BayesNet/tests/TestBayesNetwork.cc

264 lines
9.8 KiB
C++
Raw Normal View History

2023-07-18 11:44:08 +00:00
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include <catch2/generators/catch_generators.hpp>
2024-01-07 18:58:22 +00:00
#include <string>
#include "TestUtils.h"
2023-10-08 13:54:58 +00:00
#include "Network.h"
2023-07-18 11:44:08 +00:00
2024-01-07 18:58:22 +00:00
void buildModel(bayesnet::Network& net, const std::vector<std::string>& features, const std::string& className)
2023-10-09 09:25:30 +00:00
{
2023-11-08 17:45:35 +00:00
std::vector<pair<int, int>> network = { {0, 1}, {0, 2}, {1, 3} };
2023-10-09 09:25:30 +00:00
for (const auto& feature : features) {
net.addNode(feature);
}
net.addNode(className);
for (const auto& edge : network) {
net.addEdge(features.at(edge.first), features.at(edge.second));
}
for (const auto& feature : features) {
net.addEdge(className, feature);
}
}
2023-10-05 13:45:36 +00:00
TEST_CASE("Test Bayesian Network", "[BayesNet]")
2023-07-18 11:44:08 +00:00
{
2023-10-08 13:54:58 +00:00
auto raw = RawDatasets("iris", true);
2023-10-09 09:25:30 +00:00
auto net = bayesnet::Network();
2023-07-18 11:44:08 +00:00
SECTION("Test get features")
{
2023-08-05 12:40:42 +00:00
net.addNode("A");
net.addNode("B");
2023-11-08 17:45:35 +00:00
REQUIRE(net.getFeatures() == std::vector<std::string>{"A", "B"});
2023-08-05 12:40:42 +00:00
net.addNode("C");
2023-11-08 17:45:35 +00:00
REQUIRE(net.getFeatures() == std::vector<std::string>{"A", "B", "C"});
2023-07-18 11:44:08 +00:00
}
SECTION("Test get edges")
{
2023-08-05 12:40:42 +00:00
net.addNode("A");
net.addNode("B");
net.addNode("C");
net.addEdge("A", "B");
net.addEdge("B", "C");
2023-11-08 17:45:35 +00:00
REQUIRE(net.getEdges() == std::vector<pair<std::string, std::string>>{ {"A", "B"}, { "B", "C" } });
2023-10-08 13:54:58 +00:00
REQUIRE(net.getNumEdges() == 2);
net.addEdge("A", "C");
2023-11-08 17:45:35 +00:00
REQUIRE(net.getEdges() == std::vector<pair<std::string, std::string>>{ {"A", "B"}, { "A", "C" }, { "B", "C" } });
2023-10-08 13:54:58 +00:00
REQUIRE(net.getNumEdges() == 3);
}
SECTION("Test getNodes")
{
net.addNode("A");
net.addNode("B");
auto& nodes = net.getNodes();
REQUIRE(nodes.count("A") == 1);
REQUIRE(nodes.count("B") == 1);
}
2023-10-09 09:25:30 +00:00
SECTION("Test fit Network")
{
auto net2 = bayesnet::Network();
auto net3 = bayesnet::Network();
net3.initialize();
net2.initialize();
net.initialize();
buildModel(net, raw.featuresv, raw.classNamev);
buildModel(net2, raw.featurest, raw.classNamet);
buildModel(net3, raw.featurest, raw.classNamet);
2023-11-08 17:45:35 +00:00
std::vector<pair<std::string, std::string>> edges = {
2023-10-09 09:25:30 +00:00
{"class", "sepallength"}, {"class", "sepalwidth"}, {"class", "petallength"},
{"class", "petalwidth" }, {"sepallength", "sepalwidth"}, {"sepallength", "petallength"},
{"sepalwidth", "petalwidth"}
};
REQUIRE(net.getEdges() == edges);
REQUIRE(net2.getEdges() == edges);
REQUIRE(net3.getEdges() == edges);
2023-11-08 17:45:35 +00:00
std::vector<std::string> features = { "sepallength", "sepalwidth", "petallength", "petalwidth", "class" };
2023-10-09 09:25:30 +00:00
REQUIRE(net.getFeatures() == features);
