Add tests to 90% coverage
This commit is contained in:
@@ -11,7 +11,7 @@ namespace bayesnet {
|
||||
Proposal::~Proposal()
|
||||
{
|
||||
for (auto& [key, value] : discretizers) {
|
||||
delete value;
|
||||
delete value;
|
||||
}
|
||||
}
|
||||
void Proposal::checkInput(const torch::Tensor& X, const torch::Tensor& y)
|
||||
@@ -126,4 +126,4 @@ namespace bayesnet {
|
||||
}
|
||||
return yy;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -3,255 +3,266 @@
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
#include <folding.hpp>
|
||||
#include "Boost.h"
|
||||
#include "bayesnet/feature_selection/CFS.h"
|
||||
#include "bayesnet/feature_selection/FCBF.h"
|
||||
#include "bayesnet/feature_selection/IWSS.h"
|
||||
#include "Boost.h"
|
||||
#include <folding.hpp>
|
||||
|
||||
namespace bayesnet {
|
||||
Boost::Boost(bool predict_voting) : Ensemble(predict_voting)
|
||||
{
|
||||
validHyperparameters = { "alpha_block", "order", "convergence", "convergence_best", "bisection", "threshold", "maxTolerance",
|
||||
"predict_voting", "select_features", "block_update" };
|
||||
Boost::Boost(bool predict_voting) : Ensemble(predict_voting) {
|
||||
validHyperparameters = {"alpha_block", "order", "convergence", "convergence_best", "bisection",
|
||||
"threshold", "maxTolerance", "predict_voting", "select_features", "block_update"};
|
||||
}
|
||||
void Boost::setHyperparameters(const nlohmann::json &hyperparameters_) {
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("order")) {
|
||||
std::vector<std::string> algos = {Orders.ASC, Orders.DESC, Orders.RAND};
|
||||
order_algorithm = hyperparameters["order"];
|
||||
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC +
|
||||
", " + Orders.RAND + "]");
|
||||
}
|
||||
hyperparameters.erase("order");
|
||||
}
|
||||
void Boost::setHyperparameters(const nlohmann::json& hyperparameters_)
|
||||
{
|
||||
auto hyperparameters = hyperparameters_;
|
||||
if (hyperparameters.contains("order")) {
|
||||
std::vector<std::string> algos = { Orders.ASC, Orders.DESC, Orders.RAND };
|
||||
order_algorithm = hyperparameters["order"];
|
||||
if (std::find(algos.begin(), algos.end(), order_algorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid order algorithm, valid values [" + Orders.ASC + ", " + Orders.DESC + ", " + Orders.RAND + "]");
|
||||
}
|
||||
hyperparameters.erase("order");
|
||||
}
|
||||
if (hyperparameters.contains("alpha_block")) {
|
||||
alpha_block = hyperparameters["alpha_block"];
|
||||
hyperparameters.erase("alpha_block");
|
||||
}
|
||||
if (hyperparameters.contains("convergence")) {
|
||||
convergence = hyperparameters["convergence"];
|
||||
hyperparameters.erase("convergence");
|
||||
}
|
||||
if (hyperparameters.contains("convergence_best")) {
|
||||
convergence_best = hyperparameters["convergence_best"];
|
||||
hyperparameters.erase("convergence_best");
|
||||
}
|
||||
if (hyperparameters.contains("bisection")) {
|
||||
bisection = hyperparameters["bisection"];
|
||||
hyperparameters.erase("bisection");
|
||||
}
|
||||
if (hyperparameters.contains("threshold")) {
|
||||
threshold = hyperparameters["threshold"];
|
||||
hyperparameters.erase("threshold");
|
||||
}
|
||||
if (hyperparameters.contains("maxTolerance")) {
|
||||
maxTolerance = hyperparameters["maxTolerance"];
|
||||
if (maxTolerance < 1 || maxTolerance > 6)
|
||||
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 6]");
|
||||
hyperparameters.erase("maxTolerance");
|
||||
}
|
||||
if (hyperparameters.contains("predict_voting")) {
|
||||
predict_voting = hyperparameters["predict_voting"];
|
||||
hyperparameters.erase("predict_voting");
|
||||
}
|
||||
if (hyperparameters.contains("select_features")) {
|
||||
auto selectedAlgorithm = hyperparameters["select_features"];
|
||||
std::vector<std::string> algos = { SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF };
|
||||
selectFeatures = true;
|
||||
select_features_algorithm = selectedAlgorithm;
|
||||
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " + SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
|
||||
}
|
||||
hyperparameters.erase("select_features");
|
||||
}
|
||||
if (hyperparameters.contains("block_update")) {
|
||||
block_update = hyperparameters["block_update"];
|
||||
hyperparameters.erase("block_update");
|
||||
}
|
||||
if (block_update && alpha_block) {
|
||||
throw std::invalid_argument("alpha_block and block_update cannot be true at the same time");
|
||||
}
|
||||
if (block_update && !bisection) {
|
||||
throw std::invalid_argument("block_update needs bisection to be true");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
if (hyperparameters.contains("alpha_block")) {
|
||||
alpha_block = hyperparameters["alpha_block"];
|
||||
hyperparameters.erase("alpha_block");
|
||||
}
|
||||
void Boost::buildModel(const torch::Tensor& weights)
|
||||
{
|
||||
// Models shall be built in trainModel
|
||||
models.clear();
|
||||
significanceModels.clear();
|
||||
n_models = 0;
|
||||
// Prepare the validation dataset
|
||||
auto y_ = dataset.index({ -1, "..." });
|
||||
if (convergence) {
|
||||
// Prepare train & validation sets from train data
|
||||
auto fold = folding::StratifiedKFold(5, y_, 271);
|
||||
auto [train, test] = fold.getFold(0);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
// Get train and validation sets
|
||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), train_t });
|
||||
y_train = dataset.index({ -1, train_t });
|
||||
X_test = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), test_t });
|
||||
y_test = dataset.index({ -1, test_t });
|
||||
dataset = X_train;
|
||||
m = X_train.size(1);
|
||||
auto n_classes = states.at(className).size();
|
||||
// Build dataset with train data
|
||||
buildDataset(y_train);
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
} else {
|
||||
// Use all data to train
|
||||
X_train = dataset.index({ torch::indexing::Slice(0, dataset.size(0) - 1), "..." });
|
||||
y_train = y_;
|
||||
}
|
||||
if (hyperparameters.contains("convergence")) {
|
||||
convergence = hyperparameters["convergence"];
|
||||
hyperparameters.erase("convergence");
|
||||
}
|
||||
std::vector<int> Boost::featureSelection(torch::Tensor& weights_)
|
||||
{
|
||||
int maxFeatures = 0;
|
||||
if (select_features_algorithm == SelectFeatures.CFS) {
|
||||
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
|
||||
} else if (select_features_algorithm == SelectFeatures.IWSS) {
|
||||
if (threshold < 0 || threshold >0.5) {
|
||||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
|
||||
}
|
||||
featureSelector = new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
} else if (select_features_algorithm == SelectFeatures.FCBF) {
|
||||
if (threshold < 1e-7 || threshold > 1) {
|
||||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
|
||||
}
|
||||
featureSelector = new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
}
|
||||
featureSelector->fit();
|
||||
auto featuresUsed = featureSelector->getFeatures();
|
||||
delete featureSelector;
|
||||
return featuresUsed;
|
||||
if (hyperparameters.contains("convergence_best")) {
|
||||
convergence_best = hyperparameters["convergence_best"];
|
||||
hyperparameters.erase("convergence_best");
|
||||
}
|
||||
std::tuple<torch::Tensor&, double, bool> Boost::update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights)
|
||||
{
|
||||
bool terminate = false;
|
||||
double alpha_t = 0;
|
||||
auto mask_wrong = ypred != ytrain;
|
||||
auto mask_right = ypred == ytrain;
|
||||
auto masked_weights = weights * mask_wrong.to(weights.dtype());
|
||||
double epsilon_t = masked_weights.sum().item<double>();
|
||||
// std::cout << "epsilon_t: " << epsilon_t << " count wrong: " << mask_wrong.sum().item<int>() << " count right: " << mask_right.sum().item<int>() << std::endl;
|
||||
if (epsilon_t > 0.5) {
|
||||
// Inverse the weights policy (plot ln(wt))
|
||||
// "In each round of AdaBoost, there is a sanity check to ensure that the current base
|
||||
// learner is better than random guess" (Zhi-Hua Zhou, 2012)
|
||||
terminate = true;
|
||||
} else {
|
||||
double wt = (1 - epsilon_t) / epsilon_t;
|
||||
alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
||||
// Step 3.2: Update weights for next classifier
|
||||
// Step 3.2.1: Update weights of wrong samples
|
||||
weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights;
|
||||
// Step 3.2.2: Update weights of right samples
|
||||
weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights;
|
||||
// Step 3.3: Normalise the weights
|
||||
double totalWeights = torch::sum(weights).item<double>();
|
||||
weights = weights / totalWeights;
|
||||
}
|
||||
return { weights, alpha_t, terminate };
|
||||
if (hyperparameters.contains("bisection")) {
|
||||
bisection = hyperparameters["bisection"];
|
||||
hyperparameters.erase("bisection");
|
||||
}
|
||||
std::tuple<torch::Tensor&, double, bool> Boost::update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights)
|
||||
{
|
||||
/* Update Block algorithm
|
||||
k = # of models in block
|
||||
n_models = # of models in ensemble to make predictions
|
||||
n_models_bak = # models saved
|
||||
models = vector of models to make predictions
|
||||
models_bak = models not used to make predictions
|
||||
significances_bak = backup of significances vector
|
||||
if (hyperparameters.contains("threshold")) {
|
||||
threshold = hyperparameters["threshold"];
|
||||
hyperparameters.erase("threshold");
|
||||
}
|
||||
if (hyperparameters.contains("maxTolerance")) {
|
||||
maxTolerance = hyperparameters["maxTolerance"];
|
||||
if (maxTolerance < 1 || maxTolerance > 6)
|
||||
throw std::invalid_argument("Invalid maxTolerance value, must be greater in [1, 6]");
|
||||
hyperparameters.erase("maxTolerance");
|
||||
}
|
||||
if (hyperparameters.contains("predict_voting")) {
|
||||
predict_voting = hyperparameters["predict_voting"];
|
||||
hyperparameters.erase("predict_voting");
|
||||
}
|
||||
if (hyperparameters.contains("select_features")) {
|
||||
auto selectedAlgorithm = hyperparameters["select_features"];
|
||||
