> {});
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename TupleRelated>
|
||||
auto from_json(BasicJsonType&& j, TupleRelated&& t)
|
||||
-> decltype(from_json_tuple_impl(std::forward<BasicJsonType>(j), std::forward<TupleRelated>(t), priority_tag<3> {}))
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||
}
|
||||
|
||||
return from_json_tuple_impl(std::forward<BasicJsonType>(j), std::forward<TupleRelated>(t), priority_tag<3> {});
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename Key, typename Value, typename Compare, typename Allocator,
|
||||
typename = enable_if_t < !std::is_constructible <
|
||||
typename BasicJsonType::string_t, Key >::value >>
|
||||
inline void from_json(const BasicJsonType& j, std::map<Key, Value, Compare, Allocator>& m)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||
}
|
||||
m.clear();
|
||||
for (const auto& p : j)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!p.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", p.type_name()), &j));
|
||||
}
|
||||
m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
|
||||
}
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename Key, typename Value, typename Hash, typename KeyEqual, typename Allocator,
|
||||
typename = enable_if_t < !std::is_constructible <
|
||||
typename BasicJsonType::string_t, Key >::value >>
|
||||
inline void from_json(const BasicJsonType& j, std::unordered_map<Key, Value, Hash, KeyEqual, Allocator>& m)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
|
||||
}
|
||||
m.clear();
|
||||
for (const auto& p : j)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!p.is_array()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be array, but is ", p.type_name()), &j));
|
||||
}
|
||||
m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
|
||||
}
|
||||
}
|
||||
|
||||
#if JSON_HAS_FILESYSTEM || JSON_HAS_EXPERIMENTAL_FILESYSTEM
|
||||
template<typename BasicJsonType>
|
||||
inline void from_json(const BasicJsonType& j, std_fs::path& p)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
|
||||
{
|
||||
JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
|
||||
}
|
||||
p = *j.template get_ptr<const typename BasicJsonType::string_t*>();
|
||||
}
|
||||
#endif
|
||||
|
||||
struct from_json_fn
|
||||
{
|
||||
template<typename BasicJsonType, typename T>
|
||||
auto operator()(const BasicJsonType& j, T&& val) const
|
||||
noexcept(noexcept(from_json(j, std::forward<T>(val))))
|
||||
-> decltype(from_json(j, std::forward<T>(val)))
|
||||
{
|
||||
return from_json(j, std::forward<T>(val));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
|
||||
#ifndef JSON_HAS_CPP_17
|
||||
/// namespace to hold default `from_json` function
|
||||
/// to see why this is required:
|
||||
/// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
|
||||
namespace // NOLINT(cert-dcl59-cpp,fuchsia-header-anon-namespaces,google-build-namespaces)
|
||||
{
|
||||
#endif
|
||||
JSON_INLINE_VARIABLE constexpr const auto& from_json = // NOLINT(misc-definitions-in-headers)
|
||||
detail::static_const<detail::from_json_fn>::value;
|
||||
#ifndef JSON_HAS_CPP_17
|
||||
} // namespace
|
||||
#endif
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
File diff suppressed because it is too large
Load Diff
@@ -1,447 +0,0 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm> // copy
|
||||
#include <iterator> // begin, end
|
||||
#include <string> // string
|
||||
#include <tuple> // tuple, get
|
||||
#include <type_traits> // is_same, is_constructible, is_floating_point, is_enum, underlying_type
|
||||
#include <utility> // move, forward, declval, pair
|
||||
#include <valarray> // valarray
|
||||
#include <vector> // vector
|
||||
|
||||
#include <nlohmann/detail/iterators/iteration_proxy.hpp>
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
#include <nlohmann/detail/meta/cpp_future.hpp>
|
||||
#include <nlohmann/detail/meta/std_fs.hpp>
|
||||
#include <nlohmann/detail/meta/type_traits.hpp>
|
||||
#include <nlohmann/detail/value_t.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
//////////////////
|
||||
// constructors //
|
||||
//////////////////
|
||||
|
||||
/*
|
||||
* Note all external_constructor<>::construct functions need to call
|
||||
* j.m_data.m_value.destroy(j.m_data.m_type) to avoid a memory leak in case j contains an
|
||||
* allocated value (e.g., a string). See bug issue
|
||||
* https://github.com/nlohmann/json/issues/2865 for more information.
|
||||
*/
|
||||
|
||||
template<value_t> struct external_constructor;
|
||||
|
||||
template<>
|
||||
struct external_constructor<value_t::boolean>
|
||||
{
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::boolean;
|
||||
j.m_data.m_value = b;
|
||||
j.assert_invariant();
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct external_constructor<value_t::string>
|
||||
{
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, const typename BasicJsonType::string_t& s)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::string;
|
||||
j.m_data.m_value = s;
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, typename BasicJsonType::string_t&& s)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::string;
|
||||
j.m_data.m_value = std::move(s);
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename CompatibleStringType,
|
||||
enable_if_t < !std::is_same<CompatibleStringType, typename BasicJsonType::string_t>::value,
|
||||
int > = 0 >
|
||||
static void construct(BasicJsonType& j, const CompatibleStringType& str)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::string;
|
||||
j.m_data.m_value.string = j.template create<typename BasicJsonType::string_t>(str);
|
||||
j.assert_invariant();
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct external_constructor<value_t::binary>
|
||||
{
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, const typename BasicJsonType::binary_t& b)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::binary;
|
||||
j.m_data.m_value = typename BasicJsonType::binary_t(b);
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, typename BasicJsonType::binary_t&& b)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::binary;
|
||||
j.m_data.m_value = typename BasicJsonType::binary_t(std::move(b));
|
||||
j.assert_invariant();
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct external_constructor<value_t::number_float>
|
||||
{
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, typename BasicJsonType::number_float_t val) noexcept
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::number_float;
|
||||
j.m_data.m_value = val;
|
||||
j.assert_invariant();
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct external_constructor<value_t::number_unsigned>
|
||||
{
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, typename BasicJsonType::number_unsigned_t val) noexcept
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::number_unsigned;
|
||||
j.m_data.m_value = val;
|
||||
j.assert_invariant();
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct external_constructor<value_t::number_integer>
|
||||
{
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, typename BasicJsonType::number_integer_t val) noexcept
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::number_integer;
|
||||
j.m_data.m_value = val;
|
||||
j.assert_invariant();
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct external_constructor<value_t::array>
|
||||
{
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, const typename BasicJsonType::array_t& arr)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::array;
|
||||
j.m_data.m_value = arr;
|
||||
j.set_parents();
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::array;
|
||||
j.m_data.m_value = std::move(arr);
|
||||
j.set_parents();
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename CompatibleArrayType,
|
||||
enable_if_t < !std::is_same<CompatibleArrayType, typename BasicJsonType::array_t>::value,
|
||||
int > = 0 >
|
||||
static void construct(BasicJsonType& j, const CompatibleArrayType& arr)
|
||||
{
|
||||
using std::begin;
|
||||
using std::end;
|
||||
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::array;
|
||||
j.m_data.m_value.array = j.template create<typename BasicJsonType::array_t>(begin(arr), end(arr));
|
||||
j.set_parents();
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, const std::vector<bool>& arr)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::array;
|
||||
j.m_data.m_value = value_t::array;
|
||||
j.m_data.m_value.array->reserve(arr.size());
|
||||
for (const bool x : arr)
|
||||
{
|
||||
j.m_data.m_value.array->push_back(x);
|
||||
j.set_parent(j.m_data.m_value.array->back());
|
||||
}
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename T,
|
||||
enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
|
||||
static void construct(BasicJsonType& j, const std::valarray<T>& arr)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::array;
|
||||
j.m_data.m_value = value_t::array;
|
||||
j.m_data.m_value.array->resize(arr.size());
|
||||
if (arr.size() > 0)
|
||||
{
|
||||
std::copy(std::begin(arr), std::end(arr), j.m_data.m_value.array->begin());
|
||||
}
|
||||
j.set_parents();
|
||||
j.assert_invariant();
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct external_constructor<value_t::object>
|
||||
{
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, const typename BasicJsonType::object_t& obj)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::object;
|
||||
j.m_data.m_value = obj;
|
||||
j.set_parents();
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
static void construct(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
|
||||
{
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::object;
|
||||
j.m_data.m_value = std::move(obj);
|
||||
j.set_parents();
|
||||
j.assert_invariant();
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename CompatibleObjectType,
|
||||
enable_if_t < !std::is_same<CompatibleObjectType, typename BasicJsonType::object_t>::value, int > = 0 >
|
||||
static void construct(BasicJsonType& j, const CompatibleObjectType& obj)
|
||||
{
|
||||
using std::begin;
|
||||
using std::end;
|
||||
|
||||
j.m_data.m_value.destroy(j.m_data.m_type);
|
||||
j.m_data.m_type = value_t::object;
|
||||
j.m_data.m_value.object = j.template create<typename BasicJsonType::object_t>(begin(obj), end(obj));
|
||||
j.set_parents();
|
||||
j.assert_invariant();
|
||||
}
|
||||
};
|
||||
|
||||
/////////////
|
||||
// to_json //
|
||||
/////////////
|
||||
|
||||
template<typename BasicJsonType, typename T,
|
||||
enable_if_t<std::is_same<T, typename BasicJsonType::boolean_t>::value, int> = 0>
|
||||
inline void to_json(BasicJsonType& j, T b) noexcept
|
||||
{
|
||||
external_constructor<value_t::boolean>::construct(j, b);
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename BoolRef,
|
||||
enable_if_t <
|
||||
((std::is_same<std::vector<bool>::reference, BoolRef>::value
|
||||
&& !std::is_same <std::vector<bool>::reference, typename BasicJsonType::boolean_t&>::value)
|
||||
|| (std::is_same<std::vector<bool>::const_reference, BoolRef>::value
|
||||
&& !std::is_same <detail::uncvref_t<std::vector<bool>::const_reference>,
|
||||
typename BasicJsonType::boolean_t >::value))
|
||||
&& std::is_convertible<const BoolRef&, typename BasicJsonType::boolean_t>::value, int > = 0 >
|
||||
inline void to_json(BasicJsonType& j, const BoolRef& b) noexcept
