Add some tests
This commit is contained in:
parent
57dab6d709
commit
1a21015492
@ -21,6 +21,9 @@ namespace bayesnet {
|
||||
}
|
||||
void Network::addNode(string name, int numStates)
|
||||
{
|
||||
if (find(features.begin(), features.end(), name) == features.end()) {
|
||||
features.push_back(name);
|
||||
}
|
||||
if (nodes.find(name) != nodes.end()) {
|
||||
// if node exists update its number of states
|
||||
nodes[name]->setNumStates(numStates);
|
||||
|
@ -1,3 +1,29 @@
|
||||
//
|
||||
// Created by Ricardo Montañana Gómez on 18/7/23.
|
||||
//
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/catch_approx.hpp>
|
||||
#include <catch2/generators/catch_generators.hpp>
|
||||
#include <string>
|
||||
#include "../src/KDB.h"
|
||||
#include "utils.h"
|
||||
|
||||
TEST_CASE("Test Bayesian Network")
|
||||
{
|
||||
auto[Xd, y, features, className, states] = loadFile("iris");
|
||||
|
||||
SECTION("Test Update Nodes")
|
||||
{
|
||||
auto net = bayesnet::Network();
|
||||
net.addNode("A", 3);
|
||||
REQUIRE(net.getStates() == 3);
|
||||
net.addNode("A", 5);
|
||||
REQUIRE(net.getStates() == 5);
|
||||
}
|
||||
SECTION("Test get features")
|
||||
{
|
||||
auto net = bayesnet::Network();
|
||||
net.addNode("A", 3);
|
||||
net.addNode("B", 5);
|
||||
REQUIRE(net.getFeatures() == vector<string>{"A", "B"});
|
||||
net.addNode("C", 2);
|
||||
REQUIRE(net.getFeatures() == vector<string>{"A", "B", "C"});
|
||||
}
|
||||
}
|
||||
|
@ -2,7 +2,7 @@ if(ENABLE_TESTING)
|
||||
set(TEST_MAIN "unit_tests")
|
||||
set(TEST_SOURCES main.cc ../sample/ArffFiles.cc ../sample/CPPFImdlp.cpp ../sample/Metrics.cpp
|
||||
../src/utils.cc ../src/Network.cc ../src/Node.cc ../src/Metrics.cc ../src/BaseClassifier.cc ../src/KDB.cc
|
||||
../src/TAN.cc ../src/SPODE.cc ../src/Ensemble.cc ../src/AODE.cc ../src/Mst.cc)
|
||||
../src/TAN.cc ../src/SPODE.cc ../src/Ensemble.cc ../src/AODE.cc ../src/Mst.cc BayesNetwork.cc utils.cc utils.h)
|
||||
add_executable(${TEST_MAIN} ${TEST_SOURCES})
|
||||
target_link_libraries(${TEST_MAIN} PUBLIC "${TORCH_LIBRARIES}" Catch2::Catch2WithMain)
|
||||
add_test(NAME ${TEST_MAIN} COMMAND ${TEST_MAIN})
|
||||
|
@ -5,35 +5,14 @@
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <torch/torch.h>
|
||||
#include "../sample/ArffFiles.h"
|
||||
#include "../sample/CPPFImdlp.h"
|
||||
#include "../src/KDB.h"
|
||||
#include "../src/TAN.h"
|
||||
#include "../src/SPODE.h"
|
||||
#include "../src/AODE.h"
|
||||
|
||||
const string PATH = "data/";
|
||||
using namespace std;
|
||||
|
||||
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t>& X, mdlp::labels_t& y, vector<string> features)
|
||||
{
|
||||
vector<mdlp::labels_t>Xd;
|
||||
map<string, int> maxes;
|
||||
|
||||
auto fimdlp = mdlp::CPPFImdlp();
|
||||
for (int i = 0; i < X.size(); i++) {
|
||||
fimdlp.fit(X[i], y);
|
||||
mdlp::labels_t& xd = fimdlp.transform(X[i]);
|
||||
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
|
||||
Xd.push_back(xd);
|
||||
}
|
||||
return { Xd, maxes };
|
||||
}
|
||||
#include "utils.h"
|
||||
|
||||
TEST_CASE("Test Bayesian Classifiers score", "[BayesNet]")
|
||||
{
|
||||
auto path = "../../data/";
|
||||
map <pair<string, string>, float> scores = {
|
||||
{{"diabetes", "AODE"}, 0.811198}, {{"diabetes", "KDB"}, 0.852865}, {{"diabetes", "SPODE"}, 0.802083}, {{"diabetes", "TAN"}, 0.821615},
|
||||
{{"ecoli", "AODE"}, 0.889881}, {{"ecoli", "KDB"}, 0.889881}, {{"ecoli", "SPODE"}, 0.880952}, {{"ecoli", "TAN"}, 0.892857},
|
||||
