First commit

This commit is contained in:
2025-06-22 00:31:33 +02:00
parent a52c20d1fb
commit 4bdbcad256
110 changed files with 31991 additions and 1 deletions

36
liblinear-2.49/.github/workflows/wheel.yml vendored Executable file
View File

@@ -0,0 +1,36 @@
name: Build wheels
on:
# on new tag
push:
tags:
- '*'
# manually trigger
workflow_dispatch:
jobs:
build_wheels:
name: Build wheels on ${{ matrix.os }}
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [windows-2022, macos-13]
steps:
- uses: actions/checkout@v2
- name: Build wheels
uses: pypa/cibuildwheel@v2.10.2
env:
# don't build for PyPython and windows 32-bit
CIBW_SKIP: pp* *win32*
with:
package-dir: ./python
output-dir: ./python/wheelhouse
- name: Upload a Build Artifact
uses: actions/upload-artifact@v4
with:
name: wheels-${{ matrix.os }}
path: ./python/wheelhouse

31
liblinear-2.49/COPYRIGHT Normal file
View File

@@ -0,0 +1,31 @@
Copyright (c) 2007-2023 The LIBLINEAR Project.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither name of copyright holders nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

37
liblinear-2.49/Makefile Normal file
View File

@@ -0,0 +1,37 @@
CXX ?= g++
CC ?= gcc
CFLAGS = -Wall -Wconversion -O3 -fPIC
LIBS = blas/blas.a
#LIBS = -lblas
SHVER = 6
OS = $(shell uname)
ifeq ($(OS),Darwin)
SHARED_LIB_FLAG = -dynamiclib -Wl,-install_name,liblinear.so.$(SHVER)
else
SHARED_LIB_FLAG = -shared -Wl,-soname,liblinear.so.$(SHVER)
endif
all: train predict
lib: linear.o newton.o blas/blas.a
$(CXX) $(SHARED_LIB_FLAG) linear.o newton.o blas/blas.a -o liblinear.so.$(SHVER)
train: newton.o linear.o train.c blas/blas.a
$(CXX) $(CFLAGS) -o train train.c newton.o linear.o $(LIBS)
predict: newton.o linear.o predict.c blas/blas.a
$(CXX) $(CFLAGS) -o predict predict.c newton.o linear.o $(LIBS)
newton.o: newton.cpp newton.h
$(CXX) $(CFLAGS) -c -o newton.o newton.cpp
linear.o: linear.cpp linear.h
$(CXX) $(CFLAGS) -c -o linear.o linear.cpp
blas/blas.a: blas/*.c blas/*.h
make -C blas OPTFLAGS='$(CFLAGS)' CC='$(CC)';
clean:
make -C blas clean
make -C matlab clean
rm -f *~ newton.o linear.o train predict liblinear.so.$(SHVER)

View File

@@ -0,0 +1,24 @@
CXX = cl.exe
CFLAGS = /nologo /O2 /EHsc /I. /D _WIN64 /D _CRT_SECURE_NO_DEPRECATE
TARGET = windows
all: $(TARGET)\train.exe $(TARGET)\predict.exe lib
$(TARGET)\train.exe: newton.obj linear.obj train.c blas\*.c
$(CXX) $(CFLAGS) -Fe$(TARGET)\train.exe newton.obj linear.obj train.c blas\*.c
$(TARGET)\predict.exe: newton.obj linear.obj predict.c blas\*.c
$(CXX) $(CFLAGS) -Fe$(TARGET)\predict.exe newton.obj linear.obj predict.c blas\*.c
linear.obj: linear.cpp linear.h
$(CXX) $(CFLAGS) -c linear.cpp
newton.obj: newton.cpp newton.h
$(CXX) $(CFLAGS) -c newton.cpp
lib: linear.cpp linear.h linear.def newton.obj
$(CXX) $(CFLAGS) -LD linear.cpp newton.obj blas\*.c -Fe$(TARGET)\liblinear -link -DEF:linear.def
clean:
-erase /Q *.obj $(TARGET)\*.exe $(TARGET)\*.dll $(TARGET)\*.exp $(TARGET)\*.lib

727
liblinear-2.49/README Executable file
View File

@@ -0,0 +1,727 @@
LIBLINEAR is a simple package for solving large-scale regularized linear
classification, regression and outlier detection. It currently supports
- L2-regularized logistic regression/L2-loss support vector classification/L1-loss support vector classification
- L1-regularized L2-loss support vector classification/L1-regularized logistic regression
- L2-regularized L2-loss support vector regression/L1-loss support vector regression
- one-class support vector machine.
This document explains the usage of LIBLINEAR.
To get started, please read the ``Quick Start'' section first.
For developers, please check the ``Library Usage'' section to learn
how to integrate LIBLINEAR in your software.
Table of Contents
=================
- When to use LIBLINEAR but not LIBSVM
- Quick Start
- Installation
- `train' Usage
- `predict' Usage
- `svm-scale' Usage
- Examples
- Library Usage
- Building Windows Binaries
- MATLAB/OCTAVE interface
- Python Interface
- Additional Information
When to use LIBLINEAR but not LIBSVM
====================================
There are some large data for which with/without nonlinear mappings
gives similar performances. Without using kernels, one can
efficiently train a much larger set via linear classification/regression.
These data usually have a large number of features. Document classification
is an example.
Warning: While generally liblinear is very fast, its default solver
may be slow under certain situations (e.g., data not scaled or C is
large). See Appendix B of our SVM guide about how to handle such
cases.
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
Warning: If you are a beginner and your data sets are not large, you
should consider LIBSVM first.
LIBSVM page:
http://www.csie.ntu.edu.tw/~cjlin/libsvm
Quick Start
===========
See the section ``Installation'' for installing LIBLINEAR.
After installation, there are programs `train' and `predict' for
training and testing, respectively.
About the data format, please check the README file of LIBSVM. Note
that feature index must start from 1 (but not 0).
A sample classification data included in this package is `heart_scale'.
Type `train heart_scale', and the program will read the training
data and output the model file `heart_scale.model'. If you have a test
set called heart_scale.t, then type `predict heart_scale.t
heart_scale.model output' to see the prediction accuracy. The `output'
file contains the predicted class labels.
For more information about `train' and `predict', see the sections
`train' Usage and `predict' Usage.
To obtain good performances, sometimes one needs to scale the
data. Please check the program `svm-scale' of LIBSVM. For large and
sparse data, use `-l 0' to keep the sparsity.
Installation
============
On Unix systems, type `make' to build the `train', `predict',
and `svm-scale' programs. Run them without arguments to show the usages.
On other systems, consult `Makefile' to build them (e.g., see
'Building Windows binaries' in this file).
This software uses some level-1 BLAS subroutines. The needed functions are
included in this package. If a BLAS library is available on your
machine, you may use it by modifying the Makefile: Unmark the following line
#LIBS = -lblas
and mark
LIBS = blas/blas.a
The tool `svm-scale', borrowed from LIBSVM, is for scaling input data file.
`train' Usage
=============
Usage: train [options] training_set_file [model_file]
options:
-s type : set type of solver (default 1)
for multi-class classification
0 -- L2-regularized logistic regression (primal)
1 -- L2-regularized L2-loss support vector classification (dual)
2 -- L2-regularized L2-loss support vector classification (primal)
3 -- L2-regularized L1-loss support vector classification (dual)
4 -- support vector classification by Crammer and Singer
5 -- L1-regularized L2-loss support vector classification
6 -- L1-regularized logistic regression
7 -- L2-regularized logistic regression (dual)
for regression
11 -- L2-regularized L2-loss support vector regression (primal)
12 -- L2-regularized L2-loss support vector regression (dual)
13 -- L2-regularized L1-loss support vector regression (dual)
for outlier detection
21 -- one-class support vector machine (dual)
-c cost : set the parameter C (default 1)
-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
-n nu : set the parameter nu of one-class SVM (default 0.5)
-e epsilon : set tolerance of termination criterion
-s 0 and 2
|f'(w)|_2 <= eps*min(pos,neg)/l*|f'(w0)|_2,
where f is the primal function and pos/neg are # of
positive/negative data (default 0.01)
-s 11
|f'(w)|_2 <= eps*|f'(w0)|_2 (default 0.0001)
-s 1, 3, 4, 7, and 21
Dual maximal violation <= eps; similar to libsvm (default 0.1 except 0.01 for -s 21)
-s 5 and 6
|f'(w)|_1 <= eps*min(pos,neg)/l*|f'(w0)|_1,
where f is the primal function (default 0.01)
-s 12 and 13
|f'(alpha)|_1 <= eps |f'(alpha0)|,
where f is the dual function (default 0.1)
-B bias : if bias >= 0, instance x becomes [x; bias]; if < 0, no bias term added (default -1)
-R : not regularize the bias; must with -B 1 to have the bias; DON'T use this unless you know what it is
(for -s 0, 2, 5, 6, 11)
-wi weight: weights adjust the parameter C of different classes (see README for details)
-v n: n-fold cross validation mode
-C : find parameters (C for -s 0, 2 and C, p for -s 11)
-q : quiet mode (no outputs)
Option -v randomly splits the data into n parts and calculates cross
validation accuracy on them.
Option -C conducts cross validation under different parameters and finds
the best one. This option is supported only by -s 0, -s 2 (for finding
C) and -s 11 (for finding C, p). If the solver is not specified, -s 2
is used.
Formulations:
For L2-regularized logistic regression (-s 0), we solve
min_w w^Tw/2 + C \sum log(1 + exp(-y_i w^Tx_i))
For L2-regularized L2-loss SVC dual (-s 1), we solve
min_alpha 0.5(alpha^T (Q + I/2/C) alpha) - e^T alpha
s.t. 0 <= alpha_i,
For L2-regularized L2-loss SVC (-s 2), we solve
min_w w^Tw/2 + C \sum max(0, 1- y_i w^Tx_i)^2
For L2-regularized L1-loss SVC dual (-s 3), we solve
min_alpha 0.5(alpha^T Q alpha) - e^T alpha
s.t. 0 <= alpha_i <= C,
For L1-regularized L2-loss SVC (-s 5), we solve
min_w \sum |w_j| + C \sum max(0, 1- y_i w^Tx_i)^2
For L1-regularized logistic regression (-s 6), we solve
min_w \sum |w_j| + C \sum log(1 + exp(-y_i w^Tx_i))
For L2-regularized logistic regression (-s 7), we solve
min_alpha 0.5(alpha^T Q alpha) + \sum alpha_i*log(alpha_i) + \sum (C-alpha_i)*log(C-alpha_i) - a constant
s.t. 0 <= alpha_i <= C,
where
Q is a matrix with Q_ij = y_i y_j x_i^T x_j.
For L2-regularized L2-loss SVR (-s 11), we solve
min_w w^Tw/2 + C \sum max(0, |y_i-w^Tx_i|-epsilon)^2
For L2-regularized L2-loss SVR dual (-s 12), we solve
min_beta 0.5(beta^T (Q + lambda I/2/C) beta) - y^T beta + \sum |beta_i|
For L2-regularized L1-loss SVR dual (-s 13), we solve
min_beta 0.5(beta^T Q beta) - y^T beta + \sum |beta_i|
s.t. -C <= beta_i <= C,
where
Q is a matrix with Q_ij = x_i^T x_j.
For one-class SVM dual (-s 21), we solve
min_alpha 0.5(alpha^T Q alpha)
s.t. 0 <= alpha_i <= 1 and \sum alpha_i = nu*l,
where
Q is a matrix with Q_ij = x_i^T x_j.
If bias >= 0, w becomes [w; w_{n+1}] and x becomes [x; bias]. For
example, L2-regularized logistic regression (-s 0) becomes
min_w w^Tw/2 + (w_{n+1})^2/2 + C \sum log(1 + exp(-y_i [w; w_{n+1}]^T[x_i; bias]))
Some may prefer not having (w_{n+1})^2/2 (i.e., bias variable not
regularized). For primal solvers (-s 0, 2, 5, 6, 11), we provide an
option -R to remove (w_{n+1})^2/2. However, -R is generally not needed
as for most data with/without (w_{n+1})^2/2 give similar performances.
The primal-dual relationship implies that -s 1 and -s 2 give the same
model, -s 0 and -s 7 give the same, and -s 11 and -s 12 give the same.
We implement 1-vs-the rest multi-class strategy for classification.
In training i vs. non_i, their C parameters are (weight from -wi)*C
and C, respectively. If there are only two classes, we train only one
model. Thus weight1*C vs. weight2*C is used. See examples below.
We also implement multi-class SVM by Crammer and Singer (-s 4):
min_{w_m, \xi_i} 0.5 \sum_m ||w_m||^2 + C \sum_i \xi_i
s.t. w^T_{y_i} x_i - w^T_m x_i >= \e^m_i - \xi_i \forall m,i
where e^m_i = 0 if y_i = m,
e^m_i = 1 if y_i != m,
Here we solve the dual problem:
min_{\alpha} 0.5 \sum_m ||w_m(\alpha)||^2 + \sum_i \sum_m e^m_i alpha^m_i
s.t. \alpha^m_i <= C^m_i \forall m,i , \sum_m \alpha^m_i=0 \forall i
where w_m(\alpha) = \sum_i \alpha^m_i x_i,
and C^m_i = C if m = y_i,
C^m_i = 0 if m != y_i.
`predict' Usage
===============
Usage: predict [options] test_file model_file output_file
options:
-b probability_estimates: whether to output probability estimates, 0 or 1 (default 0); currently for logistic regression only
-q : quiet mode (no outputs)
Note that -b is only needed in the prediction phase. This is different
from the setting of LIBSVM.
`svm-scale' Usage
=================
See LIBSVM README.
Examples
========
> train data_file
Train linear SVM with L2-loss function.
> train -s 0 data_file
Train a logistic regression model.
> train -s 21 -n 0.1 data_file
Train a linear one-class SVM which selects roughly 10% data as outliers.
> train -v 5 -e 0.001 data_file
Do five-fold cross-validation using L2-loss SVM.
Use a smaller stopping tolerance 0.001 than the default
0.1 if you want more accurate solutions.
> train -C data_file
...
Best C = 0.000488281 CV accuracy = 83.3333%
> train -c 0.000488281 data_file
Conduct cross validation many times by L2-loss SVM and find the
parameter C which achieves the best cross validation accuracy. Then
use the selected C to train the data for getting a model.
> train -C -s 0 -v 3 -c 0.5 -e 0.0001 data_file
For parameter selection by -C, users can specify other
solvers (currently -s 0, -s 2 and -s 11 are supported) and
different number of CV folds. Further, users can use
the -c option to specify the smallest C value of the
search range. This option is useful when users want to
rerun the parameter selection procedure from a specified
C under a different setting, such as a stricter stopping
tolerance -e 0.0001 in the above example. Similarly, for
-s 11, users can use the -p option to specify the
maximal p value of the search range.
> train -c 10 -w1 2 -w2 5 -w3 2 four_class_data_file
Train four classifiers:
positive negative Cp Cn
class 1 class 2,3,4. 20 10
class 2 class 1,3,4. 50 10
class 3 class 1,2,4. 20 10
class 4 class 1,2,3. 10 10
> train -c 10 -w3 1 -w2 5 two_class_data_file
If there are only two classes, we train ONE model.
The C values for the two classes are 10 and 50.
> predict -b 1 test_file data_file.model output_file
Output probability estimates (for logistic regression only).
Library Usage
=============
These functions and structures are declared in the header file `linear.h'.
You can see `train.c' and `predict.c' for examples showing how to use them.
We define LIBLINEAR_VERSION and declare `extern int liblinear_version; '
in linear.h, so you can check the version number.
- Function: model* train(const struct problem *prob,
const struct parameter *param);
This function constructs and returns a linear classification
or regression model according to the given training data and
parameters.
struct problem describes the problem:
struct problem
{
int l, n;
double *y;
struct feature_node **x;
double bias;
};
where `l' is the number of training data. If bias >= 0, we assume
that one additional feature is added to the end of each data
instance. `n' is the number of feature (including the bias feature
if bias >= 0). `y' is an array containing the target values. (integers
in classification, real numbers in regression) And `x' is an array
of pointers, each of which points to a sparse representation (array
of feature_node) of one training vector.
For example, if we have the following training data:
LABEL ATTR1 ATTR2 ATTR3 ATTR4 ATTR5
----- ----- ----- ----- ----- -----
1 0 0.1 0.2 0 0
2 0 0.1 0.3 -1.2 0
1 0.4 0 0 0 0
2 0 0.1 0 1.4 0.5
3 -0.1 -0.2 0.1 1.1 0.1
and bias = 1, then the components of problem are:
l = 5
n = 6
y -> 1 2 1 2 3
x -> [ ] -> (2,0.1) (3,0.2) (6,1) (-1,?)
[ ] -> (2,0.1) (3,0.3) (4,-1.2) (6,1) (-1,?)
[ ] -> (1,0.4) (6,1) (-1,?)
[ ] -> (2,0.1) (4,1.4) (5,0.5) (6,1) (-1,?)
[ ] -> (1,-0.1) (2,-0.2) (3,0.1) (4,1.1) (5,0.1) (6,1) (-1,?)
struct parameter describes the parameters of a linear classification
or regression model:
struct parameter
{
int solver_type;
/* these are for training only */
double eps; /* stopping tolerance */
double C;
double nu; /* one-class SVM only */
int nr_weight;
int *weight_label;
double* weight;
double p;
double *init_sol;
int regularize_bias;
bool w_recalc; /* for -s 1, 3; may be extended to -s 12, 13, 21 */
};
solver_type can be one of L2R_LR, L2R_L2LOSS_SVC_DUAL, L2R_L2LOSS_SVC, L2R_L1LOSS_SVC_DUAL, MCSVM_CS, L1R_L2LOSS_SVC, L1R_LR, L2R_LR_DUAL, L2R_L2LOSS_SVR, L2R_L2LOSS_SVR_DUAL, L2R_L1LOSS_SVR_DUAL, ONECLASS_SVM.
for classification
L2R_LR L2-regularized logistic regression (primal)
L2R_L2LOSS_SVC_DUAL L2-regularized L2-loss support vector classification (dual)
L2R_L2LOSS_SVC L2-regularized L2-loss support vector classification (primal)
L2R_L1LOSS_SVC_DUAL L2-regularized L1-loss support vector classification (dual)
MCSVM_CS support vector classification by Crammer and Singer
L1R_L2LOSS_SVC L1-regularized L2-loss support vector classification
L1R_LR L1-regularized logistic regression
L2R_LR_DUAL L2-regularized logistic regression (dual)
for regression
L2R_L2LOSS_SVR L2-regularized L2-loss support vector regression (primal)
L2R_L2LOSS_SVR_DUAL L2-regularized L2-loss support vector regression (dual)
L2R_L1LOSS_SVR_DUAL L2-regularized L1-loss support vector regression (dual)
for outlier detection
ONECLASS_SVM one-class support vector machine (dual)
C is the cost of constraints violation.
p is the sensitiveness of loss of support vector regression.
nu in ONECLASS_SVM approximates the fraction of data as outliers.
eps is the stopping criterion.
nr_weight, weight_label, and weight are used to change the penalty
for some classes (If the weight for a class is not changed, it is
set to 1). This is useful for training classifier using unbalanced
input data or with asymmetric misclassification cost.
nr_weight is the number of elements in the array weight_label and
weight. Each weight[i] corresponds to weight_label[i], meaning that
the penalty of class weight_label[i] is scaled by a factor of weight[i].
If you do not want to change penalty for any of the classes,
just set nr_weight to 0.
init_sol includes the initial weight vectors (supported for only some
solvers). See the explanation of the vector w in the model
structure.
regularize_bias is the flag for bias regularization. By default it is set
to be 1. If you don't want to regularize the bias, set it to 0 with
specifying the bias in the problem structure to be 1. (DON'T use it unless
you know what it is.)
w_recalc is the flag for recalculating w after optimization
with a dual-based solver. This may further reduces the weight density
when the data is sparse. The default value is set as false for time
efficiency. Currently it only takes effect in -s 1 and 3.
*NOTE* To avoid wrong parameters, check_parameter() should be
called before train().
struct model stores the model obtained from the training procedure:
struct model
{
struct parameter param;
int nr_class; /* number of classes */
int nr_feature;
double *w;
int *label; /* label of each class */
double bias;
double rho; /* one-class SVM only */
};
param describes the parameters used to obtain the model.
nr_class is the number of classes for classification. It is a
non-negative integer with special cases of 0 (no training data at
all) and 1 (all training data in one class). For regression and
one-class SVM, nr_class = 2.
nr_feature is the number of features.
The array w gives feature weights. Its size is
nr_feature*nr_class but is nr_feature if nr_class = 2 and the
solver is not MCSVM_CS (see more explanation below). We use one
against the rest for multi-class classification, so each feature
index corresponds to nr_class weight values. Weights are
organized in the following way
+------------------+------------------+------------+
| nr_class weights | nr_class weights | ...
| for 1st feature | for 2nd feature |
+------------------+------------------+------------+
The array label stores class labels.
When nr_class = 1 or 2, classification solvers (MCSVM_CS
excluded) return a single vector of weights by considering
label[0] as positive in training.
If bias >= 0, x becomes [x; bias]. The number of features is
increased by one, so w is a (nr_feature+1)*nr_class array. The
value of bias is stored in the variable bias.
rho is the bias term used in one-class SVM only.
- Function: void cross_validation(const problem *prob, const parameter *param, int nr_fold, double *target);
This function conducts cross validation. Data are separated to
nr_fold folds. Under given parameters, sequentially each fold is
validated using the model from training the remaining. Predicted
labels in the validation process are stored in the array called
target.
The format of prob is same as that for train().
- Function: void find_parameters(const struct problem *prob,
const struct parameter *param, int nr_fold, double start_C,
double start_p, double *best_C, double *best_p, double *best_score);
This function is similar to cross_validation. However, instead of
conducting cross validation under specified parameters. For -s 0, 2, it
conducts cross validation many times under parameters C = start_C,
2*start_C, 4*start_C, 8*start_C, ..., and finds the best one with
the highest cross validation accuracy. For -s 11, it conducts cross
validation many times with a two-fold loop. The outer loop considers a
default sequence of p = 19/20*max_p, ..., 1/20*max_p, 0 and
under each p value the inner loop considers a sequence of parameters
C = start_C, 2*start_C, 4*start_C, ..., and finds the best one with the
lowest mean squared error.
If start_C <= 0, then this procedure calculates a small enough C
for prob as the start_C. The procedure stops when the models of
all folds become stable or C reaches max_C.
If start_p <= 0, then this procedure calculates a maximal p for prob as
the start_p. Otherwise, the procedure starts with the first
i/20*max_p <= start_p so the outer sequence is i/20*max_p,
(i-1)/20*max_p, ..., 0.
The best C, the best p, and the corresponding accuracy (or MSE) are
assigned to *best_C, *best_p and *best_score, respectively. For
classification, *best_p is not used, and the returned value is -1.
- Function: double predict(const model *model_, const feature_node *x);
For a classification model, the predicted class for x is returned.
For a regression model, the function value of x calculated using
the model is returned.
- Function: double predict_values(const struct model *model_,
const struct feature_node *x, double* dec_values);
This function gives nr_w decision values in the array dec_values.
nr_w=1 if regression is applied or the number of classes is two. An exception is
multi-class SVM by Crammer and Singer (-s 4), where nr_w = 2 if there are two classes. For all other situations, nr_w is the
number of classes.
We implement one-vs-the rest multi-class strategy (-s 0,1,2,3,5,6,7)
and multi-class SVM by Crammer and Singer (-s 4) for multi-class SVM.
The class with the highest decision value is returned.
- Function: double predict_probability(const struct model *model_,
const struct feature_node *x, double* prob_estimates);
This function gives nr_class probability estimates in the array
prob_estimates. nr_class can be obtained from the function
get_nr_class. The class with the highest probability is
returned. Currently, we support only the probability outputs of
logistic regression.
- Function: int get_nr_feature(const model *model_);
The function gives the number of attributes of the model.
- Function: int get_nr_class(const model *model_);
The function gives the number of classes of the model.
For a regression model, 2 is returned.
- Function: void get_labels(const model *model_, int* label);
This function outputs the name of labels into an array called label.
For a regression model, label is unchanged.
- Function: double get_decfun_coef(const struct model *model_, int feat_idx,
int label_idx);
This function gives the coefficient for the feature with feature index =
feat_idx and the class with label index = label_idx. Note that feat_idx
starts from 1, while label_idx starts from 0. If feat_idx is not in the
valid range (1 to nr_feature), then a zero value will be returned. For
classification models, if label_idx is not in the valid range (0 to
nr_class-1), then a zero value will be returned; for regression models
and one-class SVM models, label_idx is ignored.
- Function: double get_decfun_bias(const struct model *model_, int label_idx);
This function gives the bias term corresponding to the class with the
label_idx. For classification models, if label_idx is not in a valid range
(0 to nr_class-1), then a zero value will be returned; for regression
models, label_idx is ignored. This function cannot be called for a one-class
SVM model.
- Function: double get_decfun_rho(const struct model *model_);
This function gives rho, the bias term used in one-class SVM only. This
function can only be called for a one-class SVM model.
- Function: const char *check_parameter(const struct problem *prob,
const struct parameter *param);
This function checks whether the parameters are within the feasible
range of the problem. This function should be called before calling
train() and cross_validation(). It returns NULL if the
parameters are feasible, otherwise an error message is returned.
- Function: int check_probability_model(const struct model *model);
This function returns 1 if the model supports probability output;
otherwise, it returns 0.
- Function: int check_regression_model(const struct model *model);
This function returns 1 if the model is a regression model; otherwise
it returns 0.
- Function: int check_oneclass_model(const struct model *model);
This function returns 1 if the model is a one-class SVM model; otherwise
it returns 0.
- Function: int save_model(const char *model_file_name,
const struct model *model_);
This function saves a model to a file; returns 0 on success, or -1
if an error occurs.
- Function: struct model *load_model(const char *model_file_name);
This function returns a pointer to the model read from the file,
or a null pointer if the model could not be loaded.
- Function: void free_model_content(struct model *model_ptr);
This function frees the memory used by the entries in a model structure.
- Function: void free_and_destroy_model(struct model **model_ptr_ptr);
This function frees the memory used by a model and destroys the model
structure.
- Function: void destroy_param(struct parameter *param);
This function frees the memory used by a parameter set.
- Function: void set_print_string_function(void (*print_func)(const char *));
Users can specify their output format by a function. Use
set_print_string_function(NULL);
for default printing to stdout.
Please note that this function is not thread-safe. When multiple threads load or
use the same dynamic library (for example, liblinear.so.6), they actually share the
same memory space of the dynamic library, which results in all threads modifying
the same static function pointer, liblinear_print_string, in linear.cpp when they
call this function.
For example, suppose we have threads A and B. They call this function sequentially
and pass their own thread-local print_func into it. After that, they both call (*liblinear_print_string)(str)
once. When the last thread finishes setting it (say B), liblinear_print_string
is set to B.print_func. Now, if thread A wants to access liblinear_print_string,
it is actually accessing B.print_func rather than A.print_func, which is incorrect
since we expect to use the functionality of A.print_func.
Even if A.print_func and B.print_func have identical functionality, it is still risky.
Suppose liblinear_print_string is now set to B.print_func, and B deletes B.print_func
after finishing its work. Later, thread A calls liblinear_print_string, but the address
points to, which is B.print_func, has already been deleted. This invalid memory access
will crash the program. To mitigate this issue, in this example, you should ensure that
A.print_func and B.print_func remain valid after threads finish their work. For example,
in Python, you can assign them as global variables.
Building Windows Binaries
=========================
Starting from version 2.48, we no longer provide pre-built Windows binaries,
to build them via Visual C++, use the following steps:
1. Open a dos command box and change to liblinear directory. If
environment variables of VC++ have not been set, type
"C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars64.bat"
You may have to modify the above command according which version of
VC++ or where it is installed.
2. Type
nmake -f Makefile.win clean all
3. (optional) To build shared library liblinear.dll, type
nmake -f Makefile.win lib
4. (Optional) To build 32-bit windows binaries, you must
(1) Setup "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars32.bat" instead of vcvars64.bat
(2) Change CFLAGS in Makefile.win: /D _WIN64 to /D _WIN32
MATLAB/OCTAVE Interface
=======================
Please check the file README in the directory `matlab'.
Python Interface
================
Please check the file README in the directory `python'.
Additional Information
======================
If you find LIBLINEAR helpful, please cite it as
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
LIBLINEAR: A Library for Large Linear Classification, Journal of
Machine Learning Research 9(2008), 1871-1874. Software available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear
For any questions and comments, please send your email to
cjlin@csie.ntu.edu.tw