|
||||
{
|
||||
external_constructor<value_t::boolean>::construct(j, static_cast<typename BasicJsonType::boolean_t>(b));
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename CompatibleString,
|
||||
enable_if_t<std::is_constructible<typename BasicJsonType::string_t, CompatibleString>::value, int> = 0>
|
||||
inline void to_json(BasicJsonType& j, const CompatibleString& s)
|
||||
{
|
||||
external_constructor<value_t::string>::construct(j, s);
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void to_json(BasicJsonType& j, typename BasicJsonType::string_t&& s)
|
||||
{
|
||||
external_constructor<value_t::string>::construct(j, std::move(s));
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename FloatType,
|
||||
enable_if_t<std::is_floating_point<FloatType>::value, int> = 0>
|
||||
inline void to_json(BasicJsonType& j, FloatType val) noexcept
|
||||
{
|
||||
external_constructor<value_t::number_float>::construct(j, static_cast<typename BasicJsonType::number_float_t>(val));
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename CompatibleNumberUnsignedType,
|
||||
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_unsigned_t, CompatibleNumberUnsignedType>::value, int> = 0>
|
||||
inline void to_json(BasicJsonType& j, CompatibleNumberUnsignedType val) noexcept
|
||||
{
|
||||
external_constructor<value_t::number_unsigned>::construct(j, static_cast<typename BasicJsonType::number_unsigned_t>(val));
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename CompatibleNumberIntegerType,
|
||||
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_integer_t, CompatibleNumberIntegerType>::value, int> = 0>
|
||||
inline void to_json(BasicJsonType& j, CompatibleNumberIntegerType val) noexcept
|
||||
{
|
||||
external_constructor<value_t::number_integer>::construct(j, static_cast<typename BasicJsonType::number_integer_t>(val));
|
||||
}
|
||||
|
||||
#if !JSON_DISABLE_ENUM_SERIALIZATION
|
||||
template<typename BasicJsonType, typename EnumType,
|
||||
enable_if_t<std::is_enum<EnumType>::value, int> = 0>
|
||||
inline void to_json(BasicJsonType& j, EnumType e) noexcept
|
||||
{
|
||||
using underlying_type = typename std::underlying_type<EnumType>::type;
|
||||
static constexpr value_t integral_value_t = std::is_unsigned<underlying_type>::value ? value_t::number_unsigned : value_t::number_integer;
|
||||
external_constructor<integral_value_t>::construct(j, static_cast<underlying_type>(e));
|
||||
}
|
||||
#endif // JSON_DISABLE_ENUM_SERIALIZATION
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void to_json(BasicJsonType& j, const std::vector<bool>& e)
|
||||
{
|
||||
external_constructor<value_t::array>::construct(j, e);
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename CompatibleArrayType,
|
||||
enable_if_t < is_compatible_array_type<BasicJsonType,
|
||||
CompatibleArrayType>::value&&
|
||||
!is_compatible_object_type<BasicJsonType, CompatibleArrayType>::value&&
|
||||
!is_compatible_string_type<BasicJsonType, CompatibleArrayType>::value&&
|
||||
!std::is_same<typename BasicJsonType::binary_t, CompatibleArrayType>::value&&
|
||||
!is_basic_json<CompatibleArrayType>::value,
|
||||
int > = 0 >
|
||||
inline void to_json(BasicJsonType& j, const CompatibleArrayType& arr)
|
||||
{
|
||||
external_constructor<value_t::array>::construct(j, arr);
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void to_json(BasicJsonType& j, const typename BasicJsonType::binary_t& bin)
|
||||
{
|
||||
external_constructor<value_t::binary>::construct(j, bin);
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename T,
|
||||
enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
|
||||
inline void to_json(BasicJsonType& j, const std::valarray<T>& arr)
|
||||
{
|
||||
external_constructor<value_t::array>::construct(j, std::move(arr));
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void to_json(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
|
||||
{
|
||||
external_constructor<value_t::array>::construct(j, std::move(arr));
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename CompatibleObjectType,
|
||||
enable_if_t < is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value&& !is_basic_json<CompatibleObjectType>::value, int > = 0 >
|
||||
inline void to_json(BasicJsonType& j, const CompatibleObjectType& obj)
|
||||
{
|
||||
external_constructor<value_t::object>::construct(j, obj);
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
inline void to_json(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
|
||||
{
|
||||
external_constructor<value_t::object>::construct(j, std::move(obj));
|
||||
}
|
||||
|
||||
template <
|
||||
typename BasicJsonType, typename T, std::size_t N,
|
||||
enable_if_t < !std::is_constructible<typename BasicJsonType::string_t,
|
||||
const T(&)[N]>::value, // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
|
||||
int > = 0 >
|
||||
inline void to_json(BasicJsonType& j, const T(&arr)[N]) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
|
||||
{
|
||||
external_constructor<value_t::array>::construct(j, arr);
|
||||
}
|
||||
|
||||
template < typename BasicJsonType, typename T1, typename T2, enable_if_t < std::is_constructible<BasicJsonType, T1>::value&& std::is_constructible<BasicJsonType, T2>::value, int > = 0 >
|
||||
inline void to_json(BasicJsonType& j, const std::pair<T1, T2>& p)
|
||||
{
|
||||
j = { p.first, p.second };
|
||||
}
|
||||
|
||||
// for https://github.com/nlohmann/json/pull/1134
|
||||
template<typename BasicJsonType, typename T,
|
||||
enable_if_t<std::is_same<T, iteration_proxy_value<typename BasicJsonType::iterator>>::value, int> = 0>
|
||||
inline void to_json(BasicJsonType& j, const T& b)
|
||||
{
|
||||
j = { {b.key(), b.value()} };
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename Tuple, std::size_t... Idx>
|
||||
inline void to_json_tuple_impl(BasicJsonType& j, const Tuple& t, index_sequence<Idx...> /*unused*/)
|
||||
{
|
||||
j = { std::get<Idx>(t)... };
|
||||
}
|
||||
|
||||
template<typename BasicJsonType, typename T, enable_if_t<is_constructible_tuple<BasicJsonType, T>::value, int > = 0>
|
||||
inline void to_json(BasicJsonType& j, const T& t)
|
||||
{
|
||||
to_json_tuple_impl(j, t, make_index_sequence<std::tuple_size<T>::value> {});
|
||||
}
|
||||
|
||||
#if JSON_HAS_FILESYSTEM || JSON_HAS_EXPERIMENTAL_FILESYSTEM
|
||||
template<typename BasicJsonType>
|
||||
inline void to_json(BasicJsonType& j, const std_fs::path& p)
|
||||
{
|
||||
j = p.string();
|
||||
}
|
||||
#endif
|
||||
|
||||
struct to_json_fn
|
||||
{
|
||||
template<typename BasicJsonType, typename T>
|
||||
auto operator()(BasicJsonType& j, T&& val) const noexcept(noexcept(to_json(j, std::forward<T>(val))))
|
||||
-> decltype(to_json(j, std::forward<T>(val)), void())
|
||||
{
|
||||
return to_json(j, std::forward<T>(val));
|
||||
}
|
||||
};
|
||||
} // namespace detail
|
||||
|
||||
#ifndef JSON_HAS_CPP_17
|
||||
/// namespace to hold default `to_json` function
|
||||
/// to see why this is required:
|
||||
/// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
|
||||
namespace // NOLINT(cert-dcl59-cpp,fuchsia-header-anon-namespaces,google-build-namespaces)
|
||||
{
|
||||
#endif
|
||||
JSON_INLINE_VARIABLE constexpr const auto& to_json = // NOLINT(misc-definitions-in-headers)
|
||||
detail::static_const<detail::to_json_fn>::value;
|
||||
#ifndef JSON_HAS_CPP_17
|
||||
} // namespace
|
||||
#endif
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
@@ -1,257 +0,0 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef> // nullptr_t
|
||||
#include <exception> // exception
|
||||
#if JSON_DIAGNOSTICS
|
||||
#include <numeric> // accumulate
|
||||
#endif
|
||||
#include <stdexcept> // runtime_error
|
||||
#include <string> // to_string
|
||||
#include <vector> // vector
|
||||
|
||||
#include <nlohmann/detail/value_t.hpp>
|
||||
#include <nlohmann/detail/string_escape.hpp>
|
||||
#include <nlohmann/detail/input/position_t.hpp>
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
#include <nlohmann/detail/meta/cpp_future.hpp>
|
||||
#include <nlohmann/detail/meta/type_traits.hpp>
|
||||
#include <nlohmann/detail/string_concat.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
////////////////
|
||||
// exceptions //
|
||||
////////////////
|
||||
|
||||
/// @brief general exception of the @ref basic_json class
|
||||
/// @sa https://json.nlohmann.me/api/basic_json/exception/
|
||||
class exception : public std::exception
|
||||
{
|
||||
public:
|
||||
/// returns the explanatory string
|
||||
const char* what() const noexcept override
|
||||
{
|
||||
return m.what();
|
||||
}
|
||||
|
||||
/// the id of the exception
|
||||
const int id; // NOLINT(cppcoreguidelines-non-private-member-variables-in-classes)
|
||||
|
||||
protected:
|
||||
JSON_HEDLEY_NON_NULL(3)
|
||||
exception(int id_, const char* what_arg) : id(id_), m(what_arg) {} // NOLINT(bugprone-throw-keyword-missing)
|
||||
|
||||
static std::string name(const std::string& ename, int id_)
|
||||
{
|
||||
return concat("[json.exception.", ename, '.', std::to_string(id_), "] ");
|
||||
}
|
||||
|
||||
static std::string diagnostics(std::nullptr_t /*leaf_element*/)
|
||||
{
|
||||
return "";
|
||||
}
|
||||
|
||||
template<typename BasicJsonType>
|
||||
static std::string diagnostics(const BasicJsonType* leaf_element)
|
||||
{
|
||||
#if JSON_DIAGNOSTICS
|
||||
std::vector<std::string> tokens;
|
||||
for (const auto* current = leaf_element; current != nullptr && current->m_parent != nullptr; current = current->m_parent)
|
||||
{
|
||||
switch (current->m_parent->type())
|
||||
{
|
||||
case value_t::array:
|
||||
{
|
||||
for (std::size_t i = 0; i < current->m_parent->m_data.m_value.array->size(); ++i)
|
||||
{
|
||||
if (¤t->m_parent->m_data.m_value.array->operator[](i) == current)
|
||||
{
|
||||
tokens.emplace_back(std::to_string(i));
|
||||
break;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::object:
|
||||
{
|
||||
for (const auto& element : *current->m_parent->m_data.m_value.object)
|
||||
{
|
||||
if (&element.second == current)
|
||||
{
|
||||
tokens.emplace_back(element.first.c_str());
|
||||
break;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case value_t::null: // LCOV_EXCL_LINE
|
||||
case value_t::string: // LCOV_EXCL_LINE
|
||||
case value_t::boolean: // LCOV_EXCL_LINE
|
||||
case value_t::number_integer: // LCOV_EXCL_LINE
|
||||
case value_t::number_unsigned: // LCOV_EXCL_LINE
|
||||
case value_t::number_float: // LCOV_EXCL_LINE
|
||||
case value_t::binary: // LCOV_EXCL_LINE
|
||||
case value_t::discarded: // LCOV_EXCL_LINE
|
||||
default: // LCOV_EXCL_LINE
|
||||
break; // LCOV_EXCL_LINE
|
||||
}
|
||||
}
|
||||
|
||||
if (tokens.empty())
|
||||
{
|
||||
return "";
|
||||
}
|
||||
|
||||
auto str = std::accumulate(tokens.rbegin(), tokens.rend(), std::string{},
|
||||
[](const std::string & a, const std::string & b)
|
||||
{
|
||||
return concat(a, '/', detail::escape(b));
|
||||
});
|
||||
return concat('(', str, ") ");
|
||||
#else
|
||||
static_cast<void>(leaf_element);
|
||||
return "";
|
||||
#endif
|
||||
}
|
||||
|
||||
private:
|
||||
/// an exception object as storage for error messages
|
||||
std::runtime_error m;
|
||||
};
|
||||
|
||||
/// @brief exception indicating a parse error
|
||||
/// @sa https://json.nlohmann.me/api/basic_json/parse_error/
|
||||
class parse_error : public exception
|
||||
{
|
||||
public:
|
||||
/*!