@ -42,27 +21,8 @@ TEST_CASE("Test Bayesian Classifiers score", "[BayesNet]")
|
||||
};
|
||||
|
||||
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
||||
auto handler = ArffFiles();
|
||||
handler.load(path + static_cast<string>(file_name) + ".arff");
|
||||
// Get Dataset X, y
|
||||
vector<mdlp::samples_t>& X = handler.getX();
|
||||
mdlp::labels_t& y = handler.getY();
|
||||
// Get className & Features
|
||||
auto className = handler.getClassName();
|
||||
vector<string> features;
|
||||
for (auto feature : handler.getAttributes()) {
|
||||
features.push_back(feature.first);
|
||||
}
|
||||
// Discretize Dataset
|
||||
vector<mdlp::labels_t> Xd;
|
||||
map<string, int> maxes;
|
||||
tie(Xd, maxes) = discretize(X, y, features);
|
||||
maxes[className] = *max_element(y.begin(), y.end()) + 1;
|
||||
map<string, vector<int>> states;
|
||||
for (auto feature : features) {
|
||||
states[feature] = vector<int>(maxes[feature]);
|
||||
}
|
||||
states[className] = vector<int>(maxes[className]);
|
||||
auto[Xd, y, features, className, states] = loadFile(file_name);
|
||||
|
||||
SECTION("Test TAN classifier (" + file_name + ")")
|
||||
{
|
||||
auto clf = bayesnet::TAN();
|
||||
|
@ -1,3 +1,40 @@
|
||||
//
|
||||
// Created by Ricardo Montañana Gómez on 18/7/23.
|
||||
//
|
||||
#include "utils.h"
|
||||
|
||||
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t> &X, mdlp::labels_t &y, vector<string> features) {
|
||||
vector<mdlp::labels_t> Xd;
|
||||
map<string, int> maxes;
|
||||
auto fimdlp = mdlp::CPPFImdlp();
|
||||
for (int i = 0; i < X.size(); i++) {
|
||||
fimdlp.fit(X[i], y);
|
||||
mdlp::labels_t &xd = fimdlp.transform(X[i]);
|
||||
maxes[features[i]] = *max_element(xd.begin(), xd.end()) + 1;
|
||||
Xd.push_back(xd);
|
||||
}
|
||||
return {Xd, maxes};
|
||||
}
|
||||
|
||||
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>>
|
||||
loadFile(string name) {
|
||||
auto handler = ArffFiles();
|
||||
handler.load(PATH + static_cast<string>(name) + ".arff");
|
||||
// Get Dataset X, y
|
||||
vector<mdlp::samples_t> &X = handler.getX();
|
||||
mdlp::labels_t &y = handler.getY();
|
||||
// Get className & Features
|
||||
auto className = handler.getClassName();
|
||||
vector<string> features;
|
||||
for (auto feature: handler.getAttributes()) {
|
||||
features.push_back(feature.first);
|
||||
}
|
||||
// Discretize Dataset
|
||||
vector<mdlp::labels_t> Xd;
|
||||
map<string, int> maxes;
|
||||
tie(Xd, maxes) = discretize(X, y, features);
|
||||
maxes[className] = *max_element(y.begin(), y. end()) + 1;
|
||||
map<string, vector<int>> states;
|
||||
for (auto feature: features) {
|
||||
states[feature] = vector<int>(maxes[feature]);
|
||||
}
|
||||
states[className] = vector<int>(maxes[className]);
|
||||
return {Xd, y, features, className, states};
|
||||
}
|
@ -1,8 +1,13 @@
|
||||
//
|
||||
// Created by Ricardo Montañana Gómez on 18/7/23.
|
||||
//
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <tuple>
|
||||
#include "../sample/ArffFiles.h"
|
||||
#include "../sample/CPPFImdlp.h"
|
||||
#ifndef BAYESNET_UTILS_H
|
||||
#define BAYESNET_UTILS_H
|
||||
|
||||
using namespace std;
|
||||
const string PATH = "../../data/";
|
||||
pair<vector<mdlp::labels_t>, map<string, int>> discretize(vector<mdlp::samples_t> &X, mdlp::labels_t &y, vector<string> features);
|
||||
tuple<vector<vector<int>>, vector<int>, vector<string>, string, map<string, vector<int>>> loadFile(string name);
|
||||
#endif //BAYESNET_UTILS_H
|
||||
|
Loading…
Reference in New Issue
Block a user