View File

@@ -0,0 +1,22 @@
AR ?= ar
RANLIB ?= ranlib
HEADERS = blas.h blasp.h
FILES = dnrm2.o daxpy.o ddot.o dscal.o
CFLAGS = $(OPTFLAGS)
FFLAGS = $(OPTFLAGS)
blas: $(FILES) $(HEADERS)
$(AR) rcv blas.a $(FILES)
$(RANLIB) blas.a
clean:
- rm -f *.o
- rm -f *.a
- rm -f *~
.c.o:
$(CC) $(CFLAGS) -c $*.c

View File

@@ -0,0 +1,25 @@
/* blas.h -- C header file for BLAS Ver 1.0 */
/* Jesse Bennett March 23, 2000 */
/** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
#ifndef BLAS_INCLUDE
#define BLAS_INCLUDE
/* Data types specific to BLAS implementation */
typedef struct { float r, i; } fcomplex;
typedef struct { double r, i; } dcomplex;
typedef int blasbool;
#include "blasp.h" /* Prototypes for all BLAS functions */
#define FALSE 0
#define TRUE 1
/* Macro functions */
#define MIN(a,b) ((a) <= (b) ? (a) : (b))
#define MAX(a,b) ((a) >= (b) ? (a) : (b))
#endif

438
liblinear-2.49/blas/blasp.h Normal file
View File

@@ -0,0 +1,438 @@
/* blasp.h -- C prototypes for BLAS Ver 1.0 */
/* Jesse Bennett March 23, 2000 */
/* Functions listed in alphabetical order */
#ifdef __cplusplus
extern "C" {
#endif
#ifdef F2C_COMPAT
void cdotc_(fcomplex *dotval, int *n, fcomplex *cx, int *incx,
fcomplex *cy, int *incy);
void cdotu_(fcomplex *dotval, int *n, fcomplex *cx, int *incx,
fcomplex *cy, int *incy);
double sasum_(int *n, float *sx, int *incx);
double scasum_(int *n, fcomplex *cx, int *incx);
double scnrm2_(int *n, fcomplex *x, int *incx);
double sdot_(int *n, float *sx, int *incx, float *sy, int *incy);
double snrm2_(int *n, float *x, int *incx);
void zdotc_(dcomplex *dotval, int *n, dcomplex *cx, int *incx,
dcomplex *cy, int *incy);
void zdotu_(dcomplex *dotval, int *n, dcomplex *cx, int *incx,
dcomplex *cy, int *incy);
#else
fcomplex cdotc_(int *n, fcomplex *cx, int *incx, fcomplex *cy, int *incy);
fcomplex cdotu_(int *n, fcomplex *cx, int *incx, fcomplex *cy, int *incy);
float sasum_(int *n, float *sx, int *incx);
float scasum_(int *n, fcomplex *cx, int *incx);
float scnrm2_(int *n, fcomplex *x, int *incx);
float sdot_(int *n, float *sx, int *incx, float *sy, int *incy);
float snrm2_(int *n, float *x, int *incx);
dcomplex zdotc_(int *n, dcomplex *cx, int *incx, dcomplex *cy, int *incy);
dcomplex zdotu_(int *n, dcomplex *cx, int *incx, dcomplex *cy, int *incy);
#endif
/* Remaining functions listed in alphabetical order */
int caxpy_(int *n, fcomplex *ca, fcomplex *cx, int *incx, fcomplex *cy,
int *incy);
int ccopy_(int *n, fcomplex *cx, int *incx, fcomplex *cy, int *incy);
int cgbmv_(char *trans, int *m, int *n, int *kl, int *ku,
fcomplex *alpha, fcomplex *a, int *lda, fcomplex *x, int *incx,
fcomplex *beta, fcomplex *y, int *incy);
int cgemm_(char *transa, char *transb, int *m, int *n, int *k,
fcomplex *alpha, fcomplex *a, int *lda, fcomplex *b, int *ldb,
fcomplex *beta, fcomplex *c, int *ldc);
int cgemv_(char *trans, int *m, int *n, fcomplex *alpha, fcomplex *a,
int *lda, fcomplex *x, int *incx, fcomplex *beta, fcomplex *y,
int *incy);
int cgerc_(int *m, int *n, fcomplex *alpha, fcomplex *x, int *incx,
fcomplex *y, int *incy, fcomplex *a, int *lda);
int cgeru_(int *m, int *n, fcomplex *alpha, fcomplex *x, int *incx,
fcomplex *y, int *incy, fcomplex *a, int *lda);
int chbmv_(char *uplo, int *n, int *k, fcomplex *alpha, fcomplex *a,
int *lda, fcomplex *x, int *incx, fcomplex *beta, fcomplex *y,
int *incy);
int chemm_(char *side, char *uplo, int *m, int *n, fcomplex *alpha,
fcomplex *a, int *lda, fcomplex *b, int *ldb, fcomplex *beta,
fcomplex *c, int *ldc);
int chemv_(char *uplo, int *n, fcomplex *alpha, fcomplex *a, int *lda,
fcomplex *x, int *incx, fcomplex *beta, fcomplex *y, int *incy);
int cher_(char *uplo, int *n, float *alpha, fcomplex *x, int *incx,
fcomplex *a, int *lda);
int cher2_(char *uplo, int *n, fcomplex *alpha, fcomplex *x, int *incx,
fcomplex *y, int *incy, fcomplex *a, int *lda);
int cher2k_(char *uplo, char *trans, int *n, int *k, fcomplex *alpha,
fcomplex *a, int *lda, fcomplex *b, int *ldb, float *beta,
fcomplex *c, int *ldc);
int cherk_(char *uplo, char *trans, int *n, int *k, float *alpha,
fcomplex *a, int *lda, float *beta, fcomplex *c, int *ldc);
int chpmv_(char *uplo, int *n, fcomplex *alpha, fcomplex *ap, fcomplex *x,
int *incx, fcomplex *beta, fcomplex *y, int *incy);
int chpr_(char *uplo, int *n, float *alpha, fcomplex *x, int *incx,
fcomplex *ap);
int chpr2_(char *uplo, int *n, fcomplex *alpha, fcomplex *x, int *incx,
fcomplex *y, int *incy, fcomplex *ap);
int crotg_(fcomplex *ca, fcomplex *cb, float *c, fcomplex *s);
int cscal_(int *n, fcomplex *ca, fcomplex *cx, int *incx);
int csscal_(int *n, float *sa, fcomplex *cx, int *incx);
int cswap_(int *n, fcomplex *cx, int *incx, fcomplex *cy, int *incy);
int csymm_(char *side, char *uplo, int *m, int *n, fcomplex *alpha,
fcomplex *a, int *lda, fcomplex *b, int *ldb, fcomplex *beta,
fcomplex *c, int *ldc);
int csyr2k_(char *uplo, char *trans, int *n, int *k, fcomplex *alpha,
fcomplex *a, int *lda, fcomplex *b, int *ldb, fcomplex *beta,
fcomplex *c, int *ldc);
int csyrk_(char *uplo, char *trans, int *n, int *k, fcomplex *alpha,
fcomplex *a, int *lda, fcomplex *beta, fcomplex *c, int *ldc);
int ctbmv_(char *uplo, char *trans, char *diag, int *n, int *k,
fcomplex *a, int *lda, fcomplex *x, int *incx);
int ctbsv_(char *uplo, char *trans, char *diag, int *n, int *k,
fcomplex *a, int *lda, fcomplex *x, int *incx);
int ctpmv_(char *uplo, char *trans, char *diag, int *n, fcomplex *ap,
fcomplex *x, int *incx);
int ctpsv_(char *uplo, char *trans, char *diag, int *n, fcomplex *ap,
fcomplex *x, int *incx);
int ctrmm_(char *side, char *uplo, char *transa, char *diag, int *m,
int *n, fcomplex *alpha, fcomplex *a, int *lda, fcomplex *b,
int *ldb);
int ctrmv_(char *uplo, char *trans, char *diag, int *n, fcomplex *a,
int *lda, fcomplex *x, int *incx);
int ctrsm_(char *side, char *uplo, char *transa, char *diag, int *m,
int *n, fcomplex *alpha, fcomplex *a, int *lda, fcomplex *b,
int *ldb);
int ctrsv_(char *uplo, char *trans, char *diag, int *n, fcomplex *a,
int *lda, fcomplex *x, int *incx);
int daxpy_(int *n, double *sa, double *sx, int *incx, double *sy,
int *incy);
int dcopy_(int *n, double *sx, int *incx, double *sy, int *incy);
int dgbmv_(char *trans, int *m, int *n, int *kl, int *ku,
double *alpha, double *a, int *lda, double *x, int *incx,
double *beta, double *y, int *incy);
int dgemm_(char *transa, char *transb, int *m, int *n, int *k,
double *alpha, double *a, int *lda, double *b, int *ldb,
double *beta, double *c, int *ldc);
int dgemv_(char *trans, int *m, int *n, double *alpha, double *a,
int *lda, double *x, int *incx, double *beta, double *y,
int *incy);
int dger_(int *m, int *n, double *alpha, double *x, int *incx,
double *y, int *incy, double *a, int *lda);
int drot_(int *n, double *sx, int *incx, double *sy, int *incy,
double *c, double *s);
int drotg_(double *sa, double *sb, double *c, double *s);
int dsbmv_(char *uplo, int *n, int *k, double *alpha, double *a,
int *lda, double *x, int *incx, double *beta, double *y,
int *incy);
int dscal_(int *n, double *sa, double *sx, int *incx);
int dspmv_(char *uplo, int *n, double *alpha, double *ap, double *x,
int *incx, double *beta, double *y, int *incy);
int dspr_(char *uplo, int *n, double *alpha, double *x, int *incx,
double *ap);
int dspr2_(char *uplo, int *n, double *alpha, double *x, int *incx,
double *y, int *incy, double *ap);
int dswap_(int *n, double *sx, int *incx, double *sy, int *incy);
int dsymm_(char *side, char *uplo, int *m, int *n, double *alpha,
double *a, int *lda, double *b, int *ldb, double *beta,
double *c, int *ldc);
int dsymv_(char *uplo, int *n, double *alpha, double *a, int *lda,
double *x, int *incx, double *beta, double *y, int *incy);
int dsyr_(char *uplo, int *n, double *alpha, double *x, int *incx,
double *a, int *lda);
int dsyr2_(char *uplo, int *n, double *alpha, double *x, int *incx,
double *y, int *incy, double *a, int *lda);
int dsyr2k_(char *uplo, char *trans, int *n, int *k, double *alpha,
double *a, int *lda, double *b, int *ldb, double *beta,
double *c, int *ldc);
int dsyrk_(char *uplo, char *trans, int *n, int *k, double *alpha,
double *a, int *lda, double *beta, double *c, int *ldc);
int dtbmv_(char *uplo, char *trans, char *diag, int *n, int *k,
double *a, int *lda, double *x, int *incx);
int dtbsv_(char *uplo, char *trans, char *diag, int *n, int *k,
double *a, int *lda, double *x, int *incx);
int dtpmv_(char *uplo, char *trans, char *diag, int *n, double *ap,
double *x, int *incx);
int dtpsv_(char *uplo, char *trans, char *diag, int *n, double *ap,
double *x, int *incx);
int dtrmm_(char *side, char *uplo, char *transa, char *diag, int *m,
int *n, double *alpha, double *a, int *lda, double *b,
int *ldb);
int dtrmv_(char *uplo, char *trans, char *diag, int *n, double *a,
int *lda, double *x, int *incx);
int dtrsm_(char *side, char *uplo, char *transa, char *diag, int *m,
int *n, double *alpha, double *a, int *lda, double *b,
int *ldb);
int dtrsv_(char *uplo, char *trans, char *diag, int *n, double *a,
int *lda, double *x, int *incx);
int saxpy_(int *n, float *sa, float *sx, int *incx, float *sy, int *incy);
int scopy_(int *n, float *sx, int *incx, float *sy, int *incy);
int sgbmv_(char *trans, int *m, int *n, int *kl, int *ku,
float *alpha, float *a, int *lda, float *x, int *incx,
float *beta, float *y, int *incy);
int sgemm_(char *transa, char *transb, int *m, int *n, int *k,
float *alpha, float *a, int *lda, float *b, int *ldb,
float *beta, float *c, int *ldc);
int sgemv_(char *trans, int *m, int *n, float *alpha, float *a,
int *lda, float *x, int *incx, float *beta, float *y,
int *incy);
int sger_(int *m, int *n, float *alpha, float *x, int *incx,
float *y, int *incy, float *a, int *lda);
int srot_(int *n, float *sx, int *incx, float *sy, int *incy,
float *c, float *s);
int srotg_(float *sa, float *sb, float *c, float *s);
int ssbmv_(char *uplo, int *n, int *k, float *alpha, float *a,
int *lda, float *x, int *incx, float *beta, float *y,
int *incy);
int sscal_(int *n, float *sa, float *sx, int *incx);
int sspmv_(char *uplo, int *n, float *alpha, float *ap, float *x,
int *incx, float *beta, float *y, int *incy);
int sspr_(char *uplo, int *n, float *alpha, float *x, int *incx,
float *ap);
int sspr2_(char *uplo, int *n, float *alpha, float *x, int *incx,
float *y, int *incy, float *ap);
int sswap_(int *n, float *sx, int *incx, float *sy, int *incy);
int ssymm_(char *side, char *uplo, int *m, int *n, float *alpha,
float *a, int *lda, float *b, int *ldb, float *beta,
float *c, int *ldc);
int ssymv_(char *uplo, int *n, float *alpha, float *a, int *lda,
float *x, int *incx, float *beta, float *y, int *incy);
int ssyr_(char *uplo, int *n, float *alpha, float *x, int *incx,
float *a, int *lda);
int ssyr2_(char *uplo, int *n, float *alpha, float *x, int *incx,
float *y, int *incy, float *a, int *lda);
int ssyr2k_(char *uplo, char *trans, int *n, int *k, float *alpha,
float *a, int *lda, float *b, int *ldb, float *beta,
float *c, int *ldc);
int ssyrk_(char *uplo, char *trans, int *n, int *k, float *alpha,
float *a, int *lda, float *beta, float *c, int *ldc);
int stbmv_(char *uplo, char *trans, char *diag, int *n, int *k,
float *a, int *lda, float *x, int *incx);
int stbsv_(char *uplo, char *trans, char *diag, int *n, int *k,
float *a, int *lda, float *x, int *incx);
int stpmv_(char *uplo, char *trans, char *diag, int *n, float *ap,
float *x, int *incx);
int stpsv_(char *uplo, char *trans, char *diag, int *n, float *ap,
float *x, int *incx);
int strmm_(char *side, char *uplo, char *transa, char *diag, int *m,
int *n, float *alpha, float *a, int *lda, float *b,
int *ldb);
int strmv_(char *uplo, char *trans, char *diag, int *n, float *a,
int *lda, float *x, int *incx);
int strsm_(char *side, char *uplo, char *transa, char *diag, int *m,
int *n, float *alpha, float *a, int *lda, float *b,
int *ldb);
int strsv_(char *uplo, char *trans, char *diag, int *n, float *a,
int *lda, float *x, int *incx);
int zaxpy_(int *n, dcomplex *ca, dcomplex *cx, int *incx, dcomplex *cy,
int *incy);
int zcopy_(int *n, dcomplex *cx, int *incx, dcomplex *cy, int *incy);
int zdscal_(int *n, double *sa, dcomplex *cx, int *incx);
int zgbmv_(char *trans, int *m, int *n, int *kl, int *ku,
dcomplex *alpha, dcomplex *a, int *lda, dcomplex *x, int *incx,
dcomplex *beta, dcomplex *y, int *incy);
int zgemm_(char *transa, char *transb, int *m, int *n, int *k,
dcomplex *alpha, dcomplex *a, int *lda, dcomplex *b, int *ldb,
dcomplex *beta, dcomplex *c, int *ldc);
int zgemv_(char *trans, int *m, int *n, dcomplex *alpha, dcomplex *a,
int *lda, dcomplex *x, int *incx, dcomplex *beta, dcomplex *y,
int *incy);
int zgerc_(int *m, int *n, dcomplex *alpha, dcomplex *x, int *incx,
dcomplex *y, int *incy, dcomplex *a, int *lda);
int zgeru_(int *m, int *n, dcomplex *alpha, dcomplex *x, int *incx,
dcomplex *y, int *incy, dcomplex *a, int *lda);
int zhbmv_(char *uplo, int *n, int *k, dcomplex *alpha, dcomplex *a,
int *lda, dcomplex *x, int *incx, dcomplex *beta, dcomplex *y,
int *incy);
int zhemm_(char *side, char *uplo, int *m, int *n, dcomplex *alpha,
dcomplex *a, int *lda, dcomplex *b, int *ldb, dcomplex *beta,
dcomplex *c, int *ldc);
int zhemv_(char *uplo, int *n, dcomplex *alpha, dcomplex *a, int *lda,
dcomplex *x, int *incx, dcomplex *beta, dcomplex *y, int *incy);
int zher_(char *uplo, int *n, double *alpha, dcomplex *x, int *incx,
dcomplex *a, int *lda);
int zher2_(char *uplo, int *n, dcomplex *alpha, dcomplex *x, int *incx,
dcomplex *y, int *incy, dcomplex *a, int *lda);
int zher2k_(char *uplo, char *trans, int *n, int *k, dcomplex *alpha,
dcomplex *a, int *lda, dcomplex *b, int *ldb, double *beta,
dcomplex *c, int *ldc);
int zherk_(char *uplo, char *trans, int *n, int *k, double *alpha,
dcomplex *a, int *lda, double *beta, dcomplex *c, int *ldc);
int zhpmv_(char *uplo, int *n, dcomplex *alpha, dcomplex *ap, dcomplex *x,
int *incx, dcomplex *beta, dcomplex *y, int *incy);
int zhpr_(char *uplo, int *n, double *alpha, dcomplex *x, int *incx,
dcomplex *ap);
int zhpr2_(char *uplo, int *n, dcomplex *alpha, dcomplex *x, int *incx,
dcomplex *y, int *incy, dcomplex *ap);
int zrotg_(dcomplex *ca, dcomplex *cb, double *c, dcomplex *s);
int zscal_(int *n, dcomplex *ca, dcomplex *cx, int *incx);
int zswap_(int *n, dcomplex *cx, int *incx, dcomplex *cy, int *incy);
int zsymm_(char *side, char *uplo, int *m, int *n, dcomplex *alpha,
dcomplex *a, int *lda, dcomplex *b, int *ldb, dcomplex *beta,
dcomplex *c, int *ldc);
int zsyr2k_(char *uplo, char *trans, int *n, int *k, dcomplex *alpha,
dcomplex *a, int *lda, dcomplex *b, int *ldb, dcomplex *beta,
dcomplex *c, int *ldc);
int zsyrk_(char *uplo, char *trans, int *n, int *k, dcomplex *alpha,
dcomplex *a, int *lda, dcomplex *beta, dcomplex *c, int *ldc);
int ztbmv_(char *uplo, char *trans, char *diag, int *n, int *k,
dcomplex *a, int *lda, dcomplex *x, int *incx);
int ztbsv_(char *uplo, char *trans, char *diag, int *n, int *k,
dcomplex *a, int *lda, dcomplex *x, int *incx);
int ztpmv_(char *uplo, char *trans, char *diag, int *n, dcomplex *ap,
dcomplex *x, int *incx);
int ztpsv_(char *uplo, char *trans, char *diag, int *n, dcomplex *ap,
dcomplex *x, int *incx);
int ztrmm_(char *side, char *uplo, char *transa, char *diag, int *m,
int *n, dcomplex *alpha, dcomplex *a, int *lda, dcomplex *b,
int *ldb);
int ztrmv_(char *uplo, char *trans, char *diag, int *n, dcomplex *a,
int *lda, dcomplex *x, int *incx);
int ztrsm_(char *side, char *uplo, char *transa, char *diag, int *m,
int *n, dcomplex *alpha, dcomplex *a, int *lda, dcomplex *b,
int *ldb);
int ztrsv_(char *uplo, char *trans, char *diag, int *n, dcomplex *a,
int *lda, dcomplex *x, int *incx);
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,57 @@
#include "blas.h"
#ifdef __cplusplus
extern "C" {
#endif
int daxpy_(int *n, double *sa, double *sx, int *incx, double *sy,
int *incy)
{
long int i, m, ix, iy, nn, iincx, iincy;
register double ssa;
/* constant times a vector plus a vector.
uses unrolled loop for increments equal to one.
jack dongarra, linpack, 3/11/78.
modified 12/3/93, array(1) declarations changed to array(*) */
/* Dereference inputs */
nn = *n;
ssa = *sa;
iincx = *incx;
iincy = *incy;
if( nn > 0 && ssa != 0.0 )
{
if (iincx == 1 && iincy == 1) /* code for both increments equal to 1 */
{
m = nn-3;
for (i = 0; i < m; i += 4)
{
sy[i] += ssa * sx[i];
sy[i+1] += ssa * sx[i+1];
sy[i+2] += ssa * sx[i+2];
sy[i+3] += ssa * sx[i+3];
}
for ( ; i < nn; ++i) /* clean-up loop */
sy[i] += ssa * sx[i];
}
else /* code for unequal increments or equal increments not equal to 1 */
{
ix = iincx >= 0 ? 0 : (1 - nn) * iincx;
iy = iincy >= 0 ? 0 : (1 - nn) * iincy;
for (i = 0; i < nn; i++)
{
sy[iy] += ssa * sx[ix];
ix += iincx;
iy += iincy;
}
}
}
return 0;
} /* daxpy_ */
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,58 @@
#include "blas.h"
#ifdef __cplusplus
extern "C" {
#endif
double ddot_(int *n, double *sx, int *incx, double *sy, int *incy)
{
long int i, m, nn, iincx, iincy;
double stemp;
long int ix, iy;
/* forms the dot product of two vectors.
uses unrolled loops for increments equal to one.
jack dongarra, linpack, 3/11/78.
modified 12/3/93, array(1) declarations changed to array(*) */
/* Dereference inputs */
nn = *n;
iincx = *incx;
iincy = *incy;
stemp = 0.0;
if (nn > 0)
{
if (iincx == 1 && iincy == 1) /* code for both increments equal to 1 */
{
m = nn-4;
for (i = 0; i < m; i += 5)
stemp += sx[i] * sy[i] + sx[i+1] * sy[i+1] + sx[i+2] * sy[i+2] +
sx[i+3] * sy[i+3] + sx[i+4] * sy[i+4];
for ( ; i < nn; i++) /* clean-up loop */
stemp += sx[i] * sy[i];
}
else /* code for unequal increments or equal increments not equal to 1 */
{
ix = 0;
iy = 0;
if (iincx < 0)
ix = (1 - nn) * iincx;
if (iincy < 0)
iy = (1 - nn) * iincy;
for (i = 0; i < nn; i++)
{
stemp += sx[ix] * sy[iy];
ix += iincx;
iy += iincy;
}
}
}
return stemp;
} /* ddot_ */
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,70 @@
#include <math.h> /* Needed for fabs() and sqrt() */
#include "blas.h"
#ifdef __cplusplus
extern "C" {
#endif
double dnrm2_(int *n, double *x, int *incx)
{
long int ix, nn, iincx;
double norm, scale, absxi, ssq, temp;
/* DNRM2 returns the euclidean norm of a vector via the function
name, so that
DNRM2 := sqrt( x'*x )
-- This version written on 25-October-1982.
Modified on 14-October-1993 to inline the call to SLASSQ.
Sven Hammarling, Nag Ltd. */
/* Dereference inputs */
nn = *n;
iincx = *incx;
if( nn > 0 && iincx > 0 )
{
if (nn == 1)
{
norm = fabs(x[0]);
}
else
{
scale = 0.0;
ssq = 1.0;
/* The following loop is equivalent to this call to the LAPACK
auxiliary routine: CALL SLASSQ( N, X, INCX, SCALE, SSQ ) */
for (ix=(nn-1)*iincx; ix>=0; ix-=iincx)
{
if (x[ix] != 0.0)
{
absxi = fabs(x[ix]);
if (scale < absxi)
{
temp = scale / absxi;
ssq = ssq * (temp * temp) + 1.0;
scale = absxi;
}
else
{
temp = absxi / scale;
ssq += temp * temp;
}
}
}
norm = scale * sqrt(ssq);
}
}
else
norm = 0.0;
return norm;
} /* dnrm2_ */
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,52 @@
#include "blas.h"
#ifdef __cplusplus
extern "C" {
#endif
int dscal_(int *n, double *sa, double *sx, int *incx)
{
long int i, m, nincx, nn, iincx;
double ssa;
/* scales a vector by a constant.
uses unrolled loops for increment equal to 1.
jack dongarra, linpack, 3/11/78.
modified 3/93 to return if incx .le. 0.
modified 12/3/93, array(1) declarations changed to array(*) */
/* Dereference inputs */
nn = *n;
iincx = *incx;
ssa = *sa;
if (nn > 0 && iincx > 0)
{
if (iincx == 1) /* code for increment equal to 1 */
{
m = nn-4;
for (i = 0; i < m; i += 5)
{
sx[i] = ssa * sx[i];
sx[i+1] = ssa * sx[i+1];
sx[i+2] = ssa * sx[i+2];
sx[i+3] = ssa * sx[i+3];
sx[i+4] = ssa * sx[i+4];
}
for ( ; i < nn; ++i) /* clean-up loop */
sx[i] = ssa * sx[i];
}
else /* code for increment not equal to 1 */
{
nincx = nn * iincx;
for (i = 0; i < nincx; i += iincx)
sx[i] = ssa * sx[i];
}
}
return 0;
} /* dscal_ */
#ifdef __cplusplus
}
#endif