std::vector<std::string> algos = {SelectFeatures.IWSS, SelectFeatures.CFS, SelectFeatures.FCBF};
|
||||
selectFeatures = true;
|
||||
select_features_algorithm = selectedAlgorithm;
|
||||
if (std::find(algos.begin(), algos.end(), selectedAlgorithm) == algos.end()) {
|
||||
throw std::invalid_argument("Invalid selectFeatures value, valid values [" + SelectFeatures.IWSS + ", " +
|
||||
SelectFeatures.CFS + ", " + SelectFeatures.FCBF + "]");
|
||||
}
|
||||
hyperparameters.erase("select_features");
|
||||
}
|
||||
if (hyperparameters.contains("block_update")) {
|
||||
block_update = hyperparameters["block_update"];
|
||||
hyperparameters.erase("block_update");
|
||||
}
|
||||
if (block_update && alpha_block) {
|
||||
throw std::invalid_argument("alpha_block and block_update cannot be true at the same time");
|
||||
}
|
||||
if (block_update && !bisection) {
|
||||
throw std::invalid_argument("block_update needs bisection to be true");
|
||||
}
|
||||
Classifier::setHyperparameters(hyperparameters);
|
||||
}
|
||||
void Boost::add_model(std::unique_ptr<Classifier> model, double significance) {
|
||||
models.push_back(std::move(model));
|
||||
n_models++;
|
||||
significanceModels.push_back(significance);
|
||||
}
|
||||
void Boost::remove_last_model() {
|
||||
models.pop_back();
|
||||
significanceModels.pop_back();
|
||||
n_models--;
|
||||
}
|
||||
void Boost::buildModel(const torch::Tensor &weights) {
|
||||
// Models shall be built in trainModel
|
||||
models.clear();
|
||||
significanceModels.clear();
|
||||
n_models = 0;
|
||||
// Prepare the validation dataset
|
||||
auto y_ = dataset.index({-1, "..."});
|
||||
if (convergence) {
|
||||
// Prepare train & validation sets from train data
|
||||
auto fold = folding::StratifiedKFold(5, y_, 271);
|
||||
auto [train, test] = fold.getFold(0);
|
||||
auto train_t = torch::tensor(train);
|
||||
auto test_t = torch::tensor(test);
|
||||
// Get train and validation sets
|
||||
X_train = dataset.index({torch::indexing::Slice(0, dataset.size(0) - 1), train_t});
|
||||
y_train = dataset.index({-1, train_t});
|
||||
X_test = dataset.index({torch::indexing::Slice(0, dataset.size(0) - 1), test_t});
|
||||
y_test = dataset.index({-1, test_t});
|
||||
dataset = X_train;
|
||||
m = X_train.size(1);
|
||||
auto n_classes = states.at(className).size();
|
||||
// Build dataset with train data
|
||||
buildDataset(y_train);
|
||||
metrics = Metrics(dataset, features, className, n_classes);
|
||||
} else {
|
||||
// Use all data to train
|
||||
X_train = dataset.index({torch::indexing::Slice(0, dataset.size(0) - 1), "..."});
|
||||
y_train = y_;
|
||||
}
|
||||
}
|
||||
std::vector<int> Boost::featureSelection(torch::Tensor &weights_) {
|
||||
int maxFeatures = 0;
|
||||
if (select_features_algorithm == SelectFeatures.CFS) {
|
||||
featureSelector = new CFS(dataset, features, className, maxFeatures, states.at(className).size(), weights_);
|
||||
} else if (select_features_algorithm == SelectFeatures.IWSS) {
|
||||
if (threshold < 0 || threshold > 0.5) {
|
||||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.IWSS + " [0, 0.5]");
|
||||
}
|
||||
featureSelector =
|
||||
new IWSS(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
} else if (select_features_algorithm == SelectFeatures.FCBF) {
|
||||
if (threshold < 1e-7 || threshold > 1) {
|
||||
throw std::invalid_argument("Invalid threshold value for " + SelectFeatures.FCBF + " [1e-7, 1]");
|
||||
}
|
||||
featureSelector =
|
||||
new FCBF(dataset, features, className, maxFeatures, states.at(className).size(), weights_, threshold);
|
||||
}
|
||||
featureSelector->fit();
|
||||
auto featuresUsed = featureSelector->getFeatures();
|
||||
delete featureSelector;
|
||||
return featuresUsed;
|
||||
}
|
||||
std::tuple<torch::Tensor &, double, bool> Boost::update_weights(torch::Tensor &ytrain, torch::Tensor &ypred,
|
||||
torch::Tensor &weights) {
|
||||
bool terminate = false;
|
||||
double alpha_t = 0;
|
||||
auto mask_wrong = ypred != ytrain;
|
||||
auto mask_right = ypred == ytrain;
|
||||
auto masked_weights = weights * mask_wrong.to(weights.dtype());
|
||||
double epsilon_t = masked_weights.sum().item<double>();
|
||||
// std::cout << "epsilon_t: " << epsilon_t << " count wrong: " << mask_wrong.sum().item<int>() << " count right: "
|
||||
// << mask_right.sum().item<int>() << std::endl;
|
||||
if (epsilon_t > 0.5) {
|
||||
// Inverse the weights policy (plot ln(wt))
|
||||
// "In each round of AdaBoost, there is a sanity check to ensure that the current base
|
||||
// learner is better than random guess" (Zhi-Hua Zhou, 2012)
|
||||
terminate = true;
|
||||
} else {
|
||||
double wt = (1 - epsilon_t) / epsilon_t;
|
||||
alpha_t = epsilon_t == 0 ? 1 : 0.5 * log(wt);
|
||||
// Step 3.2: Update weights for next classifier
|
||||
// Step 3.2.1: Update weights of wrong samples
|
||||
weights += mask_wrong.to(weights.dtype()) * exp(alpha_t) * weights;
|
||||
// Step 3.2.2: Update weights of right samples
|
||||
weights += mask_right.to(weights.dtype()) * exp(-alpha_t) * weights;
|
||||
// Step 3.3: Normalise the weights
|
||||
double totalWeights = torch::sum(weights).item<double>();
|
||||
weights = weights / totalWeights;
|
||||
}
|
||||
return {weights, alpha_t, terminate};
|
||||
}
|
||||
std::tuple<torch::Tensor &, double, bool> Boost::update_weights_block(int k, torch::Tensor &ytrain,
|
||||
torch::Tensor &weights) {
|
||||
/* Update Block algorithm
|
||||
k = # of models in block
|
||||
n_models = # of models in ensemble to make predictions
|
||||
n_models_bak = # models saved
|
||||
models = vector of models to make predictions
|
||||
models_bak = models not used to make predictions
|
||||
significances_bak = backup of significances vector
|
||||
|
||||
Case list
|
||||
A) k = 1, n_models = 1 => n = 0 , n_models = n + k
|
||||
B) k = 1, n_models = n + 1 => n_models = n + k
|
||||
C) k > 1, n_models = k + 1 => n= 1, n_models = n + k
|
||||
D) k > 1, n_models = k => n = 0, n_models = n + k
|
||||
E) k > 1, n_models = k + n => n_models = n + k
|
||||
Case list
|
||||
A) k = 1, n_models = 1 => n = 0 , n_models = n + k
|
||||
B) k = 1, n_models = n + 1 => n_models = n + k
|
||||
C) k > 1, n_models = k + 1 => n= 1, n_models = n + k
|
||||
D) k > 1, n_models = k => n = 0, n_models = n + k
|
||||
E) k > 1, n_models = k + n => n_models = n + k
|
||||
|
||||
A, D) n=0, k > 0, n_models == k
|
||||
1. n_models_bak <- n_models
|
||||
2. significances_bak <- significances
|
||||
3. significances = vector(k, 1)
|
||||
4. Don’t move any classifiers out of models
|
||||
5. n_models <- k
|
||||
6. Make prediction, compute alpha, update weights
|
||||
7. Don’t restore any classifiers to models
|
||||
8. significances <- significances_bak
|
||||
9. Update last k significances
|
||||
10. n_models <- n_models_bak
|
||||
A, D) n=0, k > 0, n_models == k
|
||||
1. n_models_bak <- n_models
|
||||
2. significances_bak <- significances
|
||||
3. significances = vector(k, 1)
|
||||
4. Don’t move any classifiers out of models
|
||||
5. n_models <- k
|
||||
6. Make prediction, compute alpha, update weights
|
||||
7. Don’t restore any classifiers to models
|
||||
8. significances <- significances_bak
|
||||
9. Update last k significances
|
||||
10. n_models <- n_models_bak
|
||||
|
||||
B, C, E) n > 0, k > 0, n_models == n + k
|
||||
1. n_models_bak <- n_models
|
||||
2. significances_bak <- significances
|
||||
3. significances = vector(k, 1)
|
||||
4. Move first n classifiers to models_bak
|
||||
5. n_models <- k
|
||||
6. Make prediction, compute alpha, update weights
|
||||
7. Insert classifiers in models_bak to be the first n models
|
||||
8. significances <- significances_bak
|
||||
9. Update last k significances
|
||||
10. n_models <- n_models_bak
|
||||
*/
|
||||
//
|
||||
// Make predict with only the last k models
|
||||
//
|
||||
std::unique_ptr<Classifier> model;
|
||||
std::vector<std::unique_ptr<Classifier>> models_bak;
|
||||
// 1. n_models_bak <- n_models 2. significances_bak <- significances
|
||||
auto significance_bak = significanceModels;
|
||||
auto n_models_bak = n_models;
|
||||
// 3. significances = vector(k, 1)
|
||||
significanceModels = std::vector<double>(k, 1.0);
|
||||
// 4. Move first n classifiers to models_bak
|
||||
// backup the first n_models - k models (if n_models == k, don't backup any)
|
||||
for (int i = 0; i < n_models - k; ++i) {
|
||||
model = std::move(models[0]);
|
||||
models.erase(models.begin());
|
||||
models_bak.push_back(std::move(model));
|
||||
}
|
||||
assert(models.size() == k);
|
||||
// 5. n_models <- k
|
||||
n_models = k;
|
||||
// 6. Make prediction, compute alpha, update weights
|
||||
auto ypred = predict(X_train);
|
||||
//
|
||||
// Update weights
|
||||
//
|
||||
double alpha_t;
|
||||
bool terminate;
|
||||
std::tie(weights, alpha_t, terminate) = update_weights(y_train, ypred, weights);
|
||||
//
|
||||
// Restore the models if needed
|
||||
//
|
||||
// 7. Insert classifiers in models_bak to be the first n models
|
||||
// if n_models_bak == k, don't restore any, because none of them were moved
|
||||
if (k != n_models_bak) {
|
||||
// Insert in the same order as they were extracted
|
||||
int bak_size = models_bak.size();
|
||||
for (int i = 0; i < bak_size; ++i) {
|
||||
model = std::move(models_bak[bak_size - 1 - i]);
|
||||
models_bak.erase(models_bak.end() - 1);
|
||||
models.insert(models.begin(), std::move(model));
|
||||
}
|
||||
}
|
||||
// 8. significances <- significances_bak
|
||||
significanceModels = significance_bak;
|
||||
//
|
||||
// Update the significance of the last k models
|
||||
//
|
||||
// 9. Update last k significances
|
||||
for (int i = 0; i < k; ++i) {
|
||||
significanceModels[n_models_bak - k + i] = alpha_t;
|
||||
}
|
||||
// 10. n_models <- n_models_bak
|
||||
n_models = n_models_bak;
|
||||
return { weights, alpha_t, terminate };
|
||||
B, C, E) n > 0, k > 0, n_models == n + k
|
||||
1. n_models_bak <- n_models
|
||||
2. significances_bak <- significances
|
||||
3. significances = vector(k, 1)
|
||||
4. Move first n classifiers to models_bak
|
||||
5. n_models <- k
|
||||
