63 lines
2.4 KiB
C++
63 lines
2.4 KiB
C++
#include <catch2/catch_test_macros.hpp>
|
|
#include <catch2/catch_approx.hpp>
|
|
#include <catch2/generators/catch_generators.hpp>
|
|
#include "BayesMetrics.h"
|
|
#include "TestUtils.h"
|
|
|
|
using namespace std;
|
|
|
|
TEST_CASE("Metrics Test", "[BayesNet]")
|
|
{
|
|
string file_name = GENERATE("glass", "iris", "ecoli", "diabetes");
|
|
map<string, pair<int, vector<int>>> resultsKBest = {
|
|
{"glass", {7, { 0, 1, 7, 6, 3, 5, 2 }}},
|
|
{"iris", {3, { 0, 3, 2 }} },
|
|
{"ecoli", {6, { 2, 4, 1, 0, 6, 5 }}},
|
|
{"diabetes", {2, { 7, 1 }}}
|
|
};
|
|
map<string, double> resultsMI = {
|
|
{"glass", 0.12805398},
|
|
{"iris", 0.3158139948},
|
|
{"ecoli", 0.0089431099},
|
|
{"diabetes", 0.0345470614}
|
|
};
|
|
map<string, vector<pair<int, int>>> resultsMST = {
|
|
{"glass", {{0,6}, {0,5}, {0,3}, {6,2}, {6,7}, {5,1}, {5,8}, {5,4}}},
|
|
{"iris", {{0,1},{0,2},{1,3}}},
|
|
{"ecoli", {{0,1}, {0,2}, {1,5}, {1,3}, {5,6}, {5,4}}},
|
|
{"diabetes", {{0,7}, {0,2}, {0,6}, {2,3}, {3,4}, {3,5}, {4,1}}}
|
|
};
|
|
auto [XDisc, yDisc, featuresDisc, classNameDisc, statesDisc] = loadDataset(file_name, true, true);
|
|
int classNumStates = statesDisc.at(classNameDisc).size();
|
|
auto yresized = torch::transpose(yDisc.view({ yDisc.size(0), 1 }), 0, 1);
|
|
torch::Tensor dataset = torch::cat({ XDisc, yresized }, 0);
|
|
int nSamples = dataset.size(1);
|
|
double epsilon = 1e-5;
|
|
torch::Tensor weights = torch::full({ nSamples }, 1.0 / nSamples, torch::kDouble);
|
|
bayesnet::Metrics metrics(dataset, featuresDisc, classNameDisc, classNumStates);
|
|
|
|
SECTION("Test Constructor")
|
|
{
|
|
REQUIRE(metrics.getScoresKBest().size() == 0);
|
|
}
|
|
|
|
SECTION("Test SelectKBestWeighted")
|
|
{
|
|
vector<int> kBest = metrics.SelectKBestWeighted(weights, true, resultsKBest.at(file_name).first);
|
|
REQUIRE(kBest.size() == resultsKBest.at(file_name).first);
|
|
REQUIRE(kBest == resultsKBest.at(file_name).second);
|
|
}
|
|
|
|
SECTION("Test Mutual Information")
|
|
{
|
|
auto result = metrics.mutualInformation(dataset.index({ 1, "..." }), dataset.index({ 2, "..." }), weights);
|
|
REQUIRE(result == Catch::Approx(resultsMI.at(file_name)).epsilon(epsilon));
|
|
}
|
|
|
|
SECTION("Test Maximum Spanning Tree")
|
|
{
|
|
auto weights_matrix = metrics.conditionalEdge(weights);
|
|
auto result = metrics.maximumSpanningTree(featuresDisc, weights_matrix, 0);
|
|
REQUIRE(result == resultsMST.at(file_name));
|
|
}
|
|
} |