mirror of
https://github.com/rmontanana/mdlp.git
synced 2025-08-17 16:35:57 +00:00
Compare commits
1 Commits
211
...
4e5f39f803
Author | SHA1 | Date | |
---|---|---|---|
4e5f39f803
|
35
.github/workflows/build.yml
vendored
35
.github/workflows/build.yml
vendored
@@ -19,29 +19,26 @@ jobs:
|
||||
submodules: recursive
|
||||
- name: Install sonar-scanner and build-wrapper
|
||||
uses: SonarSource/sonarcloud-github-c-cpp@v2
|
||||
- name: Install Python and Conan
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get -y install python3 python3-pip
|
||||
pip3 install conan
|
||||
- name: Install lcov & gcovr
|
||||
run: |
|
||||
sudo apt-get -y install lcov
|
||||
sudo apt-get -y install gcovr
|
||||
- name: Setup Conan profileson
|
||||
- name: Install Libtorch
|
||||
run: |
|
||||
conan profile detect --force
|
||||
conan remote add cimmeria https://conan.rmontanana.es/artifactory/api/conan/Cimmeria
|
||||
- name: Install dependencies with Conan
|
||||
run: |
|
||||
conan install . --build=missing -of build_debug -s build_type=Debug -o enable_testing=True
|
||||
- name: Configure with CMake
|
||||
run: |
|
||||
cmake -S . -B build_debug -DCMAKE_TOOLCHAIN_FILE=build_debug/build/Debug/generators/conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Debug -DENABLE_TESTING=ON
|
||||
wget https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-2.3.1%2Bcpu.zip
|
||||
unzip libtorch-cxx11-abi-shared-with-deps-2.3.1+cpu.zip
|
||||
- name: Tests & build-wrapper
|
||||
run: |
|
||||
build-wrapper-linux-x86-64 --out-dir ${{ env.BUILD_WRAPPER_OUT_DIR }} cmake --build build_debug --config Debug -j 4
|
||||
cp -r tests/datasets build_debug/tests/datasets
|
||||
cd build_debug/tests
|
||||
ctest --output-on-failure -j 4
|
||||
|
||||
cmake -S . -B build -Wno-dev -DCMAKE_PREFIX_PATH=$(pwd)/libtorch -DCMAKE_BUILD_TYPE=Debug -DENABLE_TESTING=ON
|
||||
build-wrapper-linux-x86-64 --out-dir ${{ env.BUILD_WRAPPER_OUT_DIR }} cmake --build build/ --config Debug
|
||||
cmake --build build -j 4
|
||||
cd build
|
||||
ctest -C Debug --output-on-failure -j 4
|
||||
gcovr -f ../src/CPPFImdlp.cpp -f ../src/Metrics.cpp -f ../src/BinDisc.cpp -f ../src/Discretizer.cpp --txt --sonarqube=coverage.xml
|
||||
- name: Run sonar-scanner
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
SONAR_TOKEN: ${{ secrets.SONAR_TOKEN }}
|
||||
run: |
|
||||
sonar-scanner --define sonar.cfamily.compile-commands="${{ env.BUILD_WRAPPER_OUT_DIR }}" \
|
||||
--define sonar.coverageReportPaths=build/coverage.xml
|
3
.gitignore
vendored
3
.gitignore
vendored
@@ -39,5 +39,4 @@ build_release
|
||||
.idea
|
||||
cmake-*
|
||||
**/CMakeFiles
|
||||
**/gcovr-report
|
||||
CMakeUserPresets.json
|
||||
**/gcovr-report
|
@@ -5,14 +5,6 @@ All notable changes to this project will be documented in this file.
|
||||
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
|
||||
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||
|
||||
## [2.1.1] - 2025-07-17
|
||||
|
||||
### Internal Changes
|
||||
|
||||
- Updated Libtorch to version 2.7.1
|
||||
- Updated ArffFiles library to version 1.2.1
|
||||
- Enhance CMake configuration for better compatibility
|
||||
|
||||
## [2.1.0] - 2025-06-28
|
||||
|
||||
### Added
|
||||
|
@@ -4,7 +4,7 @@ project(fimdlp
|
||||
LANGUAGES CXX
|
||||
DESCRIPTION "Discretization algorithm based on the paper by Fayyad & Irani Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning."
