BayesNet/bayesnet/network/Network.h

70 lines
4.1 KiB
C
Raw Permalink Normal View History

2024-04-11 16:02:49 +00:00
// ***************************************************************
// SPDX-FileCopyrightText: Copyright 2024 Ricardo Montañana Gómez
// SPDX-FileType: SOURCE
// SPDX-License-Identifier: MIT
// ***************************************************************
2023-06-29 20:00:41 +00:00
#ifndef NETWORK_H
#define NETWORK_H
#include <map>
#include <vector>
2024-03-08 21:20:54 +00:00
#include "bayesnet/config.h"
#include "Node.h"
2023-06-30 19:24:12 +00:00
2023-06-29 20:00:41 +00:00
namespace bayesnet {
2024-06-09 15:19:38 +00:00
enum class Smoothing_t {
2024-06-10 13:49:01 +00:00
NONE = -1,
2024-06-13 13:04:15 +00:00
ORIGINAL = 0,
2024-06-09 15:19:38 +00:00
LAPLACE,
CESTNIK
};
2023-06-29 20:00:41 +00:00
class Network {
public:
2023-06-30 00:46:06 +00:00
Network();
2024-04-07 22:13:59 +00:00
explicit Network(const Network&);
2023-08-31 18:30:28 +00:00
~Network() = default;
torch::Tensor& getSamples();
2023-11-08 17:45:35 +00:00
void addNode(const std::string&);
void addEdge(const std::string&, const std::string&);
std::map<std::string, std::unique_ptr<Node>>& getNodes();
std::vector<std::string> getFeatures() const;
2023-08-07 23:53:41 +00:00
int getStates() const;
2023-11-08 17:45:35 +00:00
std::vector<std::pair<std::string, std::string>> getEdges() const;
2023-08-07 23:53:41 +00:00
int getNumEdges() const;
int getClassNumStates() const;
2023-11-08 17:45:35 +00:00
std::string getClassName() const;
2023-10-09 09:25:30 +00:00
/*
Notice: Nodes have to be inserted in the same order as they are in the dataset, i.e., first node is first column and so on.
*/
2024-06-11 09:40:45 +00:00
void fit(const std::vector<std::vector<int>>& input_data, const std::vector<int>& labels, const std::vector<double>& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
void fit(const torch::Tensor& X, const torch::Tensor& y, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
void fit(const torch::Tensor& samples, const torch::Tensor& weights, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const Smoothing_t smoothing);
2023-11-08 17:45:35 +00:00
std::vector<int> predict(const std::vector<std::vector<int>>&); // Return mx1 std::vector of predictions
2023-08-03 18:22:33 +00:00
torch::Tensor predict(const torch::Tensor&); // Return mx1 tensor of predictions
torch::Tensor predict_tensor(const torch::Tensor& samples, const bool proba);
2023-11-08 17:45:35 +00:00
std::vector<std::vector<double>> predict_proba(const std::vector<std::vector<int>>&); // Return mxn std::vector of probabilities
2023-08-03 18:22:33 +00:00
torch::Tensor predict_proba(const torch::Tensor&); // Return mxn tensor of probabilities
2023-11-08 17:45:35 +00:00
double score(const std::vector<std::vector<int>>&, const std::vector<int>&);
std::vector<std::string> topological_sort();
std::vector<std::string> show() const;
std::vector<std::string> graph(const std::string& title) const; // Returns a std::vector of std::strings representing the graph in graphviz format
2023-08-03 18:22:33 +00:00
void initialize();
2024-04-07 22:13:59 +00:00
std::string dump_cpt() const;
2024-01-07 18:58:22 +00:00
inline std::string version() { return { project_version.begin(), project_version.end() }; }
private:
std::map<std::string, std::unique_ptr<Node>> nodes;
bool fitted;
int classNumStates;
std::vector<std::string> features; // Including classname
std::string className;
2024-04-07 22:13:59 +00:00
torch::Tensor samples; // n+1xm tensor used to fit the model
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
std::vector<double> predict_sample(const std::vector<int>&);
std::vector<double> predict_sample(const torch::Tensor&);
std::vector<double> exactInference(std::map<std::string, int>&);
2024-06-11 09:40:45 +00:00
void completeFit(const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights, const Smoothing_t smoothing);
2024-06-09 15:19:38 +00:00
void checkFitData(int n_samples, int n_features, int n_samples_y, const std::vector<std::string>& featureNames, const std::string& className, const std::map<std::string, std::vector<int>>& states, const torch::Tensor& weights);
void setStates(const std::map<std::string, std::vector<int>>&);
2023-06-29 20:00:41 +00:00
};
}
#endif