6. Make prediction, compute alpha, update weights
|
||||
7. Insert classifiers in models_bak to be the first n models
|
||||
8. significances <- significances_bak
|
||||
9. Update last k significances
|
||||
10. n_models <- n_models_bak
|
||||
*/
|
||||
//
|
||||
// Make predict with only the last k models
|
||||
//
|
||||
std::unique_ptr<Classifier> model;
|
||||
std::vector<std::unique_ptr<Classifier>> models_bak;
|
||||
// 1. n_models_bak <- n_models 2. significances_bak <- significances
|
||||
auto significance_bak = significanceModels;
|
||||
auto n_models_bak = n_models;
|
||||
// 3. significances = vector(k, 1)
|
||||
significanceModels = std::vector<double>(k, 1.0);
|
||||
// 4. Move first n classifiers to models_bak
|
||||
// backup the first n_models - k models (if n_models == k, don't backup any)
|
||||
for (int i = 0; i < n_models - k; ++i) {
|
||||
model = std::move(models[0]);
|
||||
models.erase(models.begin());
|
||||
models_bak.push_back(std::move(model));
|
||||
}
|
||||
}
|
||||
assert(models.size() == k);
|
||||
// 5. n_models <- k
|
||||
n_models = k;
|
||||
// 6. Make prediction, compute alpha, update weights
|
||||
auto ypred = predict(X_train);
|
||||
//
|
||||
// Update weights
|
||||
//
|
||||
double alpha_t;
|
||||
bool terminate;
|
||||
std::tie(weights, alpha_t, terminate) = update_weights(y_train, ypred, weights);
|
||||
//
|
||||
// Restore the models if needed
|
||||
//
|
||||
// 7. Insert classifiers in models_bak to be the first n models
|
||||
// if n_models_bak == k, don't restore any, because none of them were moved
|
||||
if (k != n_models_bak) {
|
||||
// Insert in the same order as they were extracted
|
||||
int bak_size = models_bak.size();
|
||||
for (int i = 0; i < bak_size; ++i) {
|
||||
model = std::move(models_bak[bak_size - 1 - i]);
|
||||
models_bak.erase(models_bak.end() - 1);
|
||||
models.insert(models.begin(), std::move(model));
|
||||
}
|
||||
}
|
||||
// 8. significances <- significances_bak
|
||||
significanceModels = significance_bak;
|
||||
//
|
||||
// Update the significance of the last k models
|
||||
//
|
||||
// 9. Update last k significances
|
||||
for (int i = 0; i < k; ++i) {
|
||||
significanceModels[n_models_bak - k + i] = alpha_t;
|
||||
}
|
||||
// 10. n_models <- n_models_bak
|
||||
n_models = n_models_bak;
|
||||
return {weights, alpha_t, terminate};
|
||||
}
|
||||
} // namespace bayesnet
|
||||
|
@@ -34,6 +34,11 @@ namespace bayesnet {
|
||||
void buildModel(const torch::Tensor& weights) override;
|
||||
std::tuple<torch::Tensor&, double, bool> update_weights(torch::Tensor& ytrain, torch::Tensor& ypred, torch::Tensor& weights);
|
||||
std::tuple<torch::Tensor&, double, bool> update_weights_block(int k, torch::Tensor& ytrain, torch::Tensor& weights);
|
||||
void add_model(std::unique_ptr<Classifier> model, double significance);
|
||||
void remove_last_model();
|
||||
//
|
||||
// Attributes
|
||||
//
|
||||
torch::Tensor X_train, y_train, X_test, y_test;
|
||||
// Hyperparameters
|
||||
bool bisection = true; // if true, use bisection stratety to add k models at once to the ensemble
|
||||
@@ -49,4 +54,4 @@ namespace bayesnet {
|
||||
bool alpha_block = false; // if true, the alpha is computed with the ensemble built so far and the new model
|
||||
};
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
@@ -6,10 +6,10 @@
|
||||
|
||||
#include <random>
|
||||
#include <set>
|
||||
#include <functional>
|
||||
#include <limits.h>
|
||||
#include <tuple>
|
||||
#include "BoostAODE.h"
|
||||
#include "bayesnet/classifiers/SPODE.h"
|
||||
#include <loguru.hpp>
|
||||
#include <loguru.cpp>
|
||||
|
||||
@@ -180,4 +180,4 @@ namespace bayesnet {
|
||||
{
|
||||
return Ensemble::graph(title);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -8,7 +8,6 @@
|
||||
#define BOOSTAODE_H
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "bayesnet/classifiers/SPODE.h"
|
||||
#include "Boost.h"
|
||||
|
||||
namespace bayesnet {
|
||||
@@ -23,4 +22,4 @@ namespace bayesnet {
|
||||
std::vector<int> initializeModels(const Smoothing_t smoothing);
|
||||
};
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
168
bayesnet/ensembles/XBA2DE.cc
Normal file
168
bayesnet/ensembles/XBA2DE.cc
Normal file
@@ -0,0 +1,168 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <folding.hpp>
|
||||
#include <limits.h>
|
||||
#include "XBA2DE.h"
|
||||
#include "bayesnet/classifiers/XSPnDE.h"
|
||||
#include "bayesnet/utils/TensorUtils.h"
|
||||
|
||||
namespace bayesnet {
|
||||
|
||||
XBA2DE::XBA2DE(bool predict_voting) : Boost(predict_voting) {}
|
||||
std::vector<int> XBA2DE::initializeModels(const Smoothing_t smoothing) {
|
||||
torch::Tensor weights_ = torch::full({m}, 1.0 / m, torch::kFloat64);
|
||||
std::vector<int> featuresSelected = featureSelection(weights_);
|
||||
if (featuresSelected.size() < 2) {
|
||||
notes.push_back("No features selected in initialization");
|
||||
status = ERROR;
|
||||
return std::vector<int>();
|
||||
}
|
||||
for (int i = 0; i < featuresSelected.size() - 1; i++) {
|
||||
for (int j = i + 1; j < featuresSelected.size(); j++) {
|
||||
std::unique_ptr<Classifier> model = std::make_unique<XSpnde>(featuresSelected[i], featuresSelected[j]);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
add_model(std::move(model), 1.0);
|
||||
}
|
||||
}
|
||||
notes.push_back("Used features in initialization: " + std::to_string(featuresSelected.size()) + " of " +
|
||||
std::to_string(features.size()) + " with " + select_features_algorithm);
|
||||
return featuresSelected;
|
||||
}
|
||||
void XBA2DE::trainModel(const torch::Tensor &weights, const Smoothing_t smoothing) {
|
||||
//
|
||||
// Logging setup
|
||||
//
|
||||
// loguru::set_thread_name("XBA2DE");
|
||||
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||||
// loguru::add_file("boostA2DE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||||
|
||||
// Algorithm based on the adaboost algorithm for classification
|
||||
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||
X_train_ = TensorUtils::to_matrix(X_train);
|
||||
y_train_ = TensorUtils::to_vector<int>(y_train);
|
||||
if (convergence) {
|
||||
X_test_ = TensorUtils::to_matrix(X_test);
|
||||
y_test_ = TensorUtils::to_vector<int>(y_test);
|
||||
}
|
||||
fitted = true;
|
||||
double alpha_t = 0;
|
||||
torch::Tensor weights_ = torch::full({m}, 1.0 / m, torch::kFloat64);
|
||||
bool finished = false;
|
||||
std::vector<int> featuresUsed;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = initializeModels(smoothing);
|
||||
if (featuresUsed.size() == 0) {
|
||||
return;
|
||||
}
|
||||
auto ypred = predict(X_train);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
// Update significance of the models
|
||||
for (int i = 0; i < n_models; ++i) {
|
||||
significanceModels[i] = alpha_t;
|
||||
}
|
||||
if (finished) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
int numItemsPack = 0; // The counter of the models inserted in the current pack
|
||||
// Variables to control the accuracy finish condition
|
||||
double priorAccuracy = 0.0;
|
||||
double improvement = 1.0;
|
||||
double convergence_threshold = 1e-4;
|
||||
int tolerance = 0; // number of times the accuracy is lower than the convergence_threshold
|
||||
// Step 0: Set the finish condition
|
||||
// epsilon sub t > 0.5 => inverse the weights policy
|
||||
// validation error is not decreasing
|
||||
// run out of features
|
||||
bool ascending = order_algorithm == Orders.ASC;
|
||||
std::mt19937 g{173};
|
||||
std::vector<std::pair<int, int>> pairSelection;
|
||||
while (!finished) {
|
||||
// Step 1: Build ranking with mutual information
|
||||
pairSelection = metrics.SelectKPairs(weights_, featuresUsed, ascending, 0); // Get all the pairs sorted
|
||||
if (order_algorithm == Orders.RAND) {
|
||||
std::shuffle(pairSelection.begin(), pairSelection.end(), g);
|
||||
}
|
||||
int k = bisection ? pow(2, tolerance) : 1;
|
||||
int counter = 0; // The model counter of the current pack
|
||||
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||
while (counter++ < k && pairSelection.size() > 0) {
|
||||
auto feature_pair = pairSelection[0];
|
||||
pairSelection.erase(pairSelection.begin());
|
||||
std::unique_ptr<Classifier> model;
|
||||
model = std::make_unique<XSpnde>(feature_pair.first, feature_pair.second);
|
||||
model->fit(dataset, features, className, states, weights_, smoothing);
|
||||
alpha_t = 0.0;
|
||||
if (!block_update) {
|
||||
auto ypred = model->predict(X_train);
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred, weights_);
|
||||
}
|
||||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
numItemsPack++;
|
||||
models.push_back(std::move(model));
|
||||
significanceModels.push_back(alpha_t);
|
||||
n_models++;
|
||||
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models,
|
||||
// featuresUsed.size());
|
||||
}
|
||||
if (block_update) {
|
||||
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
||||
}
|
||||
if (convergence && !finished) {
|
||||
auto y_val_predict = predict(X_test);
|
||||
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||||
if (priorAccuracy == 0) {
|
||||
priorAccuracy = accuracy;
|
||||
} else {
|
||||
improvement = accuracy - priorAccuracy;
|
||||
}
|
||||
if (improvement < convergence_threshold) {
|
||||
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f
|
||||
// current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance++;
|
||||
} else {
|
||||
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f
|
||||
// prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance = 0; // Reset the counter if the model performs better
|
||||
numItemsPack = 0;
|
||||
}
|
||||
if (convergence_best) {
|
||||
// Keep the best accuracy until now as the prior accuracy
|
||||
priorAccuracy = std::max(accuracy, priorAccuracy);
|
||||
} else {
|
||||
// Keep the last accuray obtained as the prior accuracy
|
||||
priorAccuracy = accuracy;
|
||||
}
|
||||
}
|
||||
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(),
|
||||
// features.size());
|
||||
finished = finished || tolerance > maxTolerance || pairSelection.size() == 0;
