11 Commits

Author SHA1 Message Date
c86c7f9ef0 Update github workflow remove coverage report 2025-07-19 21:59:54 +02:00
828e6a28c0 Update github workflow 2025-07-19 21:53:59 +02:00
8f2a0015d9 Update github workflow 2025-07-19 21:36:53 +02:00
8945a3f16e Update github workflow 2025-07-19 20:47:24 +02:00
80b7d6e6f7 Update github build workflow 2025-07-19 20:40:32 +02:00
b1d550f211 Fix release build 2025-07-19 20:29:06 +02:00
8a1b68376d Update debug build 2025-07-17 11:45:56 +02:00
Ricardo Montañana Gómez
563a84659f Fix conan and create new version (#11)
* First approach

* Fix debug conan build target

* Add viewcoverage and fix coverage generation

* Add more tests to cover new integrity checks

* Add tests to accomplish 100%

* Fix conan-create makefile target
2025-07-17 00:14:18 +02:00
1b9d924ebe Update version and dependencies 2025-07-16 23:40:33 +02:00
08d8910b34 Add version 2.7.1 2025-07-16 16:11:16 +02:00
Ricardo Montañana Gómez
6d8b55a808 Fix conan (#10)
* Fix debug conan build target

* Add viewcoverage and fix coverage generation

* Add more tests to cover new integrity checks

* Add tests to accomplish 100%

* Fix conan-create makefile target
2025-07-02 20:09:34 +02:00
18 changed files with 364 additions and 189 deletions

View File

@@ -19,26 +19,29 @@ jobs:
submodules: recursive submodules: recursive
- name: Install sonar-scanner and build-wrapper - name: Install sonar-scanner and build-wrapper
uses: SonarSource/sonarcloud-github-c-cpp@v2 uses: SonarSource/sonarcloud-github-c-cpp@v2
- name: Install Python and Conan
run: |
sudo apt-get update
sudo apt-get -y install python3 python3-pip
pip3 install conan
- name: Install lcov & gcovr - name: Install lcov & gcovr
run: | run: |
sudo apt-get -y install lcov sudo apt-get -y install lcov
sudo apt-get -y install gcovr sudo apt-get -y install gcovr
- name: Install Libtorch - name: Setup Conan profileson
run: | run: |
wget https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-2.3.1%2Bcpu.zip conan profile detect --force
unzip libtorch-cxx11-abi-shared-with-deps-2.3.1+cpu.zip conan remote add cimmeria https://conan.rmontanana.es/artifactory/api/conan/Cimmeria
- name: Install dependencies with Conan
run: |
conan install . --build=missing -of build_debug -s build_type=Debug -o enable_testing=True
- name: Configure with CMake
run: |
cmake -S . -B build_debug -DCMAKE_TOOLCHAIN_FILE=build_debug/build/Debug/generators/conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Debug -DENABLE_TESTING=ON
- name: Tests & build-wrapper - name: Tests & build-wrapper
run: | run: |
cmake -S . -B build -Wno-dev -DCMAKE_PREFIX_PATH=$(pwd)/libtorch -DCMAKE_BUILD_TYPE=Debug -DENABLE_TESTING=ON build-wrapper-linux-x86-64 --out-dir ${{ env.BUILD_WRAPPER_OUT_DIR }} cmake --build build_debug --config Debug -j 4
build-wrapper-linux-x86-64 --out-dir ${{ env.BUILD_WRAPPER_OUT_DIR }} cmake --build build/ --config Debug cp -r tests/datasets build_debug/tests/datasets
cmake --build build -j 4 cd build_debug/tests
cd build ctest --output-on-failure -j 4
ctest -C Debug --output-on-failure -j 4
gcovr -f ../src/CPPFImdlp.cpp -f ../src/Metrics.cpp -f ../src/BinDisc.cpp -f ../src/Discretizer.cpp --txt --sonarqube=coverage.xml
- name: Run sonar-scanner
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
SONAR_TOKEN: ${{ secrets.SONAR_TOKEN }}
run: |
sonar-scanner --define sonar.cfamily.compile-commands="${{ env.BUILD_WRAPPER_OUT_DIR }}" \
--define sonar.coverageReportPaths=build/coverage.xml

3
.gitignore vendored
View File

@@ -39,4 +39,5 @@ build_release
.idea .idea
cmake-* cmake-*
**/CMakeFiles **/CMakeFiles
**/gcovr-report **/gcovr-report
CMakeUserPresets.json

View File

@@ -5,6 +5,14 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [2.1.1] - 2025-07-17
### Internal Changes
- Updated Libtorch to version 2.7.1
- Updated ArffFiles library to version 1.2.1
- Enhance CMake configuration for better compatibility
## [2.1.0] - 2025-06-28 ## [2.1.0] - 2025-06-28
### Added ### Added