|
||||
HOMEPAGE_URL "https://github.com/rmontanana/mdlp"
|
||||
VERSION 2.1.1
|
||||
VERSION 2.1.0
|
||||
)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
@@ -15,6 +15,7 @@ find_package(Torch CONFIG REQUIRED)
|
||||
# Options
|
||||
# -------
|
||||
option(ENABLE_TESTING OFF)
|
||||
option(ENABLE_SAMPLE OFF)
|
||||
option(COVERAGE OFF)
|
||||
|
||||
add_subdirectory(config)
|
||||
@@ -25,24 +26,20 @@ if (NOT ${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-default-inline")
|
||||
endif()
|
||||
|
||||
if (CMAKE_BUILD_TYPE STREQUAL "Debug")
|
||||
message(STATUS "Debug mode")
|
||||
else()
|
||||
message(STATUS "Release mode")
|
||||
endif()
|
||||
|
||||
if (ENABLE_TESTING)
|
||||
message(STATUS "Testing is enabled")
|
||||
message("Debug mode")
|
||||
enable_testing()
|
||||
set(CODE_COVERAGE ON)
|
||||
set(GCC_COVERAGE_LINK_FLAGS "${GCC_COVERAGE_LINK_FLAGS} -lgcov --coverage")
|
||||
add_subdirectory(tests)
|
||||
else()
|
||||
message(STATUS "Testing is disabled")
|
||||
message("Release mode")
|
||||
endif()
|
||||
|
||||
message(STATUS "Building sample")
|
||||
add_subdirectory(sample)
|
||||
if (ENABLE_SAMPLE)
|
||||
message("Building sample")
|
||||
add_subdirectory(sample)
|
||||
endif()
|
||||
|
||||
include_directories(
|
||||
${fimdlp_SOURCE_DIR}/src
|
||||
|
11
CMakeUserPresets.json
Normal file
11
CMakeUserPresets.json
Normal file
@@ -0,0 +1,11 @@
|
||||
{
|
||||
"version": 4,
|
||||
"vendor": {
|
||||
"conan": {}
|
||||
},
|
||||
"include": [
|
||||
"build_release/build/Release/generators/CMakePresets.json",
|
||||
"build_debug/build/Debug/generators/CMakePresets.json",
|
||||
"build/Release/generators/CMakePresets.json"
|
||||
]
|
||||
}
|
@@ -7,11 +7,9 @@ This directory contains the Conan package configuration for the fimdlp library.
|
||||
The package manages the following dependencies:
|
||||
|
||||
### Build Requirements
|
||||
|
||||
- **libtorch/2.4.1** - PyTorch C++ library for tensor operations
|
||||
|
||||
### Test Requirements (when testing enabled)
|
||||
|
||||
- **catch2/3.8.1** - Modern C++ testing framework
|
||||
- **arff-files** - ARFF file format support (included locally in tests/lib/Files/)
|
||||
|
||||
@@ -69,7 +67,7 @@ conan create . -o shared=True --profile:build=default --profile:host=default
|
||||
|
||||
```bash
|
||||
# Add Cimmeria remote
|
||||
conan remote add cimmeria https://conan.rmontanana.es/artifactory/api/conan/Cimmeria
|
||||
conan remote add cimmeria <cimmeria-server-url>
|
||||
|
||||
# Login to Cimmeria
|
||||
conan remote login cimmeria <username>
|
||||
@@ -152,4 +150,4 @@ conan create . -o enable_testing=True
|
||||
|
||||
- C++17 compatible compiler
|
||||
- CMake 3.20 or later
|
||||
- Conan 2.0 or later
|
||||
- Conan 2.0 or later
|
75
Makefile
75
Makefile
@@ -1,44 +1,36 @@
|
||||
SHELL := /bin/bash
|
||||
.DEFAULT_GOAL := help
|
||||
.PHONY: debug release install test conan-create viewcoverage
|
||||
.DEFAULT_GOAL := build
|
||||
.PHONY: build install test
|
||||
lcov := lcov
|
||||
|
||||
f_debug = build_debug
|
||||
f_release = build_release
|
||||
genhtml = genhtml
|
||||
docscdir = docs
|
||||
|
||||
define build_target
|
||||
@echo ">>> Building the project for $(1)..."
|
||||
@if [ -d $(2) ]; then rm -fr $(2); fi
|
||||
@conan install . --build=missing -of $(2) -s build_type=$(1) $(4)
|
||||
@cmake -S . -B $(2) -DCMAKE_TOOLCHAIN_FILE=$(2)/build/$(1)/generators/conan_toolchain.cmake -DCMAKE_BUILD_TYPE=$(1) -D$(3)
|
||||
@cmake --build $(2) --config $(1) -j 8
|
||||
endef
|
||||
build: ## Build the project for Release
|
||||
@echo ">>> Building the project for Release..."
|
||||
@if [ -d $(f_release) ]; then rm -fr $(f_release); fi
|
||||
@conan install . --build=missing -of $(f_release) -s build_type=Release --profile:build=default --profile:host=default
|
||||
cmake -S . -B $(f_release) -DCMAKE_TOOLCHAIN_FILE=$(f_release)/build/Release/generators/conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Release -DENABLE_TESTING=OFF -DENABLE_SAMPLE=OFF
|
||||
@cmake --build $(f_release) -j 8
|
||||
|
||||
debug: ## Build Debug version of the library
|
||||
@$(call build_target,"Debug","$(f_debug)", "ENABLE_TESTING=ON", "-o enable_testing=True")
|
||||
|
||||
release: ## Build Release version of the library
|
||||
@$(call build_target,"Release","$(f_release)", "ENABLE_TESTING=OFF", "-o enable_testing=False")
|
||||
|
||||
install: ## Install the library
|
||||
install: ## Install the project
|
||||
@echo ">>> Installing the project..."
|
||||
@cmake --build $(f_release) --target install -j 8
|
||||
@cmake --build build_release --target install -j 8
|
||||
|
||||
test: ## Build Debug version and run tests
|
||||
@echo ">>> Building Debug version and running tests..."
