2023-07-18 11:44:08 +00:00
|
|
|
#include <catch2/catch_test_macros.hpp>
|
|
|
|
#include <catch2/catch_approx.hpp>
|
|
|
|
#include <catch2/generators/catch_generators.hpp>
|
|
|
|
#include <string>
|
2023-10-04 21:19:23 +00:00
|
|
|
#include "TestUtils.h"
|
2023-10-08 13:54:58 +00:00
|
|
|
#include "Network.h"
|
2023-07-18 11:44:08 +00:00
|
|
|
|
2023-10-09 09:25:30 +00:00
|
|
|
void buildModel(bayesnet::Network& net, const vector<string>& features, const string& className)
|
|
|
|
{
|
|
|
|
vector<pair<int, int>> network = { {0, 1}, {0, 2}, {1, 3} };
|
|
|
|
for (const auto& feature : features) {
|
|
|
|
net.addNode(feature);
|
|
|
|
}
|
|
|
|
net.addNode(className);
|
|
|
|
for (const auto& edge : network) {
|
|
|
|
net.addEdge(features.at(edge.first), features.at(edge.second));
|
|
|
|
}
|
|
|
|
for (const auto& feature : features) {
|
|
|
|
net.addEdge(className, feature);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-10-05 13:45:36 +00:00
|
|
|
TEST_CASE("Test Bayesian Network", "[BayesNet]")
|
2023-07-18 11:44:08 +00:00
|
|
|
{
|
2023-10-08 13:54:58 +00:00
|
|
|
|
|
|
|
auto raw = RawDatasets("iris", true);
|
2023-10-09 09:25:30 +00:00
|
|
|
auto net = bayesnet::Network();
|
2023-07-18 11:44:08 +00:00
|
|
|
|
|
|
|
SECTION("Test get features")
|
|
|
|
{
|
2023-08-05 12:40:42 +00:00
|
|
|
net.addNode("A");
|
|
|
|
net.addNode("B");
|
2023-07-18 11:44:08 +00:00
|
|
|
REQUIRE(net.getFeatures() == vector<string>{"A", "B"});
|
2023-08-05 12:40:42 +00:00
|
|
|
net.addNode("C");
|
2023-07-18 11:44:08 +00:00
|
|
|
REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"});
|
|
|
|
}
|
2023-07-19 13:05:44 +00:00
|
|
|
SECTION("Test get edges")
|
|
|
|
{
|
2023-08-05 12:40:42 +00:00
|
|
|
net.addNode("A");
|
|
|
|
net.addNode("B");
|
|
|
|
net.addNode("C");
|
2023-07-19 13:05:44 +00:00
|
|
|
net.addEdge("A", "B");
|
|
|
|
net.addEdge("B", "C");
|
|
|
|
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "B", "C" } });
|
2023-10-08 13:54:58 +00:00
|
|
|
REQUIRE(net.getNumEdges() == 2);
|
2023-07-19 13:05:44 +00:00
|
|
|
net.addEdge("A", "C");
|
|
|
|
REQUIRE(net.getEdges() == vector<pair<string, string>>{ {"A", "B"}, { "A", "C" }, { "B", "C" } });
|
2023-10-08 13:54:58 +00:00
|
|
|
REQUIRE(net.getNumEdges() == 3);
|
|
|
|
}
|
|
|
|
SECTION("Test getNodes")
|
|
|
|
{
|
|
|
|
net.addNode("A");
|
|
|
|
net.addNode("B");
|
|
|
|
auto& nodes = net.getNodes();
|
|
|
|
REQUIRE(nodes.count("A") == 1);
|
|
|
|
REQUIRE(nodes.count("B") == 1);
|
|
|
|
}
|
|
|
|
|
2023-10-09 09:25:30 +00:00
|
|
|
SECTION("Test fit Network")
|
|
|
|
{
|
|
|
|
auto net2 = bayesnet::Network();
|
|
|
|
auto net3 = bayesnet::Network();
|
|
|
|
net3.initialize();
|
|
|
|
net2.initialize();
|
|
|
|
net.initialize();
|
|
|
|
buildModel(net, raw.featuresv, raw.classNamev);