View File

@@ -4,7 +4,7 @@ project(fimdlp
LANGUAGES CXX LANGUAGES CXX
DESCRIPTION "Discretization algorithm based on the paper by Fayyad & Irani Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning." DESCRIPTION "Discretization algorithm based on the paper by Fayyad & Irani Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning."
HOMEPAGE_URL "https://github.com/rmontanana/mdlp" HOMEPAGE_URL "https://github.com/rmontanana/mdlp"
VERSION 2.1.0 VERSION 2.1.1
) )
set(CMAKE_CXX_STANDARD 17) set(CMAKE_CXX_STANDARD 17)
cmake_policy(SET CMP0135 NEW) cmake_policy(SET CMP0135 NEW)
@@ -15,7 +15,6 @@ find_package(Torch CONFIG REQUIRED)
# Options # Options
# ------- # -------
option(ENABLE_TESTING OFF) option(ENABLE_TESTING OFF)
option(ENABLE_SAMPLE OFF)
option(COVERAGE OFF) option(COVERAGE OFF)
add_subdirectory(config) add_subdirectory(config)
@@ -26,20 +25,24 @@ if (NOT ${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-default-inline") set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-default-inline")
endif() endif()
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
message(STATUS "Debug mode")
else()
message(STATUS "Release mode")
endif()
if (ENABLE_TESTING) if (ENABLE_TESTING)
message("Debug mode") message(STATUS "Testing is enabled")
enable_testing() enable_testing()
set(CODE_COVERAGE ON) set(CODE_COVERAGE ON)
set(GCC_COVERAGE_LINK_FLAGS "${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage") set(GCC_COVERAGE_LINK_FLAGS "${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
add_subdirectory(tests) add_subdirectory(tests)
else() else()
message("Release mode") message(STATUS "Testing is disabled")
endif() endif()
if (ENABLE_SAMPLE) message(STATUS "Building sample")
message("Building sample") add_subdirectory(sample)
add_subdirectory(sample)
endif()
include_directories( include_directories(
${fimdlp_SOURCE_DIR}/src ${fimdlp_SOURCE_DIR}/src

View File

@@ -1,11 +0,0 @@
{
"version": 4,
"vendor": {
"conan": {}
},
"include": [
"build_release/build/Release/generators/CMakePresets.json",
"build_debug/build/Debug/generators/CMakePresets.json",
"build/Release/generators/CMakePresets.json"
]
}