|
||||
@$(MAKE) debug;
|
||||
@if [ -d $(f_debug) ]; then rm -fr $(f_debug); fi
|
||||
@conan install . --build=missing -of $(f_debug) -s build_type=Debug
|
||||
@cmake -B $(f_debug) -S . -DCMAKE_BUILD_TYPE=Debug -DCMAKE_TOOLCHAIN_FILE=$(f_debug)/build/Debug/generators/conan_toolchain.cmake -DENABLE_TESTING=ON -DENABLE_SAMPLE=ON
|
||||
@cmake --build $(f_debug) -j 8
|
||||
@cp -r tests/datasets $(f_debug)/tests/datasets
|
||||
@cd $(f_debug)/tests && ctest --output-on-failure -j 8
|
||||
@echo ">>> Generating coverage report..."
|
||||
@cd $(f_debug)/tests && $(lcov) --capture --directory ../ --demangle-cpp --ignore-errors source,source --ignore-errors mismatch --ignore-errors inconsistent --output-file coverage.info >/dev/null 2>&1; \
|
||||
@cd $(f_debug)/tests && $(lcov) --capture --directory ../ --demangle-cpp --ignore-errors source,source --ignore-errors mismatch --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info '/usr/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'lib/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'libtorch/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'tests/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info 'gtest/*' --output-file coverage.info >/dev/null 2>&1; \
|
||||
$(lcov) --remove coverage.info '*/.conan2/*' --ignore-errors unused --output-file coverage.info >/dev/null 2>&1;
|
||||
$(lcov) --remove coverage.info 'gtest/*' --output-file coverage.info >/dev/null 2>&1;
|
||||
@genhtml $(f_debug)/tests/coverage.info --demangle-cpp --output-directory $(f_debug)/tests/coverage --title "Discretizer mdlp Coverage Report" -s -k -f --legend
|
||||
@echo "* Coverage report is generated at $(f_debug)/tests/coverage/index.html"
|
||||
@which python || (echo ">>> Please install python"; exit 1)
|
||||
@@ -48,38 +40,11 @@ test: ## Build Debug version and run tests
|
||||
fi
|
||||
@echo ">>> Updating coverage badge..."
|
||||
@env python update_coverage.py $(f_debug)/tests
|
||||
@echo ">>> Done"
|
||||
|
||||
viewcoverage: ## View the html coverage report
|
||||
@which $(genhtml) >/dev/null || (echo ">>> Please install lcov (genhtml not found)"; exit 1)
|
||||
@if [ ! -d $(docscdir)/coverage ]; then mkdir -p $(docscdir)/coverage; fi
|
||||
@if [ ! -f $(f_debug)/tests/coverage.info ]; then \
|
||||
echo ">>> No coverage.info file found. Run make coverage first!"; \
|
||||
exit 1; \
|
||||
fi
|
||||
@$(genhtml) $(f_debug)/tests/coverage.info --demangle-cpp --output-directory $(docscdir)/coverage --title "FImdlp Coverage Report" -s -k -f --legend >/dev/null 2>&1;
|
||||
@xdg-open $(docscdir)/coverage/index.html || open $(docscdir)/coverage/index.html 2>/dev/null
|
||||
@echo ">>> Done";
|
||||
|
||||
conan-create: ## Create the conan package
|
||||
@echo ">>> Creating the conan package..."
|
||||
conan create . --build=missing -tf "" -s:a build_type=Release
|
||||
conan create . --build=missing -tf "" -s:a build_type=Debug -o "&:enable_testing=False"
|
||||
@echo ">>> Done"
|
||||
conan create . --build=missing --pr:b=release -pr:h=release
|
||||
# conan create . --build=missing -pr:b=debug -pr:h=debug
|
||||
|
||||
|
||||
|
||||
help: ## Show help message
|
||||
@IFS=$$'\n' ; \
|
||||
help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \
|
||||
printf "%s\n\n" "Usage: make [task]"; \
|
||||
printf "%-20s %s\n" "task" "help" ; \
|
||||
printf "%-20s %s\n" "------" "----" ; \
|
||||
for help_line in $${help_lines[@]}; do \
|
||||
IFS=$$':' ; \
|
||||
help_split=($$help_line) ; \
|
||||
help_command=`echo $${help_split[0]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \
|
||||
help_info=`echo $${help_split[2]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \
|
||||
printf '\033[36m'; \
|
||||
printf "%-20s %s" $$help_command ; \
|
||||
printf '\033[0m'; \
|
||||
printf "%s\n" $$help_info; \
|
||||
done
|
@@ -3,7 +3,7 @@
|
||||
[](https://sonarcloud.io/summary/new_code?id=rmontanana_mdlp)
|
||||
[](html/index.html)
|
||||
[](https://deepwiki.com/rmontanana/mdlp)
|
||||
[](https://doi.org/10.5281/zenodo.16025501)
|
||||
[](https://doi.org/10.5281/zenodo.14245443)
|
||||
|
||||
# <img src="logo.png" alt="logo" width="50"/> mdlp
|
||||
|
||||
@@ -18,7 +18,9 @@ Other features:
|
||||
|
||||
- Intervals with the same value of the variable are not taken into account for cutpoints.
|
||||
- Intervals have to have more than two examples to be evaluated (mdlp).