|
||||
@brief create a parse error exception
|
||||
@param[in] id_ the id of the exception
|
||||
@param[in] pos the position where the error occurred (or with
|
||||
chars_read_total=0 if the position cannot be
|
||||
determined)
|
||||
@param[in] what_arg the explanatory string
|
||||
@return parse_error object
|
||||
*/
|
||||
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
|
||||
static parse_error create(int id_, const position_t& pos, const std::string& what_arg, BasicJsonContext context)
|
||||
{
|
||||
const std::string w = concat(exception::name("parse_error", id_), "parse error",
|
||||
position_string(pos), ": ", exception::diagnostics(context), what_arg);
|
||||
return {id_, pos.chars_read_total, w.c_str()};
|
||||
}
|
||||
|
||||
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
|
||||
static parse_error create(int id_, std::size_t byte_, const std::string& what_arg, BasicJsonContext context)
|
||||
{
|
||||
const std::string w = concat(exception::name("parse_error", id_), "parse error",
|
||||
(byte_ != 0 ? (concat(" at byte ", std::to_string(byte_))) : ""),
|
||||
": ", exception::diagnostics(context), what_arg);
|
||||
return {id_, byte_, w.c_str()};
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief byte index of the parse error
|
||||
|
||||
The byte index of the last read character in the input file.
|
||||
|
||||
@note For an input with n bytes, 1 is the index of the first character and
|
||||
n+1 is the index of the terminating null byte or the end of file.
|
||||
This also holds true when reading a byte vector (CBOR or MessagePack).
|
||||
*/
|
||||
const std::size_t byte;
|
||||
|
||||
private:
|
||||
parse_error(int id_, std::size_t byte_, const char* what_arg)
|
||||
: exception(id_, what_arg), byte(byte_) {}
|
||||
|
||||
static std::string position_string(const position_t& pos)
|
||||
{
|
||||
return concat(" at line ", std::to_string(pos.lines_read + 1),
|
||||
", column ", std::to_string(pos.chars_read_current_line));
|
||||
}
|
||||
};
|
||||
|
||||
/// @brief exception indicating errors with iterators
|
||||
/// @sa https://json.nlohmann.me/api/basic_json/invalid_iterator/
|
||||
class invalid_iterator : public exception
|
||||
{
|
||||
public:
|
||||
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
|
||||
static invalid_iterator create(int id_, const std::string& what_arg, BasicJsonContext context)
|
||||
{
|
||||
const std::string w = concat(exception::name("invalid_iterator", id_), exception::diagnostics(context), what_arg);
|
||||
return {id_, w.c_str()};
|
||||
}
|
||||
|
||||
private:
|
||||
JSON_HEDLEY_NON_NULL(3)
|
||||
invalid_iterator(int id_, const char* what_arg)
|
||||
: exception(id_, what_arg) {}
|
||||
};
|
||||
|
||||
/// @brief exception indicating executing a member function with a wrong type
|
||||
/// @sa https://json.nlohmann.me/api/basic_json/type_error/
|
||||
class type_error : public exception
|
||||
{
|
||||
public:
|
||||
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
|
||||
static type_error create(int id_, const std::string& what_arg, BasicJsonContext context)
|
||||
{
|
||||
const std::string w = concat(exception::name("type_error", id_), exception::diagnostics(context), what_arg);
|
||||
return {id_, w.c_str()};
|
||||
}
|
||||
|
||||
private:
|
||||
JSON_HEDLEY_NON_NULL(3)
|
||||
type_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
|
||||
};
|
||||
|
||||
/// @brief exception indicating access out of the defined range
|
||||
/// @sa https://json.nlohmann.me/api/basic_json/out_of_range/
|
||||
class out_of_range : public exception
|
||||
{
|
||||
public:
|
||||
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
|
||||
static out_of_range create(int id_, const std::string& what_arg, BasicJsonContext context)
|
||||
{
|
||||
const std::string w = concat(exception::name("out_of_range", id_), exception::diagnostics(context), what_arg);
|
||||
return {id_, w.c_str()};
|
||||
}
|
||||
|
||||
private:
|
||||
JSON_HEDLEY_NON_NULL(3)
|
||||
out_of_range(int id_, const char* what_arg) : exception(id_, what_arg) {}
|
||||
};
|
||||
|
||||
/// @brief exception indicating other library errors
|
||||
/// @sa https://json.nlohmann.me/api/basic_json/other_error/
|
||||
class other_error : public exception
|
||||
{
|
||||
public:
|
||||
template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
|
||||
static other_error create(int id_, const std::string& what_arg, BasicJsonContext context)
|
||||
{
|
||||
const std::string w = concat(exception::name("other_error", id_), exception::diagnostics(context), what_arg);
|
||||
return {id_, w.c_str()};
|
||||
}
|
||||
|
||||
private:
|
||||
JSON_HEDLEY_NON_NULL(3)
|
||||
other_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
@@ -1,129 +0,0 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint> // uint8_t
|
||||
#include <cstddef> // size_t
|
||||
#include <functional> // hash
|
||||
|
||||
#include <nlohmann/detail/abi_macros.hpp>
|
||||
#include <nlohmann/detail/value_t.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
// boost::hash_combine
|
||||
inline std::size_t combine(std::size_t seed, std::size_t h) noexcept
|
||||
{
|
||||
seed ^= h + 0x9e3779b9 + (seed << 6U) + (seed >> 2U);
|
||||
return seed;
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief hash a JSON value
|
||||
|
||||
The hash function tries to rely on std::hash where possible. Furthermore, the
|
||||
type of the JSON value is taken into account to have different hash values for
|
||||
null, 0, 0U, and false, etc.
|
||||
|
||||
@tparam BasicJsonType basic_json specialization
|
||||
@param j JSON value to hash
|
||||
@return hash value of j
|
||||
*/
|
||||
template<typename BasicJsonType>
|
||||
std::size_t hash(const BasicJsonType& j)
|
||||
{
|
||||
using string_t = typename BasicJsonType::string_t;
|
||||
using number_integer_t = typename BasicJsonType::number_integer_t;
|
||||
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
|
||||
using number_float_t = typename BasicJsonType::number_float_t;
|
||||
|
||||
const auto type = static_cast<std::size_t>(j.type());
|
||||
switch (j.type())
|
||||
{
|
||||
case BasicJsonType::value_t::null:
|
||||
case BasicJsonType::value_t::discarded:
|
||||
{
|
||||
return combine(type, 0);
|
||||
}
|
||||
|
||||
case BasicJsonType::value_t::object:
|
||||
{
|
||||
auto seed = combine(type, j.size());
|
||||
for (const auto& element : j.items())
|
||||
{
|
||||
const auto h = std::hash<string_t> {}(element.key());
|
||||
seed = combine(seed, h);
|
||||
seed = combine(seed, hash(element.value()));
|
||||
}
|
||||
return seed;
|
||||
}
|
||||
|
||||
case BasicJsonType::value_t::array:
|
||||
{
|
||||
auto seed = combine(type, j.size());
|
||||
for (const auto& element : j)
|
||||
{
|
||||
seed = combine(seed, hash(element));
|
||||
}
|
||||
return seed;
|
||||
}
|
||||
|
||||
case BasicJsonType::value_t::string:
|
||||
{
|
||||
const auto h = std::hash<string_t> {}(j.template get_ref<const string_t&>());
|
||||
return combine(type, h);
|
||||
}
|
||||
|
||||
case BasicJsonType::value_t::boolean:
|
||||
{
|
||||
const auto h = std::hash<bool> {}(j.template get<bool>());
|
||||
return combine(type, h);
|
||||
}
|
||||
|
||||
case BasicJsonType::value_t::number_integer:
|
||||
{
|
||||
const auto h = std::hash<number_integer_t> {}(j.template get<number_integer_t>());
|
||||
return combine(type, h);
|
||||
}
|
||||
|
||||
case BasicJsonType::value_t::number_unsigned:
|
||||
{
|
||||
const auto h = std::hash<number_unsigned_t> {}(j.template get<number_unsigned_t>());
|
||||
return combine(type, h);
|
||||
}
|
||||
|
||||
case BasicJsonType::value_t::number_float:
|
||||
{
|
||||
const auto h = std::hash<number_float_t> {}(j.template get<number_float_t>());
|
||||
return combine(type, h);
|
||||
}
|
||||
|
||||
case BasicJsonType::value_t::binary:
|
||||
{
|
||||
auto seed = combine(type, j.get_binary().size());
|
||||
const auto h = std::hash<bool> {}(j.get_binary().has_subtype());
|
||||
seed = combine(seed, h);
|
||||
seed = combine(seed, static_cast<std::size_t>(j.get_binary().subtype()));
|
||||
for (const auto byte : j.get_binary())
|
||||
{
|
||||
seed = combine(seed, std::hash<std::uint8_t> {}(byte));
|
||||
}
|
||||
return seed;
|
||||
}
|
||||
|
||||
default: // LCOV_EXCL_LINE
|
||||
JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert) LCOV_EXCL_LINE
|
||||
return 0; // LCOV_EXCL_LINE
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
File diff suppressed because it is too large
Load Diff
@@ -1,492 +0,0 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <array> // array
|
||||
#include <cstddef> // size_t
|
||||
#include <cstring> // strlen
|
||||
#include <iterator> // begin, end, iterator_traits, random_access_iterator_tag, distance, next
|
||||
#include <memory> // shared_ptr, make_shared, addressof
|
||||
#include <numeric> // accumulate
|
||||
#include <string> // string, char_traits
|
||||
#include <type_traits> // enable_if, is_base_of, is_pointer, is_integral, remove_pointer
|
||||
#include <utility> // pair, declval
|
||||
|
||||
#ifndef JSON_NO_IO
|
||||
#include <cstdio> // FILE *
|
||||
#include <istream> // istream
|
||||
#endif // JSON_NO_IO
|
||||
|
||||
#include <nlohmann/detail/iterators/iterator_traits.hpp>
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
#include <nlohmann/detail/meta/type_traits.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
|
||||
/// the supported input formats
|
||||
enum class input_format_t { json, cbor, msgpack, ubjson, bson, bjdata };
|
||||
|
||||
////////////////////
|
||||
// input adapters //
|
||||
////////////////////
|
||||
|
||||
#ifndef JSON_NO_IO
|
||||
/*!