|
||||
}
|
||||
if (tolerance > maxTolerance) {
|
||||
if (numItemsPack < n_models) {
|
||||
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
||||
for (int i = 0; i < numItemsPack; ++i) {
|
||||
significanceModels.pop_back();
|
||||
models.pop_back();
|
||||
n_models--;
|
||||
}
|
||||
} else {
|
||||
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d",
|
||||
// n_models, numItemsPack);
|
||||
}
|
||||
}
|
||||
if (pairSelection.size() > 0) {
|
||||
notes.push_back("Pairs not used in train: " + std::to_string(pairSelection.size()));
|
||||
status = WARNING;
|
||||
}
|
||||
notes.push_back("Number of models: " + std::to_string(n_models));
|
||||
}
|
||||
std::vector<std::string> XBA2DE::graph(const std::string &title) const { return Ensemble::graph(title); }
|
||||
} // namespace bayesnet
|
28
bayesnet/ensembles/XBA2DE.h
Normal file
28
bayesnet/ensembles/XBA2DE.h
Normal file
@@ -0,0 +1,28 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#ifndef XBA2DE_H
|
||||
#define XBA2DE_H
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "Boost.h"
|
||||
namespace bayesnet {
|
||||
class XBA2DE : public Boost {
|
||||
public:
|
||||
explicit XBA2DE(bool predict_voting = false);
|
||||
virtual ~XBA2DE() = default;
|
||||
std::vector<std::string> graph(const std::string& title = "XBA2DE") const override;
|
||||
std::string getVersion() override { return version; };
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights, const Smoothing_t smoothing) override;
|
||||
private:
|
||||
std::vector<int> initializeModels(const Smoothing_t smoothing);
|
||||
std::vector<std::vector<int>> X_train_, X_test_;
|
||||
std::vector<int> y_train_, y_test_;
|
||||
std::string version = "0.9.7";
|
||||
};
|
||||
}
|
||||
#endif
|
@@ -15,16 +15,6 @@ XBAODE::XBAODE() : Boost(false) {
|
||||
validHyperparameters = {"alpha_block", "order", "convergence", "convergence_best", "bisection",
|
||||
"threshold", "maxTolerance", "predict_voting", "select_features"};
|
||||
}
|
||||
void XBAODE::add_model(std::unique_ptr<Classifier> model, double significance) {
|
||||
models.push_back(std::move(model));
|
||||
n_models++;
|
||||
significanceModels.push_back(significance);
|
||||
}
|
||||
void XBAODE::remove_last_model() {
|
||||
models.pop_back();
|
||||
significanceModels.pop_back();
|
||||
n_models--;
|
||||
}
|
||||
std::vector<int> XBAODE::initializeModels(const Smoothing_t smoothing) {
|
||||
torch::Tensor weights_ = torch::full({m}, 1.0 / m, torch::kFloat64);
|
||||
std::vector<int> featuresSelected = featureSelection(weights_);
|
||||
|
@@ -18,8 +18,6 @@ namespace bayesnet {
|
||||
protected:
|
||||
void trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing) override;
|
||||
private:
|
||||
void add_model(std::unique_ptr<Classifier> model, double significance);
|
||||
void remove_last_model();
|
||||
std::vector<int> initializeModels(const Smoothing_t smoothing);
|
||||
std::vector<std::vector<int>> X_train_, X_test_;
|
||||
std::vector<int> y_train_, y_test_;
|
||||
|
@@ -9,7 +9,7 @@ if(ENABLE_TESTING)
|
||||
${CMAKE_BINARY_DIR}/configured_files/include
|
||||
)
|
||||
file(GLOB_RECURSE BayesNet_SOURCES "${BayesNet_SOURCE_DIR}/bayesnet/*.cc")
|
||||
add_executable(TestBayesNet TestBayesNetwork.cc TestBayesNode.cc TestBayesClassifier.cc TestXSPnDE.cc
|
||||
add_executable(TestBayesNet TestBayesNetwork.cc TestBayesNode.cc TestBayesClassifier.cc TestXSPnDE.cc TestXBA2DE.cc
|
||||
TestBayesModels.cc TestBayesMetrics.cc TestFeatureSelection.cc TestBoostAODE.cc TestXBAODE.cc TestA2DE.cc
|
||||
TestUtils.cc TestBayesEnsemble.cc TestModulesVersions.cc TestBoostA2DE.cc TestMST.cc TestXSPODE.cc ${BayesNet_SOURCES})
|
||||
target_link_libraries(TestBayesNet PUBLIC "${TORCH_LIBRARIES}" fimdlp PRIVATE Catch2::Catch2WithMain)
|
||||
@@ -20,6 +20,7 @@ if(ENABLE_TESTING)
|
||||
add_test(NAME XSPODE COMMAND TestBayesNet "[XSPODE]")
|
||||
add_test(NAME XSPnDE COMMAND TestBayesNet "[XSPnDE]")
|
||||
add_test(NAME XBAODE COMMAND TestBayesNet "[XBAODE]")
|
||||
add_test(NAME XBA2DE COMMAND TestBayesNet "[XBA2DE]")
|
||||
add_test(NAME Classifier COMMAND TestBayesNet "[Classifier]")
|
||||
add_test(NAME Ensemble COMMAND TestBayesNet "[Ensemble]")
|
||||
add_test(NAME FeatureSelection COMMAND TestBayesNet "[FeatureSelection]")
|
||||
|
@@ -4,83 +4,111 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <type_traits>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <catch2/matchers/catch_matchers.hpp>
|
||||
#include "TestUtils.h"
|
||||
#include "bayesnet/classifiers/KDB.h"
|
||||
#include "bayesnet/classifiers/TAN.h"
|
||||
#include "bayesnet/classifiers/SPODE.h"
|
||||
#include "bayesnet/classifiers/XSPODE.h"
|
||||
#include "bayesnet/classifiers/TANLd.h"
|
||||
#include "bayesnet/classifiers/KDBLd.h"
|
||||
#include "bayesnet/classifiers/SPODE.h"
|
||||
#include "bayesnet/classifiers/SPODELd.h"
|
||||
#include "bayesnet/classifiers/TAN.h"
|
||||
#include "bayesnet/classifiers/TANLd.h"
|
||||
#include "bayesnet/classifiers/XSPODE.h"
|
||||
#include "bayesnet/ensembles/AODE.h"
|
||||
#include "bayesnet/ensembles/AODELd.h"
|
||||
#include "bayesnet/ensembles/BoostAODE.h"
|
||||
#include "TestUtils.h"
|
||||
|
||||
const std::string ACTUAL_VERSION = "1.0.6";
|
||||
|
||||
TEST_CASE("Test Bayesian Classifiers score & version", "[Models]")
|
||||
{
|
||||
map <pair<std::string, std::string>, float> scores{
|
||||
// Diabetes
|
||||
{{"diabetes", "AODE"}, 0.82161}, {{"diabetes", "KDB"}, 0.852865}, {{"diabetes", "XSPODE"}, 0.631510437f}, {{"diabetes", "SPODE"}, 0.802083}, {{"diabetes", "TAN"}, 0.821615},
|
||||
{{"diabetes", "AODELd"}, 0.8125f}, {{"diabetes", "KDBLd"}, 0.80208f}, {{"diabetes", "SPODELd"}, 0.7890625f}, {{"diabetes", "TANLd"}, 0.803385437f}, {{"diabetes", "BoostAODE"}, 0.83984f},
|
||||
// Ecoli
|
||||
{{"ecoli", "AODE"}, 0.889881}, {{"ecoli", "KDB"}, 0.889881}, {{"ecoli", "XSPODE"}, 0.696428597f}, {{"ecoli", "SPODE"}, 0.880952}, {{"ecoli", "TAN"}, 0.892857},
|
||||
{{"ecoli", "AODELd"}, 0.875f}, {{"ecoli", "KDBLd"}, 0.880952358f}, {{"ecoli", "SPODELd"}, 0.839285731f}, {{"ecoli", "TANLd"}, 0.848214269f}, {{"ecoli", "BoostAODE"}, 0.89583f},
|
||||
// Glass
|
||||
{{"glass", "AODE"}, 0.79439}, {{"glass", "KDB"}, 0.827103}, {{"glass", "XSPODE"}, 0.775701}, {{"glass", "SPODE"}, 0.775701}, {{"glass", "TAN"}, 0.827103},
|
||||
{{"glass", "AODELd"}, 0.799065411f}, {{"glass", "KDBLd"}, 0.82710278f}, {{"glass", "SPODELd"}, 0.780373812f}, {{"glass", "TANLd"}, 0.869158864f}, {{"glass", "BoostAODE"}, 0.84579f},
|
||||
// Iris
|
||||
{{"iris", "AODE"}, 0.973333}, {{"iris", "KDB"}, 0.973333}, {{"iris", "XSPODE"}, 0.853333354f}, {{"iris", "SPODE"}, 0.973333}, {{"iris", "TAN"}, 0.973333},
|
||||
{{"iris", "AODELd"}, 0.973333}, {{"iris", "KDBLd"}, 0.973333}, {{"iris", "SPODELd"}, 0.96f}, {{"iris", "TANLd"}, 0.97333f}, {{"iris", "BoostAODE"}, 0.98f}
|
||||
};
|
||||
std::map<std::string, bayesnet::BaseClassifier*> models{
|
||||
{"AODE", new bayesnet::AODE()}, {"AODELd", new bayesnet::AODELd()},
|
||||
{"BoostAODE", new bayesnet::BoostAODE()},
|
||||
{"KDB", new bayesnet::KDB(2)}, {"KDBLd", new bayesnet::KDBLd(2)},
|
||||
{"XSPODE", new bayesnet::XSpode(1)}, {"SPODE", new bayesnet::SPODE(1)}, {"SPODELd", new bayesnet::SPODELd(1)},
|
||||
{"TAN", new bayesnet::TAN()}, {"TANLd", new bayesnet::TANLd()}
|
||||
};
|
||||
TEST_CASE("Test Bayesian Classifiers score & version", "[Models]") {
|
||||
map<pair<std::string, std::string>, float> scores{// Diabetes
|
||||
{{"diabetes", "AODE"}, 0.82161},
|
||||
{{"diabetes", "KDB"}, 0.852865},
|
||||
{{"diabetes", "XSPODE"}, 0.631510437f},
|
||||
{{"diabetes", "SPODE"}, 0.802083},
|
||||
{{"diabetes", "TAN"}, 0.821615},
|
||||
{{"diabetes", "AODELd"}, 0.8125f},
|
||||
{{"diabetes", "KDBLd"}, 0.80208f},
|
||||
{{"diabetes", "SPODELd"}, 0.7890625f},
|
||||
{{"diabetes", "TANLd"}, 0.803385437f},
|
||||
{{"diabetes", "BoostAODE"}, 0.83984f},
|
||||
// Ecoli
|
||||
{{"ecoli", "AODE"}, 0.889881},
|
||||
{{"ecoli", "KDB"}, 0.889881},
|
||||
{{"ecoli", "XSPODE"}, 0.696428597f},
|
||||
{{"ecoli", "SPODE"}, 0.880952},
|
||||
{{"ecoli", "TAN"}, 0.892857},
|
||||
{{"ecoli", "AODELd"}, 0.875f},
|
||||
{{"ecoli", "KDBLd"}, 0.880952358f},
|
||||
{{"ecoli", "SPODELd"}, 0.839285731f},
|
||||
{{"ecoli", "TANLd"}, 0.848214269f},
|
||||
{{"ecoli", "BoostAODE"}, 0.89583f},
|
||||
// Glass
|
||||
{{"glass", "AODE"}, 0.79439},
|
||||
{{"glass", "KDB"}, 0.827103},
|
||||
{{"glass", "XSPODE"}, 0.775701},
|
||||
{{"glass", "SPODE"}, 0.775701},
|
||||
{{"glass", "TAN"}, 0.827103},
|
||||
{{"glass", "AODELd"}, 0.799065411f},
|
||||
{{"glass", "KDBLd"}, 0.82710278f},
|
||||
{{"glass", "SPODELd"}, 0.780373812f},
|
||||
{{"glass", "TANLd"}, 0.869158864f},
|
||||
{{"glass", "BoostAODE"}, 0.84579f},
|
||||
// Iris
|
||||
{{"iris", "AODE"}, 0.973333},
|
||||
{{"iris", "KDB"}, 0.973333},
|
||||
{{"iris", "XSPODE"}, 0.853333354f},
|
||||
{{"iris", "SPODE"}, 0.973333},
|
||||
{{"iris", "TAN"}, 0.973333},
|
||||
{{"iris", "AODELd"}, 0.973333},
|
||||
{{"iris", "KDBLd"}, 0.973333},
|
||||
{{"iris", "SPODELd"}, 0.96f},
|
||||
{{"iris", "TANLd"}, 0.97333f},
|
||||
{{"iris", "BoostAODE"}, 0.98f}};
|
||||
std::map<std::string, bayesnet::BaseClassifier *> models{{"AODE", new bayesnet::AODE()},
|
||||
{"AODELd", new bayesnet::AODELd()},
|
||||
{"BoostAODE", new bayesnet::BoostAODE()},
|
||||
{"KDB", new bayesnet::KDB(2)},
|
||||
{"KDBLd", new bayesnet::KDBLd(2)},
|
||||
{"XSPODE", new bayesnet::XSpode(1)},
|
||||
{"SPODE", new bayesnet::SPODE(1)},
|
||||
{"SPODELd", new bayesnet::SPODELd(1)},
|
||||
{"TAN", new bayesnet::TAN()},
|
||||
{"TANLd", new bayesnet::TANLd()}};
|
||||
std::string name = GENERATE("AODE", "AODELd", "KDB", "KDBLd", "SPODE", "XSPODE", "SPODELd", "TAN", "TANLd");
|
||||
auto clf = models[name];
|
||||
|
||||
SECTION("Test " + name + " classifier")
|
||||
{
|
||||
for (const std::string& file_name : { "glass", "iris", "ecoli", "diabetes" }) {
|
||||
SECTION("Test " + name + " classifier") {
|
||||
for (const std::string &file_name : {"glass", "iris", "ecoli", "diabetes"}) {
|
||||
auto clf = models[name];
|
||||