|
||||
|
||||
- The algorithm returns the cut points for the variable.
|
||||
|
||||
- The transform method uses the cut points returning its index in the following way:
|
||||
|
||||
cut[i - 1] <= x < cut[i]
|
||||
|
101
build_conan/CMakeCache.txt
Normal file
101
build_conan/CMakeCache.txt
Normal file
@@ -0,0 +1,101 @@
|
||||
# This is the CMakeCache file.
|
||||
# For build in directory: /home/rmontanana/Code/mdlp/build_conan
|
||||
# It was generated by CMake: /usr/bin/cmake
|
||||
# You can edit this file to change values found and used by cmake.
|
||||
# If you do not want to change any of the values, simply exit the editor.
|
||||
# If you do want to change a value, simply edit, save, and exit the editor.
|
||||
# The syntax for the file is as follows:
|
||||
# KEY:TYPE=VALUE
|
||||
# KEY is the name of a variable in the cache.
|
||||
# TYPE is a hint to GUIs for the type of VALUE, DO NOT EDIT TYPE!.
|
||||
# VALUE is the current value for the KEY.
|
||||
|
||||
########################
|
||||
# EXTERNAL cache entries
|
||||
########################
|
||||
|
||||
//No help, variable specified on the command line.
|
||||
CMAKE_BUILD_TYPE:UNINITIALIZED=Release
|
||||
|
||||
//Value Computed by CMake.
|
||||
CMAKE_FIND_PACKAGE_REDIRECTS_DIR:STATIC=/home/rmontanana/Code/mdlp/build_conan/CMakeFiles/pkgRedirects
|
||||
|
||||
//Value Computed by CMake
|
||||
CMAKE_PROJECT_DESCRIPTION:STATIC=Discretization algorithm based on the paper by Fayyad & Irani Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning.
|
||||
|
||||
//Value Computed by CMake
|
||||
CMAKE_PROJECT_HOMEPAGE_URL:STATIC=https://github.com/rmontanana/mdlp
|
||||
|
||||
//Value Computed by CMake
|
||||
CMAKE_PROJECT_NAME:STATIC=fimdlp
|
||||
|
||||
//Value Computed by CMake
|
||||
CMAKE_PROJECT_VERSION:STATIC=2.1.0
|
||||
|
||||
//Value Computed by CMake
|
||||
CMAKE_PROJECT_VERSION_MAJOR:STATIC=2
|
||||
|
||||
//Value Computed by CMake
|
||||
CMAKE_PROJECT_VERSION_MINOR:STATIC=1
|
||||
|
||||
//Value Computed by CMake
|
||||
CMAKE_PROJECT_VERSION_PATCH:STATIC=0
|
||||
|
||||
//Value Computed by CMake
|
||||
CMAKE_PROJECT_VERSION_TWEAK:STATIC=
|
||||
|
||||
//No help, variable specified on the command line.
|
||||
CMAKE_TOOLCHAIN_FILE:UNINITIALIZED=conan_toolchain.cmake
|
||||
|
||||
//Value Computed by CMake
|
||||
fimdlp_BINARY_DIR:STATIC=/home/rmontanana/Code/mdlp/build_conan
|
||||
|
||||
//Value Computed by CMake
|
||||
fimdlp_IS_TOP_LEVEL:STATIC=ON
|
||||
|
||||
//Value Computed by CMake
|
||||
fimdlp_SOURCE_DIR:STATIC=/home/rmontanana/Code/mdlp
|
||||
|
||||
|
||||
########################
|
||||
# INTERNAL cache entries
|
||||
########################
|
||||
|
||||
//This is the directory where this CMakeCache.txt was created
|
||||
CMAKE_CACHEFILE_DIR:INTERNAL=/home/rmontanana/Code/mdlp/build_conan
|
||||
//Major version of cmake used to create the current loaded cache
|
||||
CMAKE_CACHE_MAJOR_VERSION:INTERNAL=3
|
||||
//Minor version of cmake used to create the current loaded cache
|
||||
CMAKE_CACHE_MINOR_VERSION:INTERNAL=30
|
||||
//Patch version of cmake used to create the current loaded cache
|
||||
CMAKE_CACHE_PATCH_VERSION:INTERNAL=8
|
||||
//Path to CMake executable.
|
||||
CMAKE_COMMAND:INTERNAL=/usr/bin/cmake
|
||||
//Path to cpack program executable.
|
||||
CMAKE_CPACK_COMMAND:INTERNAL=/usr/bin/cpack
|
||||
//Path to ctest program executable.
|
||||
CMAKE_CTEST_COMMAND:INTERNAL=/usr/bin/ctest
|
||||
//Path to cache edit program executable.
|
||||
CMAKE_EDIT_COMMAND:INTERNAL=/usr/bin/ccmake
|
||||
//Name of external makefile project generator.
|
||||
CMAKE_EXTRA_GENERATOR:INTERNAL=
|
||||
//Name of generator.
|
||||
CMAKE_GENERATOR:INTERNAL=Unix Makefiles
|
||||
//Generator instance identifier.
|
||||
CMAKE_GENERATOR_INSTANCE:INTERNAL=
|
||||
//Name of generator platform.