|
||||
Input adapter for stdio file access. This adapter read only 1 byte and do not use any
|
||||
buffer. This adapter is a very low level adapter.
|
||||
*/
|
||||
class file_input_adapter
|
||||
{
|
||||
public:
|
||||
using char_type = char;
|
||||
|
||||
JSON_HEDLEY_NON_NULL(2)
|
||||
explicit file_input_adapter(std::FILE* f) noexcept
|
||||
: m_file(f)
|
||||
{
|
||||
JSON_ASSERT(m_file != nullptr);
|
||||
}
|
||||
|
||||
// make class move-only
|
||||
file_input_adapter(const file_input_adapter&) = delete;
|
||||
file_input_adapter(file_input_adapter&&) noexcept = default;
|
||||
file_input_adapter& operator=(const file_input_adapter&) = delete;
|
||||
file_input_adapter& operator=(file_input_adapter&&) = delete;
|
||||
~file_input_adapter() = default;
|
||||
|
||||
std::char_traits<char>::int_type get_character() noexcept
|
||||
{
|
||||
return std::fgetc(m_file);
|
||||
}
|
||||
|
||||
private:
|
||||
/// the file pointer to read from
|
||||
std::FILE* m_file;
|
||||
};
|
||||
|
||||
/*!
|
||||
Input adapter for a (caching) istream. Ignores a UFT Byte Order Mark at
|
||||
beginning of input. Does not support changing the underlying std::streambuf
|
||||
in mid-input. Maintains underlying std::istream and std::streambuf to support
|
||||
subsequent use of standard std::istream operations to process any input
|
||||
characters following those used in parsing the JSON input. Clears the
|
||||
std::istream flags; any input errors (e.g., EOF) will be detected by the first
|
||||
subsequent call for input from the std::istream.
|
||||
*/
|
||||
class input_stream_adapter
|
||||
{
|
||||
public:
|
||||
using char_type = char;
|
||||
|
||||
~input_stream_adapter()
|
||||
{
|
||||
// clear stream flags; we use underlying streambuf I/O, do not
|
||||
// maintain ifstream flags, except eof
|
||||
if (is != nullptr)
|
||||
{
|
||||
is->clear(is->rdstate() & std::ios::eofbit);
|
||||
}
|
||||
}
|
||||
|
||||
explicit input_stream_adapter(std::istream& i)
|
||||
: is(&i), sb(i.rdbuf())
|
||||
{}
|
||||
|
||||
// delete because of pointer members
|
||||
input_stream_adapter(const input_stream_adapter&) = delete;
|
||||
input_stream_adapter& operator=(input_stream_adapter&) = delete;
|
||||
input_stream_adapter& operator=(input_stream_adapter&&) = delete;
|
||||
|
||||
input_stream_adapter(input_stream_adapter&& rhs) noexcept
|
||||
: is(rhs.is), sb(rhs.sb)
|
||||
{
|
||||
rhs.is = nullptr;
|
||||
rhs.sb = nullptr;
|
||||
}
|
||||
|
||||
// std::istream/std::streambuf use std::char_traits<char>::to_int_type, to
|
||||
// ensure that std::char_traits<char>::eof() and the character 0xFF do not
|
||||
// end up as the same value, e.g. 0xFFFFFFFF.
|
||||
std::char_traits<char>::int_type get_character()
|
||||
{
|
||||
auto res = sb->sbumpc();
|
||||
// set eof manually, as we don't use the istream interface.
|
||||
if (JSON_HEDLEY_UNLIKELY(res == std::char_traits<char>::eof()))
|
||||
{
|
||||
is->clear(is->rdstate() | std::ios::eofbit);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
private:
|
||||
/// the associated input stream
|
||||
std::istream* is = nullptr;
|
||||
std::streambuf* sb = nullptr;
|
||||
};
|
||||
#endif // JSON_NO_IO
|
||||
|
||||
// General-purpose iterator-based adapter. It might not be as fast as
|
||||
// theoretically possible for some containers, but it is extremely versatile.
|
||||
template<typename IteratorType>
|
||||
class iterator_input_adapter
|
||||
{
|
||||
public:
|
||||
using char_type = typename std::iterator_traits<IteratorType>::value_type;
|
||||
|
||||
iterator_input_adapter(IteratorType first, IteratorType last)
|
||||
: current(std::move(first)), end(std::move(last))
|
||||
{}
|
||||
|
||||
typename char_traits<char_type>::int_type get_character()
|
||||
{
|
||||
if (JSON_HEDLEY_LIKELY(current != end))
|
||||
{
|
||||
auto result = char_traits<char_type>::to_int_type(*current);
|
||||
std::advance(current, 1);
|
||||
return result;
|
||||
}
|
||||
|
||||
return char_traits<char_type>::eof();
|
||||
}
|
||||
|
||||
private:
|
||||
IteratorType current;
|
||||
IteratorType end;
|
||||
|
||||
template<typename BaseInputAdapter, size_t T>
|
||||
friend struct wide_string_input_helper;
|
||||
|
||||
bool empty() const
|
||||
{
|
||||
return current == end;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename BaseInputAdapter, size_t T>
|
||||
struct wide_string_input_helper;
|
||||
|
||||
template<typename BaseInputAdapter>
|
||||
struct wide_string_input_helper<BaseInputAdapter, 4>
|
||||
{
|
||||
// UTF-32
|
||||
static void fill_buffer(BaseInputAdapter& input,
|
||||
std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
|
||||
size_t& utf8_bytes_index,
|
||||
size_t& utf8_bytes_filled)
|
||||
{
|
||||
utf8_bytes_index = 0;
|
||||
|
||||
if (JSON_HEDLEY_UNLIKELY(input.empty()))
|
||||
{
|
||||
utf8_bytes[0] = std::char_traits<char>::eof();
|
||||
utf8_bytes_filled = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
// get the current character
|
||||
const auto wc = input.get_character();
|
||||
|
||||
// UTF-32 to UTF-8 encoding
|
||||
if (wc < 0x80)
|
||||
{
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
|
||||
utf8_bytes_filled = 1;
|
||||
}
|
||||
else if (wc <= 0x7FF)
|
||||
{
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((static_cast<unsigned int>(wc) >> 6u) & 0x1Fu));
|
||||
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
|
||||
utf8_bytes_filled = 2;
|
||||
}
|
||||
else if (wc <= 0xFFFF)
|
||||
{
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((static_cast<unsigned int>(wc) >> 12u) & 0x0Fu));
|
||||
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 6u) & 0x3Fu));
|
||||
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
|
||||
utf8_bytes_filled = 3;
|
||||
}
|
||||
else if (wc <= 0x10FFFF)
|
||||
{
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | ((static_cast<unsigned int>(wc) >> 18u) & 0x07u));
|
||||
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 12u) & 0x3Fu));
|
||||
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 6u) & 0x3Fu));
|
||||
utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
|
||||
utf8_bytes_filled = 4;
|
||||
}
|
||||
else
|
||||
{
|
||||
// unknown character
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
|
||||
utf8_bytes_filled = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename BaseInputAdapter>
|
||||
struct wide_string_input_helper<BaseInputAdapter, 2>
|
||||
{
|
||||
// UTF-16
|
||||
static void fill_buffer(BaseInputAdapter& input,
|
||||
std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
|
||||
size_t& utf8_bytes_index,
|
||||
size_t& utf8_bytes_filled)
|
||||
{
|
||||
utf8_bytes_index = 0;
|
||||
|
||||
if (JSON_HEDLEY_UNLIKELY(input.empty()))
|
||||
{
|
||||
utf8_bytes[0] = std::char_traits<char>::eof();
|
||||
utf8_bytes_filled = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
// get the current character
|
||||
const auto wc = input.get_character();
|
||||
|
||||
// UTF-16 to UTF-8 encoding
|
||||
if (wc < 0x80)
|
||||
{
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
|
||||
utf8_bytes_filled = 1;
|
||||
}
|
||||
else if (wc <= 0x7FF)
|
||||
{
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((static_cast<unsigned int>(wc) >> 6u)));
|
||||
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
|
||||
utf8_bytes_filled = 2;
|
||||
}
|
||||
else if (0xD800 > wc || wc >= 0xE000)
|
||||
{
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((static_cast<unsigned int>(wc) >> 12u)));
|
||||
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 6u) & 0x3Fu));
|
||||
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
|
||||
utf8_bytes_filled = 3;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!input.empty()))
|
||||
{
|
||||
const auto wc2 = static_cast<unsigned int>(input.get_character());
|
||||
const auto charcode = 0x10000u + (((static_cast<unsigned int>(wc) & 0x3FFu) << 10u) | (wc2 & 0x3FFu));
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | (charcode >> 18u));
|
||||
utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 12u) & 0x3Fu));
|
||||
utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 6u) & 0x3Fu));
|
||||
utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (charcode & 0x3Fu));
|
||||
utf8_bytes_filled = 4;
|
||||
}
|
||||
else
|
||||
{
|
||||
utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
|
||||
utf8_bytes_filled = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Wraps another input adapter to convert wide character types into individual bytes.