auto discretize = name.substr(name.length() - 2) != "Ld";
|
||||
auto raw = RawDatasets(file_name, discretize);
|
||||
clf->fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score = clf->score(raw.Xt, raw.yt);
|
||||
// std::cout << "Classifier: " << name << " File: " << file_name << " Score: " << score << " expected = " << scores[{file_name, name}] << std::endl;
|
||||
// std::cout << "Classifier: " << name << " File: " << file_name << " Score: " << score << " expected = " <<
|
||||
// scores[{file_name, name}] << std::endl;
|
||||
INFO("Classifier: " << name << " File: " << file_name);
|
||||
REQUIRE(score == Catch::Approx(scores[{file_name, name}]).epsilon(raw.epsilon));
|
||||
REQUIRE(clf->getStatus() == bayesnet::NORMAL);
|
||||
}
|
||||
}
|
||||
SECTION("Library check version")
|
||||
{
|
||||
SECTION("Library check version") {
|
||||
INFO("Checking version of " << name << " classifier");
|
||||
REQUIRE(clf->getVersion() == ACTUAL_VERSION);
|
||||
}
|
||||
delete clf;
|
||||
}
|
||||
TEST_CASE("Models features & Graph", "[Models]")
|
||||
{
|
||||
auto graph = std::vector<std::string>({ "digraph BayesNet {\nlabel=<BayesNet Test>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n",
|
||||
"\"class\" [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ] \n",
|
||||
"\"class\" -> \"sepallength\"", "\"class\" -> \"sepalwidth\"", "\"class\" -> \"petallength\"", "\"class\" -> \"petalwidth\"", "\"petallength\" [shape=circle] \n",
|
||||
"\"petallength\" -> \"sepallength\"", "\"petalwidth\" [shape=circle] \n", "\"sepallength\" [shape=circle] \n",
|
||||
"\"sepallength\" -> \"sepalwidth\"", "\"sepalwidth\" [shape=circle] \n", "\"sepalwidth\" -> \"petalwidth\"", "}\n"
|
||||
}
|
||||
);
|
||||
SECTION("Test TAN")
|
||||
{
|
||||
TEST_CASE("Models features & Graph", "[Models]") {
|
||||
auto graph = std::vector<std::string>(
|
||||
{"digraph BayesNet {\nlabel=<BayesNet Test>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n",
|
||||
"\"class\" [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ] \n",
|
||||
"\"class\" -> \"sepallength\"", "\"class\" -> \"sepalwidth\"", "\"class\" -> \"petallength\"",
|
||||
"\"class\" -> \"petalwidth\"", "\"petallength\" [shape=circle] \n", "\"petallength\" -> \"sepallength\"",
|
||||
"\"petalwidth\" [shape=circle] \n", "\"sepallength\" [shape=circle] \n", "\"sepallength\" -> \"sepalwidth\"",
|
||||
"\"sepalwidth\" [shape=circle] \n", "\"sepalwidth\" -> \"petalwidth\"", "}\n"});
|
||||
SECTION("Test TAN") {
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::TAN();
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
@@ -88,11 +116,12 @@ TEST_CASE("Models features & Graph", "[Models]")
|
||||
REQUIRE(clf.getNumberOfEdges() == 7);
|
||||
REQUIRE(clf.getNumberOfStates() == 19);
|
||||
REQUIRE(clf.getClassNumStates() == 3);
|
||||
REQUIRE(clf.show() == std::vector<std::string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ", "petallength -> sepallength, ", "petalwidth -> ", "sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
|
||||
REQUIRE(clf.show() == std::vector<std::string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ",
|
||||
"petallength -> sepallength, ", "petalwidth -> ",
|
||||
"sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
|
||||
REQUIRE(clf.graph("Test") == graph);
|
||||
}
|
||||
SECTION("Test TANLd")
|
||||
{
|
||||
SECTION("Test TANLd") {
|
||||
auto clf = bayesnet::TANLd();
|
||||
auto raw = RawDatasets("iris", false);
|
||||
clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
@@ -100,12 +129,13 @@ TEST_CASE("Models features & Graph", "[Models]")
|
||||
REQUIRE(clf.getNumberOfEdges() == 7);
|
||||
REQUIRE(clf.getNumberOfStates() == 27);
|
||||
REQUIRE(clf.getClassNumStates() == 3);
|
||||
REQUIRE(clf.show() == std::vector<std::string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ", "petallength -> sepallength, ", "petalwidth -> ", "sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
|
||||
REQUIRE(clf.show() == std::vector<std::string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ",
|
||||
"petallength -> sepallength, ", "petalwidth -> ",
|
||||
"sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
|
||||
REQUIRE(clf.graph("Test") == graph);
|
||||
}
|
||||
}
|
||||
TEST_CASE("Get num features & num edges", "[Models]")
|
||||
{
|
||||
TEST_CASE("Get num features & num edges", "[Models]") {
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
@@ -113,60 +143,49 @@ TEST_CASE("Get num features & num edges", "[Models]")
|
||||
REQUIRE(clf.getNumberOfEdges() == 8);
|
||||
}
|
||||
|
||||
TEST_CASE("Model predict_proba", "[Models]")
|
||||
{
|
||||
TEST_CASE("Model predict_proba", "[Models]") {
|
||||
std::string model = GENERATE("TAN", "SPODE", "BoostAODEproba", "BoostAODEvoting");
|
||||
auto res_prob_tan = std::vector<std::vector<double>>({
|
||||
{ 0.00375671, 0.994457, 0.00178621 },
|
||||
{ 0.00137462, 0.992734, 0.00589123 },
|
||||
{ 0.00137462, 0.992734, 0.00589123 },
|
||||
{ 0.00137462, 0.992734, 0.00589123 },
|
||||
{ 0.00218225, 0.992877, 0.00494094 },
|
||||
{ 0.00494209, 0.0978534, 0.897205 },
|
||||
{ 0.0054192, 0.974275, 0.0203054 },
|
||||
{ 0.00433012, 0.985054, 0.0106159 },
|
||||
{ 0.000860806, 0.996922, 0.00221698 }
|
||||
});
|
||||
auto res_prob_spode = std::vector<std::vector<double>>({
|
||||
{0.00419032, 0.994247, 0.00156265},
|
||||
{0.00172808, 0.993433, 0.00483862},
|
||||
{0.00172808, 0.993433, 0.00483862},
|
||||
{0.00172808, 0.993433, 0.00483862},
|
||||
{0.00279211, 0.993737, 0.00347077},
|
||||
{0.0120674, 0.357909, 0.630024},
|
||||
{0.00386239, 0.913919, 0.0822185},
|
||||
{0.0244389, 0.966447, 0.00911374},
|
||||
{0.003135, 0.991799, 0.0050661}
|
||||
});
|
||||
auto res_prob_baode = std::vector<std::vector<double>>({
|
||||
{0.0112349, 0.962274, 0.0264907},
|
||||
{0.00371025, 0.950592, 0.0456973},
|
||||
{0.00371025, 0.950592, 0.0456973},
|
||||
{0.00371025, 0.950592, 0.0456973},
|
||||
{0.00369275, 0.84967, 0.146637},
|
||||
{0.0252205, 0.113564, 0.861215},
|
||||
{0.0284828, 0.770524, 0.200993},
|
||||
{0.0213182, 0.857189, 0.121493},
|
||||
{0.00868436, 0.949494, 0.0418215}
|
||||
});
|
||||
auto res_prob_voting = std::vector<std::vector<double>>({
|
||||
{0, 1, 0},
|
||||
{0, 1, 0},
|
||||
{0, 1, 0},
|
||||
{0, 1, 0},
|
||||
{0, 1, 0},
|
||||
{0, 0, 1},
|
||||
{0, 1, 0},
|
||||
{0, 1, 0},
|
||||
{0, 1, 0}
|
||||
});
|
||||
std::map<std::string, std::vector<std::vector<double>>> res_prob{ {"TAN", res_prob_tan}, {"SPODE", res_prob_spode} , {"BoostAODEproba", res_prob_baode }, {"BoostAODEvoting", res_prob_voting } };
|
||||
std::map<std::string, bayesnet::BaseClassifier*> models{ {"TAN", new bayesnet::TAN()}, {"SPODE", new bayesnet::SPODE(0)}, {"BoostAODEproba", new bayesnet::BoostAODE(false)}, {"BoostAODEvoting", new bayesnet::BoostAODE(true)} };
|
||||
auto res_prob_tan = std::vector<std::vector<double>>({{0.00375671, 0.994457, 0.00178621},
|
||||
{0.00137462, 0.992734, 0.00589123},
|
||||
{0.00137462, 0.992734, 0.00589123},
|
||||
{0.00137462, 0.992734, 0.00589123},
|
||||
{0.00218225, 0.992877, 0.00494094},
|
||||
{0.00494209, 0.0978534, 0.897205},
|
||||
{0.0054192, 0.974275, 0.0203054},
|
||||
{0.00433012, 0.985054, 0.0106159},
|
||||
{0.000860806, 0.996922, 0.00221698}});
|
||||
auto res_prob_spode = std::vector<std::vector<double>>({{0.00419032, 0.994247, 0.00156265},
|
||||
{0.00172808, 0.993433, 0.00483862},
|
||||
{0.00172808, 0.993433, 0.00483862},
|
||||
{0.00172808, 0.993433, 0.00483862},
|
||||
{0.00279211, 0.993737, 0.00347077},
|
||||
{0.0120674, 0.357909, 0.630024},
|
||||
{0.00386239, 0.913919, 0.0822185},
|
||||
{0.0244389, 0.966447, 0.00911374},
|
||||
{0.003135, 0.991799, 0.0050661}});
|
||||
auto res_prob_baode = std::vector<std::vector<double>>({{0.0112349, 0.962274, 0.0264907},
|
||||
{0.00371025, 0.950592, 0.0456973},
|
||||
{0.00371025, 0.950592, 0.0456973},
|
||||
{0.00371025, 0.950592, 0.0456973},
|
||||
{0.00369275, 0.84967, 0.146637},
|
||||
{0.0252205, 0.113564, 0.861215},
|
||||
{0.0284828, 0.770524, 0.200993},
|
||||
{0.0213182, 0.857189, 0.121493},
|
||||
{0.00868436, 0.949494, 0.0418215}});
|
||||
auto res_prob_voting = std::vector<std::vector<double>>(
|
||||
{{0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}});
|
||||
std::map<std::string, std::vector<std::vector<double>>> res_prob{{"TAN", res_prob_tan},
|
||||
{"SPODE", res_prob_spode},
|
||||
{"BoostAODEproba", res_prob_baode},
|
||||
{"BoostAODEvoting", res_prob_voting}};
|
||||
std::map<std::string, bayesnet::BaseClassifier *> models{{"TAN", new bayesnet::TAN()},
|
||||
{"SPODE", new bayesnet::SPODE(0)},
|
||||
{"BoostAODEproba", new bayesnet::BoostAODE(false)},
|
||||
{"BoostAODEvoting", new bayesnet::BoostAODE(true)}};
|
||||
int init_index = 78;
|
||||
auto raw = RawDatasets("iris", true);
|
||||
|
||||
SECTION("Test " + model + " predict_proba")
|
||||
{
|
||||
SECTION("Test " + model + " predict_proba") {
|
||||
auto clf = models[model];
|
||||
clf->fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto y_pred_proba = clf->predict_proba(raw.Xv);
|
||||
@@ -194,23 +213,23 @@ TEST_CASE("Model predict_proba", "[Models]")
|
||||
REQUIRE(y_pred[i] == yt_pred[i].item<int>());
|
||||
for (int j = 0; j < 3; j++) {
|
||||
REQUIRE(res_prob[model][i][j] == Catch::Approx(y_pred_proba[i + init_index][j]).epsilon(raw.epsilon));
|
||||
REQUIRE(res_prob[model][i][j] == Catch::Approx(yt_pred_proba[i + init_index][j].item<double>()).epsilon(raw.epsilon));
|
||||
REQUIRE(res_prob[model][i][j] ==
|
||||
Catch::Approx(yt_pred_proba[i + init_index][j].item<double>()).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
delete clf;
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("AODE voting-proba", "[Models]")
|
||||
{
|
||||
TEST_CASE("AODE voting-proba", "[Models]") {
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::AODE(false);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score_proba = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_proba = clf.predict_proba(raw.Xv);
|
||||
clf.setHyperparameters({
|
||||
{"predict_voting",true},
|
||||
});
|
||||
{"predict_voting", true},