|
||||
CMAKE_GENERATOR_PLATFORM:INTERNAL=
|
||||
//Name of generator toolset.
|
||||
CMAKE_GENERATOR_TOOLSET:INTERNAL=
|
||||
//Source directory with the top level CMakeLists.txt file for this
|
||||
// project
|
||||
CMAKE_HOME_DIRECTORY:INTERNAL=/home/rmontanana/Code/mdlp
|
||||
//number of local generators
|
||||
CMAKE_NUMBER_OF_MAKEFILES:INTERNAL=1
|
||||
//Platform information initialized
|
||||
CMAKE_PLATFORM_INFO_INITIALIZED:INTERNAL=1
|
||||
//Path to CMake installation.
|
||||
CMAKE_ROOT:INTERNAL=/usr/share/cmake
|
||||
//uname command
|
||||
CMAKE_UNAME:INTERNAL=/usr/bin/uname
|
||||
|
@@ -51,10 +51,10 @@ class FimdlpConan(ConanFile):
|
||||
|
||||
def requirements(self):
|
||||
# PyTorch dependency for tensor operations
|
||||
self.requires("libtorch/2.7.1")
|
||||
self.requires("libtorch/2.7.0")
|
||||
|
||||
def build_requirements(self):
|
||||
self.requires("arff-files/1.2.1") # for tests and sample
|
||||
self.requires("arff-files/1.2.0") # for tests and sample
|
||||
if self.options.enable_testing:
|
||||
self.test_requires("gtest/1.16.0")
|
||||
|
||||
@@ -108,4 +108,4 @@ class FimdlpConan(ConanFile):
|
||||
self.cpp_info.system_libs.append("pthread") # Threading
|
||||
|
||||
# Build information for consumers
|
||||
self.cpp_info.builddirs = ["lib/cmake/fimdlp"]
|
||||
self.cpp_info.builddirs = ["lib/cmake/fimdlp"]
|
@@ -1,10 +1,14 @@
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
|
||||
set(CMAKE_BUILD_TYPE Debug)
|
||||
|
||||
find_package(arff-files REQUIRED)
|
||||
|
||||
include_directories(
|
||||
${fimdlp_SOURCE_DIR}/src
|
||||
${fimdlp_SOURCE_DIR}/tests/lib/Files
|
||||
${CMAKE_BINARY_DIR}/configured_files/include
|
||||
${libtorch_INCLUDE_DIRS_RELEASE}
|
||||
${arff-files_INCLUDE_DIRS}
|
||||
)
|
||||
|
||||
|
@@ -49,7 +49,7 @@ namespace mdlp {
|
||||
// Note: y parameter is validated but not used in binning strategy
|
||||
fit(X);
|
||||
}
|
||||
std::vector<precision_t> BinDisc::linspace(precision_t start, precision_t end, int num)
|
||||
std::vector<precision_t> linspace(precision_t start, precision_t end, int num)
|
||||
{
|
||||
// Input validation
|
||||
if (num < 2) {
|
||||
@@ -77,7 +77,7 @@ namespace mdlp {
|
||||
{
|
||||
return std::max(lower, std::min(n, upper));
|
||||
}
|
||||
std::vector<precision_t> BinDisc::percentile(samples_t& data, const std::vector<precision_t>& percentiles)
|
||||
std::vector<precision_t> percentile(samples_t& data, const std::vector<precision_t>& percentiles)
|
||||
{
|
||||
// Input validation
|
||||
if (data.empty()) {
|
||||
|
@@ -23,9 +23,6 @@ namespace mdlp {
|
||||
// y is included for compatibility with the Discretizer interface
|
||||
void fit(samples_t& X_, labels_t& y) override;
|
||||
void fit(samples_t& X);
|
||||
protected:
|
||||
std::vector<precision_t> linspace(precision_t start, precision_t end, int num);
|
||||
std::vector<precision_t> percentile(samples_t& data, const std::vector<precision_t>& percentiles);
|
||||
private:
|
||||
void fit_uniform(const samples_t&);
|
||||
void fit_quantile(const samples_t&);
|
||||
|
@@ -39,8 +39,8 @@ namespace mdlp {
|
||||
size_t getCandidate(size_t, size_t);
|
||||
size_t compute_max_num_cut_points() const;
|
||||
pair<precision_t, size_t> valueCutPoint(size_t, size_t, size_t);
|
||||
inline precision_t safe_X_access(size_t idx) const
|
||||
{
|
||||
private:
|
||||
inline precision_t safe_X_access(size_t idx) const {
|
||||
if (idx >= indices.size()) {
|
||||
throw std::out_of_range("Index out of bounds for indices array");
|
||||
}
|
||||
@@ -50,8 +50,7 @@ namespace mdlp {
|
||||
}
|
||||
return X[real_idx];
|
||||
}
|
||||
inline label_t safe_y_access(size_t idx) const
|
||||
{
|
||||
inline label_t safe_y_access(size_t idx) const {
|
||||
if (idx >= indices.size()) {
|
||||
throw std::out_of_range("Index out of bounds for indices array");
|
||||
}
|
||||
@@ -61,8 +60,7 @@ namespace mdlp {
|
||||
}
|
||||
return y[real_idx];
|
||||
}
|
||||
inline size_t safe_subtract(size_t a, size_t b) const
|
||||
{
|
||||
inline size_t safe_subtract(size_t a, size_t b) const {
|
||||
if (b > a) {
|
||||
throw std::underflow_error("Subtraction would cause underflow");
|
||||
}
|
||||
|
@@ -17,7 +17,7 @@ namespace mdlp {
|
||||
if (cutPoints.size() < 2) {
|
||||
throw std::runtime_error("Discretizer not fitted yet or no valid cut points found");
|
||||
}
|
||||
|
||||
|
||||
discretizedData.clear();
|
||||
discretizedData.reserve(data.size());
|
||||
// CutPoints always have at least two items
|
||||
@@ -40,6 +40,9 @@ namespace mdlp {
|
||||
void Discretizer::fit_t(const torch::Tensor& X_, const torch::Tensor& y_)
|
||||
{
|
||||
