Remove threads
This commit is contained in:
parent
7c3e315ae7
commit
7806f961e2
5
.vscode/launch.json
vendored
5
.vscode/launch.json
vendored
@ -25,12 +25,13 @@
|
||||
"program": "${workspaceFolder}/build/src/Platform/main",
|
||||
"args": [
|
||||
"-m",
|
||||
"AODELd",
|
||||
"AODE",
|
||||
"-p",
|
||||
"/Users/rmontanana/Code/discretizbench/datasets",
|
||||
"--stratified",
|
||||
"-d",
|
||||
"wine"
|
||||
"letter",
|
||||
"--discretize"
|
||||
// "--hyperparameters",
|
||||
// "{\"repeatSparent\": true, \"maxModels\": 12}"
|
||||
],
|
||||
|
@ -34,18 +34,22 @@ namespace bayesnet {
|
||||
throw logic_error("Ensemble has not been fitted");
|
||||
}
|
||||
Tensor y_pred = torch::zeros({ X.size(1), n_models }, kInt32);
|
||||
//Create a threadpool
|
||||
auto threads{ vector<thread>() };
|
||||
mutex mtx;
|
||||
// //Create a threadpool
|
||||
// auto threads{ vector<thread>() };
|
||||
// mutex mtx;
|
||||
// for (auto i = 0; i < n_models; ++i) {
|
||||
// threads.push_back(thread([&, i]() {
|
||||
// auto ypredict = models[i]->predict(X);
|
||||
// lock_guard<mutex> lock(mtx);
|
||||
// y_pred.index_put_({ "...", i }, ypredict);
|
||||
// }));
|
||||
// Hacer voting aquí ? ? ?
|
||||
// }
|
||||
// for (auto& thread : threads) {
|
||||
// thread.join();
|
||||
// }
|
||||
for (auto i = 0; i < n_models; ++i) {
|
||||
threads.push_back(thread([&, i]() {
|
||||
auto ypredict = models[i]->predict(X);
|
||||
lock_guard<mutex> lock(mtx);
|
||||
y_pred.index_put_({ "...", i }, ypredict);
|
||||
}));
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
y_pred.index_put_({ "...", i }, models[i]->predict(X));
|
||||
}
|
||||
return torch::tensor(voting(y_pred));
|
||||
}
|
||||
|
@ -174,42 +174,10 @@ namespace bayesnet {
|
||||
{
|
||||
setStates(states);
|
||||
laplaceSmoothing = 1.0 / samples.size(1); // To use in CPT computation
|
||||
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
|
||||
if (maxThreadsRunning < 1) {
|
||||
maxThreadsRunning = 1;
|
||||
for (auto& node : nodes) {
|
||||
node.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||
fitted = true;
|
||||
}
|
||||
vector<thread> threads;
|
||||
mutex mtx;
|
||||
condition_variable cv;
|
||||
int activeThreads = 0;
|
||||
int nextNodeIndex = 0;
|
||||
while (nextNodeIndex < nodes.size()) {
|
||||
unique_lock<mutex> lock(mtx);
|
||||
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
|
||||
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads, &weights]() {
|
||||
while (true) {
|
||||
unique_lock<mutex> lock(mtx);
|
||||
if (nextNodeIndex >= nodes.size()) {
|
||||
break; // No more work remaining
|
||||
}
|
||||
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
|
||||
++nextNodeIndex;
|
||||
lock.unlock();
|
||||
pair.second->computeCPT(samples, features, laplaceSmoothing, weights);
|
||||
lock.lock();
|
||||
nodes[pair.first] = std::move(pair.second);
|
||||
lock.unlock();
|
||||
}
|
||||
lock_guard<mutex> lock(mtx);
|
||||
--activeThreads;
|
||||
cv.notify_one();
|
||||
});
|
||||
++activeThreads;
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
fitted = true;
|
||||
}
|
||||
torch::Tensor Network::predict_tensor(const torch::Tensor& samples, const bool proba)
|
||||
{
|
||||
@ -331,19 +299,25 @@ namespace bayesnet {
|
||||
vector<double> Network::exactInference(map<string, int>& evidence)
|
||||
{
|
||||
vector<double> result(classNumStates, 0.0);
|
||||
vector<thread> threads;
|
||||
mutex mtx;
|
||||
// vector<thread> threads;
|
||||
// mutex mtx;
|
||||
// for (int i = 0; i < classNumStates; ++i) {
|
||||
// threads.emplace_back([this, &result, &evidence, i, &mtx]() {
|
||||
// auto completeEvidence = map<string, int>(evidence);
|
||||
// completeEvidence[getClassName()] = i;
|
||||
// double factor = computeFactor(completeEvidence);
|
||||
// lock_guard<mutex> lock(mtx);
|
||||
// result[i] = factor;
|
||||
// });
|
||||
// }
|
||||
// for (auto& thread : threads) {
|
||||
// thread.join();
|
||||
// }
|
||||
for (int i = 0; i < classNumStates; ++i) {
|
||||
threads.emplace_back([this, &result, &evidence, i, &mtx]() {
|
||||
auto completeEvidence = map<string, int>(evidence);
|
||||
completeEvidence[getClassName()] = i;
|
||||
double factor = computeFactor(completeEvidence);
|
||||
lock_guard<mutex> lock(mtx);
|
||||
result[i] = factor;
|
||||
});
|
||||
}
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
auto completeEvidence = map<string, int>(evidence);
|
||||
completeEvidence[getClassName()] = i;
|
||||
double factor = computeFactor(completeEvidence);
|
||||
result[i] = factor;
|
||||
}
|
||||
// Normalize result
|
||||
double sum = accumulate(result.begin(), result.end(), 0.0);
|
||||
|
@ -27,6 +27,7 @@ namespace bayesnet {
|
||||
Network();
|
||||
explicit Network(float);
|
||||
explicit Network(Network&);
|
||||
~Network() = default;
|
||||
torch::Tensor& getSamples();
|
||||
float getmaxThreads();
|
||||
void addNode(const string&);
|
||||
|
@ -179,6 +179,7 @@ namespace platform {
|
||||
result.addTimeTrain(train_time[item].item<double>());
|
||||
result.addTimeTest(test_time[item].item<double>());
|
||||
item++;
|
||||
clf.reset();
|
||||
}
|
||||
cout << "end. " << flush;
|
||||
}
|
||||
|
@ -26,7 +26,7 @@ namespace platform {
|
||||
instance = it->second();
|
||||
// wrap instance in a shared ptr and return
|
||||
if (instance != nullptr)
|
||||
return shared_ptr<bayesnet::BaseClassifier>(instance);
|
||||
return unique_ptr<bayesnet::BaseClassifier>(instance);
|
||||
else
|
||||
return nullptr;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user