|
||||
});
|
||||
auto score_voting = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_voting = clf.predict_proba(raw.Xv);
|
||||
REQUIRE(score_proba == Catch::Approx(0.79439f).epsilon(raw.epsilon));
|
||||
@@ -219,8 +238,7 @@ TEST_CASE("AODE voting-proba", "[Models]")
|
||||
REQUIRE(pred_proba[67][0] == Catch::Approx(0.702184).epsilon(raw.epsilon));
|
||||
REQUIRE(clf.topological_order() == std::vector<std::string>());
|
||||
}
|
||||
TEST_CASE("SPODELd dataset", "[Models]")
|
||||
{
|
||||
TEST_CASE("SPODELd dataset", "[Models]") {
|
||||
auto raw = RawDatasets("iris", false);
|
||||
auto clf = bayesnet::SPODELd(0);
|
||||
// raw.dataset.to(torch::kFloat32);
|
||||
@@ -231,8 +249,7 @@ TEST_CASE("SPODELd dataset", "[Models]")
|
||||
REQUIRE(score == Catch::Approx(0.97333f).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.97333f).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("KDB with hyperparameters", "[Models]")
|
||||
{
|
||||
TEST_CASE("KDB with hyperparameters", "[Models]") {
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::KDB(2);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
@@ -240,20 +257,18 @@ TEST_CASE("KDB with hyperparameters", "[Models]")
|
||||
clf.setHyperparameters({
|
||||
{"k", 3},
|
||||
{"theta", 0.7},
|
||||
});
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto scoret = clf.score(raw.Xv, raw.yv);
|
||||
REQUIRE(score == Catch::Approx(0.827103).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.761682).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Incorrect type of data for SPODELd", "[Models]")
|
||||
{
|
||||
TEST_CASE("Incorrect type of data for SPODELd", "[Models]") {
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::SPODELd(0);
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.dataset, raw.features, raw.className, raw.states, raw.smoothing), std::runtime_error);
|
||||
}
|
||||
TEST_CASE("Predict, predict_proba & score without fitting", "[Models]")
|
||||
{
|
||||
TEST_CASE("Predict, predict_proba & score without fitting", "[Models]") {
|
||||
auto clf = bayesnet::AODE();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
std::string message = "Ensemble has not been fitted";
|
||||
@@ -270,35 +285,55 @@ TEST_CASE("Predict, predict_proba & score without fitting", "[Models]")
|
||||
REQUIRE_THROWS_WITH(clf.score(raw.Xv, raw.yv), message);
|
||||
REQUIRE_THROWS_WITH(clf.score(raw.Xt, raw.yt), message);
|
||||
}
|
||||
TEST_CASE("TAN & SPODE with hyperparameters", "[Models]")
|
||||
{
|
||||
TEST_CASE("TAN & SPODE with hyperparameters", "[Models]") {
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::TAN();
|
||||
clf.setHyperparameters({
|
||||
{"parent", 1},
|
||||
});
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
REQUIRE(score == Catch::Approx(0.973333).epsilon(raw.epsilon));
|
||||
auto clf2 = bayesnet::SPODE(0);
|
||||
clf2.setHyperparameters({
|
||||
{"parent", 1},
|
||||
});
|
||||
});
|
||||
clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score2 = clf2.score(raw.Xv, raw.yv);
|
||||
REQUIRE(score2 == Catch::Approx(0.973333).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("TAN & SPODE with invalid hyperparameters", "[Models]")
|
||||
{
|
||||
TEST_CASE("TAN & SPODE with invalid hyperparameters", "[Models]") {
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::TAN();
|
||||
clf.setHyperparameters({
|
||||
{"parent", 5},
|
||||
});
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
});
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing),
|
||||
std::invalid_argument);
|
||||
auto clf2 = bayesnet::SPODE(0);
|
||||
clf2.setHyperparameters({
|
||||
{"parent", 5},
|
||||
});
|
||||
REQUIRE_THROWS_AS(clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
}
|
||||
});
|
||||
REQUIRE_THROWS_AS(clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing),
|
||||
std::invalid_argument);
|
||||
}
|
||||
TEST_CASE("Check proposal checkInput", "[Models]") {
|
||||
class testProposal : public bayesnet::Proposal {
|
||||
public:
|
||||
testProposal(torch::Tensor &dataset_, std::vector<std::string> &features_, std::string &className_)
|
||||
: Proposal(dataset_, features_, className_) {}
|
||||
void test_X_y(const torch::Tensor &X, const torch::Tensor &y) { checkInput(X, y); }
|
||||
};
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = testProposal(raw.dataset, raw.features, raw.className);
|
||||
torch::Tensor X = torch::randint(0, 3, {10, 4});
|
||||
torch::Tensor y = torch::rand({10});
|
||||
INFO("Check X is not float");
|
||||
REQUIRE_THROWS_AS(clf.test_X_y(X, y), std::invalid_argument);
|
||||
X = torch::rand({10, 4});
|
||||
INFO("Check y is not integer");
|
||||
REQUIRE_THROWS_AS(clf.test_X_y(X, y), std::invalid_argument);
|
||||
y = torch::randint(0, 3, {10});
|
||||
INFO("X and y are correct");
|
||||
REQUIRE_NOTHROW(clf.test_X_y(X, y));
|
||||
}
|
||||
|
@@ -4,20 +4,17 @@
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <type_traits>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <catch2/matchers/catch_matchers.hpp>
|
||||
#include "bayesnet/ensembles/BoostAODE.h"
|
||||
#include "TestUtils.h"
|
||||
#include "bayesnet/ensembles/BoostAODE.h"
|
||||
|
||||
|
||||
TEST_CASE("Feature_select CFS", "[BoostAODE]")
|
||||
{
|
||||
TEST_CASE("Feature_select CFS", "[BoostAODE]") {
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({ {"select_features", "CFS"} });
|
||||
clf.setHyperparameters({{"select_features", "CFS"}});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
@@ -25,11 +22,10 @@ TEST_CASE("Feature_select CFS", "[BoostAODE]")
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 9 with CFS");
|
||||
REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
||||
}
|
||||
TEST_CASE("Feature_select IWSS", "[BoostAODE]")
|
||||
{
|
||||
TEST_CASE("Feature_select IWSS", "[BoostAODE]") {
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({ {"select_features", "IWSS"}, {"threshold", 0.5 } });
|
||||
clf.setHyperparameters({{"select_features", "IWSS"}, {"threshold", 0.5}});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
@@ -37,11 +33,10 @@ TEST_CASE("Feature_select IWSS", "[BoostAODE]")
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with IWSS");
|
||||
REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
||||
}
|
||||
TEST_CASE("Feature_select FCBF", "[BoostAODE]")
|
||||
{
|
||||
TEST_CASE("Feature_select FCBF", "[BoostAODE]") {
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({ {"select_features", "FCBF"}, {"threshold", 1e-7 } });
|
||||
clf.setHyperparameters({{"select_features", "FCBF"}, {"threshold", 1e-7}});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 90);
|
||||
REQUIRE(clf.getNumberOfEdges() == 153);
|
||||
@@ -49,15 +44,14 @@ TEST_CASE("Feature_select FCBF", "[BoostAODE]")
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with FCBF");
|
||||
REQUIRE(clf.getNotes()[1] == "Number of models: 9");
|
||||
}
|
||||
TEST_CASE("Test used features in train note and score", "[BoostAODE]")
|
||||
{
|
||||
TEST_CASE("Test used features in train note and score", "[BoostAODE]") {
|
||||
auto raw = RawDatasets("diabetes", true);
|
||||
auto clf = bayesnet::BoostAODE(true);
|
||||
clf.setHyperparameters({
|
||||
{"order", "asc"},
|
||||
{"convergence", true},
|
||||
{"select_features","CFS"},
|
||||
});
|
||||
{"select_features", "CFS"},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 72);
|
||||
REQUIRE(clf.getNumberOfEdges() == 120);
|
||||
@@ -69,16 +63,15 @@ TEST_CASE("Test used features in train note and score", "[BoostAODE]")
|
||||
REQUIRE(score == Catch::Approx(0.809895813).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.809895813).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Voting vs proba", "[BoostAODE]")
|
||||
{
|
||||
TEST_CASE("Voting vs proba", "[BoostAODE]") {
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::BoostAODE(false);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score_proba = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_proba = clf.predict_proba(raw.Xv);
|
||||
clf.setHyperparameters({
|
||||
{"predict_voting",true},
|
||||
});
|
||||
{"predict_voting", true},
|
||||
});
|
||||
auto score_voting = clf.score(raw.Xv, raw.yv);
|
||||
auto pred_voting = clf.predict_proba(raw.Xv);
|
||||
REQUIRE(score_proba == Catch::Approx(0.97333).epsilon(raw.epsilon));
|
||||
@@ -88,20 +81,17 @@ TEST_CASE("Voting vs proba", "[BoostAODE]")
|
||||
REQUIRE(clf.dump_cpt().size() == 7004);
|
||||
REQUIRE(clf.topological_order() == std::vector<std::string>());
|
||||
}
|
||||
TEST_CASE("Order asc, desc & random", "[BoostAODE]")
|
||||
{
|
||||
TEST_CASE("Order asc, desc & random", "[BoostAODE]") {
|
||||
auto raw = RawDatasets("glass", true);
|
||||
std::map<std::string, double> scores{
|
||||
{"asc", 0.83645f }, { "desc", 0.84579f }, { "rand", 0.84112 }
|
||||
};
|
||||
for (const std::string& order : { "asc", "desc", "rand" }) {
|
||||
std::map<std::string, double> scores{{"asc", 0.83645f}, {"desc", 0.84579f}, {"rand", 0.84112}};
|
||||
for (const std::string &order : {"asc", "desc", "rand"}) {
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
clf.setHyperparameters({
|
||||
{"order", order},
|
||||
{"bisection", false},
|
||||
{"maxTolerance", 1},
|
||||
{"convergence", false},
|
||||
});
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
@@ -110,44 +100,43 @@ TEST_CASE("Order asc, desc & random", "[BoostAODE]")
|
||||
REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
TEST_CASE("Oddities", "[BoostAODE]")
|
||||
{
|
||||
TEST_CASE("Oddities", "[BoostAODE]") {
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto bad_hyper = nlohmann::json{
|
||||
{ { "order", "duck" } },
|
||||
{ { "select_features", "duck" } },
|
||||
{ { "maxTolerance", 0 } },
|
||||
{ { "maxTolerance", 7 } },
|
||||
{{"order", "duck"}},
|
||||
{{"select_features", "duck"}},
|
||||
{{"maxTolerance", 0}},
|
||||
{{"maxTolerance", 7}},
|
||||
};
|
||||
for (const auto& hyper : bad_hyper.items()) {
|
||||
for (const auto &hyper : bad_hyper.items()) {
|
||||
INFO("BoostAODE hyper: " << hyper.value().dump());
|
||||
REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
|
||||
}
|
||||
REQUIRE_THROWS_AS(clf.setHyperparameters({ {"maxTolerance", 0 } }), std::invalid_argument);
|
||||
REQUIRE_THROWS_AS(clf.setHyperparameters({{"maxTolerance", 0}}), std::invalid_argument);
|
||||
auto bad_hyper_fit = nlohmann::json{
|
||||
{ { "select_features","IWSS" }, { "threshold", -0.01 } },
|
||||
{ { "select_features","IWSS" }, { "threshold", 0.51 } },
|
||||
{ { "select_features","FCBF" }, { "threshold", 1e-8 } },
|
||||
{ { "select_features","FCBF" }, { "threshold", 1.01 } },
|
||||
{{"select_features", "IWSS"}, {"threshold", -0.01}},
|
||||
{{"select_features", "IWSS"}, {"threshold", 0.51}},
|
||||
{{"select_features", "FCBF"}, {"threshold", 1e-8}},
|
||||
{{"select_features", "FCBF"}, {"threshold", 1.01}},
|
||||
};
|
||||
for (const auto& hyper : bad_hyper_fit.items()) {
|
||||
for (const auto &hyper : bad_hyper_fit.items()) {
|
||||
INFO("BoostAODE hyper: " << hyper.value().dump());
|
||||
clf.setHyperparameters(hyper.value());
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing), std::invalid_argument);
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing),
|
||||
std::invalid_argument);
|
||||
}
|
||||
|
||||
auto bad_hyper_fit2 = nlohmann::json{
|
||||
{ { "alpha_block", true }, { "block_update", true } },
|
||||
{ { "bisection", false }, { "block_update", true } },
|
||||
{{"alpha_block", true}, {"block_update", true}},
|
||||
{{"bisection", false}, {"block_update", true}},
|
||||
};
|
||||
for (const auto& hyper : bad_hyper_fit2.items()) {
|
||||
for (const auto &hyper : bad_hyper_fit2.items()) {
|
||||
INFO("BoostAODE hyper: " << hyper.value().dump());
|
||||
REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
|
||||
}
|
||||
}
|
||||
TEST_CASE("Bisection Best", "[BoostAODE]")
|
||||
{
|
||||
TEST_CASE("Bisection Best", "[BoostAODE]") {
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
auto raw = RawDatasets("kdd_JapaneseVowels", true, 1200, true, false);
|
||||
clf.setHyperparameters({
|
||||
@@ -156,7 +145,7 @@ TEST_CASE("Bisection Best", "[BoostAODE]")
|
||||
{"convergence", true},
|
||||
{"block_update", false},
|
||||
{"convergence_best", false},
|
||||
});
|
||||
});
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 210);
|
||||
REQUIRE(clf.getNumberOfEdges() == 378);
|
||||
@@ -167,8 +156,7 @@ TEST_CASE("Bisection Best", "[BoostAODE]")
|
||||
REQUIRE(score == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.991666675f).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Bisection Best vs Last", "[BoostAODE]")
|
||||
{
|
||||
TEST_CASE("Bisection Best vs Last", "[BoostAODE]") {
|
||||
auto raw = RawDatasets("kdd_JapaneseVowels", true, 1500, true, false);
|
||||
auto clf = bayesnet::BoostAODE(true);
|
||||
auto hyperparameters = nlohmann::json{
|
||||
@@ -188,8 +176,7 @@ TEST_CASE("Bisection Best vs Last", "[BoostAODE]")
|
||||
auto score_last = clf.score(raw.X_test, raw.y_test);
|
||||
REQUIRE(score_last == Catch::Approx(0.976666689f).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Block Update", "[BoostAODE]")
|
||||
{
|
||||
TEST_CASE("Block Update", "[BoostAODE]") {
|
||||
auto clf = bayesnet::BoostAODE();
|
||||
auto raw = RawDatasets("mfeat-factors", true, 500);
|
||||
clf.setHyperparameters({
|
||||
@@ -197,7 +184,7 @@ TEST_CASE("Block Update", "[BoostAODE]")
|
||||
{"block_update", true},
|
||||
{"maxTolerance", 3},
|
||||
{"convergence", true},
|
||||
});
|
||||
});
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 868);
|
||||
REQUIRE(clf.getNumberOfEdges() == 1724);
|
||||
@@ -218,18 +205,18 @@ TEST_CASE("Block Update", "[BoostAODE]")
|
||||
// }
|
||||
// std::cout << "Score " << score << std::endl;
|
||||
}
|
||||
TEST_CASE("Alphablock", "[BoostAODE]")
|
||||
{
|
||||
TEST_CASE("Alphablock", "[BoostAODE]") {
|
||||
auto clf_alpha = bayesnet::BoostAODE();
|
||||
auto clf_no_alpha = bayesnet::BoostAODE();
|
||||
auto raw = RawDatasets("diabetes", true);
|
||||
clf_alpha.setHyperparameters({
|
||||
{"alpha_block", true},
|
||||
});
|
||||
});
|
||||
clf_alpha.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
clf_no_alpha.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score_alpha = clf_alpha.score(raw.X_test, raw.y_test);
|
||||
auto score_no_alpha = clf_no_alpha.score(raw.X_test, raw.y_test);
|
||||
REQUIRE(score_alpha == Catch::Approx(0.720779f).epsilon(raw.epsilon));
|
||||
REQUIRE(score_no_alpha == Catch::Approx(0.733766f).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
|
||||
|
237
tests/TestXBA2DE.cc
Normal file
237
tests/TestXBA2DE.cc
Normal file
@@ -0,0 +1,237 @@
|
||||
// ***************************************************************
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Ricardo Montañana Gómez
|
||||
// SPDX-FileType: SOURCE
|
||||
// SPDX-License-Identifier: MIT
|
||||
// ***************************************************************
|
||||
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <catch2/matchers/catch_matchers.hpp>
|
||||
#include "TestUtils.h"
|
||||
#include "bayesnet/ensembles/XBA2DE.h"
|
||||
|
||||
TEST_CASE("Normal test", "[XBA2DE]") {
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::XBA2DE();
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
REQUIRE(clf.getNumberOfEdges() == 8);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
REQUIRE(clf.getVersion() == "0.9.7");
|
||||
REQUIRE(clf.getNotes()[0] == "Convergence threshold reached & 13 models eliminated");
|
||||
REQUIRE(clf.getNotes()[1] == "Number of models: 1");
|
||||
REQUIRE(clf.getNumberOfStates() == 64);
|
||||
REQUIRE(clf.score(raw.X_test, raw.y_test) == Catch::Approx(1.0f));
|
||||
REQUIRE(clf.graph().size() == 1);
|
||||
}
|
||||
TEST_CASE("Feature_select CFS", "[XBA2DE]") {
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::XBA2DE();
|
||||
clf.setHyperparameters({{"select_features", "CFS"}});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 220);
|
||||
REQUIRE(clf.getNumberOfEdges() == 506);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 9 with CFS");
|
||||
REQUIRE(clf.getNotes()[1] == "Number of models: 22");
|
||||
REQUIRE(clf.score(raw.X_test, raw.y_test) == Catch::Approx(0.720930219));
|
||||
}
|
||||
TEST_CASE("Feature_select IWSS", "[XBA2DE]") {
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::XBA2DE();
|
||||
clf.setHyperparameters({{"select_features", "IWSS"}, {"threshold", 0.5}});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 220);
|
||||
REQUIRE(clf.getNumberOfEdges() == 506);
|
||||
REQUIRE(clf.getNotes().size() == 4);
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with IWSS");
|
||||
REQUIRE(clf.getNotes()[1] == "Convergence threshold reached & 15 models eliminated");
|
||||
REQUIRE(clf.getNotes()[2] == "Pairs not used in train: 2");
|
||||
REQUIRE(clf.getNotes()[3] == "Number of models: 22");
|
||||
REQUIRE(clf.getNumberOfStates() == 5346);
|
||||
REQUIRE(clf.score(raw.X_test, raw.y_test) == Catch::Approx(0.72093));
|
||||
}
|
||||
TEST_CASE("Feature_select FCBF", "[XBA2DE]") {
|
||||
auto raw = RawDatasets("glass", true);
|
||||
auto clf = bayesnet::XBA2DE();
|
||||
clf.setHyperparameters({{"select_features", "FCBF"}, {"threshold", 1e-7}});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 290);
|
||||
REQUIRE(clf.getNumberOfEdges() == 667);
|
||||
REQUIRE(clf.getNumberOfStates() == 7047);
|
||||
REQUIRE(clf.getNotes().size() == 3);
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 4 of 9 with FCBF");
|
||||
REQUIRE(clf.getNotes()[1] == "Pairs not used in train: 2");
|
||||
REQUIRE(clf.getNotes()[2] == "Number of models: 29");
|
||||
REQUIRE(clf.score(raw.X_test, raw.y_test) == Catch::Approx(0.744186));
|
||||
}
|
||||
TEST_CASE("Test used features in train note and score", "[XBA2DE]") {
|
||||
auto raw = RawDatasets("diabetes", true);
|
||||
auto clf = bayesnet::XBA2DE();
|
||||
clf.setHyperparameters({
|
||||
{"order", "asc"},
|
||||
{"convergence", true},
|
||||
{"select_features", "CFS"},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 144);
|
||||
REQUIRE(clf.getNumberOfEdges() == 320);
|
||||
REQUIRE(clf.getNumberOfStates() == 5504);
|
||||
REQUIRE(clf.getNotes().size() == 2);
|
||||
REQUIRE(clf.getNotes()[0] == "Used features in initialization: 6 of 8 with CFS");
|
||||
REQUIRE(clf.getNotes()[1] == "Number of models: 16");
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
REQUIRE(score == Catch::Approx(0.850260437f).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.850260437f).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Order asc, desc & random", "[XBA2DE]") {
|
||||
auto raw = RawDatasets("glass", true);
|
||||
std::map<std::string, double> scores{{"asc", 0.827103}, {"desc", 0.808411}, {"rand", 0.827103}};
|
||||
for (const std::string &order : {"asc", "desc", "rand"}) {
|
||||
auto clf = bayesnet::XBA2DE();
|
||||
clf.setHyperparameters({
|
||||
{"order", order},
|
||||
{"bisection", false},
|
||||
{"maxTolerance", 1},
|
||||
{"convergence", true},
|
||||
});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score = clf.score(raw.Xv, raw.yv);
|
||||
auto scoret = clf.score(raw.Xt, raw.yt);
|
||||
INFO("XBA2DE order: " << order);
|
||||
REQUIRE(score == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(scores[order]).epsilon(raw.epsilon));
|
||||
}
|
||||
}
|
||||
TEST_CASE("Oddities", "[XBA2DE]") {
|
||||
auto clf = bayesnet::XBA2DE();
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto bad_hyper = nlohmann::json{
|
||||
{{"order", "duck"}},
|
||||
{{"select_features", "duck"}},
|
||||
{{"maxTolerance", 0}},
|
||||
{{"maxTolerance", 7}},
|
||||
};
|
||||
for (const auto &hyper : bad_hyper.items()) {
|
||||
INFO("XBA2DE hyper: " << hyper.value().dump());
|
||||
REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
|
||||
}
|
||||
REQUIRE_THROWS_AS(clf.setHyperparameters({{"maxTolerance", 0}}), std::invalid_argument);
|
||||
auto bad_hyper_fit = nlohmann::json{
|
||||
{{"select_features", "IWSS"}, {"threshold", -0.01}},
|
||||
{{"select_features", "IWSS"}, {"threshold", 0.51}},
|
||||
{{"select_features", "FCBF"}, {"threshold", 1e-8}},
|
||||