// Validate tensor properties for security
|
||||
if (!X_.is_contiguous() || !y_.is_contiguous()) {
|
||||
throw std::invalid_argument("Tensors must be contiguous");
|
||||
}
|
||||
if (X_.sizes().size() != 1 || y_.sizes().size() != 1) {
|
||||
throw std::invalid_argument("Only 1D tensors supported");
|
||||
}
|
||||
@@ -55,7 +58,7 @@ namespace mdlp {
|
||||
if (X_.numel() == 0) {
|
||||
throw std::invalid_argument("Tensors cannot be empty");
|
||||
}
|
||||
|
||||
|
||||
auto num_elements = X_.numel();
|
||||
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
||||
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
|
||||
@@ -64,6 +67,9 @@ namespace mdlp {
|
||||
torch::Tensor Discretizer::transform_t(const torch::Tensor& X_)
|
||||
{
|
||||
// Validate tensor properties for security
|
||||
if (!X_.is_contiguous()) {
|
||||
throw std::invalid_argument("Tensor must be contiguous");
|
||||
}
|
||||
if (X_.sizes().size() != 1) {
|
||||
throw std::invalid_argument("Only 1D tensors supported");
|
||||
}
|
||||
@@ -73,7 +79,7 @@ namespace mdlp {
|
||||
if (X_.numel() == 0) {
|
||||
throw std::invalid_argument("Tensor cannot be empty");
|
||||
}
|
||||
|
||||
|
||||
auto num_elements = X_.numel();
|
||||
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
||||
auto result = transform(X);
|
||||
@@ -82,6 +88,9 @@ namespace mdlp {
|
||||
torch::Tensor Discretizer::fit_transform_t(const torch::Tensor& X_, const torch::Tensor& y_)
|
||||
{
|
||||
// Validate tensor properties for security
|
||||
if (!X_.is_contiguous() || !y_.is_contiguous()) {
|
||||
throw std::invalid_argument("Tensors must be contiguous");
|
||||
}
|
||||
if (X_.sizes().size() != 1 || y_.sizes().size() != 1) {
|
||||
throw std::invalid_argument("Only 1D tensors supported");
|
||||
}
|
||||
@@ -97,7 +106,7 @@ namespace mdlp {
|
||||
if (X_.numel() == 0) {
|
||||
throw std::invalid_argument("Tensors cannot be empty");
|
||||
}
|
||||
|
||||
|
||||
auto num_elements = X_.numel();
|
||||
samples_t X(X_.data_ptr<precision_t>(), X_.data_ptr<precision_t>() + num_elements);
|
||||
labels_t y(y_.data_ptr<int>(), y_.data_ptr<int>() + num_elements);
|
||||
|
@@ -11,16 +11,6 @@
|
||||
#include <ArffFiles.hpp>
|
||||
#include "BinDisc.h"
|
||||
#include "Experiments.hpp"
|
||||
#include <cmath>
|
||||
|
||||
#define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \
|
||||
try { \
|
||||
stmt; \
|
||||
} catch (const etype& ex) { \
|
||||
EXPECT_EQ(whatstring, std::string(ex.what())); \
|
||||
throw; \
|
||||
} \
|
||||
, etype)
|
||||
|
||||
namespace mdlp {
|
||||
const float margin = 1e-4;
|
||||
@@ -410,64 +400,4 @@ namespace mdlp {
|
||||
}
|
||||
// std::cout << "* Number of experiments tested: " << num << std::endl;
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, FitDataSizeTooSmall)
|
||||
{
|
||||
// Test when data size is smaller than n_bins
|
||||
samples_t X = { 1.0, 2.0 }; // Only 2 elements for 3 bins
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X), std::invalid_argument, "Input data size must be at least equal to n_bins");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3Q, FitDataSizeTooSmall)
|
||||
{
|
||||
// Test when data size is smaller than n_bins
|
||||
samples_t X = { 1.0, 2.0 }; // Only 2 elements for 3 bins
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X), std::invalid_argument, "Input data size must be at least equal to n_bins");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, FitWithYEmptyX)
|
||||
{
|
||||
// Test fit(X, y) with empty X
|
||||
samples_t X = {};
|
||||
labels_t y = { 1, 2, 3 };
|
||||
EXPECT_THROW_WITH_MESSAGE(fit(X, y), std::invalid_argument, "X cannot be empty");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, LinspaceInvalidNumPoints)
|
||||
{
|
||||
// Test linspace with num < 2
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, 1.0f, 1), std::invalid_argument, "Number of points must be at least 2 for linspace");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, LinspaceNaNValues)
|
||||
{
|
||||
// Test linspace with NaN values
|
||||
float nan_val = std::numeric_limits<float>::quiet_NaN();
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(nan_val, 1.0f, 3), std::invalid_argument, "Start and end values cannot be NaN");
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, nan_val, 3), std::invalid_argument, "Start and end values cannot be NaN");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, LinspaceInfiniteValues)
|
||||
{
|
||||
// Test linspace with infinite values
|
||||
float inf_val = std::numeric_limits<float>::infinity();