|
||||
template<typename BaseInputAdapter, typename WideCharType>
|
||||
class wide_string_input_adapter
|
||||
{
|
||||
public:
|
||||
using char_type = char;
|
||||
|
||||
wide_string_input_adapter(BaseInputAdapter base)
|
||||
: base_adapter(base) {}
|
||||
|
||||
typename std::char_traits<char>::int_type get_character() noexcept
|
||||
{
|
||||
// check if buffer needs to be filled
|
||||
if (utf8_bytes_index == utf8_bytes_filled)
|
||||
{
|
||||
fill_buffer<sizeof(WideCharType)>();
|
||||
|
||||
JSON_ASSERT(utf8_bytes_filled > 0);
|
||||
JSON_ASSERT(utf8_bytes_index == 0);
|
||||
}
|
||||
|
||||
// use buffer
|
||||
JSON_ASSERT(utf8_bytes_filled > 0);
|
||||
JSON_ASSERT(utf8_bytes_index < utf8_bytes_filled);
|
||||
return utf8_bytes[utf8_bytes_index++];
|
||||
}
|
||||
|
||||
private:
|
||||
BaseInputAdapter base_adapter;
|
||||
|
||||
template<size_t T>
|
||||
void fill_buffer()
|
||||
{
|
||||
wide_string_input_helper<BaseInputAdapter, T>::fill_buffer(base_adapter, utf8_bytes, utf8_bytes_index, utf8_bytes_filled);
|
||||
}
|
||||
|
||||
/// a buffer for UTF-8 bytes
|
||||
std::array<std::char_traits<char>::int_type, 4> utf8_bytes = {{0, 0, 0, 0}};
|
||||
|
||||
/// index to the utf8_codes array for the next valid byte
|
||||
std::size_t utf8_bytes_index = 0;
|
||||
/// number of valid bytes in the utf8_codes array
|
||||
std::size_t utf8_bytes_filled = 0;
|
||||
};
|
||||
|
||||
template<typename IteratorType, typename Enable = void>
|
||||
struct iterator_input_adapter_factory
|
||||
{
|
||||
using iterator_type = IteratorType;
|
||||
using char_type = typename std::iterator_traits<iterator_type>::value_type;
|
||||
using adapter_type = iterator_input_adapter<iterator_type>;
|
||||
|
||||
static adapter_type create(IteratorType first, IteratorType last)
|
||||
{
|
||||
return adapter_type(std::move(first), std::move(last));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct is_iterator_of_multibyte
|
||||
{
|
||||
using value_type = typename std::iterator_traits<T>::value_type;
|
||||
enum
|
||||
{
|
||||
value = sizeof(value_type) > 1
|
||||
};
|
||||
};
|
||||
|
||||
template<typename IteratorType>
|
||||
struct iterator_input_adapter_factory<IteratorType, enable_if_t<is_iterator_of_multibyte<IteratorType>::value>>
|
||||
{
|
||||
using iterator_type = IteratorType;
|
||||
using char_type = typename std::iterator_traits<iterator_type>::value_type;
|
||||
using base_adapter_type = iterator_input_adapter<iterator_type>;
|
||||
using adapter_type = wide_string_input_adapter<base_adapter_type, char_type>;
|
||||
|
||||
static adapter_type create(IteratorType first, IteratorType last)
|
||||
{
|
||||
return adapter_type(base_adapter_type(std::move(first), std::move(last)));
|
||||
}
|
||||
};
|
||||
|
||||
// General purpose iterator-based input
|
||||
template<typename IteratorType>
|
||||
typename iterator_input_adapter_factory<IteratorType>::adapter_type input_adapter(IteratorType first, IteratorType last)
|
||||
{
|
||||
using factory_type = iterator_input_adapter_factory<IteratorType>;
|
||||
return factory_type::create(first, last);
|
||||
}
|
||||
|
||||
// Convenience shorthand from container to iterator
|
||||
// Enables ADL on begin(container) and end(container)
|
||||
// Encloses the using declarations in namespace for not to leak them to outside scope
|
||||
|
||||
namespace container_input_adapter_factory_impl
|
||||
{
|
||||
|
||||
using std::begin;
|
||||
using std::end;
|
||||
|
||||
template<typename ContainerType, typename Enable = void>
|
||||
struct container_input_adapter_factory {};
|
||||
|
||||
template<typename ContainerType>
|
||||
struct container_input_adapter_factory< ContainerType,
|
||||
void_t<decltype(begin(std::declval<ContainerType>()), end(std::declval<ContainerType>()))>>
|
||||
{
|
||||
using adapter_type = decltype(input_adapter(begin(std::declval<ContainerType>()), end(std::declval<ContainerType>())));
|
||||
|
||||
static adapter_type create(const ContainerType& container)
|
||||
{
|
||||
return input_adapter(begin(container), end(container));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace container_input_adapter_factory_impl
|
||||
|
||||
template<typename ContainerType>
|
||||
typename container_input_adapter_factory_impl::container_input_adapter_factory<ContainerType>::adapter_type input_adapter(const ContainerType& container)
|
||||
{
|
||||
return container_input_adapter_factory_impl::container_input_adapter_factory<ContainerType>::create(container);
|
||||
}
|
||||
|
||||
#ifndef JSON_NO_IO
|
||||
// Special cases with fast paths
|
||||
inline file_input_adapter input_adapter(std::FILE* file)
|
||||
{
|
||||
return file_input_adapter(file);
|
||||
}
|
||||
|
||||
inline input_stream_adapter input_adapter(std::istream& stream)
|
||||
{
|
||||
return input_stream_adapter(stream);
|
||||
}
|
||||
|
||||
inline input_stream_adapter input_adapter(std::istream&& stream)
|
||||
{
|
||||
return input_stream_adapter(stream);
|
||||
}
|
||||
#endif // JSON_NO_IO
|
||||
|
||||
using contiguous_bytes_input_adapter = decltype(input_adapter(std::declval<const char*>(), std::declval<const char*>()));
|
||||
|
||||
// Null-delimited strings, and the like.
|
||||
template < typename CharT,
|
||||
typename std::enable_if <
|
||||
std::is_pointer<CharT>::value&&
|
||||
!std::is_array<CharT>::value&&
|
||||
std::is_integral<typename std::remove_pointer<CharT>::type>::value&&
|
||||
sizeof(typename std::remove_pointer<CharT>::type) == 1,
|
||||
int >::type = 0 >
|
||||
contiguous_bytes_input_adapter input_adapter(CharT b)
|
||||
{
|
||||
auto length = std::strlen(reinterpret_cast<const char*>(b));
|
||||
const auto* ptr = reinterpret_cast<const char*>(b);
|
||||
return input_adapter(ptr, ptr + length);
|
||||
}
|
||||
|
||||
template<typename T, std::size_t N>
|
||||
auto input_adapter(T (&array)[N]) -> decltype(input_adapter(array, array + N)) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
|
||||
{
|
||||
return input_adapter(array, array + N);
|
||||
}
|
||||
|
||||
// This class only handles inputs of input_buffer_adapter type.
|
||||
// It's required so that expressions like {ptr, len} can be implicitly cast
|
||||
// to the correct adapter.
|
||||
class span_input_adapter
|
||||
{
|
||||
public:
|
||||
template < typename CharT,
|
||||
typename std::enable_if <
|
||||
std::is_pointer<CharT>::value&&
|
||||
std::is_integral<typename std::remove_pointer<CharT>::type>::value&&
|
||||
sizeof(typename std::remove_pointer<CharT>::type) == 1,
|
||||
int >::type = 0 >
|
||||
span_input_adapter(CharT b, std::size_t l)
|
||||
: ia(reinterpret_cast<const char*>(b), reinterpret_cast<const char*>(b) + l) {}
|
||||
|
||||
template<class IteratorType,
|
||||
typename std::enable_if<
|
||||
std::is_same<typename iterator_traits<IteratorType>::iterator_category, std::random_access_iterator_tag>::value,
|
||||
int>::type = 0>
|
||||
span_input_adapter(IteratorType first, IteratorType last)
|
||||
: ia(input_adapter(first, last)) {}
|
||||
|
||||
contiguous_bytes_input_adapter&& get()
|
||||
{
|
||||
return std::move(ia); // NOLINT(hicpp-move-const-arg,performance-move-const-arg)
|
||||
}
|
||||
|
||||
private:
|
||||
contiguous_bytes_input_adapter ia;
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
@@ -1,727 +0,0 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef>
|
||||
#include <string> // string
|
||||
#include <utility> // move
|
||||
#include <vector> // vector
|
||||
|
||||
#include <nlohmann/detail/exceptions.hpp>
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
#include <nlohmann/detail/string_concat.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
|
||||
/*!
|
||||
@brief SAX interface
|
||||
|
||||
This class describes the SAX interface used by @ref nlohmann::json::sax_parse.
|
||||
Each function is called in different situations while the input is parsed. The
|
||||
boolean return value informs the parser whether to continue processing the
|
||||
input.
|
||||
*/
|
||||
template<typename BasicJsonType>
|
||||
struct json_sax
|
||||
{
|
||||
using number_integer_t = typename BasicJsonType::number_integer_t;
|
||||
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
|
||||
using number_float_t = typename BasicJsonType::number_float_t;
|
||||
using string_t = typename BasicJsonType::string_t;
|
||||
using binary_t = typename BasicJsonType::binary_t;
|
||||
|
||||
/*!
|
||||
@brief a null value was read
|
||||
@return whether parsing should proceed
|
||||
*/
|
||||
virtual bool null() = 0;
|
||||
|
||||
/*!
|
||||
@brief a boolean value was read
|
||||
@param[in] val boolean value
|
||||
@return whether parsing should proceed
|
||||
*/
|
||||
virtual bool boolean(bool val) = 0;
|
||||
|
||||
/*!
|
||||
@brief an integer number was read
|
||||
@param[in] val integer value
|
||||
@return whether parsing should proceed
|
||||
*/
|
||||
virtual bool number_integer(number_integer_t val) = 0;
|
||||
|
||||
/*!
|
||||
@brief an unsigned integer number was read
|
||||
@param[in] val unsigned integer value
|
||||
@return whether parsing should proceed
|
||||
*/
|
||||
virtual bool number_unsigned(number_unsigned_t val) = 0;
|
||||
|
||||
/*!
|
||||
@brief a floating-point number was read
|
||||
@param[in] val floating-point value
|
||||
@param[in] s raw token value
|
||||
@return whether parsing should proceed
|
||||
*/
|
||||
virtual bool number_float(number_float_t val, const string_t& s) = 0;
|
||||
|
||||
/*!
|
||||
@brief a string value was read
|
||||
@param[in] val string value
|
||||
@return whether parsing should proceed
|
||||
@note It is safe to move the passed string value.
|
||||
*/
|
||||
virtual bool string(string_t& val) = 0;
|
||||
|
||||
/*!
|
||||
@brief a binary value was read
|
||||
@param[in] val binary value
|
||||
@return whether parsing should proceed
|
||||
@note It is safe to move the passed binary value.
|
||||
*/
|
||||
virtual bool binary(binary_t& val) = 0;
|
||||
|
||||
/*!
|
||||
@brief the beginning of an object was read
|
||||
@param[in] elements number of object elements or -1 if unknown
|
||||
@return whether parsing should proceed
|
||||
@note binary formats may report the number of elements
|
||||
*/
|
||||
virtual bool start_object(std::size_t elements) = 0;
|
||||
|
||||
/*!