{{"select_features", "FCBF"}, {"threshold", 1.01}},
|
||||
};
|
||||
for (const auto &hyper : bad_hyper_fit.items()) {
|
||||
INFO("XBA2DE hyper: " << hyper.value().dump());
|
||||
clf.setHyperparameters(hyper.value());
|
||||
REQUIRE_THROWS_AS(clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing),
|
||||
std::invalid_argument);
|
||||
}
|
||||
auto bad_hyper_fit2 = nlohmann::json{
|
||||
{{"alpha_block", true}, {"block_update", true}},
|
||||
{{"bisection", false}, {"block_update", true}},
|
||||
};
|
||||
for (const auto &hyper : bad_hyper_fit2.items()) {
|
||||
INFO("XBA2DE hyper: " << hyper.value().dump());
|
||||
REQUIRE_THROWS_AS(clf.setHyperparameters(hyper.value()), std::invalid_argument);
|
||||
}
|
||||
// Check not enough selected features
|
||||
raw.Xv.pop_back();
|
||||
raw.Xv.pop_back();
|
||||
raw.Xv.pop_back();
|
||||
raw.features.pop_back();
|
||||
raw.features.pop_back();
|
||||
raw.features.pop_back();
|
||||
clf.setHyperparameters({{"select_features", "CFS"}, {"alpha_block", false}, {"block_update", false}});
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNotes().size() == 1);
|
||||
REQUIRE(clf.getNotes()[0] == "No features selected in initialization");
|
||||
}
|
||||
TEST_CASE("Bisection Best", "[XBA2DE]") {
|
||||
auto clf = bayesnet::XBA2DE();
|
||||
auto raw = RawDatasets("kdd_JapaneseVowels", true, 1200, true, false);
|
||||
clf.setHyperparameters({
|
||||
{"bisection", true},
|
||||
{"maxTolerance", 3},
|
||||
{"convergence", true},
|
||||
{"convergence_best", false},
|
||||
});
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 330);
|
||||
REQUIRE(clf.getNumberOfEdges() == 836);
|
||||
REQUIRE(clf.getNumberOfStates() == 31108);
|
||||
REQUIRE(clf.getNotes().size() == 3);
|
||||
REQUIRE(clf.getNotes().at(0) == "Convergence threshold reached & 15 models eliminated");
|
||||
REQUIRE(clf.getNotes().at(1) == "Pairs not used in train: 83");
|
||||
REQUIRE(clf.getNotes().at(2) == "Number of models: 22");
|
||||
auto score = clf.score(raw.X_test, raw.y_test);
|
||||
auto scoret = clf.score(raw.X_test, raw.y_test);
|
||||
REQUIRE(score == Catch::Approx(0.975).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.975).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Bisection Best vs Last", "[XBA2DE]") {
|
||||
auto raw = RawDatasets("kdd_JapaneseVowels", true, 1500, true, false);
|
||||
auto clf = bayesnet::XBA2DE();
|
||||
auto hyperparameters = nlohmann::json{
|
||||
{"bisection", true},
|
||||
{"maxTolerance", 3},
|
||||
{"convergence", true},
|
||||
{"convergence_best", true},
|
||||
};
|
||||
clf.setHyperparameters(hyperparameters);
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score_best = clf.score(raw.X_test, raw.y_test);
|
||||
REQUIRE(score_best == Catch::Approx(0.983333).epsilon(raw.epsilon));
|
||||
// Now we will set the hyperparameter to use the last accuracy
|
||||
hyperparameters["convergence_best"] = false;
|
||||
clf.setHyperparameters(hyperparameters);
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score_last = clf.score(raw.X_test, raw.y_test);
|
||||
REQUIRE(score_last == Catch::Approx(0.99).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Block Update", "[XBA2DE]") {
|
||||
auto clf = bayesnet::XBA2DE();
|
||||
auto raw = RawDatasets("kdd_JapaneseVowels", true, 1500, true, false);
|
||||
clf.setHyperparameters({
|
||||
{"bisection", true},
|
||||
{"block_update", true},
|
||||
{"maxTolerance", 3},
|
||||
{"convergence", true},
|
||||
});
|
||||
clf.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.getNumberOfNodes() == 120);
|
||||
REQUIRE(clf.getNumberOfEdges() == 304);
|
||||
REQUIRE(clf.getNotes().size() == 3);
|
||||
REQUIRE(clf.getNotes()[0] == "Convergence threshold reached & 15 models eliminated");
|
||||
REQUIRE(clf.getNotes()[1] == "Pairs not used in train: 83");
|
||||
REQUIRE(clf.getNotes()[2] == "Number of models: 8");
|
||||
auto score = clf.score(raw.X_test, raw.y_test);
|
||||
auto scoret = clf.score(raw.X_test, raw.y_test);
|
||||
REQUIRE(score == Catch::Approx(0.963333).epsilon(raw.epsilon));
|
||||
REQUIRE(scoret == Catch::Approx(0.963333).epsilon(raw.epsilon));
|
||||
/*std::cout << "Number of nodes " << clf.getNumberOfNodes() << std::endl;*/
|
||||
/*std::cout << "Number of edges " << clf.getNumberOfEdges() << std::endl;*/
|
||||
/*std::cout << "Notes size " << clf.getNotes().size() << std::endl;*/
|
||||
/*for (auto note : clf.getNotes()) {*/
|
||||
/* std::cout << note << std::endl;*/
|
||||
/*}*/
|
||||
/*std::cout << "Score " << score << std::endl;*/
|
||||
}
|
||||
TEST_CASE("Alphablock", "[XBA2DE]") {
|
||||
auto clf_alpha = bayesnet::XBA2DE();
|
||||
auto clf_no_alpha = bayesnet::XBA2DE();
|
||||
auto raw = RawDatasets("diabetes", true);
|
||||
clf_alpha.setHyperparameters({
|
||||
{"alpha_block", true},
|
||||
});
|
||||
clf_alpha.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
clf_no_alpha.fit(raw.X_train, raw.y_train, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto score_alpha = clf_alpha.score(raw.X_test, raw.y_test);
|
||||
auto score_no_alpha = clf_no_alpha.score(raw.X_test, raw.y_test);
|
||||
REQUIRE(score_alpha == Catch::Approx(0.714286).epsilon(raw.epsilon));
|
||||
REQUIRE(score_no_alpha == Catch::Approx(0.714286).epsilon(raw.epsilon));
|
||||
}
|
@@ -37,16 +37,12 @@ static void check_spnde_pair(
|
||||
|
||||
// Basic checks
|
||||
REQUIRE(clf.getNumberOfNodes() == 5); // for iris: 4 features + 1 class
|
||||
// For XSpnde, edges are often computed as 3*nFeatures - 4. For iris nFeatures=4 => 3*4 -4 = 8
|
||||
REQUIRE(clf.getNumberOfEdges() == 8);
|
||||
REQUIRE(clf.getNotes().size() == 0);
|
||||
|
||||
// Evaluate on test set
|
||||
float sc = clf.score(raw.X_test, raw.y_test);
|
||||
// If you know the exact expected accuracy for each pair, use:
|
||||
// REQUIRE(sc == Catch::Approx(someValue));
|
||||
// Otherwise, just check it's > some threshold:
|
||||
REQUIRE(sc >= 0.90f); // placeholder; you can pick your own threshold
|
||||
REQUIRE(sc >= 0.93f);
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------
|
||||
@@ -55,13 +51,10 @@ static void check_spnde_pair(
|
||||
TEST_CASE("fit vector test (XSPNDE)", "[XSPNDE]") {
|
||||
auto raw = RawDatasets("iris", true);
|
||||
|
||||
// We’ll test a couple of two-superparent pairs, e.g. (0,1) and (2,3).
|
||||
// You can add more if you like, e.g. (0,2), (1,3), etc.
|
||||
std::vector<std::pair<int,int>> parentPairs = {
|
||||
{0,1}, {2,3}
|
||||
};
|
||||
for (auto &p : parentPairs) {
|
||||
// We’re doing the “vector” version
|
||||
check_spnde_pair(p.first, p.second, raw, /*fitVector=*/true, /*fitTensor=*/false);
|
||||
}
|
||||
}
|
||||
@@ -77,7 +70,6 @@ TEST_CASE("fit dataset test (XSPNDE)", "[XSPNDE]") {
|
||||
{0,2}, {1,3}
|
||||
};
|
||||
for (auto &p : parentPairs) {
|
||||
// Now do the “dataset” version
|
||||
check_spnde_pair(p.first, p.second, raw, /*fitVector=*/false, /*fitTensor=*/false);
|
||||
}
|
||||
}
|
||||
@@ -88,14 +80,12 @@ TEST_CASE("fit dataset test (XSPNDE)", "[XSPNDE]") {
|
||||
TEST_CASE("tensors dataset predict & predict_proba (XSPNDE)", "[XSPNDE]") {
|
||||
auto raw = RawDatasets("iris", true);
|
||||
|
||||
// Let’s test a single pair or multiple pairs. For brevity:
|
||||
std::vector<std::pair<int,int>> parentPairs = {
|
||||
{0,3}
|
||||
{0,3}, {1,2}
|
||||
};
|
||||
|
||||
for (auto &p : parentPairs) {
|
||||
bayesnet::XSpnde clf(p.first, p.second);
|
||||
// Fit using the “tensor” approach
|
||||
clf.fit(raw.Xt, raw.yt, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
|
||||
REQUIRE(clf.getNumberOfNodes() == 5);
|
||||
@@ -106,15 +96,46 @@ TEST_CASE("tensors dataset predict & predict_proba (XSPNDE)", "[XSPNDE]") {
|
||||
float sc = clf.score(raw.X_test, raw.y_test);
|
||||
REQUIRE(sc >= 0.90f);
|
||||
|
||||
// You can also test predict_proba on a small slice:
|
||||
// e.g. the first 3 samples in X_test
|
||||
auto X_reduced = raw.X_test.slice(1, 0, 3);
|
||||
auto proba = clf.predict_proba(X_reduced);
|
||||
|
||||
// If you know exact probabilities, compare them with Catch::Approx.
|
||||
// For example:
|
||||
// REQUIRE(proba[0][0].item<double>() == Catch::Approx(0.98));
|
||||
// etc.
|
||||
}
|
||||
}
|
||||
TEST_CASE("Check hyperparameters", "[XSPNDE]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
|
||||
auto clf = bayesnet::XSpnde(0, 1);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
auto clf2 = bayesnet::XSpnde(2, 3);
|
||||
clf2.setHyperparameters({{"parent1", 0}, {"parent2", 1}});
|
||||
clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, raw.smoothing);
|
||||
REQUIRE(clf.to_string() == clf2.to_string());
|
||||
}
|
||||
TEST_CASE("Check different smoothing", "[XSPNDE]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
|
||||
auto clf = bayesnet::XSpnde(0, 1);
|
||||
clf.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, bayesnet::Smoothing_t::ORIGINAL);
|
||||
auto clf2 = bayesnet::XSpnde(0, 1);
|
||||
clf2.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, bayesnet::Smoothing_t::LAPLACE);
|
||||
auto clf3 = bayesnet::XSpnde(0, 1);
|
||||
clf3.fit(raw.Xv, raw.yv, raw.features, raw.className, raw.states, bayesnet::Smoothing_t::NONE);
|
||||
auto score = clf.score(raw.X_test, raw.y_test);
|
||||
auto score2 = clf2.score(raw.X_test, raw.y_test);
|
||||
auto score3 = clf3.score(raw.X_test, raw.y_test);
|
||||
REQUIRE(score == Catch::Approx(1.0).epsilon(raw.epsilon));
|
||||
REQUIRE(score2 == Catch::Approx(0.7333333).epsilon(raw.epsilon));
|
||||
REQUIRE(score3 == Catch::Approx(0.966667).epsilon(raw.epsilon));
|
||||
}
|
||||
TEST_CASE("Check rest", "[XSPNDE]")
|
||||
{
|
||||
auto raw = RawDatasets("iris", true);
|
||||
auto clf = bayesnet::XSpnde(0, 1);
|
||||
REQUIRE_THROWS_AS(clf.predict_proba(std::vector<int>({1,2,3,4})), std::logic_error);
|
||||
clf.fitx(raw.Xt, raw.yt, raw.weights, bayesnet::Smoothing_t::ORIGINAL);
|
||||
REQUIRE(clf.getNFeatures() == 4);
|
||||
REQUIRE(clf.score(raw.Xv, raw.yv) == Catch::Approx(0.973333359f).epsilon(raw.epsilon));
|
||||
REQUIRE(clf.predict({1,2,3,4}) == 1);
|
||||
|
||||
}
|
||||
|
Reference in New Issue
Block a user