REQUIRE(net2.getFeatures() == features);
REQUIRE(net3.getFeatures() == features);
auto& nodes = net.getNodes();
auto& nodes2 = net2.getNodes();
auto& nodes3 = net3.getNodes();
// Check Nodes parents & children
for (const auto& feature : features) {
// Parents
2023-11-08 17:45:35 +00:00
std::vector<std::string> parents, parents2, parents3, children, children2, children3;
2023-10-09 09:25:30 +00:00
auto nodeParents = nodes[feature]->getParents();
auto nodeParents2 = nodes2[feature]->getParents();
auto nodeParents3 = nodes3[feature]->getParents();
transform(nodeParents.begin(), nodeParents.end(), back_inserter(parents), [](const auto& p) { return p->getName(); });
transform(nodeParents2.begin(), nodeParents2.end(), back_inserter(parents2), [](const auto& p) { return p->getName(); });
transform(nodeParents3.begin(), nodeParents3.end(), back_inserter(parents3), [](const auto& p) { return p->getName(); });
REQUIRE(parents == parents2);
REQUIRE(parents == parents3);
// Children
auto nodeChildren = nodes[feature]->getChildren();
auto nodeChildren2 = nodes2[feature]->getChildren();
auto nodeChildren3 = nodes2[feature]->getChildren();
transform(nodeChildren.begin(), nodeChildren.end(), back_inserter(children), [](const auto& p) { return p->getName(); });
transform(nodeChildren2.begin(), nodeChildren2.end(), back_inserter(children2), [](const auto& p) { return p->getName(); });
transform(nodeChildren3.begin(), nodeChildren3.end(), back_inserter(children3), [](const auto& p) { return p->getName(); });
REQUIRE(children == children2);
REQUIRE(children == children3);
}
// Fit networks
net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
net2.fit(raw.dataset, raw.weights, raw.featurest, raw.classNamet, raw.statest);
net3.fit(raw.Xt, raw.yt, raw.weights, raw.featurest, raw.classNamet, raw.statest);
REQUIRE(net.getStates() == net2.getStates());
REQUIRE(net.getStates() == net3.getStates());
// Check Conditional Probabilities tables
for (int i = 0; i < features.size(); ++i) {
auto feature = features.at(i);
for (const auto& feature : features) {
auto cpt = nodes[feature]->getCPT();
auto cpt2 = nodes2[feature]->getCPT();
auto cpt3 = nodes3[feature]->getCPT();
REQUIRE(cpt.equal(cpt2));
REQUIRE(cpt.equal(cpt3));
}
}
}
SECTION("Test show")
{
auto net = bayesnet::Network();
net.addNode("A");
net.addNode("B");
net.addNode("C");
net.addEdge("A", "B");
net.addEdge("A", "C");
auto str = net.show();
REQUIRE(str.size() == 3);
REQUIRE(str[0] == "A -> B, C, ");
REQUIRE(str[1] == "B -> ");
REQUIRE(str[2] == "C -> ");
}
SECTION("Test topological_sort")
2023-10-08 13:54:58 +00:00
{
auto net = bayesnet::Network();
2023-10-09 09:25:30 +00:00
net.addNode("A");
net.addNode("B");
net.addNode("C");
net.addEdge("A", "B");
net.addEdge("A", "C");
auto sorted = net.topological_sort();
REQUIRE(sorted.size() == 3);
REQUIRE(sorted[0] == "A");
bool result = sorted[1] == "B" && sorted[2] == "C";
REQUIRE(result);
}
SECTION("Test graph")
{
auto net = bayesnet::Network();
net.addNode("A");
net.addNode("B");
net.addNode("C");
net.addEdge("A", "B");
net.addEdge("A", "C");
auto str = net.graph("Test Graph");
REQUIRE(str.size() == 7);
REQUIRE(str[0] == "digraph BayesNet {\nlabel=<BayesNet Test Graph>\nfontsize=30\nfontcolor=blue\nlabelloc=t\nlayout=circo\n");