270
liblinear-2.49/heart_scale Normal file
View File

@@ -0,0 +1,270 @@
+1 1:0.708333 2:1 3:1 4:-0.320755 5:-0.105023 6:-1 7:1 8:-0.419847 9:-1 10:-0.225806 12:1 13:-1
-1 1:0.583333 2:-1 3:0.333333 4:-0.603774 5:1 6:-1 7:1 8:0.358779 9:-1 10:-0.483871 12:-1 13:1
+1 1:0.166667 2:1 3:-0.333333 4:-0.433962 5:-0.383562 6:-1 7:-1 8:0.0687023 9:-1 10:-0.903226 11:-1 12:-1 13:1
-1 1:0.458333 2:1 3:1 4:-0.358491 5:-0.374429 6:-1 7:-1 8:-0.480916 9:1 10:-0.935484 12:-0.333333 13:1
-1 1:0.875 2:-1 3:-0.333333 4:-0.509434 5:-0.347032 6:-1 7:1 8:-0.236641 9:1 10:-0.935484 11:-1 12:-0.333333 13:-1
-1 1:0.5 2:1 3:1 4:-0.509434 5:-0.767123 6:-1 7:-1 8:0.0534351 9:-1 10:-0.870968 11:-1 12:-1 13:1
+1 1:0.125 2:1 3:0.333333 4:-0.320755 5:-0.406393 6:1 7:1 8:0.0839695 9:1 10:-0.806452 12:-0.333333 13:0.5
+1 1:0.25 2:1 3:1 4:-0.698113 5:-0.484018 6:-1 7:1 8:0.0839695 9:1 10:-0.612903 12:-0.333333 13:1
+1 1:0.291667 2:1 3:1 4:-0.132075 5:-0.237443 6:-1 7:1 8:0.51145 9:-1 10:-0.612903 12:0.333333 13:1
+1 1:0.416667 2:-1 3:1 4:0.0566038 5:0.283105 6:-1 7:1 8:0.267176 9:-1 10:0.290323 12:1 13:1
-1 1:0.25 2:1 3:1 4:-0.226415 5:-0.506849 6:-1 7:-1 8:0.374046 9:-1 10:-0.83871 12:-1 13:1
-1 2:1 3:1 4:-0.0943396 5:-0.543379 6:-1 7:1 8:-0.389313 9:1 10:-1 11:-1 12:-1 13:1
-1 1:-0.375 2:1 3:0.333333 4:-0.132075 5:-0.502283 6:-1 7:1 8:0.664122 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:0.333333 2:1 3:-1 4:-0.245283 5:-0.506849 6:-1 7:-1 8:0.129771 9:-1 10:-0.16129 12:0.333333 13:-1
-1 1:0.166667 2:-1 3:1 4:-0.358491 5:-0.191781 6:-1 7:1 8:0.343511 9:-1 10:-1 11:-1 12:-0.333333 13:-1
-1 1:0.75 2:-1 3:1 4:-0.660377 5:-0.894977 6:-1 7:-1 8:-0.175573 9:-1 10:-0.483871 12:-1 13:-1
+1 1:-0.291667 2:1 3:1 4:-0.132075 5:-0.155251 6:-1 7:-1 8:-0.251908 9:1 10:-0.419355 12:0.333333 13:1
+1 2:1 3:1 4:-0.132075 5:-0.648402 6:1 7:1 8:0.282443 9:1 11:1 12:-1 13:1
-1 1:0.458333 2:1 3:-1 4:-0.698113 5:-0.611872 6:-1 7:1 8:0.114504 9:1 10:-0.419355 12:-1 13:-1
-1 1:-0.541667 2:1 3:-1 4:-0.132075 5:-0.666667 6:-1 7:-1 8:0.633588 9:1 10:-0.548387 11:-1 12:-1 13:1
+1 1:0.583333 2:1 3:1 4:-0.509434 5:-0.52968 6:-1 7:1 8:-0.114504 9:1 10:-0.16129 12:0.333333 13:1
-1 1:-0.208333 2:1 3:-0.333333 4:-0.320755 5:-0.456621 6:-1 7:1 8:0.664122 9:-1 10:-0.935484 12:-1 13:-1
-1 1:-0.416667 2:1 3:1 4:-0.603774 5:-0.191781 6:-1 7:-1 8:0.679389 9:-1 10:-0.612903 12:-1 13:-1
-1 1:-0.25 2:1 3:1 4:-0.660377 5:-0.643836 6:-1 7:-1 8:0.0992366 9:-1 10:-0.967742 11:-1 12:-1 13:-1
-1 1:0.0416667 2:-1 3:-0.333333 4:-0.283019 5:-0.260274 6:1 7:1 8:0.343511 9:1 10:-1 11:-1 12:-0.333333 13:-1
-1 1:-0.208333 2:-1 3:0.333333 4:-0.320755 5:-0.319635 6:-1 7:-1 8:0.0381679 9:-1 10:-0.935484 11:-1 12:-1 13:-1
-1 1:-0.291667 2:-1 3:1 4:-0.169811 5:-0.465753 6:-1 7:1 8:0.236641 9:1 10:-1 12:-1 13:-1
-1 1:-0.0833333 2:-1 3:0.333333 4:-0.509434 5:-0.228311 6:-1 7:1 8:0.312977 9:-1 10:-0.806452 11:-1 12:-1 13:-1
+1 1:0.208333 2:1 3:0.333333 4:-0.660377 5:-0.525114 6:-1 7:1 8:0.435115 9:-1 10:-0.193548 12:-0.333333 13:1
-1 1:0.75 2:-1 3:0.333333 4:-0.698113 5:-0.365297 6:1 7:1 8:-0.0992366 9:-1 10:-1 11:-1 12:-0.333333 13:-1
+1 1:0.166667 2:1 3:0.333333 4:-0.358491 5:-0.52968 6:-1 7:1 8:0.206107 9:-1 10:-0.870968 12:-0.333333 13:1
-1 1:0.541667 2:1 3:1 4:0.245283 5:-0.534247 6:-1 7:1 8:0.0229008 9:-1 10:-0.258065 11:-1 12:-1 13:0.5
-1 1:-0.666667 2:-1 3:0.333333 4:-0.509434 5:-0.593607 6:-1 7:-1 8:0.51145 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:0.25 2:1 3:1 4:0.433962 5:-0.086758 6:-1 7:1 8:0.0534351 9:1 10:0.0967742 11:1 12:-1 13:1
+1 1:-0.125 2:1 3:1 4:-0.0566038 5:-0.6621 6:-1 7:1 8:-0.160305 9:1 10:-0.709677 12:-1 13:1
+1 1:-0.208333 2:1 3:1 4:-0.320755 5:-0.406393 6:1 7:1 8:0.206107 9:1 10:-1 11:-1 12:0.333333 13:1
+1 1:0.333333 2:1 3:1 4:-0.132075 5:-0.630137 6:-1 7:1 8:0.0229008 9:1 10:-0.387097 11:-1 12:-0.333333 13:1
+1 1:0.25 2:1 3:-1 4:0.245283 5:-0.328767 6:-1 7:1 8:-0.175573 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:-0.458333 2:1 3:0.333333 4:-0.320755 5:-0.753425 6:-1 7:-1 8:0.206107 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:-0.208333 2:1 3:1 4:-0.471698 5:-0.561644 6:-1 7:1 8:0.755725 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:-0.541667 2:1 3:1 4:0.0943396 5:-0.557078 6:-1 7:-1 8:0.679389 9:-1 10:-1 11:-1 12:-1 13:1
-1 1:0.375 2:-1 3:1 4:-0.433962 5:-0.621005 6:-1 7:-1 8:0.40458 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:-0.375 2:1 3:0.333333 4:-0.320755 5:-0.511416 6:-1 7:-1 8:0.648855 9:1 10:-0.870968 11:-1 12:-1 13:-1
-1 1:-0.291667 2:1 3:-0.333333 4:-0.867925 5:-0.675799 6:1 7:-1 8:0.29771 9:-1 10:-1 11:-1 12:-1 13:1
+1 1:0.25 2:1 3:0.333333 4:-0.396226 5:-0.579909 6:1 7:-1 8:-0.0381679 9:-1 10:-0.290323 12:-0.333333 13:0.5
-1 1:0.208333 2:1 3:0.333333 4:-0.132075 5:-0.611872 6:1 7:1 8:0.435115 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:-0.166667 2:1 3:0.333333 4:-0.54717 5:-0.894977 6:-1 7:1 8:-0.160305 9:-1 10:-0.741935 11:-1 12:1 13:-1
+1 1:-0.375 2:1 3:1 4:-0.698113 5:-0.675799 6:-1 7:1 8:0.618321 9:-1 10:-1 11:-1 12:-0.333333 13:-1
+1 1:0.541667 2:1 3:-0.333333 4:0.245283 5:-0.452055 6:-1 7:-1 8:-0.251908 9:1 10:-1 12:1 13:0.5
+1 1:0.5 2:-1 3:1 4:0.0566038 5:-0.547945 6:-1 7:1 8:-0.343511 9:-1 10:-0.677419 12:1 13:1
+1 1:-0.458333 2:1 3:1 4:-0.207547 5:-0.136986 6:-1 7:-1 8:-0.175573 9:1 10:-0.419355 12:-1 13:0.5
-1 1:-0.0416667 2:1 3:-0.333333 4:-0.358491 5:-0.639269 6:1 7:-1 8:0.725191 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:0.5 2:-1 3:0.333333 4:-0.132075 5:0.328767 6:1 7:1 8:0.312977 9:-1 10:-0.741935 11:-1 12:-0.333333 13:-1
-1 1:0.416667 2:-1 3:-0.333333 4:-0.132075 5:-0.684932 6:-1 7:-1 8:0.648855 9:-1 10:-1 11:-1 12:0.333333 13:-1
-1 1:-0.333333 2:-1 3:-0.333333 4:-0.320755 5:-0.506849 6:-1 7:1 8:0.587786 9:-1 10:-0.806452 12:-1 13:-1
-1 1:-0.5 2:-1 3:-0.333333 4:-0.792453 5:-0.671233 6:-1 7:-1 8:0.480916 9:-1 10:-1 11:-1 12:-0.333333 13:-1
+1 1:0.333333 2:1 3:1 4:-0.169811 5:-0.817352 6:-1 7:1 8:-0.175573 9:1 10:0.16129 12:-0.333333 13:-1
-1 1:0.291667 2:-1 3:0.333333 4:-0.509434 5:-0.762557 6:1 7:-1 8:-0.618321 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:0.25 2:-1 3:1 4:0.509434 5:-0.438356 6:-1 7:-1 8:0.0992366 9:1 10:-1 12:-1 13:-1
+1 1:0.375 2:1 3:-0.333333 4:-0.509434 5:-0.292237 6:-1 7:1 8:-0.51145 9:-1 10:-0.548387 12:-0.333333 13:1
-1 1:0.166667 2:1 3:0.333333 4:0.0566038 5:-1 6:1 7:-1 8:0.557252 9:-1 10:-0.935484 11:-1 12:-0.333333 13:1
+1 1:-0.0833333 2:-1 3:1 4:-0.320755 5:-0.182648 6:-1 7:-1 8:0.0839695 9:1 10:-0.612903 12:-1 13:1
-1 1:-0.375 2:1 3:0.333333 4:-0.509434 5:-0.543379 6:-1 7:-1 8:0.496183 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:0.291667 2:-1 3:-1 4:0.0566038 5:-0.479452 6:-1 7:-1 8:0.526718 9:-1 10:-0.709677 11:-1 12:-1 13:-1
-1 1:0.416667 2:1 3:-1 4:-0.0377358 5:-0.511416 6:1 7:1 8:0.206107 9:-1 10:-0.258065 11:1 12:-1 13:0.5
+1 1:0.166667 2:1 3:1 4:0.0566038 5:-0.315068 6:-1 7:1 8:-0.374046 9:1 10:-0.806452 12:-0.333333 13:0.5
-1 1:-0.0833333 2:1 3:1 4:-0.132075 5:-0.383562 6:-1 7:1 8:0.755725 9:1 10:-1 11:-1 12:-1 13:-1
+1 1:0.208333 2:-1 3:-0.333333 4:-0.207547 5:-0.118721 6:1 7:1 8:0.236641 9:-1 10:-1 11:-1 12:0.333333 13:-1
-1 1:-0.375 2:-1 3:0.333333 4:-0.54717 5:-0.47032 6:-1 7:-1 8:0.19084 9:-1 10:-0.903226 12:-0.333333 13:-1
+1 1:-0.25 2:1 3:0.333333 4:-0.735849 5:-0.465753 6:-1 7:-1 8:0.236641 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:0.333333 2:1 3:1 4:-0.509434 5:-0.388128 6:-1 7:-1 8:0.0534351 9:1 10:0.16129 12:-0.333333 13:1
-1 1:0.166667 2:-1 3:1 4:-0.509434 5:0.0410959 6:-1 7:-1 8:0.40458 9:1 10:-0.806452 11:-1 12:-1 13:-1
-1 1:0.708333 2:1 3:-0.333333 4:0.169811 5:-0.456621 6:-1 7:1 8:0.0992366 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:0.958333 2:-1 3:0.333333 4:-0.132075 5:-0.675799 6:-1 8:-0.312977 9:-1 10:-0.645161 12:-1 13:-1
-1 1:0.583333 2:-1 3:1 4:-0.773585 5:-0.557078 6:-1 7:-1 8:0.0839695 9:-1 10:-0.903226 11:-1 12:0.333333 13:-1
+1 1:-0.333333 2:1 3:1 4:-0.0943396 5:-0.164384 6:-1 7:1 8:0.160305 9:1 10:-1 12:1 13:1
-1 1:-0.333333 2:1 3:1 4:-0.811321 5:-0.625571 6:-1 7:1 8:0.175573 9:1 10:-0.0322581 12:-1 13:-1
-1 1:-0.583333 2:-1 3:0.333333 4:-1 5:-0.666667 6:-1 7:-1 8:0.648855 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:-0.458333 2:-1 3:0.333333 4:-0.509434 5:-0.621005 6:-1 7:-1 8:0.557252 9:-1 10:-1 12:-1 13:-1
-1 1:0.125 2:1 3:-0.333333 4:-0.509434 5:-0.497717 6:-1 7:-1 8:0.633588 9:-1 10:-0.741935 11:-1 12:-1 13:-1
+1 1:0.208333 2:1 3:1 4:-0.0188679 5:-0.579909 6:-1 7:-1 8:-0.480916 9:-1 10:-0.354839 12:-0.333333 13:1
+1 1:-0.75 2:1 3:1 4:-0.509434 5:-0.671233 6:-1 7:-1 8:-0.0992366 9:1 10:-0.483871 12:-1 13:1
+1 1:0.208333 2:1 3:1 4:0.0566038 5:-0.342466 6:-1 7:1 8:-0.389313 9:1 10:-0.741935 11:-1 12:-1 13:1
-1 1:-0.5 2:1 3:0.333333 4:-0.320755 5:-0.598174 6:-1 7:1 8:0.480916 9:-1 10:-0.354839 12:-1 13:-1
-1 1:0.166667 2:1 3:1 4:-0.698113 5:-0.657534 6:-1 7:-1 8:-0.160305 9:1 10:-0.516129 12:-1 13:0.5
-1 1:-0.458333 2:1 3:-1 4:0.0188679 5:-0.461187 6:-1 7:1 8:0.633588 9:-1 10:-0.741935 11:-1 12:0.333333 13:-1
-1 1:0.375 2:1 3:-0.333333 4:-0.358491 5:-0.625571 6:1 7:1 8:0.0534351 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:0.25 2:1 3:-1 4:0.584906 5:-0.342466 6:-1 7:1 8:0.129771 9:-1 10:0.354839 11:1 12:-1 13:1
-1 1:-0.5 2:-1 3:-0.333333 4:-0.396226 5:-0.178082 6:-1 7:-1 8:0.40458 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:-0.125 2:1 3:1 4:0.0566038 5:-0.465753 6:-1 7:1 8:-0.129771 9:-1 10:-0.16129 12:-1 13:1
-1 1:0.25 2:1 3:-0.333333 4:-0.132075 5:-0.56621 6:-1 7:-1 8:0.419847 9:1 10:-1 11:-1 12:-1 13:-1
+1 1:0.333333 2:-1 3:1 4:-0.320755 5:-0.0684932 6:-1 7:1 8:0.496183 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:0.0416667 2:1 3:1 4:-0.433962 5:-0.360731 6:-1 7:1 8:-0.419847 9:1 10:-0.290323 12:-0.333333 13:1
+1 1:0.0416667 2:1 3:1 4:-0.698113 5:-0.634703 6:-1 7:1 8:-0.435115 9:1 10:-1 12:-0.333333 13:-1
+1 1:-0.0416667 2:1 3:1 4:-0.415094 5:-0.607306 6:-1 7:-1 8:0.480916 9:-1 10:-0.677419 11:-1 12:0.333333 13:1
+1 1:-0.25 2:1 3:1 4:-0.698113 5:-0.319635 6:-1 7:1 8:-0.282443 9:1 10:-0.677419 12:-0.333333 13:-1
-1 1:0.541667 2:1 3:1 4:-0.509434 5:-0.196347 6:-1 7:1 8:0.221374 9:-1 10:-0.870968 12:-1 13:-1
+1 1:0.208333 2:1 3:1 4:-0.886792 5:-0.506849 6:-1 7:-1 8:0.29771 9:-1 10:-0.967742 11:-1 12:-0.333333 13:1
-1 1:0.458333 2:-1 3:0.333333 4:-0.132075 5:-0.146119 6:-1 7:-1 8:-0.0534351 9:-1 10:-0.935484 11:-1 12:-1 13:1
-1 1:-0.125 2:-1 3:-0.333333 4:-0.509434 5:-0.461187 6:-1 7:-1 8:0.389313 9:-1 10:-0.645161 11:-1 12:-1 13:-1
-1 1:-0.375 2:-1 3:0.333333 4:-0.735849 5:-0.931507 6:-1 7:-1 8:0.587786 9:-1 10:-0.806452 12:-1 13:-1
+1 1:0.583333 2:1 3:1 4:-0.509434 5:-0.493151 6:-1 7:-1 8:-1 9:-1 10:-0.677419 12:-1 13:-1
-1 1:-0.166667 2:-1 3:1 4:-0.320755 5:-0.347032 6:-1 7:-1 8:0.40458 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:0.166667 2:1 3:1 4:0.339623 5:-0.255708 6:1 7:1 8:-0.19084 9:-1 10:-0.677419 12:1 13:1
+1 1:0.416667 2:1 3:1 4:-0.320755 5:-0.415525 6:-1 7:1 8:0.160305 9:-1 10:-0.548387 12:-0.333333 13:1
+1 1:-0.208333 2:1 3:1 4:-0.433962 5:-0.324201 6:-1 7:1 8:0.450382 9:-1 10:-0.83871 12:-1 13:1
-1 1:-0.0833333 2:1 3:0.333333 4:-0.886792 5:-0.561644 6:-1 7:-1 8:0.0992366 9:1 10:-0.612903 12:-1 13:-1
+1 1:0.291667 2:-1 3:1 4:0.0566038 5:-0.39726 6:-1 7:1 8:0.312977 9:-1 10:-0.16129 12:0.333333 13:1
+1 1:0.25 2:1 3:1 4:-0.132075 5:-0.767123 6:-1 7:-1 8:0.389313 9:1 10:-1 11:-1 12:-0.333333 13:1
-1 1:-0.333333 2:-1 3:-0.333333 4:-0.660377 5:-0.844749 6:-1 7:-1 8:0.0229008 9:-1 10:-1 12:-1 13:-1
+1 1:0.0833333 2:-1 3:1 4:0.622642 5:-0.0821918 6:-1 8:-0.29771 9:1 10:0.0967742 12:-1 13:-1
-1 1:-0.5 2:1 3:-0.333333 4:-0.698113 5:-0.502283 6:-1 7:-1 8:0.251908 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:0.291667 2:-1 3:1 4:0.207547 5:-0.182648 6:-1 7:1 8:0.374046 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:0.0416667 2:-1 3:0.333333 4:-0.226415 5:-0.187215 6:1 7:-1 8:0.51145 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:-0.458333 2:1 3:-0.333333 4:-0.509434 5:-0.228311 6:-1 7:-1 8:0.389313 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:-0.166667 2:-1 3:-0.333333 4:-0.245283 5:-0.3379 6:-1 7:-1 8:0.389313 9:-1 10:-1 12:-1 13:-1
+1 1:-0.291667 2:1 3:1 4:-0.509434 5:-0.438356 6:-1 7:1 8:0.114504 9:-1 10:-0.741935 11:-1 12:-1 13:1
+1 1:0.125 2:-1 3:1 4:1 5:-0.260274 6:1 7:1 8:-0.0534351 9:1 10:0.290323 11:1 12:0.333333 13:1
-1 1:0.541667 2:-1 3:-1 4:0.0566038 5:-0.543379 6:-1 7:-1 8:-0.343511 9:-1 10:-0.16129 11:1 12:-1 13:-1
+1 1:0.125 2:1 3:1 4:-0.320755 5:-0.283105 6:1 7:1 8:-0.51145 9:1 10:-0.483871 11:1 12:-1 13:1
+1 1:-0.166667 2:1 3:0.333333 4:-0.509434 5:-0.716895 6:-1 7:-1 8:0.0381679 9:-1 10:-0.354839 12:1 13:1
+1 1:0.0416667 2:1 3:1 4:-0.471698 5:-0.269406 6:-1 7:1 8:-0.312977 9:1 10:0.0322581 12:0.333333 13:-1
+1 1:0.166667 2:1 3:1 4:0.0943396 5:-0.324201 6:-1 7:-1 8:-0.740458 9:1 10:-0.612903 12:-0.333333 13:1
-1 1:0.5 2:-1 3:0.333333 4:0.245283 5:0.0684932 6:-1 7:1 8:0.221374 9:-1 10:-0.741935 11:-1 12:-1 13:-1
-1 1:0.0416667 2:1 3:0.333333 4:-0.415094 5:-0.328767 6:-1 7:1 8:0.236641 9:-1 10:-0.83871 11:1 12:-0.333333 13:-1
-1 1:0.0416667 2:-1 3:0.333333 4:0.245283 5:-0.657534 6:-1 7:-1 8:0.40458 9:-1 10:-1 11:-1 12:-0.333333 13:-1
+1 1:0.375 2:1 3:1 4:-0.509434 5:-0.356164 6:-1 7:-1 8:-0.572519 9:1 10:-0.419355 12:0.333333 13:1
-1 1:-0.0416667 2:-1 3:0.333333 4:-0.207547 5:-0.680365 6:-1 7:1 8:0.496183 9:-1 10:-0.967742 12:-1 13:-1
-1 1:-0.0416667 2:1 3:-0.333333 4:-0.245283 5:-0.657534 6:-1 7:-1 8:0.328244 9:-1 10:-0.741935 11:-1 12:-0.333333 13:-1
+1 1:0.291667 2:1 3:1 4:-0.566038 5:-0.525114 6:1 7:-1 8:0.358779 9:1 10:-0.548387 11:-1 12:0.333333 13:1
+1 1:0.416667 2:-1 3:1 4:-0.735849 5:-0.347032 6:-1 7:-1 8:0.496183 9:1 10:-0.419355 12:0.333333 13:-1
+1 1:0.541667 2:1 3:1 4:-0.660377 5:-0.607306 6:-1 7:1 8:-0.0687023 9:1 10:-0.967742 11:-1 12:-0.333333 13:-1
-1 1:-0.458333 2:1 3:1 4:-0.132075 5:-0.543379 6:-1 7:-1 8:0.633588 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:0.458333 2:1 3:1 4:-0.509434 5:-0.452055 6:-1 7:1 8:-0.618321 9:1 10:-0.290323 11:1 12:-0.333333 13:-1