View File

@@ -7,9 +7,11 @@ This directory contains the Conan package configuration for the fimdlp library.
The package manages the following dependencies: The package manages the following dependencies:
### Build Requirements ### Build Requirements
- **libtorch/2.4.1** - PyTorch C++ library for tensor operations - **libtorch/2.4.1** - PyTorch C++ library for tensor operations
### Test Requirements (when testing enabled) ### Test Requirements (when testing enabled)
- **catch2/3.8.1** - Modern C++ testing framework - **catch2/3.8.1** - Modern C++ testing framework
- **arff-files** - ARFF file format support (included locally in tests/lib/Files/) - **arff-files** - ARFF file format support (included locally in tests/lib/Files/)
@@ -67,7 +69,7 @@ conan create . -o shared=True --profile:build=default --profile:host=default
```bash ```bash
# Add Cimmeria remote # Add Cimmeria remote
conan remote add cimmeria <cimmeria-server-url> conan remote add cimmeria https://conan.rmontanana.es/artifactory/api/conan/Cimmeria
# Login to Cimmeria # Login to Cimmeria
conan remote login cimmeria <username> conan remote login cimmeria <username>
@@ -150,4 +152,4 @@ conan create . -o enable_testing=True
- C++17 compatible compiler - C++17 compatible compiler
- CMake 3.20 or later - CMake 3.20 or later
- Conan 2.0 or later - Conan 2.0 or later

View File

@@ -1,36 +1,44 @@
SHELL := /bin/bash SHELL := /bin/bash
.DEFAULT_GOAL := build .DEFAULT_GOAL := help
.PHONY: build install test .PHONY: debug release install test conan-create viewcoverage
lcov := lcov lcov := lcov
f_debug = build_debug f_debug = build_debug
f_release = build_release f_release = build_release
genhtml = genhtml
docscdir = docs
build: ## Build the project for Release define build_target
@echo ">>> Building the project for Release..." @echo ">>> Building the project for $(1)..."
@if [ -d $(f_release) ]; then rm -fr $(f_release); fi @if [ -d $(2) ]; then rm -fr $(2); fi
@conan install . --build=missing -of $(f_release) -s build_type=Release --profile:build=default --profile:host=default @conan install . --build=missing -of $(2) -s build_type=$(1) $(4)
cmake -S . -B $(f_release) -DCMAKE_TOOLCHAIN_FILE=$(f_release)/build/Release/generators/conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release -DENABLE_TESTING=OFF -DENABLE_SAMPLE=OFF @cmake -S . -B $(2) -DCMAKE_TOOLCHAIN_FILE=$(2)/build/$(1)/generators/conan_toolchain.cmake -DCMAKE_BUILD_TYPE=$(1) -D$(3)
@cmake --build $(f_release) -j 8 @cmake --build $(2) --config $(1) -j 8
endef
install: ## Install the project debug: ## Build Debug version of the library
@$(call build_target,"Debug","$(f_debug)", "ENABLE_TESTING=ON", "-o enable_testing=True")
release: ## Build Release version of the library
@$(call build_target,"Release","$(f_release)", "ENABLE_TESTING=OFF", "-o enable_testing=False")
install: ## Install the library
@echo ">>> Installing the project..." @echo ">>> Installing the project..."
@cmake --build build_release --target install -j 8 @cmake --build $(f_release) --target install -j 8
test: ## Build Debug version and run tests test: ## Build Debug version and run tests
@echo ">>> Building Debug version and running tests..." @echo ">>> Building Debug version and running tests..."
@if [ -d $(f_debug) ]; then rm -fr $(f_debug); fi @$(MAKE) debug;
@conan install . --build=missing -of $(f_debug) -s build_type=Debug
@cmake -B $(f_debug) -S . -DCMAKE_BUILD_TYPE=Debug -DCMAKE_TOOLCHAIN_FILE=$(f_debug)/build/Debug/generators/conan_toolchain.cmake -DENABLE_TESTING=ON -DENABLE_SAMPLE=ON
@cmake --build $(f_debug) -j 8
@cp -r tests/datasets $(f_debug)/tests/datasets @cp -r tests/datasets $(f_debug)/tests/datasets
@cd $(f_debug)/tests && ctest --output-on-failure -j 8 @cd $(f_debug)/tests && ctest --output-on-failure -j 8
@cd $(f_debug)/tests && $(lcov) --capture --directory ../ --demangle-cpp --ignore-errors source,source --ignore-errors mismatch --output-file coverage.info >/dev/null 2>&1; \ @echo ">>> Generating coverage report..."
@cd $(f_debug)/tests && $(lcov) --capture --directory ../ --demangle-cpp --ignore-errors source,source --ignore-errors mismatch --ignore-errors inconsistent --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info '/usr/*' --output-file coverage.info >/dev/null 2>&1; \ $(lcov) --remove coverage.info '/usr/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \ $(lcov) --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \ $(lcov) --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \ $(lcov) --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info 'gtest/*' --output-file coverage.info >/dev/null 2>&1; $(lcov) --remove coverage.info 'gtest/*' --output-file coverage.info >/dev/null 2>&1; \
$(lcov) --remove coverage.info '*/.conan2/*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1;
@genhtml $(f_debug)/tests/coverage.info --demangle-cpp --output-directory $(f_debug)/tests/coverage --title "Discretizer mdlp Coverage Report" -s -k -f --legend @genhtml $(f_debug)/tests/coverage.info --demangle-cpp --output-directory $(f_debug)/tests/coverage --title "Discretizer mdlp Coverage Report" -s -k -f --legend