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(inf_val, 1.0f, 3), std::invalid_argument, "Start and end values cannot be infinite");
|
||||
EXPECT_THROW_WITH_MESSAGE(linspace(0.0f, inf_val, 3), std::invalid_argument, "Start and end values cannot be infinite");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, PercentileEmptyData)
|
||||
{
|
||||
// Test percentile with empty data
|
||||
samples_t empty_data = {};
|
||||
std::vector<precision_t> percentiles = { 25.0f, 50.0f, 75.0f };
|
||||
EXPECT_THROW_WITH_MESSAGE(percentile(empty_data, percentiles), std::invalid_argument, "Data cannot be empty for percentile calculation");
|
||||
}
|
||||
|
||||
TEST_F(TestBinDisc3U, PercentileEmptyPercentiles)
|
||||
{
|
||||
// Test percentile with empty percentiles
|
||||
samples_t data = { 1.0f, 2.0f, 3.0f };
|
||||
std::vector<precision_t> empty_percentiles = {};
|
||||
EXPECT_THROW_WITH_MESSAGE(percentile(data, empty_percentiles), std::invalid_argument, "Percentiles cannot be empty");
|
||||
}
|
||||
}
|
||||
|
@@ -13,15 +13,6 @@
|
||||
#include "BinDisc.h"
|
||||
#include "CPPFImdlp.h"
|
||||
|
||||
#define EXPECT_THROW_WITH_MESSAGE(stmt, etype, whatstring) EXPECT_THROW( \
|
||||
try { \
|
||||
stmt; \
|
||||
} catch (const etype& ex) { \
|
||||
EXPECT_EQ(whatstring, std::string(ex.what())); \
|
||||
throw; \
|
||||
} \
|
||||
, etype)
|
||||
|
||||
namespace mdlp {
|
||||
const float margin = 1e-4;
|
||||
static std::string set_data_path()
|
||||
@@ -41,7 +32,7 @@ namespace mdlp {
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
auto version = disc->version();
|
||||
delete disc;
|
||||
EXPECT_EQ("2.1.1", version);
|
||||
EXPECT_EQ("2.1.0", version);
|
||||
}
|
||||
TEST(Discretizer, BinIrisUniform)
|
||||
{
|
||||
@@ -279,110 +270,4 @@ namespace mdlp {
|
||||
EXPECT_EQ(computed[i], expected[i]);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Discretizer, TransformEmptyData)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
samples_t empty_data = {};
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform(empty_data), std::invalid_argument, "Data for transformation cannot be empty");
|
||||
delete disc;
|
||||
}
|
||||
|
||||
TEST(Discretizer, TransformNotFitted)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
samples_t data = { 1.0f, 2.0f, 3.0f };
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform(data), std::runtime_error, "Discretizer not fitted yet or no valid cut points found");
|
||||
delete disc;
|
||||
}
|
||||
|
||||
TEST(Discretizer, TensorValidationFit)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
|
||||
auto X = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
|
||||
auto y = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
|
||||
// Test non-1D tensors
|
||||
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_2d, y), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
auto y_2d = torch::tensor({ {1, 2}, {3, 4} }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_2d), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
// Test wrong tensor types
|
||||
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_int, y), std::invalid_argument, "X tensor must be Float32 type");
|
||||
|
||||
auto y_float = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_float), std::invalid_argument, "y tensor must be Int32 type");
|
||||
|
||||
// Test mismatched sizes
|
||||
auto y_short = torch::tensor({ 1, 2 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X, y_short), std::invalid_argument, "X and y tensors must have same number of elements");
|
||||
|
||||
// Test empty tensors
|
||||
auto X_empty = torch::tensor({}, torch::kFloat32);
|
||||
auto y_empty = torch::tensor({}, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_t(X_empty, y_empty), std::invalid_argument, "Tensors cannot be empty");
|
||||
|
||||
delete disc;
|
||||
}
|
||||
|
||||
TEST(Discretizer, TensorValidationTransform)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
|
||||
// First fit with valid data
|
||||
auto X_fit = torch::tensor({ 1.0f, 2.0f, 3.0f, 4.0f }, torch::kFloat32);
|
||||
auto y_fit = torch::tensor({ 1, 2, 3, 4 }, torch::kInt32);
|
||||
disc->fit_t(X_fit, y_fit);
|
||||
|
||||
// Test non-1D tensor
|
||||
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_2d), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
// Test wrong tensor type
|
||||
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_int), std::invalid_argument, "X tensor must be Float32 type");
|
||||
|
||||
// Test empty tensor
|
||||
auto X_empty = torch::tensor({}, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->transform_t(X_empty), std::invalid_argument, "Tensor cannot be empty");