|
|
|
|
buildModel(net2, raw.featurest, raw.classNamet);
|
|
|
|
buildModel(net3, raw.featurest, raw.classNamet);
|
|
|
|
vector<pair<string, string>> edges = {
|
|
|
|
{"class", "sepallength"}, {"class", "sepalwidth"}, {"class", "petallength"},
|
|
|
|
{"class", "petalwidth" }, {"sepallength", "sepalwidth"}, {"sepallength", "petallength"},
|
|
|
|
{"sepalwidth", "petalwidth"}
|
|
|
|
};
|
|
|
|
REQUIRE(net.getEdges() == edges);
|
|
|
|
REQUIRE(net2.getEdges() == edges);
|
|
|
|
REQUIRE(net3.getEdges() == edges);
|
|
|
|
vector<string> features = { "sepallength", "sepalwidth", "petallength", "petalwidth", "class" };
|
|
|
|
REQUIRE(net.getFeatures() == features);
|
|
|
|
REQUIRE(net2.getFeatures() == features);
|
|
|
|
REQUIRE(net3.getFeatures() == features);
|
|
|
|
auto& nodes = net.getNodes();
|
|
|
|
auto& nodes2 = net2.getNodes();
|
|
|
|
auto& nodes3 = net3.getNodes();
|
|
|
|
// Check Nodes parents & children
|
|
|
|
for (const auto& feature : features) {
|
|
|
|
// Parents
|
|
|
|
vector<string> parents, parents2, parents3, children, children2, children3;
|
|
|
|
auto nodeParents = nodes[feature]->getParents();
|
|
|
|
auto nodeParents2 = nodes2[feature]->getParents();
|
|
|
|
auto nodeParents3 = nodes3[feature]->getParents();
|
|
|
|
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
|
|
|
|
transform(nodeParents2.begin(), nodeParents2.end(), back_inserter(parents2), [](const auto& p) { return p->getName(); });
|
|
|
|
transform(nodeParents3.begin(), nodeParents3.end(), back_inserter(parents3), [](const auto& p) { return p->getName(); });
|
|
|
|
REQUIRE(parents == parents2);
|
|
|
|
REQUIRE(parents == parents3);
|
|
|
|
// Children
|
|
|
|
auto nodeChildren = nodes[feature]->getChildren();
|
|
|
|
auto nodeChildren2 = nodes2[feature]->getChildren();
|
|
|
|
auto nodeChildren3 = nodes2[feature]->getChildren();
|
|
|
|
transform(nodeChildren.begin(), nodeChildren.end(), back_inserter(children), [](const auto& p) { return p->getName(); });
|
|
|
|
transform(nodeChildren2.begin(), nodeChildren2.end(), back_inserter(children2), [](const auto& p) { return p->getName(); });
|
|
|
|
transform(nodeChildren3.begin(), nodeChildren3.end(), back_inserter(children3), [](const auto& p) { return p->getName(); });
|
|
|
|
REQUIRE(children == children2);
|
|
|
|
REQUIRE(children == children3);
|
|
|
|
}
|
|
|
|
// Fit networks
|
|
|
|
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
|
|
|
|
net2.fit(raw.dataset, raw.weights, raw.featurest, raw.classNamet, raw.statest);
|
|
|
|
net3.fit(raw.Xt, raw.yt, raw.weights, raw.featurest, raw.classNamet, raw.statest);
|
|
|
|
REQUIRE(net.getStates() == net2.getStates());
|
|
|
|
REQUIRE(net.getStates() == net3.getStates());
|
|
|
|
// Check Conditional Probabilities tables
|
|
|
|