-1 1:0.0416667 2:1 3:0.333333 4:0.0566038 5:-0.515982 6:-1 7:1 8:0.435115 9:-1 10:-0.483871 11:-1 12:-1 13:1
-1 1:-0.291667 2:-1 3:0.333333 4:-0.0943396 5:-0.767123 6:-1 7:1 8:0.358779 9:1 10:-0.548387 11:1 12:-1 13:-1
-1 1:0.583333 2:-1 3:0.333333 4:0.0943396 5:-0.310502 6:-1 7:-1 8:0.541985 9:-1 10:-1 11:-1 12:-0.333333 13:-1
+1 1:0.125 2:1 3:1 4:-0.415094 5:-0.438356 6:1 7:1 8:0.114504 9:1 10:-0.612903 12:-0.333333 13:-1
-1 1:-0.791667 2:-1 3:-0.333333 4:-0.54717 5:-0.616438 6:-1 7:-1 8:0.847328 9:-1 10:-0.774194 11:-1 12:-1 13:-1
-1 1:0.166667 2:1 3:1 4:-0.283019 5:-0.630137 6:-1 7:-1 8:0.480916 9:1 10:-1 11:-1 12:-1 13:1
+1 1:0.458333 2:1 3:1 4:-0.0377358 5:-0.607306 6:-1 7:1 8:-0.0687023 9:-1 10:-0.354839 12:0.333333 13:0.5
-1 1:0.25 2:1 3:1 4:-0.169811 5:-0.3379 6:-1 7:1 8:0.694656 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:-0.125 2:1 3:0.333333 4:-0.132075 5:-0.511416 6:-1 7:-1 8:0.40458 9:-1 10:-0.806452 12:-0.333333 13:1
-1 1:-0.0833333 2:1 3:-1 4:-0.415094 5:-0.60274 6:-1 7:1 8:-0.175573 9:1 10:-0.548387 11:-1 12:-0.333333 13:-1
+1 1:0.0416667 2:1 3:-0.333333 4:0.849057 5:-0.283105 6:-1 7:1 8:0.89313 9:-1 10:-1 11:-1 12:-0.333333 13:1
+1 2:1 3:1 4:-0.45283 5:-0.287671 6:-1 7:-1 8:-0.633588 9:1 10:-0.354839 12:0.333333 13:1
+1 1:-0.0416667 2:1 3:1 4:-0.660377 5:-0.525114 6:-1 7:-1 8:0.358779 9:-1 10:-1 11:-1 12:-0.333333 13:-1
+1 1:-0.541667 2:1 3:1 4:-0.698113 5:-0.812785 6:-1 7:1 8:-0.343511 9:1 10:-0.354839 12:-1 13:1
+1 1:0.208333 2:1 3:0.333333 4:-0.283019 5:-0.552511 6:-1 7:1 8:0.557252 9:-1 10:0.0322581 11:-1 12:0.333333 13:1
-1 1:-0.5 2:-1 3:0.333333 4:-0.660377 5:-0.351598 6:-1 7:1 8:0.541985 9:1 10:-1 11:-1 12:-1 13:-1
-1 1:-0.5 2:1 3:0.333333 4:-0.660377 5:-0.43379 6:-1 7:-1 8:0.648855 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:-0.125 2:-1 3:0.333333 4:-0.509434 5:-0.575342 6:-1 7:-1 8:0.328244 9:-1 10:-0.483871 12:-1 13:-1
-1 1:0.0416667 2:-1 3:0.333333 4:-0.735849 5:-0.356164 6:-1 7:1 8:0.465649 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:0.458333 2:-1 3:1 4:-0.320755 5:-0.191781 6:-1 7:-1 8:-0.221374 9:-1 10:-0.354839 12:0.333333 13:-1
-1 1:-0.0833333 2:-1 3:0.333333 4:-0.320755 5:-0.406393 6:-1 7:1 8:0.19084 9:-1 10:-0.83871 11:-1 12:-1 13:-1
-1 1:-0.291667 2:-1 3:-0.333333 4:-0.792453 5:-0.643836 6:-1 7:-1 8:0.541985 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:0.0833333 2:1 3:1 4:-0.132075 5:-0.584475 6:-1 7:-1 8:-0.389313 9:1 10:0.806452 11:1 12:-1 13:1
-1 1:-0.333333 2:1 3:-0.333333 4:-0.358491 5:-0.16895 6:-1 7:1 8:0.51145 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:0.125 2:1 3:-1 4:-0.509434 5:-0.694064 6:-1 7:1 8:0.389313 9:-1 10:-0.387097 12:-1 13:1
+1 1:0.541667 2:-1 3:1 4:0.584906 5:-0.534247 6:1 7:-1 8:0.435115 9:1 10:-0.677419 12:0.333333 13:1
+1 1:-0.625 2:1 3:-1 4:-0.509434 5:-0.520548 6:-1 7:-1 8:0.694656 9:1 10:0.225806 12:-1 13:1
+1 1:0.375 2:-1 3:1 4:0.0566038 5:-0.461187 6:-1 7:-1 8:0.267176 9:1 10:-0.548387 12:-1 13:-1
-1 1:0.0833333 2:1 3:-0.333333 4:-0.320755 5:-0.378995 6:-1 7:-1 8:0.282443 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:0.208333 2:1 3:1 4:-0.358491 5:-0.392694 6:-1 7:1 8:-0.0992366 9:1 10:-0.0322581 12:0.333333 13:1
-1 1:-0.416667 2:1 3:1 4:-0.698113 5:-0.611872 6:-1 7:-1 8:0.374046 9:-1 10:-1 11:-1 12:-1 13:1
-1 1:0.458333 2:-1 3:1 4:0.622642 5:-0.0913242 6:-1 7:-1 8:0.267176 9:1 10:-1 11:-1 12:-1 13:-1
-1 1:-0.125 2:-1 3:1 4:-0.698113 5:-0.415525 6:-1 7:1 8:0.343511 9:-1 10:-1 11:-1 12:-1 13:-1
-1 2:1 3:0.333333 4:-0.320755 5:-0.675799 6:1 7:1 8:0.236641 9:-1 10:-0.612903 11:1 12:-1 13:-1
-1 1:-0.333333 2:-1 3:1 4:-0.169811 5:-0.497717 6:-1 7:1 8:0.236641 9:1 10:-0.935484 12:-1 13:-1
+1 1:0.5 2:1 3:-1 4:-0.169811 5:-0.287671 6:1 7:1 8:0.572519 9:-1 10:-0.548387 12:-0.333333 13:-1
-1 1:0.666667 2:1 3:-1 4:0.245283 5:-0.506849 6:1 7:1 8:-0.0839695 9:-1 10:-0.967742 12:-0.333333 13:-1
+1 1:0.666667 2:1 3:0.333333 4:-0.132075 5:-0.415525 6:-1 7:1 8:0.145038 9:-1 10:-0.354839 12:1 13:1
+1 1:0.583333 2:1 3:1 4:-0.886792 5:-0.210046 6:-1 7:1 8:-0.175573 9:1 10:-0.709677 12:0.333333 13:-1
-1 1:0.625 2:-1 3:0.333333 4:-0.509434 5:-0.611872 6:-1 7:1 8:-0.328244 9:-1 10:-0.516129 12:-1 13:-1
-1 1:-0.791667 2:1 3:-1 4:-0.54717 5:-0.744292 6:-1 7:1 8:0.572519 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:0.375 2:-1 3:1 4:-0.169811 5:-0.232877 6:1 7:-1 8:-0.465649 9:-1 10:-0.387097 12:1 13:-1
+1 1:-0.0833333 2:1 3:1 4:-0.132075 5:-0.214612 6:-1 7:-1 8:-0.221374 9:1 10:0.354839 12:1 13:1
+1 1:-0.291667 2:1 3:0.333333 4:0.0566038 5:-0.520548 6:-1 7:-1 8:0.160305 9:-1 10:0.16129 12:-1 13:-1
+1 1:0.583333 2:1 3:1 4:-0.415094 5:-0.415525 6:1 7:-1 8:0.40458 9:-1 10:-0.935484 12:0.333333 13:1
-1 1:-0.125 2:1 3:0.333333 4:-0.339623 5:-0.680365 6:-1 7:-1 8:0.40458 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:-0.458333 2:1 3:0.333333 4:-0.509434 5:-0.479452 6:1 7:-1 8:0.877863 9:-1 10:-0.741935 11:1 12:-1 13:1
+1 1:0.125 2:-1 3:1 4:-0.245283 5:0.292237 6:-1 7:1 8:0.206107 9:1 10:-0.387097 12:0.333333 13:1
+1 1:-0.5 2:1 3:1 4:-0.698113 5:-0.789954 6:-1 7:1 8:0.328244 9:-1 10:-1 11:-1 12:-1 13:1
-1 1:-0.458333 2:-1 3:1 4:-0.849057 5:-0.365297 6:-1 7:1 8:-0.221374 9:-1 10:-0.806452 12:-1 13:-1
-1 2:1 3:0.333333 4:-0.320755 5:-0.452055 6:1 7:1 8:0.557252 9:-1 10:-1 11:-1 12:1 13:-1
-1 1:-0.416667 2:1 3:0.333333 4:-0.320755 5:-0.136986 6:-1 7:-1 8:0.389313 9:-1 10:-0.387097 11:-1 12:-0.333333 13:-1
+1 1:0.125 2:1 3:1 4:-0.283019 5:-0.73516 6:-1 7:1 8:-0.480916 9:1 10:-0.322581 12:-0.333333 13:0.5
-1 1:-0.0416667 2:1 3:1 4:-0.735849 5:-0.511416 6:1 7:-1 8:0.160305 9:-1 10:-0.967742 11:-1 12:1 13:1
-1 1:0.375 2:-1 3:1 4:-0.132075 5:0.223744 6:-1 7:1 8:0.312977 9:-1 10:-0.612903 12:-1 13:-1
+1 1:0.708333 2:1 3:0.333333 4:0.245283 5:-0.347032 6:-1 7:-1 8:-0.374046 9:1 10:-0.0645161 12:-0.333333 13:1
-1 1:0.0416667 2:1 3:1 4:-0.132075 5:-0.484018 6:-1 7:-1 8:0.358779 9:-1 10:-0.612903 11:-1 12:-1 13:-1
+1 1:0.708333 2:1 3:1 4:-0.0377358 5:-0.780822 6:-1 7:-1 8:-0.175573 9:1 10:-0.16129 11:1 12:-1 13:1
-1 1:0.0416667 2:1 3:-0.333333 4:-0.735849 5:-0.164384 6:-1 7:-1 8:0.29771 9:-1 10:-1 11:-1 12:-1 13:1
+1 1:-0.75 2:1 3:1 4:-0.396226 5:-0.287671 6:-1 7:1 8:0.29771 9:1 10:-1 11:-1 12:-1 13:1
-1 1:-0.208333 2:1 3:0.333333 4:-0.433962 5:-0.410959 6:1 7:-1 8:0.587786 9:-1 10:-1 11:-1 12:0.333333 13:-1
-1 1:0.0833333 2:-1 3:-0.333333 4:-0.226415 5:-0.43379 6:-1 7:1 8:0.374046 9:-1 10:-0.548387 12:-1 13:-1
-1 1:0.208333 2:-1 3:1 4:-0.886792 5:-0.442922 6:-1 7:1 8:-0.221374 9:-1 10:-0.677419 12:-1 13:-1
-1 1:0.0416667 2:-1 3:0.333333 4:-0.698113 5:-0.598174 6:-1 7:-1 8:0.328244 9:-1 10:-0.483871 12:-1 13:-1
-1 1:0.666667 2:-1 3:-1 4:-0.132075 5:-0.484018 6:-1 7:-1 8:0.221374 9:-1 10:-0.419355 11:-1 12:0.333333 13:-1
+1 1:1 2:1 3:1 4:-0.415094 5:-0.187215 6:-1 7:1 8:0.389313 9:1 10:-1 11:-1 12:1 13:-1
-1 1:0.625 2:1 3:0.333333 4:-0.54717 5:-0.310502 6:-1 7:-1 8:0.221374 9:-1 10:-0.677419 11:-1 12:-0.333333 13:1
+1 1:0.208333 2:1 3:1 4:-0.415094 5:-0.205479 6:-1 7:1 8:0.526718 9:-1 10:-1 11:-1 12:0.333333 13:1
+1 1:0.291667 2:1 3:1 4:-0.415094 5:-0.39726 6:-1 7:1 8:0.0687023 9:1 10:-0.0967742 12:-0.333333 13:1
+1 1:-0.0833333 2:1 3:1 4:-0.132075 5:-0.210046 6:-1 7:-1 8:0.557252 9:1 10:-0.483871 11:-1 12:-1 13:1
+1 1:0.0833333 2:1 3:1 4:0.245283 5:-0.255708 6:-1 7:1 8:0.129771 9:1 10:-0.741935 12:-0.333333 13:1
-1 1:-0.0416667 2:1 3:-1 4:0.0943396 5:-0.214612 6:1 7:-1 8:0.633588 9:-1 10:-0.612903 12:-1 13:1
-1 1:0.291667 2:-1 3:0.333333 4:-0.849057 5:-0.123288 6:-1 7:-1 8:0.358779 9:-1 10:-1 11:-1 12:-0.333333 13:-1
-1 1:0.208333 2:1 3:0.333333 4:-0.792453 5:-0.479452 6:-1 7:1 8:0.267176 9:1 10:-0.806452 12:-1 13:1
+1 1:0.458333 2:1 3:0.333333 4:-0.415094 5:-0.164384 6:-1 7:-1 8:-0.0839695 9:1 10:-0.419355 12:-1 13:1
-1 1:-0.666667 2:1 3:0.333333 4:-0.320755 5:-0.43379 6:-1 7:-1 8:0.770992 9:-1 10:0.129032 11:1 12:-1 13:-1
+1 1:0.25 2:1 3:-1 4:0.433962 5:-0.260274 6:-1 7:1 8:0.343511 9:-1 10:-0.935484 12:-1 13:1
-1 1:-0.0833333 2:1 3:0.333333 4:-0.415094 5:-0.456621 6:1 7:1 8:0.450382 9:-1 10:-0.225806 12:-1 13:-1
-1 1:-0.416667 2:-1 3:0.333333 4:-0.471698 5:-0.60274 6:-1 7:-1 8:0.435115 9:-1 10:-0.935484 12:-1 13:-1
+1 1:0.208333 2:1 3:1 4:-0.358491 5:-0.589041 6:-1 7:1 8:-0.0839695 9:1 10:-0.290323 12:1 13:1
-1 1:-1 2:1 3:-0.333333 4:-0.320755 5:-0.643836 6:-1 7:1 8:1 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:-0.5 2:-1 3:-0.333333 4:-0.320755 5:-0.643836 6:-1 7:1 8:0.541985 9:-1 10:-0.548387 11:-1 12:-1 13:-1
-1 1:0.416667 2:-1 3:0.333333 4:-0.226415 5:-0.424658 6:-1 7:1 8:0.541985 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:-0.0833333 2:1 3:0.333333 4:-1 5:-0.538813 6:-1 7:-1 8:0.267176 9:1 10:-1 11:-1 12:-0.333333 13:1
-1 1:0.0416667 2:1 3:0.333333 4:-0.509434 5:-0.39726 6:-1 7:1 8:0.160305 9:-1 10:-0.870968 12:-1 13:1
-1 1:-0.375 2:1 3:-0.333333 4:-0.509434 5:-0.570776 6:-1 7:-1 8:0.51145 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:0.0416667 2:1 3:1 4:-0.698113 5:-0.484018 6:-1 7:-1 8:-0.160305 9:1 10:-0.0967742 12:-0.333333 13:1
+1 1:0.5 2:1 3:1 4:-0.226415 5:-0.415525 6:-1 7:1 8:-0.145038 9:-1 10:-0.0967742 12:-0.333333 13:1
-1 1:0.166667 2:1 3:0.333333 4:0.0566038 5:-0.808219 6:-1 7:-1 8:0.572519 9:-1 10:-0.483871 11:-1 12:-1 13:-1
+1 1:0.416667 2:1 3:1 4:-0.320755 5:-0.0684932 6:1 7:1 8:-0.0687023 9:1 10:-0.419355 11:-1 12:1 13:1
-1 1:-0.75 2:-1 3:1 4:-0.169811 5:-0.739726 6:-1 7:-1 8:0.694656 9:-1 10:-0.548387 11:-1 12:-1 13:-1
-1 1:-0.5 2:1 3:-0.333333 4:-0.226415 5:-0.648402 6:-1 7:-1 8:-0.0687023 9:-1 10:-1 12:-1 13:0.5
+1 1:0.375 2:-1 3:0.333333 4:-0.320755 5:-0.374429 6:-1 7:-1 8:-0.603053 9:-1 10:-0.612903 12:-0.333333 13:1
+1 1:-0.416667 2:-1 3:1 4:-0.283019 5:-0.0182648 6:1 7:1 8:-0.00763359 9:1 10:-0.0322581 12:-1 13:1
-1 1:0.208333 2:-1 3:-1 4:0.0566038 5:-0.283105 6:1 7:1 8:0.389313 9:-1 10:-0.677419 11:-1 12:-1 13:-1
-1 1:-0.0416667 2:1 3:-1 4:-0.54717 5:-0.726027 6:-1 7:1 8:0.816794 9:-1 10:-1 12:-1 13:0.5
+1 1:0.333333 2:-1 3:1 4:-0.0377358 5:-0.173516 6:-1 7:1 8:0.145038 9:1 10:-0.677419 12:-1 13:1
+1 1:-0.583333 2:1 3:1 4:-0.54717 5:-0.575342 6:-1 7:-1 8:0.0534351 9:-1 10:-0.612903 12:-1 13:1
-1 1:-0.333333 2:1 3:1 4:-0.603774 5:-0.388128 6:-1 7:1 8:0.740458 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:-0.0416667 2:1 3:1 4:-0.358491 5:-0.410959 6:-1 7:-1 8:0.374046 9:1 10:-1 11:-1 12:-0.333333 13:1
-1 1:0.375 2:1 3:0.333333 4:-0.320755 5:-0.520548 6:-1 7:-1 8:0.145038 9:-1 10:-0.419355 12:1 13:1
+1 1:0.375 2:-1 3:1 4:0.245283 5:-0.826484 6:-1 7:1 8:0.129771 9:-1 10:1 11:1 12:1 13:1
-1 2:-1 3:1 4:-0.169811 5:-0.506849 6:-1 7:1 8:0.358779 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:-0.416667 2:1 3:1 4:-0.509434 5:-0.767123 6:-1 7:1 8:-0.251908 9:1 10:-0.193548 12:-1 13:1
-1 1:-0.25 2:1 3:0.333333 4:-0.169811 5:-0.401826 6:-1 7:1 8:0.29771 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:-0.0416667 2:1 3:-0.333333 4:-0.509434 5:-0.0913242 6:-1 7:-1 8:0.541985 9:-1 10:-0.935484 11:-1 12:-1 13:-1
+1 1:0.625 2:1 3:0.333333 4:0.622642 5:-0.324201 6:1 7:1 8:0.206107 9:1 10:-0.483871 12:-1 13:1
-1 1:-0.583333 2:1 3:0.333333 4:-0.132075 5:-0.109589 6:-1 7:1 8:0.694656 9:-1 10:-1 11:-1 12:-1 13:-1
-1 2:-1 3:1 4:-0.320755 5:-0.369863 6:-1 7:1 8:0.0992366 9:-1 10:-0.870968 12:-1 13:-1
+1 1:0.375 2:-1 3:1 4:-0.132075 5:-0.351598 6:-1 7:1 8:0.358779 9:-1 10:0.16129 11:1 12:0.333333 13:-1
-1 1:-0.0833333 2:-1 3:0.333333 4:-0.132075 5:-0.16895 6:-1 7:1 8:0.0839695 9:-1 10:-0.516129 11:-1 12:-0.333333 13:-1
+1 1:0.291667 2:1 3:1 4:-0.320755 5:-0.420091 6:-1 7:-1 8:0.114504 9:1 10:-0.548387 11:-1 12:-0.333333 13:1
+1 1:0.5 2:1 3:1 4:-0.698113 5:-0.442922 6:-1 7:1 8:0.328244 9:-1 10:-0.806452 11:-1 12:0.333333 13:0.5
-1 1:0.5 2:-1 3:0.333333 4:0.150943 5:-0.347032 6:-1 7:-1 8:0.175573 9:-1 10:-0.741935 11:-1 12:-1 13:-1
+1 1:0.291667 2:1 3:0.333333 4:-0.132075 5:-0.730594 6:-1 7:1 8:0.282443 9:-1 10:-0.0322581 12:-1 13:-1
+1 1:0.291667 2:1 3:1 4:-0.0377358 5:-0.287671 6:-1 7:1 8:0.0839695 9:1 10:-0.0967742 12:0.333333 13:1
+1 1:0.0416667 2:1 3:1 4:-0.509434 5:-0.716895 6:-1 7:-1 8:-0.358779 9:-1 10:-0.548387 12:-0.333333 13:1
-1 1:-0.375 2:1 3:-0.333333 4:-0.320755 5:-0.575342 6:-1 7:1 8:0.78626 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:-0.375 2:1 3:1 4:-0.660377 5:-0.251142 6:-1 7:1 8:0.251908 9:-1 10:-1 11:-1 12:-0.333333 13:-1
-1 1:-0.0833333 2:1 3:0.333333 4:-0.698113 5:-0.776256 6:-1 7:-1 8:-0.206107 9:-1 10:-0.806452 11:-1 12:-1 13:-1
-1 1:0.25 2:1 3:0.333333 4:0.0566038 5:-0.607306 6:1 7:-1 8:0.312977 9:-1 10:-0.483871 11:-1 12:-1 13:-1
-1 1:0.75 2:-1 3:-0.333333 4:0.245283 5:-0.196347 6:-1 7:-1 8:0.389313 9:-1 10:-0.870968 11:-1 12:0.333333 13:-1
-1 1:0.333333 2:1 3:0.333333 4:0.0566038 5:-0.465753 6:1 7:-1 8:0.00763359 9:1 10:-0.677419 12:-1 13:-1
+1 1:0.0833333 2:1 3:1 4:-0.283019 5:0.0365297 6:-1 7:-1 8:-0.0687023 9:1 10:-0.612903 12:-0.333333 13:1
+1 1:0.458333 2:1 3:0.333333 4:-0.132075 5:-0.0456621 6:-1 7:-1 8:0.328244 9:-1 10:-1 11:-1 12:-1 13:-1
-1 1:-0.416667 2:1 3:1 4:0.0566038 5:-0.447489 6:-1 7:-1 8:0.526718 9:-1 10:-0.516129 11:-1 12:-1 13:-1
-1 1:0.208333 2:-1 3:0.333333 4:-0.509434 5:-0.0228311 6:-1 7:-1 8:0.541985 9:-1 10:-1 11:-1 12:-1 13:-1
+1 1:0.291667 2:1 3:1 4:-0.320755 5:-0.634703 6:-1 7:1 8:-0.0687023 9:1 10:-0.225806 12:0.333333 13:1
+1 1:0.208333 2:1 3:-0.333333 4:-0.509434 5:-0.278539 6:-1 7:1 8:0.358779 9:-1 10:-0.419355 12:-1 13:-1
-1 1:-0.166667 2:1 3:-0.333333 4:-0.320755 5:-0.360731 6:-1 7:-1 8:0.526718 9:-1 10:-0.806452 11:-1 12:-1 13:-1
+1 1:-0.208333 2:1 3:-0.333333 4:-0.698113 5:-0.52968 6:-1 7:-1 8:0.480916 9:-1 10:-0.677419 11:1 12:-1 13:1
-1 1:-0.0416667 2:1 3:0.333333 4:0.471698 5:-0.666667 6:1 7:-1 8:0.389313 9:-1 10:-0.83871 11:-1 12:-1 13:1
-1 1:-0.375 2:1 3:-0.333333 4:-0.509434 5:-0.374429 6:-1 7:-1 8:0.557252 9:-1 10:-1 11:-1 12:-1 13:1
-1 1:0.125 2:-1 3:-0.333333 4:-0.132075 5:-0.232877 6:-1 7:1 8:0.251908 9:-1 10:-0.580645 12:-1 13:-1
-1 1:0.166667 2:1 3:1 4:-0.132075 5:-0.69863 6:-1 7:-1 8:0.175573 9:-1 10:-0.870968 12:-1 13:0.5
+1 1:0.583333 2:1 3:1 4:0.245283 5:-0.269406 6:-1 7:1 8:-0.435115 9:1 10:-0.516129 12:1 13:-1