|
||||
|
||||
delete disc;
|
||||
}
|
||||
|
||||
TEST(Discretizer, TensorValidationFitTransform)
|
||||
{
|
||||
Discretizer* disc = new BinDisc(4, strategy_t::UNIFORM);
|
||||
|
||||
auto X = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
|
||||
auto y = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
|
||||
// Test non-1D tensors
|
||||
auto X_2d = torch::tensor({ {1.0f, 2.0f}, {3.0f, 4.0f} }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_2d, y), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
auto y_2d = torch::tensor({ {1, 2}, {3, 4} }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_2d), std::invalid_argument, "Only 1D tensors supported");
|
||||
|
||||
// Test wrong tensor types
|
||||
auto X_int = torch::tensor({ 1, 2, 3 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_int, y), std::invalid_argument, "X tensor must be Float32 type");
|
||||
|
||||
auto y_float = torch::tensor({ 1.0f, 2.0f, 3.0f }, torch::kFloat32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_float), std::invalid_argument, "y tensor must be Int32 type");
|
||||
|
||||
// Test mismatched sizes
|
||||
auto y_short = torch::tensor({ 1, 2 }, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X, y_short), std::invalid_argument, "X and y tensors must have same number of elements");
|
||||
|
||||
// Test empty tensors
|
||||
auto X_empty = torch::tensor({}, torch::kFloat32);
|
||||
auto y_empty = torch::tensor({}, torch::kInt32);
|
||||
EXPECT_THROW_WITH_MESSAGE(disc->fit_transform_t(X_empty, y_empty), std::invalid_argument, "Tensors cannot be empty");
|
||||
|
||||
delete disc;
|
||||
}
|
||||
}
|
||||
|
@@ -167,15 +167,6 @@ namespace mdlp {
|
||||
indices = { 1, 2, 0 };
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SortIndicesOutOfBounds)
|
||||
{
|
||||
// Test for out of bounds exception in sortIndices
|
||||
samples_t X_long = { 1.0f, 2.0f, 3.0f };
|
||||
labels_t y_short = { 1, 2 };
|
||||
EXPECT_THROW_WITH_MESSAGE(sortIndices(X_long, y_short), std::out_of_range, "Index out of bounds in sort comparison");
|
||||
}
|
||||
|
||||
|
||||
TEST_F(TestFImdlp, TestShortDatasets)
|
||||
{
|
||||
vector<precision_t> computed;
|
||||
@@ -373,55 +364,4 @@ namespace mdlp {
|
||||
EXPECT_EQ(computed_ft[i], expected[i]);
|
||||
}
|
||||
}
|
||||
TEST_F(TestFImdlp, SafeXAccessIndexOutOfBounds)
|
||||
{
|
||||
// Test safe_X_access with index out of bounds for indices array
|
||||
X = { 1.0f, 2.0f, 3.0f };
|
||||
y = { 1, 2, 3 };
|
||||
indices = { 0, 1 }; // shorter than expected
|
||||
|
||||
// This should trigger the first exception in safe_X_access (idx >= indices.size())
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_X_access(2), std::out_of_range, "Index out of bounds for indices array");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SafeXAccessXOutOfBounds)
|
||||
{
|
||||
// Test safe_X_access with real_idx out of bounds for X array
|
||||
X = { 1.0f, 2.0f }; // shorter array
|
||||
y = { 1, 2, 3 };
|
||||
indices = { 0, 1, 5 }; // indices[2] = 5 is out of bounds for X
|
||||
|
||||
// This should trigger the second exception in safe_X_access (real_idx >= X.size())
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_X_access(2), std::out_of_range, "Index out of bounds for X array");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SafeYAccessIndexOutOfBounds)
|
||||
{
|
||||
// Test safe_y_access with index out of bounds for indices array
|
||||
X = { 1.0f, 2.0f, 3.0f };
|
||||
y = { 1, 2, 3 };
|
||||
indices = { 0, 1 }; // shorter than expected
|
||||
|
||||
// This should trigger the first exception in safe_y_access (idx >= indices.size())
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_y_access(2), std::out_of_range, "Index out of bounds for indices array");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SafeYAccessYOutOfBounds)
|
||||
{
|
||||
// Test safe_y_access with real_idx out of bounds for y array
|
||||
X = { 1.0f, 2.0f, 3.0f };
|
||||
y = { 1, 2 }; // shorter array
|
||||
indices = { 0, 1, 5 }; // indices[2] = 5 is out of bounds for y
|
||||
|
||||
// This should trigger the second exception in safe_y_access (real_idx >= y.size())
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_y_access(2), std::out_of_range, "Index out of bounds for y array");
|
||||
}
|
||||
|
||||
TEST_F(TestFImdlp, SafeSubtractUnderflow)
|
||||
{
|
||||
// Test safe_subtract with underflow condition (b > a)
|
||||
EXPECT_THROW_WITH_MESSAGE(safe_subtract(3, 5), std::underflow_error, "Subtraction would cause underflow");
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
Reference in New Issue
Block a user