for (int i = 0; i < features.size(); ++i) {
|
|
|
|
auto feature = features.at(i);
|
|
|
|
for (const auto& feature : features) {
|
|
|
|
auto cpt = nodes[feature]->getCPT();
|
|
|
|
auto cpt2 = nodes2[feature]->getCPT();
|
|
|
|
auto cpt3 = nodes3[feature]->getCPT();
|
|
|
|
REQUIRE(cpt.equal(cpt2));
|
|
|
|
REQUIRE(cpt.equal(cpt3));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
SECTION("Test show")
|
|
|
|
{
|
|
|
|
auto net = bayesnet::Network();
|
|
|
|
net.addNode("A");
|
|
|
|
net.addNode("B");
|
|
|
|
net.addNode("C");
|
|
|
|
net.addEdge("A", "B");
|
|
|
|
net.addEdge("A", "C");
|
|
|
|
auto str = net.show();
|
|
|
|
REQUIRE(str.size() == 3);
|
|
|
|
REQUIRE(str[0] == "A -> B, C, ");
|
|
|
|
REQUIRE(str[1] == "B -> ");
|
|
|
|
REQUIRE(str[2] == "C -> ");
|
|
|
|
}
|
|
|
|
SECTION("Test topological_sort")
|
2023-10-08 13:54:58 +00:00
|
|
|
{
|
|
|
|
auto net = bayesnet::Network();
|
2023-10-09 09:25:30 +00:00
|
|
|
net.addNode("A");
|
|
|
|
net.addNode("B");
|
|
|
|
net.addNode("C");
|
|
|
|
net.addEdge("A", "B");
|
|
|
|
net.addEdge("A", "C");
|
|
|
|
auto sorted = net.topological_sort();
|
|
|
|
REQUIRE(sorted.size() == 3);
|
|
|
|
REQUIRE(sorted[0] == "A");
|
|
|
|
bool result = sorted[1] == "B" && sorted[2] == "C";
|
|
|
|
REQUIRE(result);
|
|
|
|
}
|
|
|
|
SECTION("Test graph")
|
|
|
|
{
|
|
|
|
auto net = bayesnet::Network();
|
|
|
|
net.addNode("A");
|
|
|
|
net.addNode("B");
|
|
|
|
net.addNode("C");
|
|
|
|
net.addEdge("A", "B");
|
|
|
|
net.addEdge("A", "C");
|
|
|
|
auto str = net.graph("Test Graph");
|
|
|
|
REQUIRE(str.size() == 7);
|
|
|
|
cout << str << endl;
|
|
|
|
REQUIRE(str[0] == "digraph BayesNet {\nlabel=<BayesNet Test Graph>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n");
|
|
|
|
REQUIRE(str[1] == "A [shape=circle] \n");
|
|
|
|
REQUIRE(str[2] == "A -> B");
|
|
|
|
REQUIRE(str[3] == "A -> C");
|
|
|
|
REQUIRE(str[4] == "B [shape=circle] \n");
|
|
|
|
REQUIRE(str[5] == "C [shape=circle] \n");
|
|
|
|
REQUIRE(str[6] == "}\n");
|
2023-07-19 13:05:44 +00:00
|
|
|
}
|
2023-10-08 13:54:58 +00:00
|
|
|
|
2023-10-09 09:25:30 +00:00
|
|
|
|
2023-10-08 13:54:58 +00:00
|
|
|
// SECTION("Test predict")
|
|
|
|
// {
|
|
|
|
// auto net = bayesnet::Network();
|
|
|
|
// net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
|
|
|
|
// vector<vector<int>> test = { {1, 2, 0, 1}, {0, 1, 2, 0}, {1, 1, 1, 1}, {0, 0, 0, 0}, {2, 2, 2, 2} };
|
|
|
|
// vector<int> y_test = { 0, 1, 1, 0, 2 };
|
|
|
|
// auto y_pred = net.predict(test);
|
|
|
|
// REQUIRE(y_pred == y_test);
|
|
|
|
// }
|
|
|
|
|
|
|
|
// SECTION("Test predict_proba")
|
|
|
|
// {
|
|
|
|
// auto net = bayesnet::Network();
|
|
|
|
// net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
|
|
|
|
// vector<vector<int>> test = { {1, 2, 0, 1}, {0, 1, 2, 0}, {1, 1, 1, 1}, {0, 0, 0, 0}, {2, 2, 2, 2} };
