Add Maximum Spanning Tree test

This commit is contained in:
Ricardo Montañana Gómez 2023-10-05 15:45:36 +02:00
parent da8d018ec4
commit 36b0277576
Signed by: rmontanana
GPG Key ID: 46064262FD9A7ADE
4 changed files with 35 additions and 17 deletions

View File

@ -49,11 +49,12 @@ release: ## Build a Release version of the project
@cmake -S . -B build -D CMAKE_BUILD_TYPE=Release;
@echo ">>> Done";
test: ## Run tests
opt = ""
test: ## Run tests (opt="-s") to verbose output the tests, (opt="-c='Test Maximum Spanning Tree'") to run only that section
@echo ">>> Running tests...";
$(MAKE) clean
@cmake --build build --target unit_tests ;
@if [ -f build/tests/unit_tests ]; then cd build/tests ; ./unit_tests ; fi ;
@if [ -f build/tests/unit_tests ]; then cd build/tests ; ./unit_tests $(opt) ; fi ;
@echo ">>> Done";
coverage: ## Run tests and generate coverage report (build/index.html)

View File

@ -6,41 +6,58 @@
using namespace std;
TEST_CASE("Metrics Test", "[Metrics]")
TEST_CASE("Metrics Test", "[BayesNet]")
{
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
map<string, pair<int, vector<int>>> resultsKBest = {
{"glass", {7, { 3, 2, 0, 1, 6, 7, 5 }}},
{"iris", {3, { 1, 0, 2 }} },
{"ecoli", {6, { 2, 3, 1, 0, 4, 5 }}},
{"diabetes", {2, { 2, 0 }}}
{"glass", {7, { 0, 1, 7, 6, 3, 5, 2 }}},
{"iris", {3, { 0, 3, 2 }} },
{"ecoli", {6, { 2, 4, 1, 0, 6, 5 }}},
{"diabetes", {2, { 7, 1 }}}
};
map<string, double> resultsMI = {
{"glass", 0.12805398},
{"iris", 0.3158139948},
{"ecoli", 0.0089431099},
{"diabetes", 0.0345470614}
};
map<string, vector<pair<int, int>>> resultsMST = {
{"glass", {{0,6}, {0,5}, {0,3}, {6,2}, {6,7}, {5,1}, {5,8}, {5,4}}},
{"iris", {{0,1},{0,2},{1,3}}},
{"ecoli", {{0,1}, {0,2}, {1,5}, {1,3}, {5,6}, {5,4}}},
{"diabetes", {{0,7}, {0,2}, {0,6}, {2,3}, {3,4}, {3,5}, {4,1}}}
};
auto [XDisc, yDisc, featuresDisc, classNameDisc, statesDisc] = loadDataset(file_name, true, true);
int classNumStates = statesDisc.at(classNameDisc).size();
auto yresized = torch::transpose(yDisc.view({ yDisc.size(0), 1 }), 0, 1);
torch::Tensor dataset = torch::cat({ XDisc, yresized }, 0);
int nSamples = dataset.size(1);
double epsilon = 1e-5;
torch::Tensor weights = torch::full({ nSamples }, 1.0 / nSamples, torch::kDouble);
bayesnet::Metrics metrics(dataset, featuresDisc, classNameDisc, classNumStates);
SECTION("Test Constructor")
{
bayesnet::Metrics metrics(XDisc, featuresDisc, classNameDisc, classNumStates);
REQUIRE(metrics.getScoresKBest().size() == 0);
}
SECTION("Test SelectKBestWeighted")
{
bayesnet::Metrics metrics(XDisc, featuresDisc, classNameDisc, classNumStates);
torch::Tensor weights = torch::full({ nSamples }, 1.0 / nSamples, torch::kDouble);
vector<int> kBest = metrics.SelectKBestWeighted(weights, true, resultsKBest.at(file_name).first);
REQUIRE(kBest.size() == resultsKBest.at(file_name).first);
REQUIRE(kBest == resultsKBest.at(file_name).second);
}
SECTION("Test mutualInformation")
SECTION("Test Mutual Information")
{
bayesnet::Metrics metrics(XDisc, featuresDisc, classNameDisc, classNumStates);
torch::Tensor weights = torch::full({ nSamples }, 1.0 / nSamples, torch::kDouble);
auto result = metrics.mutualInformation(dataset.index({ 1, "..." }), dataset.index({ 2, "..." }), weights);
REQUIRE(result == 0.87);
REQUIRE(result == Catch::Approx(resultsMI.at(file_name)).epsilon(epsilon));
}
SECTION("Test Maximum Spanning Tree")
{
auto weights_matrix = metrics.conditionalEdge(weights);
auto result = metrics.maximumSpanningTree(featuresDisc, weights_matrix, 0);
REQUIRE(result == resultsMST.at(file_name));
}
}

View File

@ -116,7 +116,7 @@ TEST_CASE("Test Bayesian Classifiers score", "[BayesNet]")
// cout << "{{\"" << scores.first.first << "\", \"" << scores.first.second << "\"}, " << scores.second << "}, ";
// }
}
TEST_CASE("Models featuresDisc")
TEST_CASE("Models features", "[BayesNet]")
{
auto graph = vector<string>({ "digraph BayesNet {\nlabel=<BayesNet Test>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n",
"class [shape=circle, fontcolor=red, fillcolor=lightblue, style=filled ] \n",
@ -134,7 +134,7 @@ TEST_CASE("Models featuresDisc")
REQUIRE(clf.show() == vector<string>{"class -> sepallength, sepalwidth, petallength, petalwidth, ", "petallength -> sepallength, ", "petalwidth -> ", "sepallength -> sepalwidth, ", "sepalwidth -> petalwidth, "});
REQUIRE(clf.graph("Test") == graph);
}
TEST_CASE("Get num featuresDisc & num edges")
TEST_CASE("Get num features & num edges", "[BayesNet]")
{
auto [XDisc, yDisc, featuresDisc, classNameDisc, statesDisc] = loadFile("iris");
auto clf = bayesnet::KDB(2);

View File

@ -5,7 +5,7 @@
#include "TestUtils.h"
#include "KDB.h"
TEST_CASE("Test Bayesian Network")
TEST_CASE("Test Bayesian Network", "[BayesNet]")
{
auto [Xd, y, features, className, states] = loadFile("iris");