BIN
liblinear-2.49/liblinear.so.6 Executable file

Binary file not shown.

3773
liblinear-2.49/linear.cpp Normal file

File diff suppressed because it is too large Load Diff

24
liblinear-2.49/linear.def Normal file
View File

@@ -0,0 +1,24 @@
LIBRARY liblinear
EXPORTS
train @1
cross_validation @2
save_model @3
load_model @4
get_nr_feature @5
get_nr_class @6
get_labels @7
predict_values @8
predict @9
predict_probability @10
free_and_destroy_model @11
free_model_content @12
destroy_param @13
check_parameter @14
check_probability_model @15
set_print_string_function @16
get_decfun_coef @17
get_decfun_bias @18
check_regression_model @19
find_parameters @20
get_decfun_rho @21
check_oneclass_model @22

90
liblinear-2.49/linear.h Normal file
View File

@@ -0,0 +1,90 @@
#include <stdbool.h>
#ifndef _LIBLINEAR_H
#define _LIBLINEAR_H
#define LIBLINEAR_VERSION 249
#ifdef __cplusplus
extern "C" {
#endif
extern int liblinear_version;
struct feature_node
{
int index;
double value;
};
struct problem
{
int l, n;
double *y;
struct feature_node **x;
double bias; /* < 0 if no bias term */
};
enum { L2R_LR, L2R_L2LOSS_SVC_DUAL, L2R_L2LOSS_SVC, L2R_L1LOSS_SVC_DUAL, MCSVM_CS, L1R_L2LOSS_SVC, L1R_LR, L2R_LR_DUAL, L2R_L2LOSS_SVR = 11, L2R_L2LOSS_SVR_DUAL, L2R_L1LOSS_SVR_DUAL, ONECLASS_SVM = 21 }; /* solver_type */
struct parameter
{
int solver_type;
/* these are for training only */
double eps; /* stopping tolerance */
double C;
int nr_weight;
int *weight_label;
double* weight;
double p;
double nu;
double *init_sol;
int regularize_bias;
bool w_recalc; /* for -s 1, 3; may be extended to -s 12, 13, 21 */
};
struct model
{
struct parameter param;
int nr_class; /* number of classes */
int nr_feature;
double *w;
int *label; /* label of each class */
double bias;
double rho; /* one-class SVM only */
};
struct model* train(const struct problem *prob, const struct parameter *param);
void cross_validation(const struct problem *prob, const struct parameter *param, int nr_fold, double *target);
void find_parameters(const struct problem *prob, const struct parameter *param, int nr_fold, double start_C, double start_p, double *best_C, double *best_p, double *best_score);
double predict_values(const struct model *model_, const struct feature_node *x, double* dec_values);
double predict(const struct model *model_, const struct feature_node *x);
double predict_probability(const struct model *model_, const struct feature_node *x, double* prob_estimates);
int save_model(const char *model_file_name, const struct model *model_);
struct model *load_model(const char *model_file_name);
int get_nr_feature(const struct model *model_);
int get_nr_class(const struct model *model_);
void get_labels(const struct model *model_, int* label);
double get_decfun_coef(const struct model *model_, int feat_idx, int label_idx);
double get_decfun_bias(const struct model *model_, int label_idx);
double get_decfun_rho(const struct model *model_);
void free_model_content(struct model *model_ptr);
void free_and_destroy_model(struct model **model_ptr_ptr);
void destroy_param(struct parameter *param);
const char *check_parameter(const struct problem *prob, const struct parameter *param);
int check_probability_model(const struct model *model);
int check_regression_model(const struct model *model);
int check_oneclass_model(const struct model *model);
void set_print_string_function(void (*print_func) (const char*));
#ifdef __cplusplus
}
#endif
#endif /* _LIBLINEAR_H */

View File

@@ -0,0 +1,41 @@
# This Makefile is used under Linux
MATLABDIR ?= /usr/local/matlab
CXX ?= g++
#CXX = g++-3.3
CC ?= gcc
CFLAGS = -Wall -Wconversion -O3 -fPIC -I$(MATLABDIR)/extern/include -I..
MEX = $(MATLABDIR)/bin/mex
MEX_OPTION = CC="$(CXX)" CXX="$(CXX)" CFLAGS="$(CFLAGS)" CXXFLAGS="$(CFLAGS)"
# comment the following line if you use MATLAB on a 32-bit computer
MEX_OPTION += -largeArrayDims
MEX_EXT = $(shell $(MATLABDIR)/bin/mexext)
all: matlab
matlab: binary
octave:
@echo "please type make under Octave"
binary: train.$(MEX_EXT) predict.$(MEX_EXT) libsvmread.$(MEX_EXT) libsvmwrite.$(MEX_EXT)
train.$(MEX_EXT): train.c ../linear.h ../newton.cpp ../linear.cpp linear_model_matlab.c \
../blas/daxpy.c ../blas/ddot.c ../blas/dnrm2.c ../blas/dscal.c
$(MEX) $(MEX_OPTION) train.c ../newton.cpp ../linear.cpp linear_model_matlab.c \
../blas/daxpy.c ../blas/ddot.c ../blas/dnrm2.c ../blas/dscal.c
predict.$(MEX_EXT): predict.c ../linear.h ../newton.cpp ../linear.cpp linear_model_matlab.c \
../blas/daxpy.c ../blas/ddot.c ../blas/dnrm2.c ../blas/dscal.c
$(MEX) $(MEX_OPTION) predict.c ../newton.cpp ../linear.cpp linear_model_matlab.c \
../blas/daxpy.c ../blas/ddot.c ../blas/dnrm2.c ../blas/dscal.c
libsvmread.$(MEX_EXT): libsvmread.c
$(MEX) $(MEX_OPTION) libsvmread.c
libsvmwrite.$(MEX_EXT): libsvmwrite.c
$(MEX) $(MEX_OPTION) libsvmwrite.c
clean:
rm -f *~ *.o *.mex* *.obj

205
liblinear-2.49/matlab/README Executable file
View File

@@ -0,0 +1,205 @@
--------------------------------------------
--- MATLAB/OCTAVE interface of LIBLINEAR ---
--------------------------------------------
Table of Contents
=================
- Introduction
- Installation
- Usage
- Returned Model Structure
- Other Utilities
- Examples
- Additional Information
Introduction
============
This tool provides a simple interface to LIBLINEAR, a library for
large-scale regularized linear classification and regression
(http://www.csie.ntu.edu.tw/~cjlin/liblinear). It is very easy to use
as the usage and the way of specifying parameters are the same as that
of LIBLINEAR.
Installation
============
On Windows systems, starting from version 2.48, we no longer provide
pre-built mex files. If you would like to build the package, please
rely on the following steps.
We recommend using make.m on both MATLAB and OCTAVE. Just type 'make'
to build 'libsvmread.mex', 'libsvmwrite.mex', 'train.mex', and
'predict.mex'.
On MATLAB or Octave:
>> make
If make.m does not work on MATLAB (especially for Windows), try 'mex
-setup' to choose a suitable compiler for mex. Make sure your compiler
is accessible and workable. Then type 'make' to do the installation.
Example:
matlab>> mex -setup
MATLAB will choose the default compiler. If you have multiple compliers,
a list is given and you can choose one from the list. For more details,
please check the following page:
https://www.mathworks.com/help/matlab/matlab_external/choose-c-or-c-compilers.html
On Windows, make.m has been tested via using Visual C++.
On Unix systems, if neither make.m nor 'mex -setup' works, please use
Makefile and type 'make' in a command window. Note that we assume
your MATLAB is installed in '/usr/local/matlab'. If not, please change
MATLABDIR in Makefile.
Example:
linux> make
To use octave, type 'make octave':
Example:
linux> make octave
For a list of supported/compatible compilers for MATLAB, please check
the following page:
http://www.mathworks.com/support/compilers/current_release/
Usage
=====
matlab> model = train(training_label_vector, training_instance_matrix [,'liblinear_options', 'col']);
-training_label_vector:
An m by 1 vector of training labels. (type must be double)
-training_instance_matrix:
An m by n matrix of m training instances with n features.
It must be a sparse matrix. (type must be double)
-liblinear_options:
A string of training options in the same format as that of LIBLINEAR.
-col:
if 'col' is set, each column of training_instance_matrix is a data instance. Otherwise each row is a data instance.
matlab> [predicted_label, accuracy, decision_values/prob_estimates] = predict(testing_label_vector, testing_instance_matrix, model [, 'liblinear_options', 'col']);
matlab> [predicted_label] = predict(testing_label_vector, testing_instance_matrix, model [, 'liblinear_options', 'col']);
-testing_label_vector:
An m by 1 vector of prediction labels. If labels of test
data are unknown, simply use any random values. (type must be double)
-testing_instance_matrix:
An m by n matrix of m testing instances with n features.
It must be a sparse matrix. (type must be double)
-model:
The output of train.
-liblinear_options:
A string of testing options in the same format as that of LIBLINEAR.
-col:
if 'col' is set, each column of testing_instance_matrix is a data instance. Otherwise each row is a data instance.
Returned Model Structure
========================
The 'train' function returns a model which can be used for future
prediction. It is a structure and is organized as [Parameters, nr_class,
nr_feature, bias, Label, w, rho]:
-Parameters: Parameters (now only solver type is provided)
-nr_class: number of classes; = 2 for regression
-nr_feature: number of features in training data (without including the bias term)
-bias: If >= 0, we assume one additional feature is added to the end
of each data instance.
-Label: label of each class; empty for regression
-w: a nr_w-by-n matrix for the weights, where n is nr_feature
or nr_feature+1 depending on the existence of the bias term.
nr_w is 1 if nr_class=2 and -s is not 4 (i.e., not
multi-class svm by Crammer and Singer). It is
nr_class otherwise.
-rho: the bias term of one-class SVM.
If the '-v' option is specified, cross validation is conducted and the
returned model is just a scalar: cross-validation accuracy for
classification and mean-squared error for regression.
If the '-C' option is specified, best parameters are found by cross
validation. The parameter selection utility is supported only by -s 0,
-s 2 (for finding C) and -s 11 (for finding C, p). The returned
model is a three dimensional vector with the best C, the best p, and
the corresponding cross-validation accuracy or mean squared error. The
returned best p for -s 0 and -s 2 is set to -1 because the p parameter
is not used by classification models.
Result of Prediction
====================
The function 'predict' has three outputs. The first one,
predicted_label, is a vector of predicted labels. The second output,
accuracy, is a vector including accuracy (for classification), mean
squared error, and squared correlation coefficient (for regression).
The third is a matrix containing decision values or probability
estimates (if '-b 1' is specified). If k is the number of classes
and k' is the number of classifiers (k'=1 if k=2, otherwise k'=k), for decision values,
each row includes results of k' binary linear classifiers. For probabilities,
each row contains k values indicating the probability that the testing instance is in
each class. Note that the order of classes here is the same as 'Label'
field in the model structure.
Other Utilities
===============
A matlab function libsvmread reads files in LIBSVM format:
[label_vector, instance_matrix] = libsvmread('data.txt');
Two outputs are labels and instances, which can then be used as inputs
of svmtrain or svmpredict.
A matlab function libsvmwrite writes Matlab matrix to a file in LIBSVM format:
libsvmwrite('data.txt', label_vector, instance_matrix]
The instance_matrix must be a sparse matrix. (type must be double)
For windows, `libsvmread.mexw64' and `libsvmwrite.mexw64' are ready in
the directory `..\windows'.
These codes are prepared by Rong-En Fan and Kai-Wei Chang from National
Taiwan University.
Examples
========
Train and test on the provided data heart_scale:
matlab> [heart_scale_label, heart_scale_inst] = libsvmread('../heart_scale');
matlab> model = train(heart_scale_label, heart_scale_inst, '-c 1');
matlab> [predict_label, accuracy, dec_values] = predict(heart_scale_label, heart_scale_inst, model); % test the training data
Note that for testing, you can put anything in the testing_label_vector.
For probability estimates, you need '-b 1' only in the testing phase:
matlab> [predict_label, accuracy, prob_estimates] = predict(heart_scale_label, heart_scale_inst, model, '-b 1');
Use the best parameter to train (C for -s 0, 2 and C, p for -s 11):
matlab> best = train(heart_scale_label, heart_scale_inst, '-C -s 0');
matlab> model = train(heart_scale_label, heart_scale_inst, sprintf('-c %f -s 0', best(1))); % use the same solver: -s 0
Additional Information
======================
Please cite LIBLINEAR as follows
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
LIBLINEAR: A Library for Large Linear Classification, Journal of
Machine Learning Research 9(2008), 1871-1874.Software available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear
For any question, please contact Chih-Jen Lin <cjlin@csie.ntu.edu.tw>.