@echo "* Coverage report is generated at $(f_debug)/tests/coverage/index.html" @echo "* Coverage report is generated at $(f_debug)/tests/coverage/index.html"
@which python || (echo ">>> Please install python"; exit 1) @which python || (echo ">>> Please install python"; exit 1)
@@ -40,11 +48,38 @@ test: ## Build Debug version and run tests
fi fi
@echo ">>> Updating coverage badge..." @echo ">>> Updating coverage badge..."
@env python update_coverage.py $(f_debug)/tests @env python update_coverage.py $(f_debug)/tests
@echo ">>> Done"
viewcoverage: ## View the html coverage report
@which $(genhtml) >/dev/null || (echo ">>> Please install lcov (genhtml not found)"; exit 1)
@if [ ! -d $(docscdir)/coverage ]; then mkdir -p $(docscdir)/coverage; fi
@if [ ! -f $(f_debug)/tests/coverage.info ]; then \
echo ">>> No coverage.info file found. Run make coverage first!"; \
exit 1; \
fi
@$(genhtml) $(f_debug)/tests/coverage.info --demangle-cpp --output-directory $(docscdir)/coverage --title "FImdlp Coverage Report" -s -k -f --legend >/dev/null 2>&1;
@xdg-open $(docscdir)/coverage/index.html || open $(docscdir)/coverage/index.html 2>/dev/null
@echo ">>> Done";
conan-create: ## Create the conan package conan-create: ## Create the conan package
@echo ">>> Creating the conan package..." @echo ">>> Creating the conan package..."
conan create . --build=missing --pr:b=release -pr:h=release conan create . --build=missing -tf "" -s:a build_type=Release
# conan create . --build=missing -pr:b=debug -pr:h=debug conan create . --build=missing -tf "" -s:a build_type=Debug -o "&:enable_testing=False"
@echo ">>> Done"
help: ## Show help message
@IFS=$$'\n' ; \
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
printf "%s\n\n" "Usage: make [task]"; \
printf "%-20s %s\n" "task" "help" ; \
printf "%-20s %s\n" "------" "----" ; \
for help_line in $${help_lines[@]}; do \
IFS=$$':' ; \
help_split=($$help_line) ; \
help_command=`echo $${help_split[0]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \
help_info=`echo $${help_split[2]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \
printf '\033[36m'; \
printf "%-20s %s" $$help_command ; \
printf '\033[0m'; \
printf "%s\n" $$help_info; \
done

View File

@@ -3,7 +3,7 @@
[![Reliability Rating](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_mdlp&metric=reliability_rating)](https://sonarcloud.io/summary/new_code?id=rmontanana_mdlp) [![Reliability Rating](https://sonarcloud.io/api/project_badges/measure?project=rmontanana_mdlp&metric=reliability_rating)](https://sonarcloud.io/summary/new_code?id=rmontanana_mdlp)
[![Coverage Badge](https://img.shields.io/badge/Coverage-100,0%25-green)](html/index.html) [![Coverage Badge](https://img.shields.io/badge/Coverage-100,0%25-green)](html/index.html)
[![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/rmontanana/mdlp) [![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/rmontanana/mdlp)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.14245443.svg)](https://doi.org/10.5281/zenodo.14245443) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.16025501.svg)](https://doi.org/10.5281/zenodo.16025501)
# <img src="logo.png" alt="logo" width="50"/> mdlp # <img src="logo.png" alt="logo" width="50"/> mdlp
@@ -18,9 +18,7 @@ Other features:
- Intervals with the same value of the variable are not taken into account for cutpoints. - Intervals with the same value of the variable are not taken into account for cutpoints.
- Intervals have to have more than two examples to be evaluated (mdlp). - Intervals have to have more than two examples to be evaluated (mdlp).
- The algorithm returns the cut points for the variable. - The algorithm returns the cut points for the variable.
- The transform method uses the cut points returning its index in the following way: - The transform method uses the cut points returning its index in the following way:
cut[i - 1] <= x < cut[i] cut[i - 1] <= x < cut[i]

View File

@@ -1,101 +0,0 @@
# This is the CMakeCache file.
# For build in directory: /home/rmontanana/Code/mdlp/build_conan
# It was generated by CMake: /usr/bin/cmake
# You can edit this file to change values found and used by cmake.
# If you do not want to change any of the values, simply exit the editor.
# If you do want to change a value, simply edit, save, and exit the editor.
# The syntax for the file is as follows:
# KEY:TYPE=VALUE
# KEY is the name of a variable in the cache.
# TYPE is a hint to GUIs for the type of VALUE, DO NOT EDIT TYPE!.
# VALUE is the current value for the KEY.
########################
# EXTERNAL cache entries
########################
//No help, variable specified on the command line.
CMAKE_BUILD_TYPE:UNINITIALIZED=Release
//Value Computed by CMake.
CMAKE_FIND_PACKAGE_REDIRECTS_DIR:STATIC=/home/rmontanana/Code/mdlp/build_conan/CMakeFiles/pkgRedirects
//Value Computed by CMake
CMAKE_PROJECT_DESCRIPTION:STATIC=Discretization algorithm based on the paper by Fayyad & Irani Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning.
//Value Computed by CMake