|
||||
@brief an object key was read
|
||||
@param[in] val object key
|
||||
@return whether parsing should proceed
|
||||
@note It is safe to move the passed string.
|
||||
*/
|
||||
virtual bool key(string_t& val) = 0;
|
||||
|
||||
/*!
|
||||
@brief the end of an object was read
|
||||
@return whether parsing should proceed
|
||||
*/
|
||||
virtual bool end_object() = 0;
|
||||
|
||||
/*!
|
||||
@brief the beginning of an array was read
|
||||
@param[in] elements number of array elements or -1 if unknown
|
||||
@return whether parsing should proceed
|
||||
@note binary formats may report the number of elements
|
||||
*/
|
||||
virtual bool start_array(std::size_t elements) = 0;
|
||||
|
||||
/*!
|
||||
@brief the end of an array was read
|
||||
@return whether parsing should proceed
|
||||
*/
|
||||
virtual bool end_array() = 0;
|
||||
|
||||
/*!
|
||||
@brief a parse error occurred
|
||||
@param[in] position the position in the input where the error occurs
|
||||
@param[in] last_token the last read token
|
||||
@param[in] ex an exception object describing the error
|
||||
@return whether parsing should proceed (must return false)
|
||||
*/
|
||||
virtual bool parse_error(std::size_t position,
|
||||
const std::string& last_token,
|
||||
const detail::exception& ex) = 0;
|
||||
|
||||
json_sax() = default;
|
||||
json_sax(const json_sax&) = default;
|
||||
json_sax(json_sax&&) noexcept = default;
|
||||
json_sax& operator=(const json_sax&) = default;
|
||||
json_sax& operator=(json_sax&&) noexcept = default;
|
||||
virtual ~json_sax() = default;
|
||||
};
|
||||
|
||||
namespace detail
|
||||
{
|
||||
/*!
|
||||
@brief SAX implementation to create a JSON value from SAX events
|
||||
|
||||
This class implements the @ref json_sax interface and processes the SAX events
|
||||
to create a JSON value which makes it basically a DOM parser. The structure or
|
||||
hierarchy of the JSON value is managed by the stack `ref_stack` which contains
|
||||
a pointer to the respective array or object for each recursion depth.
|
||||
|
||||
After successful parsing, the value that is passed by reference to the
|
||||
constructor contains the parsed value.
|
||||
|
||||
@tparam BasicJsonType the JSON type
|
||||
*/
|
||||
template<typename BasicJsonType>
|
||||
class json_sax_dom_parser
|
||||
{
|
||||
public:
|
||||
using number_integer_t = typename BasicJsonType::number_integer_t;
|
||||
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
|
||||
using number_float_t = typename BasicJsonType::number_float_t;
|
||||
using string_t = typename BasicJsonType::string_t;
|
||||
using binary_t = typename BasicJsonType::binary_t;
|
||||
|
||||
/*!
|
||||
@param[in,out] r reference to a JSON value that is manipulated while
|
||||
parsing
|
||||
@param[in] allow_exceptions_ whether parse errors yield exceptions
|
||||
*/
|
||||
explicit json_sax_dom_parser(BasicJsonType& r, const bool allow_exceptions_ = true)
|
||||
: root(r), allow_exceptions(allow_exceptions_)
|
||||
{}
|
||||
|
||||
// make class move-only
|
||||
json_sax_dom_parser(const json_sax_dom_parser&) = delete;
|
||||
json_sax_dom_parser(json_sax_dom_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
|
||||
json_sax_dom_parser& operator=(const json_sax_dom_parser&) = delete;
|
||||
json_sax_dom_parser& operator=(json_sax_dom_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
|
||||
~json_sax_dom_parser() = default;
|
||||
|
||||
bool null()
|
||||
{
|
||||
handle_value(nullptr);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool boolean(bool val)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_integer(number_integer_t val)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_unsigned(number_unsigned_t val)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_float(number_float_t val, const string_t& /*unused*/)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool string(string_t& val)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool binary(binary_t& val)
|
||||
{
|
||||
handle_value(std::move(val));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool start_object(std::size_t len)
|
||||
{
|
||||
ref_stack.push_back(handle_value(BasicJsonType::value_t::object));
|
||||
|
||||
if (JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
|
||||
{
|
||||
JSON_THROW(out_of_range::create(408, concat("excessive object size: ", std::to_string(len)), ref_stack.back()));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool key(string_t& val)
|
||||
{
|
||||
JSON_ASSERT(!ref_stack.empty());
|
||||
JSON_ASSERT(ref_stack.back()->is_object());
|
||||
|
||||
// add null at given key and store the reference for later
|
||||
object_element = &(ref_stack.back()->m_data.m_value.object->operator[](val));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool end_object()
|
||||
{
|
||||
JSON_ASSERT(!ref_stack.empty());
|
||||
JSON_ASSERT(ref_stack.back()->is_object());
|
||||
|
||||
ref_stack.back()->set_parents();
|
||||
ref_stack.pop_back();
|
||||
return true;
|
||||
}
|
||||
|
||||
bool start_array(std::size_t len)
|
||||
{
|
||||
ref_stack.push_back(handle_value(BasicJsonType::value_t::array));
|
||||
|
||||
if (JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
|
||||
{
|
||||
JSON_THROW(out_of_range::create(408, concat("excessive array size: ", std::to_string(len)), ref_stack.back()));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool end_array()
|
||||
{
|
||||
JSON_ASSERT(!ref_stack.empty());
|
||||
JSON_ASSERT(ref_stack.back()->is_array());
|
||||
|
||||
ref_stack.back()->set_parents();
|
||||
ref_stack.pop_back();
|
||||
return true;
|
||||
}
|
||||
|
||||
template<class Exception>
|
||||
bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
|
||||
const Exception& ex)
|
||||
{
|
||||
errored = true;
|
||||
static_cast<void>(ex);
|
||||
if (allow_exceptions)
|
||||
{
|
||||
JSON_THROW(ex);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
constexpr bool is_errored() const
|
||||
{
|
||||
return errored;
|
||||
}
|
||||
|
||||
private:
|
||||
/*!
|
||||
@invariant If the ref stack is empty, then the passed value will be the new
|
||||
root.
|
||||
@invariant If the ref stack contains a value, then it is an array or an
|
||||
object to which we can add elements
|
||||
*/
|
||||
template<typename Value>
|
||||
JSON_HEDLEY_RETURNS_NON_NULL
|
||||
BasicJsonType* handle_value(Value&& v)
|
||||
{
|
||||
if (ref_stack.empty())
|
||||
{
|
||||
root = BasicJsonType(std::forward<Value>(v));
|
||||
return &root;
|
||||
}
|
||||
|
||||
JSON_ASSERT(ref_stack.back()->is_array() || ref_stack.back()->is_object());
|
||||
|
||||
if (ref_stack.back()->is_array())
|
||||
{
|
||||
ref_stack.back()->m_data.m_value.array->emplace_back(std::forward<Value>(v));
|
||||
return &(ref_stack.back()->m_data.m_value.array->back());
|
||||
}
|
||||
|
||||
JSON_ASSERT(ref_stack.back()->is_object());
|
||||
JSON_ASSERT(object_element);
|
||||
*object_element = BasicJsonType(std::forward<Value>(v));
|
||||
return object_element;
|
||||
}
|
||||
|
||||
/// the parsed JSON value
|
||||
BasicJsonType& root;
|
||||
/// stack to model hierarchy of values
|
||||
std::vector<BasicJsonType*> ref_stack {};
|
||||
/// helper to hold the reference for the next object element
|
||||
BasicJsonType* object_element = nullptr;
|
||||
/// whether a syntax error occurred
|
||||
bool errored = false;
|
||||
/// whether to throw exceptions in case of errors
|
||||
const bool allow_exceptions = true;
|
||||
};
|
||||
|
||||
template<typename BasicJsonType>
|
||||
class json_sax_dom_callback_parser
|
||||
{
|
||||
public:
|
||||
using number_integer_t = typename BasicJsonType::number_integer_t;
|
||||
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
|
||||
using number_float_t = typename BasicJsonType::number_float_t;
|
||||
using string_t = typename BasicJsonType::string_t;
|
||||
using binary_t = typename BasicJsonType::binary_t;
|
||||
using parser_callback_t = typename BasicJsonType::parser_callback_t;
|
||||
using parse_event_t = typename BasicJsonType::parse_event_t;
|
||||
|
||||
json_sax_dom_callback_parser(BasicJsonType& r,
|
||||
const parser_callback_t cb,
|
||||
const bool allow_exceptions_ = true)
|
||||
: root(r), callback(cb), allow_exceptions(allow_exceptions_)
|
||||
{
|
||||
keep_stack.push_back(true);
|
||||
}
|
||||
|
||||
// make class move-only
|
||||
json_sax_dom_callback_parser(const json_sax_dom_callback_parser&) = delete;
|
||||
json_sax_dom_callback_parser(json_sax_dom_callback_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
|
||||
json_sax_dom_callback_parser& operator=(const json_sax_dom_callback_parser&) = delete;
|
||||
json_sax_dom_callback_parser& operator=(json_sax_dom_callback_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
|
||||
~json_sax_dom_callback_parser() = default;
|
||||
|
||||
bool null()
|
||||
{
|
||||
handle_value(nullptr);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool boolean(bool val)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_integer(number_integer_t val)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_unsigned(number_unsigned_t val)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_float(number_float_t val, const string_t& /*unused*/)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool string(string_t& val)
|
||||
{
|
||||
handle_value(val);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool binary(binary_t& val)
|
||||
{
|
||||
handle_value(std::move(val));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool start_object(std::size_t len)
|
||||
{
|
||||
// check callback for object start
|
||||
const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::object_start, discarded);
|
||||
keep_stack.push_back(keep);
|
||||
|
||||
auto val = handle_value(BasicJsonType::value_t::object, true);
|
||||
ref_stack.push_back(val.second);
|
||||
|
||||
// check object limit
|
||||
if (ref_stack.back() && JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
|
||||
{
|
||||
JSON_THROW(out_of_range::create(408, concat("excessive object size: ", std::to_string(len)), ref_stack.back()));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool key(string_t& val)
|
||||
{
|
||||
BasicJsonType k = BasicJsonType(val);
|
||||
|
||||
// check callback for key
|
||||
const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::key, k);
|
||||
key_keep_stack.push_back(keep);
|
||||
|
||||
// add discarded value at given key and store the reference for later
|
||||
if (keep && ref_stack.back())
|
||||
{
|
||||
object_element = &(ref_stack.back()->m_data.m_value.object->operator[](val) = discarded);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool end_object()
|
||||
{
|
||||
if (ref_stack.back())
|
||||
{
|
||||
if (!callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::object_end, *ref_stack.back()))
|
||||
{
|
||||
// discard object
|
||||
*ref_stack.back() = discarded;
|
||||
}
|
||||
else
|
||||
{
|
||||
ref_stack.back()->set_parents();
|
||||
}
|
||||
}
|
||||
|
||||
JSON_ASSERT(!ref_stack.empty());
|
||||
JSON_ASSERT(!keep_stack.empty());
|
||||
ref_stack.pop_back();
|
||||
keep_stack.pop_back();
|
||||
|
||||
if (!ref_stack.empty() && ref_stack.back() && ref_stack.back()->is_structured())
|
||||
{
|
||||
// remove discarded value
|
||||
for (auto it = ref_stack.back()->begin(); it != ref_stack.back()->end(); ++it)
|
||||
{
|
||||
if (it->is_discarded())
|
||||
{
|
||||
ref_stack.back()->erase(it);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool start_array(std::size_t len)
|
||||
{
|
||||
const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::array_start, discarded);
|
||||
keep_stack.push_back(keep);
|
||||
|
||||
auto val = handle_value(BasicJsonType::value_t::array, true);
|
||||
ref_stack.push_back(val.second);
|
||||
|
||||
// check array limit
|
||||
if (ref_stack.back() && JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
|
||||
{
|
||||
JSON_THROW(out_of_range::create(408, concat("excessive array size: ", std::to_string(len)), ref_stack.back()));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool end_array()
|
||||
{
|
||||
bool keep = true;
|
||||
|
||||
if (ref_stack.back())
|
||||
{
|
||||
keep = callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::array_end, *ref_stack.back());
|
||||
if (keep)
|
||||
{
|
||||
ref_stack.back()->set_parents();
|
||||
}
|
||||
else
|
||||
{
|
||||
// discard array
|
||||
*ref_stack.back() = discarded;
|
||||
}
|
||||
}
|
||||
|
||||
JSON_ASSERT(!ref_stack.empty());
|
||||
JSON_ASSERT(!keep_stack.empty());
|
||||
ref_stack.pop_back();
|
||||
keep_stack.pop_back();
|
||||
|
||||
// remove discarded value
|
||||
if (!keep && !ref_stack.empty() && ref_stack.back()->is_array())
|
||||
{
|
||||
ref_stack.back()->m_data.m_value.array->pop_back();
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
template<class Exception>
|
||||
bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
|
||||
const Exception& ex)
|
||||
{
|
||||
errored = true;
|
||||
static_cast<void>(ex);
|
||||
if (allow_exceptions)
|
||||
{
|
||||
JSON_THROW(ex);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
constexpr bool is_errored() const
|
||||
{
|
||||
return errored;
|
||||
}
|
||||
|
||||
private:
|
||||
/*!