View File

@@ -0,0 +1,212 @@
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <errno.h>
#include "mex.h"
#ifdef MX_API_VER
#if MX_API_VER < 0x07030000
typedef int mwIndex;
#endif
#endif
#ifndef max
#define max(x,y) (((x)>(y))?(x):(y))
#endif
#ifndef min
#define min(x,y) (((x)<(y))?(x):(y))
#endif
void exit_with_help()
{
mexPrintf(
"Usage: [label_vector, instance_matrix] = libsvmread('filename');\n"
);
}
static void fake_answer(int nlhs, mxArray *plhs[])
{
int i;
for(i=0;i<nlhs;i++)
plhs[i] = mxCreateDoubleMatrix(0, 0, mxREAL);
}
static char *line;
static int max_line_len;
static char* readline(FILE *input)
{
int len;
if(fgets(line,max_line_len,input) == NULL)
return NULL;
while(strrchr(line,'\n') == NULL)
{
max_line_len *= 2;
line = (char *) realloc(line, max_line_len);
len = (int) strlen(line);
if(fgets(line+len,max_line_len-len,input) == NULL)
break;
}
return line;
}
// read in a problem (in libsvm format)
void read_problem(const char *filename, int nlhs, mxArray *plhs[])
{
int max_index, min_index, inst_max_index;
size_t elements, k, i, l=0;
FILE *fp = fopen(filename,"r");
char *endptr;
mwIndex *ir, *jc;
double *labels, *samples;
if(fp == NULL)
{
mexPrintf("can't open input file %s\n",filename);
fake_answer(nlhs, plhs);
return;
}
max_line_len = 1024;
line = (char *) malloc(max_line_len*sizeof(char));
max_index = 0;
min_index = 1; // our index starts from 1
elements = 0;
while(readline(fp) != NULL)
{
char *idx, *val;
// features
int index = 0;
inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0
strtok(line," \t"); // label
while (1)
{
idx = strtok(NULL,":"); // index:value
val = strtok(NULL," \t");
if(val == NULL)
break;
errno = 0;
index = (int) strtol(idx,&endptr,10);
if(endptr == idx || errno != 0 || *endptr != '\0' || index <= inst_max_index)
{
mexPrintf("Wrong input format at line %d\n",l+1);
fake_answer(nlhs, plhs);
return;
}
else
inst_max_index = index;
min_index = min(min_index, index);
elements++;
}
max_index = max(max_index, inst_max_index);
l++;
}
rewind(fp);
// y
plhs[0] = mxCreateDoubleMatrix(l, 1, mxREAL);
// x^T
if (min_index <= 0)
plhs[1] = mxCreateSparse(max_index-min_index+1, l, elements, mxREAL);
else
plhs[1] = mxCreateSparse(max_index, l, elements, mxREAL);
labels = mxGetPr(plhs[0]);
samples = mxGetPr(plhs[1]);
ir = mxGetIr(plhs[1]);
jc = mxGetJc(plhs[1]);
k=0;
for(i=0;i<l;i++)
{
char *idx, *val, *label;
jc[i] = k;
readline(fp);
label = strtok(line," \t\n");
if(label == NULL)
{
mexPrintf("Empty line at line %d\n",i+1);
fake_answer(nlhs, plhs);
return;
}
labels[i] = strtod(label,&endptr);
if(endptr == label || *endptr != '\0')
{
mexPrintf("Wrong input format at line %d\n",i+1);
fake_answer(nlhs, plhs);
return;
}
// features
while(1)
{
idx = strtok(NULL,":");
val = strtok(NULL," \t");
if(val == NULL)
break;
ir[k] = (mwIndex) (strtol(idx,&endptr,10) - min_index); // precomputed kernel has <index> start from 0
errno = 0;
samples[k] = strtod(val,&endptr);
if (endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
{
mexPrintf("Wrong input format at line %d\n",i+1);
fake_answer(nlhs, plhs);
return;
}
++k;
}
}
jc[l] = k;
fclose(fp);
free(line);
{
mxArray *rhs[1], *lhs[1];
rhs[0] = plhs[1];
if(mexCallMATLAB(1, lhs, 1, rhs, "transpose"))
{
mexPrintf("Error: cannot transpose problem\n");
fake_answer(nlhs, plhs);
return;
}
plhs[1] = lhs[0];
}
}
void mexFunction( int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[] )
{
#define filename_size 256
char filename[filename_size];
if(nrhs != 1 || nlhs != 2)
{
exit_with_help();
fake_answer(nlhs, plhs);
return;
}
if(mxGetString(prhs[0], filename, filename_size) == 1){
mexPrintf("Error: wrong or too long filename\n");
fake_answer(nlhs, plhs);
return;
}
read_problem(filename, nlhs, plhs);
return;
}

View File

@@ -0,0 +1,119 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "mex.h"
#ifdef MX_API_VER
#if MX_API_VER < 0x07030000
typedef int mwIndex;
#endif
#endif
void exit_with_help()
{
mexPrintf(
"Usage: libsvmwrite('filename', label_vector, instance_matrix);\n"
);
}
static void fake_answer(int nlhs, mxArray *plhs[])
{
int i;
for(i=0;i<nlhs;i++)
plhs[i] = mxCreateDoubleMatrix(0, 0, mxREAL);
}
void libsvmwrite(const char *filename, const mxArray *label_vec, const mxArray *instance_mat)
{
FILE *fp = fopen(filename,"w");
mwIndex *ir, *jc, k, low, high;
size_t i, l, label_vector_row_num;
double *samples, *labels;
mxArray *instance_mat_col; // instance sparse matrix in column format
if(fp ==NULL)
{
mexPrintf("can't open output file %s\n",filename);
return;
}
// transpose instance matrix
{
mxArray *prhs[1], *plhs[1];
prhs[0] = mxDuplicateArray(instance_mat);
if(mexCallMATLAB(1, plhs, 1, prhs, "transpose"))
{
mexPrintf("Error: cannot transpose instance matrix\n");
return;
}
instance_mat_col = plhs[0];
mxDestroyArray(prhs[0]);
}
// the number of instance
l = mxGetN(instance_mat_col);
label_vector_row_num = mxGetM(label_vec);
if(label_vector_row_num!=l)
{
mexPrintf("Length of label vector does not match # of instances.\n");
return;
}
// each column is one instance
labels = mxGetPr(label_vec);
samples = mxGetPr(instance_mat_col);
ir = mxGetIr(instance_mat_col);
jc = mxGetJc(instance_mat_col);
for(i=0;i<l;i++)
{
fprintf(fp,"%.17g", labels[i]);
low = jc[i], high = jc[i+1];
for(k=low;k<high;k++)
fprintf(fp," %lu:%g", (size_t)ir[k]+1, samples[k]);
fprintf(fp,"\n");
}
fclose(fp);
return;
}
void mexFunction( int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[] )
{
if(nlhs > 0)
{
exit_with_help();
fake_answer(nlhs, plhs);
return;
}
// Transform the input Matrix to libsvm format
if(nrhs == 3)
{
char filename[256];
if(!mxIsDouble(prhs[1]) || !mxIsDouble(prhs[2]))
{
mexPrintf("Error: label vector and instance matrix must be double\n");
return;
}
mxGetString(prhs[0], filename, mxGetN(prhs[0])+1);
if(mxIsSparse(prhs[2]))
libsvmwrite(filename, prhs[1], prhs[2]);
else
{
mexPrintf("Instance_matrix must be sparse\n");
return;
}
}
else
{
exit_with_help();
return;
}
}

View File

@@ -0,0 +1,190 @@
#include <stdlib.h>
#include <string.h>
#include "linear.h"
#include "mex.h"
#ifdef MX_API_VER
#if MX_API_VER < 0x07030000
typedef int mwIndex;
#endif
#endif
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
#define NUM_OF_RETURN_FIELD 7
static const char *field_names[] = {
"Parameters",
"nr_class",
"nr_feature",
"bias",
"Label",
"w",
"rho",
};
const char *model_to_matlab_structure(mxArray *plhs[], struct model *model_)
{
int i;
int nr_w;
double *ptr;
mxArray *return_model, **rhs;
int out_id = 0;
int n, w_size;
rhs = (mxArray **)mxMalloc(sizeof(mxArray *)*NUM_OF_RETURN_FIELD);
// Parameters
// for now, only solver_type is needed
rhs[out_id] = mxCreateDoubleMatrix(1, 1, mxREAL);
ptr = mxGetPr(rhs[out_id]);
ptr[0] = model_->param.solver_type;
out_id++;
// nr_class
rhs[out_id] = mxCreateDoubleMatrix(1, 1, mxREAL);
ptr = mxGetPr(rhs[out_id]);
ptr[0] = model_->nr_class;
out_id++;
if(model_->nr_class==2 && model_->param.solver_type != MCSVM_CS)
nr_w=1;
else
nr_w=model_->nr_class;
// nr_feature
rhs[out_id] = mxCreateDoubleMatrix(1, 1, mxREAL);
ptr = mxGetPr(rhs[out_id]);
ptr[0] = model_->nr_feature;
out_id++;
// bias
rhs[out_id] = mxCreateDoubleMatrix(1, 1, mxREAL);
ptr = mxGetPr(rhs[out_id]);
ptr[0] = model_->bias;
out_id++;
if(model_->bias>=0)
n=model_->nr_feature+1;
else
n=model_->nr_feature;
w_size = n;
// Label
if(model_->label)
{
rhs[out_id] = mxCreateDoubleMatrix(model_->nr_class, 1, mxREAL);
ptr = mxGetPr(rhs[out_id]);
for(i = 0; i < model_->nr_class; i++)
ptr[i] = model_->label[i];
}
else
rhs[out_id] = mxCreateDoubleMatrix(0, 0, mxREAL);
out_id++;
// w
rhs[out_id] = mxCreateDoubleMatrix(nr_w, w_size, mxREAL);
ptr = mxGetPr(rhs[out_id]);
for(i = 0; i < w_size*nr_w; i++)
ptr[i]=model_->w[i];
out_id++;
// rho
rhs[out_id] = mxCreateDoubleMatrix(1, 1, mxREAL);
ptr = mxGetPr(rhs[out_id]);
ptr[0] = model_->rho;
out_id++;
/* Create a struct matrix contains NUM_OF_RETURN_FIELD fields */
return_model = mxCreateStructMatrix(1, 1, NUM_OF_RETURN_FIELD, field_names);
/* Fill struct matrix with input arguments */
for(i = 0; i < NUM_OF_RETURN_FIELD; i++)
mxSetField(return_model,0,field_names[i],mxDuplicateArray(rhs[i]));
/* return */
plhs[0] = return_model;
mxFree(rhs);
return NULL;
}
const char *matlab_matrix_to_model(struct model *model_, const mxArray *matlab_struct)
{
int i, num_of_fields;
int nr_w;
double *ptr;
int id = 0;
int n, w_size;
mxArray **rhs;
num_of_fields = mxGetNumberOfFields(matlab_struct);
rhs = (mxArray **) mxMalloc(sizeof(mxArray *)*num_of_fields);
for(i=0;i<num_of_fields;i++)
rhs[i] = mxGetFieldByNumber(matlab_struct, 0, i);
model_->nr_class=0;
nr_w=0;
model_->nr_feature=0;
model_->w=NULL;
model_->label=NULL;
// Parameters
ptr = mxGetPr(rhs[id]);
model_->param.solver_type = (int)ptr[0];
id++;
// nr_class
ptr = mxGetPr(rhs[id]);
model_->nr_class = (int)ptr[0];
id++;
if(model_->nr_class==2 && model_->param.solver_type != MCSVM_CS)
nr_w=1;
else
nr_w=model_->nr_class;
// nr_feature
ptr = mxGetPr(rhs[id]);
model_->nr_feature = (int)ptr[0];
id++;
// bias
ptr = mxGetPr(rhs[id]);
model_->bias = ptr[0];
id++;
if(model_->bias>=0)
n=model_->nr_feature+1;
else
n=model_->nr_feature;
w_size = n;
// Label
if(mxIsEmpty(rhs[id]) == 0)
{
model_->label = Malloc(int, model_->nr_class);
ptr = mxGetPr(rhs[id]);
for(i=0;i<model_->nr_class;i++)
model_->label[i] = (int)ptr[i];
}
id++;
// w
ptr = mxGetPr(rhs[id]);
model_->w=Malloc(double, w_size*nr_w);
for(i = 0; i < w_size*nr_w; i++)
model_->w[i]=ptr[i];
id++;
// rho
ptr = mxGetPr(rhs[id]);
model_->rho = ptr[0];
id++;
mxFree(rhs);
return NULL;
}

View File

@@ -0,0 +1,2 @@
const char *model_to_matlab_structure(mxArray *plhs[], struct model *model_);
const char *matlab_matrix_to_model(struct model *model_, const mxArray *matlab_struct);

View File

@@ -0,0 +1,22 @@
% This make.m is for MATLAB and OCTAVE under Windows, Mac, and Unix
function make()
try
% This part is for OCTAVE
if(exist('OCTAVE_VERSION', 'builtin'))
mex libsvmread.c
mex libsvmwrite.c
mex -I.. train.c linear_model_matlab.c ../linear.cpp ../newton.cpp ../blas/daxpy.c ../blas/ddot.c ../blas/dnrm2.c ../blas/dscal.c
mex -I.. predict.c linear_model_matlab.c ../linear.cpp ../newton.cpp ../blas/daxpy.c ../blas/ddot.c ../blas/dnrm2.c ../blas/dscal.c
% This part is for MATLAB
% Add -largeArrayDims on 64-bit machines of MATLAB
else
mex -largeArrayDims libsvmread.c
mex -largeArrayDims libsvmwrite.c
mex -I.. -largeArrayDims train.c linear_model_matlab.c ../linear.cpp ../newton.cpp ../blas/daxpy.c ../blas/ddot.c ../blas/dnrm2.c ../blas/dscal.c
mex -I.. -largeArrayDims predict.c linear_model_matlab.c ../linear.cpp ../newton.cpp ../blas/daxpy.c ../blas/ddot.c ../blas/dnrm2.c ../blas/dscal.c
end
catch err
fprintf('Error: %s failed (line %d)\n', err.stack(1).file, err.stack(1).line);
disp(err.message);
fprintf('=> Please check README for detailed instructions.\n');
end

View File

@@ -0,0 +1,341 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "linear.h"
#include "mex.h"
#include "linear_model_matlab.h"
#ifdef MX_API_VER
#if MX_API_VER < 0x07030000
typedef int mwIndex;
#endif
#endif
#define CMD_LEN 2048
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
int print_null(const char *s,...) {return 0;}
int (*info)(const char *fmt,...);
int col_format_flag;
void read_sparse_instance(const mxArray *prhs, int index, struct feature_node *x, int feature_number, double bias)
{
int j;
mwIndex *ir, *jc, low, high, i;
double *samples;
ir = mxGetIr(prhs);
jc = mxGetJc(prhs);
samples = mxGetPr(prhs);
// each column is one instance
j = 0;
low = jc[index], high = jc[index+1];
for(i=low; i<high && (int) (ir[i])<feature_number; i++)
{
x[j].index = (int) ir[i]+1;
x[j].value = samples[i];
j++;
}
if(bias>=0)
{
x[j].index = feature_number+1;
x[j].value = bias;
j++;
}
x[j].index = -1;
}
static void fake_answer(int nlhs, mxArray *plhs[])
{
int i;
for(i=0;i<nlhs;i++)
plhs[i] = mxCreateDoubleMatrix(0, 0, mxREAL);
}
void do_predict(int nlhs, mxArray *plhs[], const mxArray *prhs[], struct model *model_, const int predict_probability_flag)
{
int label_vector_row_num, label_vector_col_num;
int feature_number, testing_instance_number;
int instance_index;
double *ptr_label, *ptr_predict_label;
double *ptr_prob_estimates, *ptr_dec_values, *ptr;
struct feature_node *x;
mxArray *pplhs[1]; // instance sparse matrix in row format
mxArray *tplhs[3]; // temporary storage for plhs[]
int correct = 0;
int total = 0;
double error = 0;
double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;
int nr_class=get_nr_class(model_);
int nr_w;
double *prob_estimates=NULL;
if(nr_class==2 && model_->param.solver_type!=MCSVM_CS)
nr_w=1;
else
nr_w=nr_class;
// prhs[1] = testing instance matrix
feature_number = get_nr_feature(model_);
testing_instance_number = (int) mxGetM(prhs[1]);
if(col_format_flag)
{
feature_number = (int) mxGetM(prhs[1]);
testing_instance_number = (int) mxGetN(prhs[1]);
}
label_vector_row_num = (int) mxGetM(prhs[0]);
label_vector_col_num = (int) mxGetN(prhs[0]);
if(label_vector_row_num!=testing_instance_number)
{
mexPrintf("Length of label vector does not match # of instances.\n");
fake_answer(nlhs, plhs);
return;
}
if(label_vector_col_num!=1)
{
mexPrintf("label (1st argument) should be a vector (# of column is 1).\n");
fake_answer(nlhs, plhs);
return;
}
ptr_label = mxGetPr(prhs[0]);
// transpose instance matrix
if(col_format_flag)
pplhs[0] = (mxArray *)prhs[1];
else
{
mxArray *pprhs[1];
pprhs[0] = mxDuplicateArray(prhs[1]);
if(mexCallMATLAB(1, pplhs, 1, pprhs, "transpose"))
{
mexPrintf("Error: cannot transpose testing instance matrix\n");
fake_answer(nlhs, plhs);
return;
}
}
prob_estimates = Malloc(double, nr_class);
tplhs[0] = mxCreateDoubleMatrix(testing_instance_number, 1, mxREAL);
if(predict_probability_flag)
tplhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_class, mxREAL);
else
tplhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_w, mxREAL);
ptr_predict_label = mxGetPr(tplhs[0]);
ptr_prob_estimates = mxGetPr(tplhs[2]);
ptr_dec_values = mxGetPr(tplhs[2]);
x = Malloc(struct feature_node, feature_number+2);
for(instance_index=0;instance_index<testing_instance_number;instance_index++)
{
int i;
double target_label, predict_label;
target_label = ptr_label[instance_index];
// prhs[1] and prhs[1]^T are sparse
read_sparse_instance(pplhs[0], instance_index, x, feature_number, model_->bias);
if(predict_probability_flag)
{
predict_label = predict_probability(model_, x, prob_estimates);
ptr_predict_label[instance_index] = predict_label;
for(i=0;i<nr_class;i++)
ptr_prob_estimates[instance_index + i * testing_instance_number] = prob_estimates[i];
}
else
{
double *dec_values = Malloc(double, nr_class);
predict_label = predict_values(model_, x, dec_values);
ptr_predict_label[instance_index] = predict_label;
for(i=0;i<nr_w;i++)
ptr_dec_values[instance_index + i * testing_instance_number] = dec_values[i];
free(dec_values);
}
if(predict_label == target_label)
++correct;
error += (predict_label-target_label)*(predict_label-target_label);
sump += predict_label;
sumt += target_label;
sumpp += predict_label*predict_label;
sumtt += target_label*target_label;
sumpt += predict_label*target_label;
++total;
}
if(check_regression_model(model_))
{
info("Mean squared error = %g (regression)\n",error/total);
info("Squared correlation coefficient = %g (regression)\n",
((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))
);
}
else
info("Accuracy = %g%% (%d/%d)\n", (double) correct/total*100,correct,total);
// return accuracy, mean squared error, squared correlation coefficient
tplhs[1] = mxCreateDoubleMatrix(3, 1, mxREAL);
ptr = mxGetPr(tplhs[1]);
ptr[0] = (double)correct/total*100;
ptr[1] = error/total;
ptr[2] = ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt));
free(x);
if(prob_estimates != NULL)
free(prob_estimates);
switch(nlhs)
{
case 3:
plhs[2] = tplhs[2];
plhs[1] = tplhs[1];
case 1:
case 0:
plhs[0] = tplhs[0];
}
}
void exit_with_help()
{
mexPrintf(
"Usage: [predicted_label, accuracy, decision_values/prob_estimates] = predict(testing_label_vector, testing_instance_matrix, model, 'liblinear_options','col')\n"
" [predicted_label] = predict(testing_label_vector, testing_instance_matrix, model, 'liblinear_options','col')\n"
"liblinear_options:\n"
"-b probability_estimates: whether to output probability estimates, 0 or 1 (default 0); currently for logistic regression only\n"
"-q quiet mode (no outputs)\n"
"col: if 'col' is setted testing_instance_matrix is parsed in column format, otherwise is in row format\n"
"Returns:\n"
" predicted_label: prediction output vector.\n"
" accuracy: a vector with accuracy, mean squared error, squared correlation coefficient.\n"
" prob_estimates: If selected, probability estimate vector.\n"
);
}
void mexFunction( int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[] )
{
int prob_estimate_flag = 0;
struct model *model_;
char cmd[CMD_LEN];
info = &mexPrintf;
col_format_flag = 0;
if(nlhs == 2 || nlhs > 3 || nrhs > 5 || nrhs < 3)
{
exit_with_help();
fake_answer(nlhs, plhs);
return;
}
if(nrhs == 5)
{
mxGetString(prhs[4], cmd, mxGetN(prhs[4])+1);
if(strcmp(cmd, "col") == 0)
{
col_format_flag = 1;
}
}
if(!mxIsDouble(prhs[0]) || !mxIsDouble(prhs[1])) {
mexPrintf("Error: label vector and instance matrix must be double\n");
fake_answer(nlhs, plhs);
return;
}
if(mxIsStruct(prhs[2]))
{
const char *error_msg;
// parse options
if(nrhs>=4)
{
int i, argc = 1;
char *argv[CMD_LEN/2];
// put options in argv[]
mxGetString(prhs[3], cmd, mxGetN(prhs[3]) + 1);
if((argv[argc] = strtok(cmd, " ")) != NULL)
while((argv[++argc] = strtok(NULL, " ")) != NULL)
;
for(i=1;i<argc;i++)
{
if(argv[i][0] != '-') break;
++i;
if(i>=argc && argv[i-1][1] != 'q')
{
exit_with_help();
fake_answer(nlhs, plhs);
return;
}
switch(argv[i-1][1])
{
case 'b':
prob_estimate_flag = atoi(argv[i]);
break;
case 'q':
info = &print_null;
i--;
break;
default:
mexPrintf("unknown option\n");
exit_with_help();
fake_answer(nlhs, plhs);
return;
}
}
}
model_ = Malloc(struct model, 1);
error_msg = matlab_matrix_to_model(model_, prhs[2]);
if(error_msg)
{
mexPrintf("Error: can't read model: %s\n", error_msg);
free_and_destroy_model(&model_);
fake_answer(nlhs, plhs);
return;
}
if(prob_estimate_flag)
{
if(!check_probability_model(model_))
{
mexPrintf("probability output is only supported for logistic regression\n");
prob_estimate_flag=0;
}
}
if(mxIsSparse(prhs[1]))
do_predict(nlhs, plhs, prhs, model_, prob_estimate_flag);
else
{
mexPrintf("Testing_instance_matrix must be sparse; "
"use sparse(Testing_instance_matrix) first\n");
fake_answer(nlhs, plhs);
}
// destroy model_
free_and_destroy_model(&model_);
}
else
{
mexPrintf("model file should be a struct array\n");
fake_answer(nlhs, plhs);
}
return;
}