CMAKE_PROJECT_HOMEPAGE_URL:STATIC=https://github.com/rmontanana/mdlp
//Value Computed by CMake
CMAKE_PROJECT_NAME:STATIC=fimdlp
//Value Computed by CMake
CMAKE_PROJECT_VERSION:STATIC=2.1.0
//Value Computed by CMake
CMAKE_PROJECT_VERSION_MAJOR:STATIC=2
//Value Computed by CMake
CMAKE_PROJECT_VERSION_MINOR:STATIC=1
//Value Computed by CMake
CMAKE_PROJECT_VERSION_PATCH:STATIC=0
//Value Computed by CMake
CMAKE_PROJECT_VERSION_TWEAK:STATIC=
//No help, variable specified on the command line.
CMAKE_TOOLCHAIN_FILE:UNINITIALIZED=conan_toolchain.cmake
//Value Computed by CMake
fimdlp_BINARY_DIR:STATIC=/home/rmontanana/Code/mdlp/build_conan
//Value Computed by CMake
fimdlp_IS_TOP_LEVEL:STATIC=ON
//Value Computed by CMake
fimdlp_SOURCE_DIR:STATIC=/home/rmontanana/Code/mdlp
########################
# INTERNAL cache entries
########################
//This is the directory where this CMakeCache.txt was created
CMAKE_CACHEFILE_DIR:INTERNAL=/home/rmontanana/Code/mdlp/build_conan
//Major version of cmake used to create the current loaded cache
CMAKE_CACHE_MAJOR_VERSION:INTERNAL=3
//Minor version of cmake used to create the current loaded cache
CMAKE_CACHE_MINOR_VERSION:INTERNAL=30
//Patch version of cmake used to create the current loaded cache
CMAKE_CACHE_PATCH_VERSION:INTERNAL=8
//Path to CMake executable.
CMAKE_COMMAND:INTERNAL=/usr/bin/cmake
//Path to cpack program executable.
CMAKE_CPACK_COMMAND:INTERNAL=/usr/bin/cpack
//Path to ctest program executable.
CMAKE_CTEST_COMMAND:INTERNAL=/usr/bin/ctest
//Path to cache edit program executable.
CMAKE_EDIT_COMMAND:INTERNAL=/usr/bin/ccmake
//Name of external makefile project generator.
CMAKE_EXTRA_GENERATOR:INTERNAL=
//Name of generator.
CMAKE_GENERATOR:INTERNAL=Unix Makefiles
//Generator instance identifier.
CMAKE_GENERATOR_INSTANCE:INTERNAL=
//Name of generator platform.
CMAKE_GENERATOR_PLATFORM:INTERNAL=
//Name of generator toolset.
CMAKE_GENERATOR_TOOLSET:INTERNAL=
//Source directory with the top level CMakeLists.txt file for this
// project
CMAKE_HOME_DIRECTORY:INTERNAL=/home/rmontanana/Code/mdlp
//number of local generators
CMAKE_NUMBER_OF_MAKEFILES:INTERNAL=1
//Platform information initialized
CMAKE_PLATFORM_INFO_INITIALIZED:INTERNAL=1
//Path to CMake installation.
CMAKE_ROOT:INTERNAL=/usr/share/cmake
//uname command
CMAKE_UNAME:INTERNAL=/usr/bin/uname

View File

@@ -51,10 +51,10 @@ class FimdlpConan(ConanFile):
def requirements(self): def requirements(self):
# PyTorch dependency for tensor operations # PyTorch dependency for tensor operations
self.requires("libtorch/2.7.0") self.requires("libtorch/2.7.1")
def build_requirements(self): def build_requirements(self):
self.requires("arff-files/1.2.0") # for tests and sample self.requires("arff-files/1.2.1") # for tests and sample
if self.options.enable_testing: if self.options.enable_testing:
self.test_requires("gtest/1.16.0") self.test_requires("gtest/1.16.0")
@@ -108,4 +108,4 @@ class FimdlpConan(ConanFile):
self.cpp_info.system_libs.append("pthread") # Threading self.cpp_info.system_libs.append("pthread") # Threading
# Build information for consumers # Build information for consumers
self.cpp_info.builddirs = ["lib/cmake/fimdlp"] self.cpp_info.builddirs = ["lib/cmake/fimdlp"]

View File

@@ -1,14 +1,10 @@
set(CMAKE_CXX_STANDARD 17) set(CMAKE_CXX_STANDARD 17)
set(CMAKE_BUILD_TYPE Debug)
find_package(arff-files REQUIRED) find_package(arff-files REQUIRED)
include_directories( include_directories(
${fimdlp_SOURCE_DIR}/src ${fimdlp_SOURCE_DIR}/src
${fimdlp_SOURCE_DIR}/tests/lib/Files
${CMAKE_BINARY_DIR}/configured_files/include ${CMAKE_BINARY_DIR}/configured_files/include
${libtorch_INCLUDE_DIRS_RELEASE}
${arff-files_INCLUDE_DIRS} ${arff-files_INCLUDE_DIRS}
) )

View File

@@ -49,7 +49,7 @@ namespace mdlp {
// Note: y parameter is validated but not used in binning strategy // Note: y parameter is validated but not used in binning strategy
fit(X); fit(X);
} }
std::vector<precision_t> linspace(precision_t start, precision_t end, int num) std::vector<precision_t> BinDisc::linspace(precision_t start, precision_t end, int num)
{ {
// Input validation // Input validation
if (num < 2) { if (num < 2) {
@@ -77,7 +77,7 @@ namespace mdlp {
{ {
return std::max(lower, std::min(n, upper)); return std::max(lower, std::min(n, upper));
} }
std::vector<precision_t> percentile(samples_t& data, const std::vector<precision_t>& percentiles) std::vector<precision_t> BinDisc::percentile(samples_t& data, const std::vector<precision_t>& percentiles)
{ {
// Input validation // Input validation
if (data.empty()) { if (data.empty()) {

View File

@@ -23,6 +23,9 @@ namespace mdlp {
// y is included for compatibility with the Discretizer interface // y is included for compatibility with the Discretizer interface
void fit(samples_t& X_, labels_t& y) override; void fit(samples_t& X_, labels_t& y) override;
void fit(samples_t& X); void fit(samples_t& X);
protected:
std::vector<precision_t> linspace(precision_t start, precision_t end, int num);
std::vector<precision_t> percentile(samples_t& data, const std::vector<precision_t>& percentiles);
private: private:
void fit_uniform(const samples_t&); void fit_uniform(const samples_t&);
void fit_quantile(const samples_t&); void fit_quantile(const samples_t&);

View File

@@ -39,8 +39,8 @@ namespace mdlp {
size_t getCandidate(size_t, size_t); size_t getCandidate(size_t, size_t);
size_t compute_max_num_cut_points() const; size_t compute_max_num_cut_points() const;
pair<precision_t, size_t> valueCutPoint(size_t, size_t, size_t); pair<precision_t, size_t> valueCutPoint(size_t, size_t, size_t);
private: inline precision_t safe_X_access(size_t idx) const
inline precision_t safe_X_access(size_t idx) const { {
if (idx >= indices.size()) { if (idx >= indices.size()) {
throw std::out_of_range("Index out of bounds for indices array"); throw std::out_of_range("Index out of bounds for indices array");
} }
@@ -50,7 +50,8 @@ namespace mdlp {
} }
return X[real_idx]; return X[real_idx];
} }
inline label_t safe_y_access(size_t idx) const { inline label_t safe_y_access(size_t idx) const
{
if (idx >= indices.size()) { if (idx >= indices.size()) {
throw std::out_of_range("Index out of bounds for indices array"); throw std::out_of_range("Index out of bounds for indices array");
} }
@@ -60,7 +61,8 @@ namespace mdlp {
} }
return y[real_idx]; return y[real_idx];
} }
inline size_t safe_subtract(size_t a, size_t b) const { inline size_t safe_subtract(size_t a, size_t b) const
{
if (b > a) { if (b > a) {
throw std::underflow_error("Subtraction would cause underflow"); throw std::underflow_error("Subtraction would cause underflow");
} }

View File

@@ -17,7 +17,7 @@ namespace mdlp {
if (cutPoints.size() < 2) { if (cutPoints.size() < 2) {
throw std::runtime_error("Discretizer not fitted yet or no valid cut points found"); throw std::runtime_error("Discretizer not fitted yet or no valid cut points found");
} }
discretizedData.clear(); discretizedData.clear();
discretizedData.reserve(data.size()); discretizedData.reserve(data.size());
// CutPoints always have at least two items // CutPoints always have at least two items
@@ -40,9 +40,6 @@ namespace mdlp {
void Discretizer::fit_t(const torch::Tensor& X_, const torch::Tensor& y_) void Discretizer::fit_t(const torch::Tensor& X_, const torch::Tensor& y_)
{ {
// Validate tensor properties for security // Validate tensor properties for security
if (!X_.is_contiguous() || !y_.is_contiguous()) {
throw std::invalid_argument("Tensors must be contiguous");
}
if (X_.sizes().size() != 1 || y_.sizes().size() != 1) { if (X_.sizes().size() != 1 || y_.sizes().size() != 1) {
throw std::invalid_argument("Only 1D tensors supported"); throw std::invalid_argument("Only 1D tensors supported");
} }
@@ -58,7 +55,7 @@ namespace mdlp {
if (X_.numel() == 0) { if (X_.numel() == 0) {
throw std::invalid_argument("Tensors cannot be empty"); throw std::invalid_argument("Tensors cannot be empty");
} }
auto num_elements = X_.numel(); auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements); samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements); labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
@@ -67,9 +64,6 @@ namespace mdlp {
torch::Tensor Discretizer::transform_t(const torch::Tensor& X_) torch::Tensor Discretizer::transform_t(const torch::Tensor& X_)
{ {
// Validate tensor properties for security // Validate tensor properties for security
if (!X_.is_contiguous()) {
throw std::invalid_argument("Tensor must be contiguous");
}
if (X_.sizes().size() != 1) { if (X_.sizes().size() != 1) {
throw std::invalid_argument("Only 1D tensors supported"); throw std::invalid_argument("Only 1D tensors supported");
} }
@@ -79,7 +73,7 @@ namespace mdlp {
if (X_.numel() == 0) { if (X_.numel() == 0) {
throw std::invalid_argument("Tensor cannot be empty"); throw std::invalid_argument("Tensor cannot be empty");
} }
auto num_elements = X_.numel(); auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements); samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
auto result = transform(X); auto result = transform(X);
@@ -88,9 +82,6 @@ namespace mdlp {
torch::Tensor Discretizer::fit_transform_t(const torch::Tensor& X_, const torch::Tensor& y_) torch::Tensor Discretizer::fit_transform_t(const torch::Tensor& X_, const torch::Tensor& y_)
{ {
// Validate tensor properties for security // Validate tensor properties for security
if (!X_.is_contiguous() || !y_.is_contiguous()) {
throw std::invalid_argument("Tensors must be contiguous");
}
if (X_.sizes().size() != 1 || y_.sizes().size() != 1) { if (X_.sizes().size() != 1 || y_.sizes().size() != 1) {
throw std::invalid_argument("Only 1D tensors supported"); throw std::invalid_argument("Only 1D tensors supported");
} }
@@ -106,7 +97,7 @@ namespace mdlp {
if (X_.numel() == 0) { if (X_.numel() == 0) {
throw std::invalid_argument("Tensors cannot be empty"); throw std::invalid_argument("Tensors cannot be empty");
} }
auto num_elements = X_.numel(); auto num_elements = X_.numel();
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements); samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements); labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);

View File

@@ -11,6 +11,16 @@