|
||||
@param[in] v value to add to the JSON value we build during parsing
|
||||
@param[in] skip_callback whether we should skip calling the callback
|
||||
function; this is required after start_array() and
|
||||
start_object() SAX events, because otherwise we would call the
|
||||
callback function with an empty array or object, respectively.
|
||||
|
||||
@invariant If the ref stack is empty, then the passed value will be the new
|
||||
root.
|
||||
@invariant If the ref stack contains a value, then it is an array or an
|
||||
object to which we can add elements
|
||||
|
||||
@return pair of boolean (whether value should be kept) and pointer (to the
|
||||
passed value in the ref_stack hierarchy; nullptr if not kept)
|
||||
*/
|
||||
template<typename Value>
|
||||
std::pair<bool, BasicJsonType*> handle_value(Value&& v, const bool skip_callback = false)
|
||||
{
|
||||
JSON_ASSERT(!keep_stack.empty());
|
||||
|
||||
// do not handle this value if we know it would be added to a discarded
|
||||
// container
|
||||
if (!keep_stack.back())
|
||||
{
|
||||
return {false, nullptr};
|
||||
}
|
||||
|
||||
// create value
|
||||
auto value = BasicJsonType(std::forward<Value>(v));
|
||||
|
||||
// check callback
|
||||
const bool keep = skip_callback || callback(static_cast<int>(ref_stack.size()), parse_event_t::value, value);
|
||||
|
||||
// do not handle this value if we just learnt it shall be discarded
|
||||
if (!keep)
|
||||
{
|
||||
return {false, nullptr};
|
||||
}
|
||||
|
||||
if (ref_stack.empty())
|
||||
{
|
||||
root = std::move(value);
|
||||
return {true, & root};
|
||||
}
|
||||
|
||||
// skip this value if we already decided to skip the parent
|
||||
// (https://github.com/nlohmann/json/issues/971#issuecomment-413678360)
|
||||
if (!ref_stack.back())
|
||||
{
|
||||
return {false, nullptr};
|
||||
}
|
||||
|
||||
// we now only expect arrays and objects
|
||||
JSON_ASSERT(ref_stack.back()->is_array() || ref_stack.back()->is_object());
|
||||
|
||||
// array
|
||||
if (ref_stack.back()->is_array())
|
||||
{
|
||||
ref_stack.back()->m_data.m_value.array->emplace_back(std::move(value));
|
||||
return {true, & (ref_stack.back()->m_data.m_value.array->back())};
|
||||
}
|
||||
|
||||
// object
|
||||
JSON_ASSERT(ref_stack.back()->is_object());
|
||||
// check if we should store an element for the current key
|
||||
JSON_ASSERT(!key_keep_stack.empty());
|
||||
const bool store_element = key_keep_stack.back();
|
||||
key_keep_stack.pop_back();
|
||||
|
||||
if (!store_element)
|
||||
{
|
||||
return {false, nullptr};
|
||||
}
|
||||
|
||||
JSON_ASSERT(object_element);
|
||||
*object_element = std::move(value);
|
||||
return {true, object_element};
|
||||
}
|
||||
|
||||
/// the parsed JSON value
|
||||
BasicJsonType& root;
|
||||
/// stack to model hierarchy of values
|
||||
std::vector<BasicJsonType*> ref_stack {};
|
||||
/// stack to manage which values to keep
|
||||
std::vector<bool> keep_stack {}; // NOLINT(readability-redundant-member-init)
|
||||
/// stack to manage which object keys to keep
|
||||
std::vector<bool> key_keep_stack {}; // NOLINT(readability-redundant-member-init)
|
||||
/// helper to hold the reference for the next object element
|
||||
BasicJsonType* object_element = nullptr;
|
||||
/// whether a syntax error occurred
|
||||
bool errored = false;
|
||||
/// callback function
|
||||
const parser_callback_t callback = nullptr;
|
||||
/// whether to throw exceptions in case of errors
|
||||
const bool allow_exceptions = true;
|
||||
/// a discarded value for the callback
|
||||
BasicJsonType discarded = BasicJsonType::value_t::discarded;
|
||||
};
|
||||
|
||||
template<typename BasicJsonType>
|
||||
class json_sax_acceptor
|
||||
{
|
||||
public:
|
||||
using number_integer_t = typename BasicJsonType::number_integer_t;
|
||||
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
|
||||
using number_float_t = typename BasicJsonType::number_float_t;
|
||||
using string_t = typename BasicJsonType::string_t;
|
||||
using binary_t = typename BasicJsonType::binary_t;
|
||||
|
||||
bool null()
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool boolean(bool /*unused*/)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_integer(number_integer_t /*unused*/)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_unsigned(number_unsigned_t /*unused*/)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool number_float(number_float_t /*unused*/, const string_t& /*unused*/)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool string(string_t& /*unused*/)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool binary(binary_t& /*unused*/)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool start_object(std::size_t /*unused*/ = static_cast<std::size_t>(-1))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool key(string_t& /*unused*/)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool end_object()
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool start_array(std::size_t /*unused*/ = static_cast<std::size_t>(-1))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool end_array()
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, const detail::exception& /*unused*/)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
File diff suppressed because it is too large
Load Diff
@@ -1,519 +0,0 @@
|
||||
// __ _____ _____ _____
|
||||
// __| | __| | | | JSON for Modern C++
|
||||
// | | |__ | | | | | | version 3.11.3
|
||||
// |_____|_____|_____|_|___| https://github.com/nlohmann/json
|
||||
//
|
||||
// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cmath> // isfinite
|
||||
#include <cstdint> // uint8_t
|
||||
#include <functional> // function
|
||||
#include <string> // string
|
||||
#include <utility> // move
|
||||
#include <vector> // vector
|
||||
|
||||
#include <nlohmann/detail/exceptions.hpp>
|
||||
#include <nlohmann/detail/input/input_adapters.hpp>
|
||||
#include <nlohmann/detail/input/json_sax.hpp>
|
||||
#include <nlohmann/detail/input/lexer.hpp>
|
||||
#include <nlohmann/detail/macro_scope.hpp>
|
||||
#include <nlohmann/detail/meta/is_sax.hpp>
|
||||
#include <nlohmann/detail/string_concat.hpp>
|
||||
#include <nlohmann/detail/value_t.hpp>
|
||||
|
||||
NLOHMANN_JSON_NAMESPACE_BEGIN
|
||||
namespace detail
|
||||
{
|
||||
////////////
|
||||
// parser //
|
||||
////////////
|
||||
|
||||
enum class parse_event_t : std::uint8_t
|
||||
{
|
||||
/// the parser read `{` and started to process a JSON object
|
||||
object_start,
|
||||
/// the parser read `}` and finished processing a JSON object
|
||||
object_end,
|
||||
/// the parser read `[` and started to process a JSON array
|
||||
array_start,
|
||||
/// the parser read `]` and finished processing a JSON array
|
||||
array_end,
|
||||
/// the parser read a key of a value in an object
|
||||
key,
|
||||
/// the parser finished reading a JSON value
|
||||
value
|
||||
};
|
||||
|
||||
template<typename BasicJsonType>
|
||||
using parser_callback_t =
|
||||
std::function<bool(int /*depth*/, parse_event_t /*event*/, BasicJsonType& /*parsed*/)>;
|
||||
|
||||
/*!
|
||||
@brief syntax analysis
|
||||
|
||||
This class implements a recursive descent parser.