View File

@@ -0,0 +1,523 @@
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "linear.h"
#include "mex.h"
#include "linear_model_matlab.h"
#ifdef MX_API_VER
#if MX_API_VER < 0x07030000
typedef int mwIndex;
#endif
#endif
#define CMD_LEN 2048
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
#define INF HUGE_VAL
void print_null(const char *s) {}
void print_string_matlab(const char *s) {mexPrintf(s);}
void exit_with_help()
{
mexPrintf(
"Usage: model = train(training_label_vector, training_instance_matrix, 'liblinear_options', 'col');\n"
"liblinear_options:\n"
"-s type : set type of solver (default 1)\n"
" for multi-class classification\n"
" 0 -- L2-regularized logistic regression (primal)\n"
" 1 -- L2-regularized L2-loss support vector classification (dual)\n"
" 2 -- L2-regularized L2-loss support vector classification (primal)\n"
" 3 -- L2-regularized L1-loss support vector classification (dual)\n"
" 4 -- support vector classification by Crammer and Singer\n"
" 5 -- L1-regularized L2-loss support vector classification\n"
" 6 -- L1-regularized logistic regression\n"
" 7 -- L2-regularized logistic regression (dual)\n"
" for regression\n"
" 11 -- L2-regularized L2-loss support vector regression (primal)\n"
" 12 -- L2-regularized L2-loss support vector regression (dual)\n"
" 13 -- L2-regularized L1-loss support vector regression (dual)\n"
" for outlier detection\n"
" 21 -- one-class support vector machine (dual)\n"
"-c cost : set the parameter C (default 1)\n"
"-p epsilon : set the epsilon in loss function of SVR (default 0.1)\n"
"-n nu : set the parameter nu of one-class SVM (default 0.5)\n"
"-e epsilon : set tolerance of termination criterion\n"
" -s 0 and 2\n"
" |f'(w)|_2 <= eps*min(pos,neg)/l*|f'(w0)|_2,\n"
" where f is the primal function and pos/neg are # of\n"
" positive/negative data (default 0.01)\n"
" -s 11\n"
" |f'(w)|_2 <= eps*|f'(w0)|_2 (default 0.0001)\n"
" -s 1, 3, 4, 7, and 21\n"
" Dual maximal violation <= eps; similar to libsvm (default 0.1 except 0.01 for -s 21)\n"
" -s 5 and 6\n"
" |f'(w)|_1 <= eps*min(pos,neg)/l*|f'(w0)|_1,\n"
" where f is the primal function (default 0.01)\n"
" -s 12 and 13\n"
" |f'(alpha)|_1 <= eps |f'(alpha0)|,\n"
" where f is the dual function (default 0.1)\n"
"-B bias : if bias >= 0, instance x becomes [x; bias]; if < 0, no bias term added (default -1)\n"
"-R : not regularize the bias; must with -B 1 to have the bias; DON'T use this unless you know what it is\n"
" (for -s 0, 2, 5, 6, 11)\n"
"-wi weight: weights adjust the parameter C of different classes (see README for details)\n"
"-v n: n-fold cross validation mode\n"
"-C : find parameters (C for -s 0, 2 and C, p for -s 11)\n"
"-q : quiet mode (no outputs)\n"
"col:\n"
" if 'col' is setted, training_instance_matrix is parsed in column format, otherwise is in row format\n"
);
}
// liblinear arguments
struct parameter param; // set by parse_command_line
struct problem prob; // set by read_problem
struct model *model_;
struct feature_node *x_space;
int flag_cross_validation;
int flag_find_parameters;
int flag_C_specified;
int flag_p_specified;
int flag_solver_specified;
int col_format_flag;
int nr_fold;
double bias;
void do_find_parameters(double *best_C, double *best_p, double *best_score)
{
double start_C, start_p;
if (flag_C_specified)
start_C = param.C;
else
start_C = -1.0;
if (flag_p_specified)
start_p = param.p;
else
start_p = -1.0;
mexPrintf("Doing parameter search with %d-fold cross validation.\n", nr_fold);
find_parameters(&prob, &param, nr_fold, start_C, start_p, best_C, best_p, best_score);
if(param.solver_type == L2R_LR || param.solver_type == L2R_L2LOSS_SVC)
mexPrintf("Best C = %g CV accuracy = %g%%\n", *best_C, 100.0**best_score);
else if(param.solver_type == L2R_L2LOSS_SVR)
mexPrintf("Best C = %g Best p = %g CV MSE = %g\n", *best_C, *best_p, *best_score);
}
double do_cross_validation()
{
int i;
int total_correct = 0;
double total_error = 0;
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
double *target = Malloc(double, prob.l);
double retval = 0.0;
cross_validation(&prob,&param,nr_fold,target);
if(param.solver_type == L2R_L2LOSS_SVR ||
param.solver_type == L2R_L1LOSS_SVR_DUAL ||
param.solver_type == L2R_L2LOSS_SVR_DUAL)
{
for(i=0;i<prob.l;i++)
{
double y = prob.y[i];
double v = target[i];
total_error += (v-y)*(v-y);
sumv += v;
sumy += y;
sumvv += v*v;
sumyy += y*y;
sumvy += v*y;
}
mexPrintf("Cross Validation Mean squared error = %g\n",total_error/prob.l);
mexPrintf("Cross Validation Squared correlation coefficient = %g\n",
((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/
((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy))
);
retval = total_error/prob.l;
}
else
{
for(i=0;i<prob.l;i++)
if(target[i] == prob.y[i])
++total_correct;
mexPrintf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l);
retval = 100.0*total_correct/prob.l;
}
free(target);
return retval;
}
// nrhs should be 3
int parse_command_line(int nrhs, const mxArray *prhs[], char *model_file_name)
{
int i, argc = 1;
char cmd[CMD_LEN];
char *argv[CMD_LEN/2];
void (*print_func)(const char *) = print_string_matlab; // default printing to matlab display
// default values
param.solver_type = L2R_L2LOSS_SVC_DUAL;
param.C = 1;
param.p = 0.1;
param.nu = 0.5;
param.eps = INF; // see setting below
param.nr_weight = 0;
param.weight_label = NULL;
param.weight = NULL;
param.init_sol = NULL;
param.regularize_bias = 1;
flag_cross_validation = 0;
col_format_flag = 0;
flag_C_specified = 0;
flag_p_specified = 0;
flag_solver_specified = 0;
flag_find_parameters = 0;
bias = -1;
if(nrhs <= 1)
return 1;
if(nrhs == 4)
{
mxGetString(prhs[3], cmd, mxGetN(prhs[3])+1);
if(strcmp(cmd, "col") == 0)
col_format_flag = 1;
}
// put options in argv[]
if(nrhs > 2)
{
mxGetString(prhs[2], cmd, mxGetN(prhs[2]) + 1);
if((argv[argc] = strtok(cmd, " ")) != NULL)
while((argv[++argc] = strtok(NULL, " ")) != NULL)
;
}
// parse options
for(i=1;i<argc;i++)
{
if(argv[i][0] != '-') break;
++i;
if(i>=argc && argv[i-1][1] != 'q' && argv[i-1][1] != 'C'
&& argv[i-1][1] != 'R') // since options -q and -C have no parameter
return 1;
switch(argv[i-1][1])
{
case 's':
param.solver_type = atoi(argv[i]);
flag_solver_specified = 1;
break;
case 'c':
param.C = atof(argv[i]);
flag_C_specified = 1;
break;
case 'p':
param.p = atof(argv[i]);
flag_p_specified = 1;
break;
case 'n':
param.nu = atof(argv[i]);
break;
case 'e':
param.eps = atof(argv[i]);
break;
case 'B':
bias = atof(argv[i]);
break;
case 'v':
flag_cross_validation = 1;
nr_fold = atoi(argv[i]);
if(nr_fold < 2)
{
mexPrintf("n-fold cross validation: n must >= 2\n");
return 1;
}
break;
case 'w':
++param.nr_weight;
param.weight_label = (int *) realloc(param.weight_label,sizeof(int)*param.nr_weight);
param.weight = (double *) realloc(param.weight,sizeof(double)*param.nr_weight);
param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]);
param.weight[param.nr_weight-1] = atof(argv[i]);
break;
case 'q':
print_func = &print_null;
i--;
break;
case 'C':
flag_find_parameters = 1;
i--;
break;
case 'R':
param.regularize_bias = 0;
i--;
break;
default:
mexPrintf("unknown option\n");
return 1;
}
}
set_print_string_function(print_func);
// default solver for parameter selection is L2R_L2LOSS_SVC
if(flag_find_parameters)
{
if(!flag_cross_validation)
nr_fold = 5;
if(!flag_solver_specified)
{
mexPrintf("Solver not specified. Using -s 2\n");
param.solver_type = L2R_L2LOSS_SVC;
}
else if(param.solver_type != L2R_LR && param.solver_type != L2R_L2LOSS_SVC && param.solver_type != L2R_L2LOSS_SVR)
{
mexPrintf("Warm-start parameter search only available for -s 0, -s 2 and -s 11\n");
return 1;
}
}
if(param.eps == INF)
{
switch(param.solver_type)
{
case L2R_LR:
case L2R_L2LOSS_SVC:
param.eps = 0.01;
break;
case L2R_L2LOSS_SVR:
param.eps = 0.0001;
break;
case L2R_L2LOSS_SVC_DUAL:
case L2R_L1LOSS_SVC_DUAL:
case MCSVM_CS:
case L2R_LR_DUAL:
param.eps = 0.1;
break;
case L1R_L2LOSS_SVC:
case L1R_LR:
param.eps = 0.01;
break;
case L2R_L1LOSS_SVR_DUAL:
case L2R_L2LOSS_SVR_DUAL:
param.eps = 0.1;
break;
case ONECLASS_SVM:
param.eps = 0.01;
break;
}
}
return 0;
}
static void fake_answer(int nlhs, mxArray *plhs[])
{
int i;
for(i=0;i<nlhs;i++)
plhs[i] = mxCreateDoubleMatrix(0, 0, mxREAL);
}
int read_problem_sparse(const mxArray *label_vec, const mxArray *instance_mat)
{
mwIndex *ir, *jc, low, high, k;
// using size_t due to the output type of matlab functions
size_t i, j, l, elements, max_index, label_vector_row_num;
mwSize num_samples;
double *samples, *labels;
mxArray *instance_mat_col; // instance sparse matrix in column format
prob.x = NULL;
prob.y = NULL;
x_space = NULL;
if(col_format_flag)
instance_mat_col = (mxArray *)instance_mat;
else
{
// transpose instance matrix
mxArray *prhs[1], *plhs[1];
prhs[0] = mxDuplicateArray(instance_mat);
if(mexCallMATLAB(1, plhs, 1, prhs, "transpose"))
{
mexPrintf("Error: cannot transpose training instance matrix\n");
return -1;
}
instance_mat_col = plhs[0];
mxDestroyArray(prhs[0]);
}
// the number of instance
l = mxGetN(instance_mat_col);
label_vector_row_num = mxGetM(label_vec);
prob.l = (int) l;
if(label_vector_row_num!=l)
{
mexPrintf("Length of label vector does not match # of instances.\n");
return -1;
}
// each column is one instance
labels = mxGetPr(label_vec);
samples = mxGetPr(instance_mat_col);
ir = mxGetIr(instance_mat_col);
jc = mxGetJc(instance_mat_col);
num_samples = mxGetNzmax(instance_mat_col);
elements = num_samples + l*2;
max_index = mxGetM(instance_mat_col);
prob.y = Malloc(double, l);
prob.x = Malloc(struct feature_node*, l);
x_space = Malloc(struct feature_node, elements);
prob.bias=bias;
j = 0;
for(i=0;i<l;i++)
{
prob.x[i] = &x_space[j];
prob.y[i] = labels[i];
low = jc[i], high = jc[i+1];
for(k=low;k<high;k++)
{
x_space[j].index = (int) ir[k]+1;
x_space[j].value = samples[k];
j++;
}
if(prob.bias>=0)
{
x_space[j].index = (int) max_index+1;
x_space[j].value = prob.bias;
j++;
}
x_space[j++].index = -1;
}
if(prob.bias>=0)
prob.n = (int) max_index+1;
else
prob.n = (int) max_index;
return 0;
}
// Interface function of matlab
// now assume prhs[0]: label prhs[1]: features
void mexFunction( int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[] )
{
const char *error_msg;
// fix random seed to have same results for each run
// (for cross validation)
srand(1);
if(nlhs > 1)
{
exit_with_help();
fake_answer(nlhs, plhs);
return;
}
// Transform the input Matrix to libsvm format
if(nrhs > 1 && nrhs < 5)
{
int err=0;
if(!mxIsDouble(prhs[0]) || !mxIsDouble(prhs[1]))
{
mexPrintf("Error: label vector and instance matrix must be double\n");
fake_answer(nlhs, plhs);
return;
}
if(mxIsSparse(prhs[0]))
{
mexPrintf("Error: label vector should not be in sparse format");
fake_answer(nlhs, plhs);
return;
}
if(parse_command_line(nrhs, prhs, NULL))
{
exit_with_help();
destroy_param(&param);
fake_answer(nlhs, plhs);
return;
}
if(mxIsSparse(prhs[1]))
err = read_problem_sparse(prhs[0], prhs[1]);
else
{
mexPrintf("Training_instance_matrix must be sparse; "
"use sparse(Training_instance_matrix) first\n");
destroy_param(&param);
fake_answer(nlhs, plhs);
return;
}
// train's original code
error_msg = check_parameter(&prob, &param);
if(err || error_msg)
{
if (error_msg != NULL)
mexPrintf("Error: %s\n", error_msg);
destroy_param(&param);
free(prob.y);
free(prob.x);
free(x_space);
fake_answer(nlhs, plhs);
return;
}
if (flag_find_parameters)
{
double best_C, best_p, best_score, *ptr;
do_find_parameters(&best_C, &best_p, &best_score);
plhs[0] = mxCreateDoubleMatrix(3, 1, mxREAL);
ptr = mxGetPr(plhs[0]);
ptr[0] = best_C;
ptr[1] = best_p;
ptr[2] = best_score;
}
else if(flag_cross_validation)
{
double *ptr;
plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);
ptr = mxGetPr(plhs[0]);
ptr[0] = do_cross_validation();
}
else
{
const char *error_msg;
model_ = train(&prob, &param);
error_msg = model_to_matlab_structure(plhs, model_);
if(error_msg)
mexPrintf("Error: can't convert libsvm model to matrix structure: %s\n", error_msg);
free_and_destroy_model(&model_);
}
destroy_param(&param);
free(prob.y);
free(prob.x);
free(x_space);
}
else
{
exit_with_help();
fake_answer(nlhs, plhs);
return;
}
}

251
liblinear-2.49/newton.cpp Normal file
View File

@@ -0,0 +1,251 @@
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include "newton.h"
#ifndef min
template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
#endif
#ifndef max
template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
#endif
#ifdef __cplusplus
extern "C" {
#endif
extern double dnrm2_(int *, double *, int *);
extern double ddot_(int *, double *, int *, double *, int *);
extern int daxpy_(int *, double *, double *, int *, double *, int *);
extern int dscal_(int *, double *, double *, int *);
#ifdef __cplusplus
}
#endif
static void default_print(const char *buf)
{
fputs(buf,stdout);
fflush(stdout);
}
// On entry *f must be the function value of w
// On exit w is updated and *f is the new function value
double function::linesearch_and_update(double *w, double *s, double *f, double *g, double alpha)
{
double gTs = 0;
double eta = 0.01;
int n = get_nr_variable();
int max_num_linesearch = 20;
double *w_new = new double[n];
double fold = *f;
for (int i=0;i<n;i++)
gTs += s[i] * g[i];
int num_linesearch = 0;
for(num_linesearch=0; num_linesearch < max_num_linesearch; num_linesearch++)
{
for (int i=0;i<n;i++)
w_new[i] = w[i] + alpha*s[i];
*f = fun(w_new);
if (*f - fold <= eta * alpha * gTs)
break;
else
alpha *= 0.5;
}
if (num_linesearch >= max_num_linesearch)
{
*f = fold;
return 0;
}
else
memcpy(w, w_new, sizeof(double)*n);
delete [] w_new;
return alpha;
}
void NEWTON::info(const char *fmt,...)
{
char buf[BUFSIZ];
va_list ap;
va_start(ap,fmt);
vsprintf(buf,fmt,ap);
va_end(ap);
(*newton_print_string)(buf);
}
NEWTON::NEWTON(const function *fun_obj, double eps, double eps_cg, int max_iter)
{
this->fun_obj=const_cast<function *>(fun_obj);
this->eps=eps;
this->eps_cg=eps_cg;
this->max_iter=max_iter;
newton_print_string = default_print;
}
NEWTON::~NEWTON()
{
}
void NEWTON::newton(double *w)
{
int n = fun_obj->get_nr_variable();
int i, cg_iter;
double step_size;
double f, fold, actred;
double init_step_size = 1;
int search = 1, iter = 1, inc = 1;
double *s = new double[n];
double *r = new double[n];
double *g = new double[n];
const double alpha_pcg = 0.01;
double *M = new double[n];
// calculate gradient norm at w=0 for stopping condition.
double *w0 = new double[n];
for (i=0; i<n; i++)
w0[i] = 0;
fun_obj->fun(w0);
fun_obj->grad(w0, g);
double gnorm0 = dnrm2_(&n, g, &inc);
delete [] w0;
f = fun_obj->fun(w);
fun_obj->grad(w, g);
double gnorm = dnrm2_(&n, g, &inc);
info("init f %5.3e |g| %5.3e\n", f, gnorm);
if (gnorm <= eps*gnorm0)
search = 0;
while (iter <= max_iter && search)
{
fun_obj->get_diag_preconditioner(M);
for(i=0; i<n; i++)
M[i] = (1-alpha_pcg) + alpha_pcg*M[i];
cg_iter = pcg(g, M, s, r);
fold = f;
step_size = fun_obj->linesearch_and_update(w, s, &f, g, init_step_size);
if (step_size == 0)
{
info("WARNING: line search fails\n");
break;
}
fun_obj->grad(w, g);
gnorm = dnrm2_(&n, g, &inc);
info("iter %2d f %5.3e |g| %5.3e CG %3d step_size %4.2e \n", iter, f, gnorm, cg_iter, step_size);
if (gnorm <= eps*gnorm0)
break;
if (f < -1.0e+32)
{
info("WARNING: f < -1.0e+32\n");
break;
}
actred = fold - f;
if (fabs(actred) <= 1.0e-12*fabs(f))
{
info("WARNING: actred too small\n");
break;
}
iter++;
}
if(iter >= max_iter)
info("\nWARNING: reaching max number of Newton iterations\n");
delete[] g;
delete[] r;
delete[] s;
delete[] M;
}
int NEWTON::pcg(double *g, double *M, double *s, double *r)
{
int i, inc = 1;
int n = fun_obj->get_nr_variable();
double one = 1;
double *d = new double[n];
double *Hd = new double[n];
double zTr, znewTrnew, alpha, beta, cgtol, dHd;
double *z = new double[n];
double Q = 0, newQ, Qdiff;
for (i=0; i<n; i++)
{
s[i] = 0;
r[i] = -g[i];
z[i] = r[i] / M[i];
d[i] = z[i];
}
zTr = ddot_(&n, z, &inc, r, &inc);
double gMinv_norm = sqrt(zTr);
cgtol = min(eps_cg, sqrt(gMinv_norm));
int cg_iter = 0;
int max_cg_iter = max(n, 5);
while (cg_iter < max_cg_iter)
{
cg_iter++;
fun_obj->Hv(d, Hd);
dHd = ddot_(&n, d, &inc, Hd, &inc);
// avoid 0/0 in getting alpha
if (dHd <= 1.0e-16)
break;
alpha = zTr/dHd;
daxpy_(&n, &alpha, d, &inc, s, &inc);
alpha = -alpha;
daxpy_(&n, &alpha, Hd, &inc, r, &inc);
// Using quadratic approximation as CG stopping criterion
newQ = -0.5*(ddot_(&n, s, &inc, r, &inc) - ddot_(&n, s, &inc, g, &inc));
Qdiff = newQ - Q;
if (newQ <= 0 && Qdiff <= 0)
{
if (cg_iter * Qdiff >= cgtol * newQ)
break;
}
else
{
info("WARNING: quadratic approximation > 0 or increasing in CG\n");
break;
}
Q = newQ;
for (i=0; i<n; i++)
z[i] = r[i] / M[i];
znewTrnew = ddot_(&n, z, &inc, r, &inc);
beta = znewTrnew/zTr;
dscal_(&n, &beta, d, &inc);
daxpy_(&n, &one, z, &inc, d, &inc);
zTr = znewTrnew;
}
if (cg_iter == max_cg_iter)
info("WARNING: reaching maximal number of CG steps\n");
delete[] d;
delete[] Hd;
delete[] z;
return cg_iter;
}
void NEWTON::set_print_string(void (*print_string) (const char *buf))
{
newton_print_string = print_string;
}

37
liblinear-2.49/newton.h Normal file
View File

@@ -0,0 +1,37 @@
#ifndef _NEWTON_H
#define _NEWTON_H
class function
{
public:
virtual double fun(double *w) = 0 ;
virtual void grad(double *w, double *g) = 0 ;
virtual void Hv(double *s, double *Hs) = 0 ;
virtual int get_nr_variable(void) = 0 ;
virtual void get_diag_preconditioner(double *M) = 0 ;
virtual ~function(void){}
// base implementation in newton.cpp
virtual double linesearch_and_update(double *w, double *s, double *f, double *g, double alpha);
};
class NEWTON
{
public:
NEWTON(const function *fun_obj, double eps = 0.1, double eps_cg = 0.5, int max_iter = 1000);
~NEWTON();
void newton(double *w);
void set_print_string(void (*i_print) (const char *buf));
private:
int pcg(double *g, double *M, double *s, double *r);
double eps;
double eps_cg;
int max_iter;
function *fun_obj;
void info(const char *fmt,...);
void (*newton_print_string)(const char *buf);
};
#endif

243
liblinear-2.49/predict.c Normal file
View File

@@ -0,0 +1,243 @@
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "linear.h"
int print_null(const char *s,...) {return 0;}
static int (*info)(const char *fmt,...) = &printf;
struct feature_node *x;
int max_nr_attr = 64;
struct model* model_;
int flag_predict_probability=0;
void exit_input_error(int line_num)
{
fprintf(stderr,"Wrong input format at line %d\n", line_num);
exit(1);
}
static char *line = NULL;
static int max_line_len;
static char* readline(FILE *input)
{
int len;
if(fgets(line,max_line_len,input) == NULL)
return NULL;
while(strrchr(line,'\n') == NULL)
{
max_line_len *= 2;
line = (char *) realloc(line,max_line_len);
len = (int) strlen(line);
if(fgets(line+len,max_line_len-len,input) == NULL)
break;
}
return line;
}
void do_predict(FILE *input, FILE *output)
{
int correct = 0;
int total = 0;
double error = 0;
double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;
int nr_class=get_nr_class(model_);
double *prob_estimates=NULL;
int j, n;
int nr_feature=get_nr_feature(model_);
if(model_->bias>=0)
n=nr_feature+1;
else
n=nr_feature;
if(flag_predict_probability)
{
int *labels;
if(!check_probability_model(model_))
{
fprintf(stderr, "probability output is only supported for logistic regression\n");
exit(1);
}
labels=(int *) malloc(nr_class*sizeof(int));
get_labels(model_,labels);
prob_estimates = (double *) malloc(nr_class*sizeof(double));
fprintf(output,"labels");
for(j=0;j<nr_class;j++)
fprintf(output," %d",labels[j]);
fprintf(output,"\n");
free(labels);
}
max_line_len = 1024;
line = (char *)malloc(max_line_len*sizeof(char));
while(readline(input) != NULL)
{
int i = 0;
double target_label, predict_label;
char *idx, *val, *label, *endptr;
int inst_max_index = 0; // strtol gives 0 if wrong format
label = strtok(line," \t\n");
if(label == NULL) // empty line
exit_input_error(total+1);
target_label = strtod(label,&endptr);
if(endptr == label || *endptr != '\0')
exit_input_error(total+1);
while(1)
{
if(i>=max_nr_attr-2) // need one more for index = -1
{
max_nr_attr *= 2;
x = (struct feature_node *) realloc(x,max_nr_attr*sizeof(struct feature_node));
}
idx = strtok(NULL,":");
val = strtok(NULL," \t");
if(val == NULL)
break;
errno = 0;
x[i].index = (int) strtol(idx,&endptr,10);
if(endptr == idx || errno != 0 || *endptr != '\0' || x[i].index <= inst_max_index)
exit_input_error(total+1);
else
inst_max_index = x[i].index;
errno = 0;
x[i].value = strtod(val,&endptr);
if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
exit_input_error(total+1);
// feature indices larger than those in training are not used
if(x[i].index <= nr_feature)
++i;
}
if(model_->bias>=0)
{
x[i].index = n;
x[i].value = model_->bias;
i++;
}
x[i].index = -1;
if(flag_predict_probability)
{
int j;
predict_label = predict_probability(model_,x,prob_estimates);
fprintf(output,"%g",predict_label);
for(j=0;j<model_->nr_class;j++)
fprintf(output," %g",prob_estimates[j]);
fprintf(output,"\n");
}
else
{
predict_label = predict(model_,x);
fprintf(output,"%.17g\n",predict_label);
}
if(predict_label == target_label)
++correct;
error += (predict_label-target_label)*(predict_label-target_label);
sump += predict_label;
sumt += target_label;
sumpp += predict_label*predict_label;
sumtt += target_label*target_label;
sumpt += predict_label*target_label;
++total;
}
if(check_regression_model(model_))
{
info("Mean squared error = %g (regression)\n",error/total);
info("Squared correlation coefficient = %g (regression)\n",
((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))
);
}
else
info("Accuracy = %g%% (%d/%d)\n",(double) correct/total*100,correct,total);
if(flag_predict_probability)
free(prob_estimates);
}
void exit_with_help()
{
printf(
"Usage: predict [options] test_file model_file output_file\n"
"options:\n"
"-b probability_estimates: whether to output probability estimates, 0 or 1 (default 0); currently for logistic regression only\n"
"-q : quiet mode (no outputs)\n"
);
exit(1);
}
int main(int argc, char **argv)
{
FILE *input, *output;
int i;
// parse options
for(i=1;i<argc;i++)
{
if(argv[i][0] != '-') break;
++i;
switch(argv[i-1][1])
{
case 'b':
flag_predict_probability = atoi(argv[i]);
break;
case 'q':
info = &print_null;
i--;
break;
default:
fprintf(stderr,"unknown option: -%c\n", argv[i-1][1]);
exit_with_help();
break;
}
}
if(i>=argc)
exit_with_help();
input = fopen(argv[i],"r");
if(input == NULL)
{
fprintf(stderr,"can't open input file %s\n",argv[i]);
exit(1);
}
output = fopen(argv[i+2],"w");
if(output == NULL)
{
fprintf(stderr,"can't open output file %s\n",argv[i+2]);
exit(1);
}
if((model_=load_model(argv[i+1]))==0)
{
fprintf(stderr,"can't open model file %s\n",argv[i+1]);
exit(1);
}
x = (struct feature_node *) malloc(max_nr_attr*sizeof(struct feature_node));
do_predict(input, output);
free_and_destroy_model(&model_);
free(line);
free(x);
fclose(input);
fclose(output);
return 0;
}