|
|
|
|
// auto y_test = { 0, 1, 1, 0, 2 };
|
|
|
|
// auto y_pred = net.predict(test);
|
|
|
|
// REQUIRE(y_pred == y_test);
|
|
|
|
// }
|
2023-07-18 11:44:08 +00:00
|
|
|
}
|
2023-10-08 13:54:58 +00:00
|
|
|
|
|
|
|
// SECTION("Test score")
|
|
|
|
// {
|
|
|
|
// auto net = bayesnet::Network();
|
|
|
|
// net.fit(Xd, y, weights, features, className, states);
|
|
|
|
// auto test = { {1, 2, 0, 1}, {0, 1, 2, 0}, {1, 1, 1, 1}, {0, 0, 0, 0}, {2, 2, 2, 2} };
|
|
|
|
// auto score = net.score(X, y);
|
|
|
|
// REQUIRE(score == Catch::Approx();
|
|
|
|
// }
|
|
|
|
|
2023-10-09 09:25:30 +00:00
|
|
|
//
|
|
|
|
//
|
2023-10-08 13:54:58 +00:00
|
|
|
|
|
|
|
// SECTION("Test graph")
|
|
|
|
// {
|
|
|
|
// auto net = bayesnet::Network();
|
|
|
|
// net.addNode("A");
|
|
|
|
// net.addNode("B");
|
|
|
|
// net.addNode("C");
|
|
|
|
// net.addEdge("A", "B");
|
|
|
|
// net.addEdge("A", "C");
|
|
|
|
// auto str = net.graph("Test Graph");
|
|
|
|
// REQUIRE(str.size() == 6);
|
|
|
|
// REQUIRE(str[0] == "digraph \"Test Graph\" {");
|
|
|
|
// REQUIRE(str[1] == " A -> B;");
|
|
|
|
// REQUIRE(str[2] == " A -> C;");
|
|
|
|
// REQUIRE(str[3] == " B [shape=ellipse];");
|
|
|
|
// REQUIRE(str[4] == " C [shape=ellipse];");
|
|
|
|
// REQUIRE(str[5] == "}");
|
|
|
|
// }
|
|
|
|
|
|
|
|
// SECTION("Test initialize")
|
|
|
|
// {
|
|
|
|
// auto net = bayesnet::Network();
|
|
|
|
// net.addNode("A");
|
|
|
|
// net.addNode("B");
|
|
|
|
// net.addNode("C");
|
|
|
|
// net.addEdge("A", "B");
|
|
|
|
// net.addEdge("A", "C");
|
|
|
|
// net.initialize();
|
|
|
|
// REQUIRE(net.getNodes().size() == 0);
|
|
|
|
// REQUIRE(net.getEdges().size() == 0);
|
|
|
|
// REQUIRE(net.getFeatures().size() == 0);
|
|
|
|
// REQUIRE(net.getClassNumStates() == 0);
|
|
|
|
// REQUIRE(net.getClassName().empty());
|
|
|
|
// REQUIRE(net.getStates() == 0);
|
|
|
|
// REQUIRE(net.getSamples().numel() == 0);
|
|
|
|
// }
|
|
|
|
|
|
|
|
// SECTION("Test dump_cpt")
|
|
|
|
// {
|
|
|
|
// auto net = bayesnet::Network();
|
|
|
|
// net.addNode("A");
|
|
|
|
// net.addNode("B");
|
|
|
|
// net.addNode("C");
|
|
|
|
// net.addEdge("A", "B");
|
|
|
|
// net.addEdge("A", "C");
|
|
|
|
// net.setClassName("C");
|
|
|
|
// net.setStates({ {"A", {0, 1}}, {"B", {0, 1}}, {"C", {0, 1, 2}} });
|
|
|
|
// net.fit({ {0, 0}, {0, 1}, {1, 0}, {1, 1} }, { 0, 1, 1, 2 }, {}, { "A", "B" }, "C", { {"A", {0, 1}}, {"B", {0, 1}}, {"C", {0, 1, 2}} });
|
|
|
|
// net.dump_cpt();
|
|
|
|
// // TODO: Check that the file was created and contains the expected data
|
|
|
|
// }
|
|
|
|
|
|
|
|
// SECTION("Test version")
|
|
|
|
// {
|
|
|
|
// auto net = bayesnet::Network();
|
|
|
|
// REQUIRE(net.version() == "0.2.0");
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
|
|
|
|
// }
|