REQUIRE(str[1] == "A [shape=circle] \n");
REQUIRE(str[2] == "A -> B");
REQUIRE(str[3] == "A -> C");
REQUIRE(str[4] == "B [shape=circle] \n");
REQUIRE(str[5] == "C [shape=circle] \n");
REQUIRE(str[6] == "}\n");
}
2023-10-08 13:54:58 +00:00
2023-10-09 09:25:30 +00:00
2023-10-08 13:54:58 +00:00
// SECTION("Test predict")
// {
// auto net = bayesnet::Network();
// net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
2023-11-08 17:45:35 +00:00
// std::vector<std::vector<int>> test = { {1, 2, 0, 1}, {0, 1, 2, 0}, {1, 1, 1, 1}, {0, 0, 0, 0}, {2, 2, 2, 2} };
// std::vector<int> y_test = { 0, 1, 1, 0, 2 };
2023-10-08 13:54:58 +00:00
// auto y_pred = net.predict(test);
// REQUIRE(y_pred == y_test);
// }
// SECTION("Test predict_proba")
// {
// auto net = bayesnet::Network();
// net.fit(raw.Xv, raw.yv, raw.weightsv, raw.featuresv, raw.classNamev, raw.statesv);
2023-11-08 17:45:35 +00:00
// std::vector<std::vector<int>> test = { {1, 2, 0, 1}, {0, 1, 2, 0}, {1, 1, 1, 1}, {0, 0, 0, 0}, {2, 2, 2, 2} };
2023-10-08 13:54:58 +00:00
// auto y_test = { 0, 1, 1, 0, 2 };
// auto y_pred = net.predict(test);
// REQUIRE(y_pred == y_test);
// }
2023-07-18 11:44:08 +00:00
}
2023-10-08 13:54:58 +00:00
// SECTION("Test score")
// {
// auto net = bayesnet::Network();
// net.fit(Xd, y, weights, features, className, states);
// auto test = { {1, 2, 0, 1}, {0, 1, 2, 0}, {1, 1, 1, 1}, {0, 0, 0, 0}, {2, 2, 2, 2} };
// auto score = net.score(X, y);
// REQUIRE(score == Catch::Approx();
// }
2023-10-09 09:25:30 +00:00
//
//
2023-10-08 13:54:58 +00:00
// SECTION("Test graph")
// {
// auto net = bayesnet::Network();
// net.addNode("A");
// net.addNode("B");
// net.addNode("C");
// net.addEdge("A", "B");
// net.addEdge("A", "C");
// auto str = net.graph("Test Graph");
// REQUIRE(str.size() == 6);
// REQUIRE(str[0] == "digraph \"Test Graph\" {");
// REQUIRE(str[1] == " A -> B;");
// REQUIRE(str[2] == " A -> C;");
// REQUIRE(str[3] == " B [shape=ellipse];");
// REQUIRE(str[4] == " C [shape=ellipse];");
// REQUIRE(str[5] == "}");
// }
// SECTION("Test initialize")
// {
// auto net = bayesnet::Network();
// net.addNode("A");
// net.addNode("B");
// net.addNode("C");
// net.addEdge("A", "B");
// net.addEdge("A", "C");
// net.initialize();
// REQUIRE(net.getNodes().size() == 0);
// REQUIRE(net.getEdges().size() == 0);
// REQUIRE(net.getFeatures().size() == 0);
// REQUIRE(net.getClassNumStates() == 0);
// REQUIRE(net.getClassName().empty());
// REQUIRE(net.getStates() == 0);
// REQUIRE(net.getSamples().numel() == 0);
// }
// SECTION("Test dump_cpt")
// {
// auto net = bayesnet::Network();
// net.addNode("A");
// net.addNode("B");
// net.addNode("C");
// net.addEdge("A", "B");
// net.addEdge("A", "C");
// net.setClassName("C");
// net.setStates({ {"A", {0, 1}}, {"B", {0, 1}}, {"C", {0, 1, 2}} });
// net.fit({ {0, 0}, {0, 1}, {1, 0}, {1, 1} }, { 0, 1, 1, 2 }, {}, { "A", "B" }, "C", { {"A", {0, 1}}, {"B", {0, 1}}, {"C", {0, 1, 2}} });
// net.dump_cpt();
// // TODO: Check that the file was created and contains the expected data
// }
// SECTION("Test version")
// {
// auto net = bayesnet::Network();
// REQUIRE(net.version() == "0.2.0");
// }
// }
// }