|
||||
*/
|
||||
template<typename BasicJsonType, typename InputAdapterType>
|
||||
class parser
|
||||
{
|
||||
using number_integer_t = typename BasicJsonType::number_integer_t;
|
||||
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
|
||||
using number_float_t = typename BasicJsonType::number_float_t;
|
||||
using string_t = typename BasicJsonType::string_t;
|
||||
using lexer_t = lexer<BasicJsonType, InputAdapterType>;
|
||||
using token_type = typename lexer_t::token_type;
|
||||
|
||||
public:
|
||||
/// a parser reading from an input adapter
|
||||
explicit parser(InputAdapterType&& adapter,
|
||||
const parser_callback_t<BasicJsonType> cb = nullptr,
|
||||
const bool allow_exceptions_ = true,
|
||||
const bool skip_comments = false)
|
||||
: callback(cb)
|
||||
, m_lexer(std::move(adapter), skip_comments)
|
||||
, allow_exceptions(allow_exceptions_)
|
||||
{
|
||||
// read first token
|
||||
get_token();
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief public parser interface
|
||||
|
||||
@param[in] strict whether to expect the last token to be EOF
|
||||
@param[in,out] result parsed JSON value
|
||||
|
||||
@throw parse_error.101 in case of an unexpected token
|
||||
@throw parse_error.102 if to_unicode fails or surrogate error
|
||||
@throw parse_error.103 if to_unicode fails
|
||||
*/
|
||||
void parse(const bool strict, BasicJsonType& result)
|
||||
{
|
||||
if (callback)
|
||||
{
|
||||
json_sax_dom_callback_parser<BasicJsonType> sdp(result, callback, allow_exceptions);
|
||||
sax_parse_internal(&sdp);
|
||||
|
||||
// in strict mode, input must be completely read
|
||||
if (strict && (get_token() != token_type::end_of_input))
|
||||
{
|
||||
sdp.parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(),
|
||||
exception_message(token_type::end_of_input, "value"), nullptr));
|
||||
}
|
||||
|
||||
// in case of an error, return discarded value
|
||||
if (sdp.is_errored())
|
||||
{
|
||||
result = value_t::discarded;
|
||||
return;
|
||||
}
|
||||
|
||||
// set top-level value to null if it was discarded by the callback
|
||||
// function
|
||||
if (result.is_discarded())
|
||||
{
|
||||
result = nullptr;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
json_sax_dom_parser<BasicJsonType> sdp(result, allow_exceptions);
|
||||
sax_parse_internal(&sdp);
|
||||
|
||||
// in strict mode, input must be completely read
|
||||
if (strict && (get_token() != token_type::end_of_input))
|
||||
{
|
||||
sdp.parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_of_input, "value"), nullptr));
|
||||
}
|
||||
|
||||
// in case of an error, return discarded value
|
||||
if (sdp.is_errored())
|
||||
{
|
||||
result = value_t::discarded;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
result.assert_invariant();
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief public accept interface
|
||||
|
||||
@param[in] strict whether to expect the last token to be EOF
|
||||
@return whether the input is a proper JSON text
|
||||
*/
|
||||
bool accept(const bool strict = true)
|
||||
{
|
||||
json_sax_acceptor<BasicJsonType> sax_acceptor;
|
||||
return sax_parse(&sax_acceptor, strict);
|
||||
}
|
||||
|
||||
template<typename SAX>
|
||||
JSON_HEDLEY_NON_NULL(2)
|
||||
bool sax_parse(SAX* sax, const bool strict = true)
|
||||
{
|
||||
(void)detail::is_sax_static_asserts<SAX, BasicJsonType> {};
|
||||
const bool result = sax_parse_internal(sax);
|
||||
|
||||
// strict mode: next byte must be EOF
|
||||
if (result && strict && (get_token() != token_type::end_of_input))
|
||||
{
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_of_input, "value"), nullptr));
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
private:
|
||||
template<typename SAX>
|
||||
JSON_HEDLEY_NON_NULL(2)
|
||||
bool sax_parse_internal(SAX* sax)
|
||||
{
|
||||
// stack to remember the hierarchy of structured values we are parsing
|
||||
// true = array; false = object
|
||||
std::vector<bool> states;
|
||||
// value to avoid a goto (see comment where set to true)
|
||||
bool skip_to_state_evaluation = false;
|
||||
|
||||
while (true)
|
||||
{
|
||||
if (!skip_to_state_evaluation)
|
||||
{
|
||||
// invariant: get_token() was called before each iteration
|
||||
switch (last_token)
|
||||
{
|
||||
case token_type::begin_object:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->start_object(static_cast<std::size_t>(-1))))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// closing } -> we are done
|
||||
if (get_token() == token_type::end_object)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->end_object()))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
// parse key
|
||||
if (JSON_HEDLEY_UNLIKELY(last_token != token_type::value_string))
|
||||
{
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::value_string, "object key"), nullptr));
|
||||
}
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->key(m_lexer.get_string())))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// parse separator (:)
|
||||
if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::name_separator))
|
||||
{
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::name_separator, "object separator"), nullptr));
|
||||
}
|
||||
|
||||
// remember we are now inside an object
|
||||
states.push_back(false);
|
||||
|
||||
// parse values
|
||||
get_token();
|
||||
continue;
|
||||
}
|
||||
|
||||
case token_type::begin_array:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->start_array(static_cast<std::size_t>(-1))))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// closing ] -> we are done
|
||||
if (get_token() == token_type::end_array)
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->end_array()))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
// remember we are now inside an array
|
||||
states.push_back(true);
|
||||
|
||||
// parse values (no need to call get_token)
|
||||
continue;
|
||||
}
|
||||
|
||||
case token_type::value_float:
|
||||
{
|
||||
const auto res = m_lexer.get_number_float();
|
||||
|
||||
if (JSON_HEDLEY_UNLIKELY(!std::isfinite(res)))
|
||||
{
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
out_of_range::create(406, concat("number overflow parsing '", m_lexer.get_token_string(), '\''), nullptr));
|
||||
}
|
||||
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->number_float(res, m_lexer.get_string())))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case token_type::literal_false:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->boolean(false)))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case token_type::literal_null:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->null()))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case token_type::literal_true:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->boolean(true)))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case token_type::value_integer:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->number_integer(m_lexer.get_number_integer())))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case token_type::value_string:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->string(m_lexer.get_string())))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case token_type::value_unsigned:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->number_unsigned(m_lexer.get_number_unsigned())))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case token_type::parse_error:
|
||||
{
|
||||
// using "uninitialized" to avoid "expected" message
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::uninitialized, "value"), nullptr));
|
||||
}
|
||||
case token_type::end_of_input:
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(m_lexer.get_position().chars_read_total == 1))
|
||||
{
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(),
|
||||
"attempting to parse an empty input; check that your input string or stream contains the expected JSON", nullptr));
|
||||
}
|
||||
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::literal_or_value, "value"), nullptr));
|
||||
}
|
||||
case token_type::uninitialized:
|
||||
case token_type::end_array:
|
||||
case token_type::end_object:
|
||||
case token_type::name_separator:
|
||||
case token_type::value_separator:
|
||||
case token_type::literal_or_value:
|
||||
default: // the last token was unexpected
|
||||
{
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::literal_or_value, "value"), nullptr));
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
skip_to_state_evaluation = false;
|
||||
}
|
||||
|
||||
// we reached this line after we successfully parsed a value
|
||||
if (states.empty())
|
||||
{
|
||||
// empty stack: we reached the end of the hierarchy: done
|
||||
return true;
|
||||
}
|
||||
|
||||
if (states.back()) // array
|
||||
{
|
||||
// comma -> next value
|
||||
if (get_token() == token_type::value_separator)
|
||||
{
|
||||
// parse a new value
|
||||
get_token();
|
||||
continue;
|
||||
}
|
||||
|
||||
// closing ]
|
||||
if (JSON_HEDLEY_LIKELY(last_token == token_type::end_array))
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->end_array()))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// We are done with this array. Before we can parse a
|
||||
// new value, we need to evaluate the new state first.
|
||||
// By setting skip_to_state_evaluation to false, we
|
||||
// are effectively jumping to the beginning of this if.
|
||||
JSON_ASSERT(!states.empty());
|
||||
states.pop_back();
|
||||
skip_to_state_evaluation = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_array, "array"), nullptr));
|
||||
}
|
||||
|
||||
// states.back() is false -> object
|
||||
|
||||
// comma -> next value
|
||||
if (get_token() == token_type::value_separator)
|
||||
{
|
||||
// parse key
|
||||
if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::value_string))
|
||||
{
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::value_string, "object key"), nullptr));
|
||||
}
|
||||
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->key(m_lexer.get_string())))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// parse separator (:)
|
||||
if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::name_separator))
|
||||
{
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::name_separator, "object separator"), nullptr));
|
||||
}
|
||||
|
||||
// parse values
|
||||
get_token();
|
||||
continue;
|
||||
}
|
||||
|
||||
// closing }
|
||||
if (JSON_HEDLEY_LIKELY(last_token == token_type::end_object))
|
||||
{
|
||||
if (JSON_HEDLEY_UNLIKELY(!sax->end_object()))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// We are done with this object. Before we can parse a
|
||||
// new value, we need to evaluate the new state first.
|
||||
// By setting skip_to_state_evaluation to false, we
|
||||
// are effectively jumping to the beginning of this if.
|
||||
JSON_ASSERT(!states.empty());
|
||||
states.pop_back();
|
||||
skip_to_state_evaluation = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
return sax->parse_error(m_lexer.get_position(),
|
||||
m_lexer.get_token_string(),
|
||||
parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_object, "object"), nullptr));
|
||||
}
|
||||
}
|
||||
|
||||
/// get next token from lexer
|
||||
token_type get_token()
|
||||
{
|
||||
return last_token = m_lexer.scan();
|
||||
}
|
||||
|
||||
std::string exception_message(const token_type expected, const std::string& context)
|
||||
{
|
||||
std::string error_msg = "syntax error ";
|
||||
|
||||
if (!context.empty())
|
||||
{
|
||||
error_msg += concat("while parsing ", context, ' ');
|
||||
}
|
||||
|
||||
error_msg += "- ";
|
||||
|
||||
if (last_token == token_type::parse_error)
|
||||
{
|
||||
error_msg += concat(m_lexer.get_error_message(), "; last read: '",
|
||||
m_lexer.get_token_string(), '\'');
|
||||
}
|
||||
else
|
||||
{
|
||||
error_msg += concat("unexpected ", lexer_t::token_type_name(last_token));
|
||||
}
|
||||
|
||||
if (expected != token_type::uninitialized)
|
||||
{
|
||||
error_msg += concat("; expected ", lexer_t::token_type_name(expected));
|
||||
}
|
||||
|
||||
return error_msg;
|
||||
}
|
||||
|
||||
private:
|
||||
/// callback function
|
||||
const parser_callback_t<BasicJsonType> callback = nullptr;
|
||||
/// the type of the last read token
|
||||
token_type last_token = token_type::uninitialized;
|
||||
/// the lexer
|
||||
lexer_t m_lexer;
|
||||
/// whether to throw exceptions in case of errors
|
||||
const bool allow_exceptions = true;
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
NLOHMANN_JSON_NAMESPACE_END
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user