#include <ArffFiles.hpp> #include <ArffFiles.hpp>
#include "BinDisc.h" #include "BinDisc.h"
#include "Experiments.hpp" #include "Experiments.hpp"
#include <cmath>
#define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \
try { \
stmt; \
} catch (const etype& ex) { \
EXPECT_EQ(whatstring, std::string(ex.what())); \
throw; \
} \
, etype)
namespace mdlp { namespace mdlp {
const float margin = 1e-4; const float margin = 1e-4;
@@ -400,4 +410,64 @@ namespace mdlp {
} }
// std::cout << "* Number of experiments tested: " << num << std::endl; // std::cout << "* Number of experiments tested: " << num << std::endl;
} }
TEST_F(TestBinDisc3U, FitDataSizeTooSmall)
{
// Test when data size is smaller than n_bins
samples_t X = { 1.0, 2.0 }; // Only 2 elements for 3 bins
EXPECT_THROW_WITH_MESSAGE(fit(X), std::invalid_argument, "Input data size must be at least equal to n_bins");
}
TEST_F(TestBinDisc3Q, FitDataSizeTooSmall)
{
// Test when data size is smaller than n_bins
samples_t X = { 1.0, 2.0 }; // Only 2 elements for 3 bins
EXPECT_THROW_WITH_MESSAGE(fit(X), std::invalid_argument, "Input data size must be at least equal to n_bins");
}
TEST_F(TestBinDisc3U, FitWithYEmptyX)
{
// Test fit(X, y) with empty X
samples_t X = {};
labels_t y = { 1, 2, 3 };
EXPECT_THROW_WITH_MESSAGE(fit(X, y), std::invalid_argument, "X cannot be empty");
}
TEST_F(TestBinDisc3U, LinspaceInvalidNumPoints)
{
// Test linspace with num < 2
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, 1.0f, 1), std::invalid_argument, "Number of points must be at least 2 for linspace");
}
TEST_F(TestBinDisc3U, LinspaceNaNValues)
{
// Test linspace with NaN values
float nan_val = std::numeric_limits<float>::quiet_NaN();
EXPECT_THROW_WITH_MESSAGE(linspace(nan_val, 1.0f, 3), std::invalid_argument, "Start and end values cannot be NaN");
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, nan_val, 3), std::invalid_argument, "Start and end values cannot be NaN");
}
TEST_F(TestBinDisc3U, LinspaceInfiniteValues)
{
// Test linspace with infinite values
float inf_val = std::numeric_limits<float>::infinity();
EXPECT_THROW_WITH_MESSAGE(linspace(inf_val, 1.0f, 3), std::invalid_argument, "Start and end values cannot be infinite");
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, inf_val, 3), std::invalid_argument, "Start and end values cannot be infinite");
}
TEST_F(TestBinDisc3U, PercentileEmptyData)
{
// Test percentile with empty data
samples_t empty_data = {};
std::vector<precision_t> percentiles = { 25.0f, 50.0f, 75.0f };
EXPECT_THROW_WITH_MESSAGE(percentile(empty_data, percentiles), std::invalid_argument, "Data cannot be empty for percentile calculation");
}
TEST_F(TestBinDisc3U, PercentileEmptyPercentiles)
{
// Test percentile with empty percentiles
samples_t data = { 1.0f, 2.0f, 3.0f };
std::vector<precision_t> empty_percentiles = {};
EXPECT_THROW_WITH_MESSAGE(percentile(data, empty_percentiles), std::invalid_argument, "Percentiles cannot be empty");
}
} }

View File

@@ -13,6 +13,15 @@
#include "BinDisc.h" #include "BinDisc.h"
#include "CPPFImdlp.h" #include "CPPFImdlp.h"
#define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \
try { \
stmt; \
} catch (const etype& ex) { \
EXPECT_EQ(whatstring, std::string(ex.what())); \
throw; \
} \
, etype)
namespace mdlp { namespace mdlp {
const float margin = 1e-4; const float margin = 1e-4;
static std::string set_data_path() static std::string set_data_path()
@@ -32,7 +41,7 @@ namespace mdlp {
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM); Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
auto version = disc->version(); auto version = disc->version();
delete disc; delete disc;
EXPECT_EQ("2.1.0", version); EXPECT_EQ("2.1.1", version);
} }
TEST(Discretizer, BinIrisUniform) TEST(Discretizer, BinIrisUniform)
{ {
@@ -270,4 +279,110 @@ namespace mdlp {
EXPECT_EQ(computed[i], expected[i]); EXPECT_EQ(computed[i], expected[i]);
} }
} }
TEST(Discretizer, TransformEmptyData)
{
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
samples_t empty_data = {};
EXPECT_THROW_WITH_MESSAGE(disc->transform(empty_data), std::invalid_argument, "Data for transformation cannot be empty");
delete disc;
}
TEST(Discretizer, TransformNotFitted)
{
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
samples_t data = { 1.0f, 2.0f, 3.0f };
EXPECT_THROW_WITH_MESSAGE(disc->transform(data), std::runtime_error, "Discretizer not fitted yet or no valid cut points found");
delete disc;
}
TEST(Discretizer, TensorValidationFit)
{
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
auto X = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
auto y = torch::tensor({ 1, 2, 3 }, torch::kInt32);
// Test non-1D tensors
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_2d, y), std::invalid_argument, "Only 1D tensors supported");
auto y_2d = torch::tensor({ {1, 2}, {3, 4} }, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_2d), std::invalid_argument, "Only 1D tensors supported");
// Test wrong tensor types
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_int, y), std::invalid_argument, "X tensor must be Float32 type");
auto y_float = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_float), std::invalid_argument, "y tensor must be Int32 type");
// Test mismatched sizes
auto y_short = torch::tensor({ 1, 2 }, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_short), std::invalid_argument, "X and y tensors must have same number of elements");
// Test empty tensors
auto X_empty = torch::tensor({}, torch::kFloat32);
auto y_empty = torch::tensor({}, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_empty, y_empty), std::invalid_argument, "Tensors cannot be empty");
delete disc;
}
TEST(Discretizer, TensorValidationTransform)
{
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
// First fit with valid data
auto X_fit = torch::tensor({ 1.0f, 2.0f, 3.0f, 4.0f }, torch::kFloat32);
auto y_fit = torch::tensor({ 1, 2, 3, 4 }, torch::kInt32);
disc->fit_t(X_fit, y_fit);
// Test non-1D tensor
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_2d), std::invalid_argument, "Only 1D tensors supported");
// Test wrong tensor type
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_int), std::invalid_argument, "X tensor must be Float32 type");
// Test empty tensor
auto X_empty = torch::tensor({}, torch::kFloat32);
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_empty), std::invalid_argument, "Tensor cannot be empty");
delete disc;
}
TEST(Discretizer, TensorValidationFitTransform)
{
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
auto X = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
auto y = torch::tensor({ 1, 2, 3 }, torch::kInt32);
// Test non-1D tensors
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_2d, y), std::invalid_argument, "Only 1D tensors supported");
auto y_2d = torch::tensor({ {1, 2}, {3, 4} }, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_2d), std::invalid_argument, "Only 1D tensors supported");
// Test wrong tensor types
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_int, y), std::invalid_argument, "X tensor must be Float32 type");
auto y_float = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_float), std::invalid_argument, "y tensor must be Int32 type");
// Test mismatched sizes
auto y_short = torch::tensor({ 1, 2 }, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_short), std::invalid_argument, "X and y tensors must have same number of elements");
// Test empty tensors
auto X_empty = torch::tensor({}, torch::kFloat32);
auto y_empty = torch::tensor({}, torch::kInt32);
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_empty, y_empty), std::invalid_argument, "Tensors cannot be empty");
delete disc;
}
} }

View File

@@ -167,6 +167,15 @@ namespace mdlp {
indices = { 1, 2, 0 }; indices = { 1, 2, 0 };
} }
TEST_F(TestFImdlp, SortIndicesOutOfBounds)
{
// Test for out of bounds exception in sortIndices
samples_t X_long = { 1.0f, 2.0f, 3.0f };
labels_t y_short = { 1, 2 };
EXPECT_THROW_WITH_MESSAGE(sortIndices(X_long, y_short), std::out_of_range, "Index out of bounds in sort comparison");
}
TEST_F(TestFImdlp, TestShortDatasets) TEST_F(TestFImdlp, TestShortDatasets)
{ {
vector<precision_t> computed; vector<precision_t> computed;
@@ -364,4 +373,55 @@ namespace mdlp {
EXPECT_EQ(computed_ft[i], expected[i]); EXPECT_EQ(computed_ft[i], expected[i]);
} }
} }
TEST_F(TestFImdlp, SafeXAccessIndexOutOfBounds)
{
// Test safe_X_access with index out of bounds for indices array
X = { 1.0f, 2.0f, 3.0f };
y = { 1, 2, 3 };
indices = { 0, 1 }; // shorter than expected
// This should trigger the first exception in safe_X_access (idx >= indices.size())
EXPECT_THROW_WITH_MESSAGE(safe_X_access(2), std::out_of_range, "Index out of bounds for indices array");
}
TEST_F(TestFImdlp, SafeXAccessXOutOfBounds)
{
// Test safe_X_access with real_idx out of bounds for X array
X = { 1.0f, 2.0f }; // shorter array
y = { 1, 2, 3 };
indices = { 0, 1, 5 }; // indices[2] = 5 is out of bounds for X
// This should trigger the second exception in safe_X_access (real_idx >= X.size())
EXPECT_THROW_WITH_MESSAGE(safe_X_access(2), std::out_of_range, "Index out of bounds for X array");
}
TEST_F(TestFImdlp, SafeYAccessIndexOutOfBounds)
{
// Test safe_y_access with index out of bounds for indices array
X = { 1.0f, 2.0f, 3.0f };
y = { 1, 2, 3 };
indices = { 0, 1 }; // shorter than expected
// This should trigger the first exception in safe_y_access (idx >= indices.size())
EXPECT_THROW_WITH_MESSAGE(safe_y_access(2), std::out_of_range, "Index out of bounds for indices array");
}
TEST_F(TestFImdlp, SafeYAccessYOutOfBounds)
{
// Test safe_y_access with real_idx out of bounds for y array
X = { 1.0f, 2.0f, 3.0f };
y = { 1, 2 }; // shorter array
indices = { 0, 1, 5 }; // indices[2] = 5 is out of bounds for y
// This should trigger the second exception in safe_y_access (real_idx >= y.size())
EXPECT_THROW_WITH_MESSAGE(safe_y_access(2), std::out_of_range, "Index out of bounds for y array");
}
TEST_F(TestFImdlp, SafeSubtractUnderflow)
{
// Test safe_subtract with underflow condition (b > a)
EXPECT_THROW_WITH_MESSAGE(safe_subtract(3, 5), std::underflow_error, "Subtraction would cause underflow");
}
} }