View File

@@ -0,0 +1,2 @@
include cpp-source/*
include cpp-source/*/*

View File

@@ -0,0 +1,4 @@
all = lib
lib:
make -C .. lib

549
liblinear-2.49/python/README Executable file
View File

@@ -0,0 +1,549 @@
-------------------------------------
--- Python interface of LIBLINEAR ---
-------------------------------------
Table of Contents
=================
- Introduction
- Installation via PyPI
- Installation via Sources
- Quick Start
- Quick Start with Scipy
- Design Description
- Data Structures
- Utility Functions
- Additional Information
Introduction
============
Python (http://www.python.org/) is a programming language suitable for rapid
development. This tool provides a simple Python interface to LIBLINEAR, a library
for support vector machines (http://www.csie.ntu.edu.tw/~cjlin/liblinear). The
interface is very easy to use as the usage is the same as that of LIBLINEAR. The
interface is developed with the built-in Python library "ctypes."
Installation via PyPI
=====================
To install the interface from PyPI, execute the following command:
> pip install -U liblinear-official
Installation via Sources
========================
Alternatively, you may install the interface from sources by
generating the LIBLINEAR shared library.
Depending on your use cases, you can choose between local-directory
and system-wide installation.
- Local-directory installation:
On Unix systems, type
> make
This generates a .so file in the LIBLINEAR main directory and you
can run the interface in the current python directory.
For Windows, starting from version 2.48, we no longer provide the
pre-built shared library liblinear.dll. To run the interface in the
current python directory, please follow the instruction of building
Windows binaries in LIBLINEAR README. You can copy liblinear.dll to
the system directory (e.g., `C:\WINDOWS\system32\') to make it
system-widely available.
- System-wide installation:
Type
> pip install -e .
or
> pip install --user -e .
The option --user would install the package in the home directory
instead of the system directory, and thus does not require the
root privilege.
Please note that you must keep the sources after the installation.
For Windows, to run the above command, Microsoft Visual C++ and
other tools are needed.
In addition, DON'T use the following FAILED commands
> python setup.py install (failed to run at the python directory)
> pip install .
Quick Start
===========
"Quick Start with Scipy" is in the next section.
There are two levels of usage. The high-level one uses utility
functions in liblinearutil.py and commonutil.py (shared with LIBSVM
and imported by svmutil.py). The usage is the same as the LIBLINEAR
MATLAB interface.
>>> from liblinear.liblinearutil import *
# Read data in LIBSVM format
>>> y, x = svm_read_problem('../heart_scale')
>>> m = train(y[:200], x[:200], '-c 4')
>>> p_label, p_acc, p_val = predict(y[200:], x[200:], m)
# Construct problem in python format
# Dense data
>>> y, x = [1,-1], [[1,0,1], [-1,0,-1]]
# Sparse data
>>> y, x = [1,-1], [{1:1, 3:1}, {1:-1,3:-1}]
>>> prob = problem(y, x)
>>> param = parameter('-s 0 -c 4 -B 1')
>>> m = train(prob, param)
# Other utility functions
>>> save_model('heart_scale.model', m)
>>> m = load_model('heart_scale.model')
>>> p_label, p_acc, p_val = predict(y, x, m, '-b 1')
>>> ACC, MSE, SCC = evaluations(y, p_label)
# Getting online help
>>> help(train)
The low-level use directly calls C interfaces imported by liblinear.py. Note that
all arguments and return values are in ctypes format. You need to handle them
carefully.
>>> from liblinear.liblinear import *
>>> prob = problem([1,-1], [{1:1, 3:1}, {1:-1,3:-1}])
>>> param = parameter('-c 4')
>>> m = liblinear.train(prob, param) # m is a ctype pointer to a model
# Convert a Python-format instance to feature_nodearray, a ctypes structure
>>> x0, max_idx = gen_feature_nodearray({1:1, 3:1})
>>> label = liblinear.predict(m, x0)
Quick Start with Scipy
======================
Make sure you have Scipy installed to proceed in this section.
If numba (http://numba.pydata.org) is installed, some operations will be much faster.
There are two levels of usage. The high-level one uses utility functions
in liblinearutil.py and the usage is the same as the LIBLINEAR MATLAB interface.
>>> import numpy as np
>>> import scipy
>>> from liblinear.liblinearutil import *
# Read data in LIBSVM format
>>> y, x = svm_read_problem('../heart_scale', return_scipy = True) # y: ndarray, x: csr_matrix
>>> m = train(y[:200], x[:200, :], '-c 4')
>>> p_label, p_acc, p_val = predict(y[200:], x[200:, :], m)
# Construct problem in Scipy format
# Dense data: numpy ndarray
>>> y, x = np.asarray([1,-1]), np.asarray([[1,0,1], [-1,0,-1]])
# Sparse data: scipy csr_matrix((data, (row_ind, col_ind))
>>> y, x = np.asarray([1,-1]), scipy.sparse.csr_matrix(([1, 1, -1, -1], ([0, 0, 1, 1], [0, 2, 0, 2])))
>>> prob = problem(y, x)
>>> param = parameter('-s 0 -c 4 -B 1')
>>> m = train(prob, param)
# Apply data scaling in Scipy format
>>> y, x = svm_read_problem('../heart_scale', return_scipy=True)
>>> scale_param = csr_find_scale_param(x, lower=0)
>>> scaled_x = csr_scale(x, scale_param)
# Other utility functions
>>> save_model('heart_scale.model', m)
>>> m = load_model('heart_scale.model')
>>> p_label, p_acc, p_val = predict(y, x, m, '-b 1')
>>> ACC, MSE, SCC = evaluations(y, p_label)
# Getting online help
>>> help(train)
The low-level use directly calls C interfaces imported by liblinear.py. Note that
all arguments and return values are in ctypes format. You need to handle them
carefully.
>>> from liblinear.liblinear import *
>>> prob = problem(np.asarray([1,-1]), scipy.sparse.csr_matrix(([1, 1, -1, -1], ([0, 0, 1, 1], [0, 2, 0, 2]))))
>>> param = parameter('-s 1 -c 4')
# One may also direct assign the options after creating the parameter instance
>>> param = parameter()
>>> param.solver_type = 1
>>> param.C = 4
>>> m = liblinear.train(prob, param) # m is a ctype pointer to a model
# Convert a tuple of ndarray (index, data) to feature_nodearray, a ctypes structure
# Note that index starts from 0, though the following example will be changed to 1:1, 3:1 internally
>>> x0, max_idx = gen_feature_nodearray((np.asarray([0,2]), np.asarray([1,1])))
>>> label = liblinear.predict(m, x0)
Design Description
==================
There are two files liblinear.py and liblinearutil.py, which respectively correspond to
low-level and high-level use of the interface.
In liblinear.py, we adopt the Python built-in library "ctypes," so that
Python can directly access C structures and interface functions defined
in linear.h.
While advanced users can use structures/functions in liblinear.py, to
avoid handling ctypes structures, in liblinearutil.py we provide some easy-to-use
functions. The usage is similar to LIBLINEAR MATLAB interface.
Data Structures
===============
Three data structures derived from linear.h are node, problem, and
parameter. They all contain fields with the same names in
linear.h. Access these fields carefully because you directly use a C structure
instead of a Python object. The following description introduces additional
fields and methods.
Before using the data structures, execute the following command to load the
LIBLINEAR shared library:
>>> from liblinear.liblinear import *
- class feature_node:
Construct a feature_node.
>>> node = feature_node(idx, val)
idx: an integer indicates the feature index.
val: a float indicates the feature value.
Show the index and the value of a node.
>>> print(node)
- Function: gen_feature_nodearray(xi [,feature_max=None])
Generate a feature vector from a Python list/tuple/dictionary, numpy ndarray or tuple of (index, data):
>>> xi_ctype, max_idx = gen_feature_nodearray({1:1, 3:1, 5:-2})
xi_ctype: the returned feature_nodearray (a ctypes structure)
max_idx: the maximal feature index of xi
feature_max: if feature_max is assigned, features with indices larger than
feature_max are removed.
- class problem:
Construct a problem instance
>>> prob = problem(y, x [,bias=-1])
y: a Python list/tuple/ndarray of l labels (type must be int/double).
x: 1. a list/tuple of l training instances. Feature vector of
each training instance is a list/tuple or dictionary.
2. an l * n numpy ndarray or scipy spmatrix (n: number of features).
bias: if bias >= 0, instance x becomes [x; bias]; if < 0, no bias term
added (default -1)
You can also modify the bias value by
>>> prob.set_bias(1)
Note that if your x contains sparse data (i.e., dictionary), the internal
ctypes data format is still sparse.
Copy a problem instance.
DON'T use this unless you know what it does.
>>> prob_copy = prob.copy()
The reason we need to copy a problem instance is because, for example,
in multi-label tasks using the OVR setting, we need to train a binary
classification problem for each label on data with/without that label.
Since each training uses the same x but different y, simply looping
over labels and creating a new problem instance for each training would
introduce overhead either from repeatedly transforming x into feature_node
or from allocating additional memory space for x during parallel training.
With problem copying, suppose x represents data, y1 represents the label
for class 1 and y2 represent the label for class 2.
We can do:
>>> class1_prob = problem(y1, x)
>>> class2_prob = class1_prob.copy()
>>> class2_prob.y = (ctypes.c_double * class1_prob.l)(*y2)
Note that although the copied problem is a new instance, attributes such as
y (POINTER(c_double)), x (POINTER(POINTER(feature_node))), and x_space (list/np.ndarray)
are copied by reference. That is, class1_prob and class2_prob share the same
y, x and x_space after the copy.
- class parameter:
Construct a parameter instance
>>> param = parameter('training_options')
If 'training_options' is empty, LIBLINEAR default values are applied.
Set param to LIBLINEAR default values.
>>> param.set_to_default_values()
Parse a string of options.
>>> param.parse_options('training_options')
Show values of parameters.
>>> print(param)
- class model:
There are two ways to obtain an instance of model:
>>> model_ = train(y, x)
>>> model_ = load_model('model_file_name')
Note that the returned structure of interface functions
liblinear.train and liblinear.load_model is a ctypes pointer of
model, which is different from the model object returned
by train and load_model in liblinearutil.py. We provide a
function toPyModel for the conversion:
>>> model_ptr = liblinear.train(prob, param)
>>> model_ = toPyModel(model_ptr)
If you obtain a model in a way other than the above approaches,
handle it carefully to avoid memory leak or segmentation fault.
Some interface functions to access LIBLINEAR models are wrapped as
members of the class model:
>>> nr_feature = model_.get_nr_feature()
>>> nr_class = model_.get_nr_class()
>>> class_labels = model_.get_labels()
>>> is_prob_model = model_.is_probability_model()
>>> is_regression_model = model_.is_regression_model()
The decision function is W*x + b, where
W is an nr_class-by-nr_feature matrix, and
b is a vector of size nr_class.
To access W_kj (i.e., coefficient for the k-th class and the j-th feature)
and b_k (i.e., bias for the k-th class), use the following functions.
>>> W_kj = model_.get_decfun_coef(feat_idx=j, label_idx=k)
>>> b_k = model_.get_decfun_bias(label_idx=k)
We also provide a function to extract w_k (i.e., the k-th row of W) and
b_k directly as follows.
>>> [w_k, b_k] = model_.get_decfun(label_idx=k)
Note that w_k is a Python list of length nr_feature, which means that
w_k[0] = W_k1.
For regression models, W is just a vector of length nr_feature. Either
set label_idx=0 or omit the label_idx parameter to access the coefficients.
>>> W_j = model_.get_decfun_coef(feat_idx=j)
>>> b = model_.get_decfun_bias()
>>> [W, b] = model_.get_decfun()
For one-class SVM models, label_idx is ignored and b=-rho is
returned from get_decfun(). That is, the decision function is
w*x+b = w*x-rho.
>>> rho = model_.get_decfun_rho()
>>> [W, b] = model_.get_decfun()
Note that in get_decfun_coef, get_decfun_bias, and get_decfun, feat_idx
starts from 1, while label_idx starts from 0. If label_idx is not in the
valid range (0 to nr_class-1), then a NaN will be returned; and if feat_idx
is not in the valid range (1 to nr_feature), then a zero value will be
returned. For regression models, label_idx is ignored.
Utility Functions
=================
To use utility functions, type
>>> from liblinear.liblinearutil import *
The above command loads
train() : train a linear model
predict() : predict testing data
svm_read_problem() : read the data from a LIBSVM-format file or object.
load_model() : load a LIBLINEAR model.
save_model() : save model to a file.
evaluations() : evaluate prediction results.
csr_find_scale_param() : find scaling parameter for data in csr format.
csr_scale() : apply data scaling to data in csr format.
- Function: train
There are three ways to call train()
>>> model = train(y, x [, 'training_options'])
>>> model = train(prob [, 'training_options'])
>>> model = train(prob, param)
y: a list/tuple/ndarray of l training labels (type must be int/double).
x: 1. a list/tuple of l training instances. Feature vector of
each training instance is a list/tuple or dictionary.
2. an l * n numpy ndarray or scipy spmatrix (n: number of features).
training_options: a string in the same form as that for LIBLINEAR command
mode.
prob: a problem instance generated by calling
problem(y, x).
param: a parameter instance generated by calling
parameter('training_options')
model: the returned model instance. See linear.h for details of this
structure. If '-v' is specified, cross validation is
conducted and the returned model is just a scalar: cross-validation
accuracy for classification and mean-squared error for regression.
If the '-C' option is specified, best parameters are found
by cross validation. The parameter selection utility is supported
only by -s 0, -s 2 (for finding C) and -s 11 (for finding C, p).
The returned structure is a triple with the best C, the best p,
and the corresponding cross-validation accuracy or mean squared
error. The returned best p for -s 0 and -s 2 is set to -1 because
the p parameter is not used by classification models.
To train the same data many times with different
parameters, the second and the third ways should be faster..
Examples:
>>> y, x = svm_read_problem('../heart_scale')
>>> prob = problem(y, x)
>>> param = parameter('-s 3 -c 5 -q')
>>> m = train(y, x, '-c 5')
>>> m = train(prob, '-w1 5 -c 5')
>>> m = train(prob, param)
>>> CV_ACC = train(y, x, '-v 3')
>>> best_C, best_p, best_rate = train(y, x, '-C -s 0') # best_p is only for -s 11
>>> m = train(y, x, '-c {0} -s 0'.format(best_C)) # use the same solver: -s 0
- Function: predict
To predict testing data with a model, use
>>> p_labs, p_acc, p_vals = predict(y, x, model [,'predicting_options'])
y: a list/tuple/ndarray of l true labels (type must be int/double).
It is used for calculating the accuracy. Use [] if true labels are
unavailable.
x: 1. a list/tuple of l training instances. Feature vector of
each training instance is a list/tuple or dictionary.
2. an l * n numpy ndarray or scipy spmatrix (n: number of features).
predicting_options: a string of predicting options in the same format as
that of LIBLINEAR.
model: a model instance.
p_labels: a list of predicted labels
p_acc: a tuple including accuracy (for classification), mean
squared error, and squared correlation coefficient (for
regression).
p_vals: a list of decision values or probability estimates (if '-b 1'
is specified). If k is the number of classes, for decision values,
each element includes results of predicting k binary-class
SVMs. If k = 2 and solver is not MCSVM_CS, only one decision value
is returned. For probabilities, each element contains k values
indicating the probability that the testing instance is in each class.
Note that the order of classes here is the same as 'model.label'
field in the model structure.
Example:
>>> m = train(y, x, '-c 5')
>>> p_labels, p_acc, p_vals = predict(y, x, m)
- Functions: svm_read_problem/load_model/save_model
See the usage by examples:
>>> y, x = svm_read_problem('data.txt')
>>> with open('data.txt') as f:
>>> y, x = svm_read_problem(f)
>>> m = load_model('model_file')
>>> save_model('model_file', m)
- Function: evaluations
Calculate some evaluations using the true values (ty) and the predicted
values (pv):
>>> (ACC, MSE, SCC) = evaluations(ty, pv, useScipy)
ty: a list/tuple/ndarray of true values.
pv: a list/tuple/ndarray of predicted values.
useScipy: convert ty, pv to ndarray, and use scipy functions to do the evaluation
ACC: accuracy.
MSE: mean squared error.
SCC: squared correlation coefficient.
- Function: csr_find_scale_parameter/csr_scale
Scale data in csr format.
>>> param = csr_find_scale_param(x [, lower=l, upper=u])
>>> x = csr_scale(x, param)
x: a csr_matrix of data.
l: x scaling lower limit; default -1.
u: x scaling upper limit; default 1.
The scaling process is: x * diag(coef) + ones(l, 1) * offset'
param: a dictionary of scaling parameters, where param['coef'] = coef and param['offset'] = offset.
coef: a scipy array of scaling coefficients.
offset: a scipy array of scaling offsets.
Additional Information
======================
This interface was originally written by Hsiang-Fu Yu from Department of Computer
Science, National Taiwan University. If you find this tool useful, please
cite LIBLINEAR as follows
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
LIBLINEAR: A Library for Large Linear Classification, Journal of
Machine Learning Research 9(2008), 1871-1874. Software available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear
For any question, please contact Chih-Jen Lin <cjlin@csie.ntu.edu.tw>,
or check the FAQ page:
http://www.csie.ntu.edu.tw/~cjlin/liblinear/faq.html

View File

@@ -0,0 +1,189 @@
from __future__ import print_function
from array import array
import sys
try:
import numpy as np
import scipy
from scipy import sparse
except:
scipy = None
__all__ = ['svm_read_problem', 'evaluations', 'csr_find_scale_param', 'csr_scale']
def svm_read_problem(data_source, return_scipy=False):
"""
svm_read_problem(data_source, return_scipy=False) -> [y, x], y: list, x: list of dictionary
svm_read_problem(data_source, return_scipy=True) -> [y, x], y: ndarray, x: csr_matrix
Read LIBSVM-format data from data_source and return labels y
and data instances x.
"""
if scipy != None and return_scipy:
prob_y = array('d')
prob_x = array('d')
row_ptr = array('l', [0])
col_idx = array('l')
else:
prob_y = []
prob_x = []
row_ptr = [0]
col_idx = []
indx_start = 1
if hasattr(data_source, "read"):
file = data_source
else:
file = open(data_source)
try:
for line in file:
line = line.split(None, 1)
# In case an instance with all zero features
if len(line) == 1: line += ['']
label, features = line
prob_y.append(float(label))
if scipy != None and return_scipy:
nz = 0
for e in features.split():
ind, val = e.split(":")
if ind == '0':
indx_start = 0
val = float(val)
if val != 0:
col_idx.append(int(ind)-indx_start)
prob_x.append(val)
nz += 1
row_ptr.append(row_ptr[-1]+nz)
else:
xi = {}
for e in features.split():
ind, val = e.split(":")
xi[int(ind)] = float(val)
prob_x += [xi]
except Exception as err_msg:
raise err_msg
finally:
if not hasattr(data_source, "read"):
# close file only if it was created by us
file.close()
if scipy != None and return_scipy:
prob_y = np.frombuffer(prob_y, dtype='d')
prob_x = np.frombuffer(prob_x, dtype='d')
col_idx = np.frombuffer(col_idx, dtype='l')
row_ptr = np.frombuffer(row_ptr, dtype='l')
prob_x = sparse.csr_matrix((prob_x, col_idx, row_ptr))
return (prob_y, prob_x)
def evaluations_scipy(ty, pv):
"""
evaluations_scipy(ty, pv) -> (ACC, MSE, SCC)
ty, pv: ndarray
Calculate accuracy, mean squared error and squared correlation coefficient
using the true values (ty) and predicted values (pv).
"""
if not (scipy != None and isinstance(ty, np.ndarray) and isinstance(pv, np.ndarray)):
raise TypeError("type of ty and pv must be ndarray")
if len(ty) != len(pv):
raise ValueError("len(ty) must be equal to len(pv)")
ACC = 100.0*(ty == pv).mean()
MSE = ((ty - pv)**2).mean()
l = len(ty)
sumv = pv.sum()
sumy = ty.sum()
sumvy = (pv*ty).sum()
sumvv = (pv*pv).sum()
sumyy = (ty*ty).sum()
with np.errstate(all = 'raise'):
try:
SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy))
except:
SCC = float('nan')
return (float(ACC), float(MSE), float(SCC))
def evaluations(ty, pv, useScipy = True):
"""
evaluations(ty, pv, useScipy) -> (ACC, MSE, SCC)
ty, pv: list, tuple or ndarray
useScipy: convert ty, pv to ndarray, and use scipy functions for the evaluation
Calculate accuracy, mean squared error and squared correlation coefficient
using the true values (ty) and predicted values (pv).
"""
if scipy != None and useScipy:
return evaluations_scipy(np.asarray(ty), np.asarray(pv))
if len(ty) != len(pv):
raise ValueError("len(ty) must be equal to len(pv)")
total_correct = total_error = 0
sumv = sumy = sumvv = sumyy = sumvy = 0
for v, y in zip(pv, ty):
if y == v:
total_correct += 1
total_error += (v-y)*(v-y)
sumv += v
sumy += y
sumvv += v*v
sumyy += y*y
sumvy += v*y
l = len(ty)
ACC = 100.0*total_correct/l
MSE = total_error/l
try:
SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy))
except:
SCC = float('nan')
return (float(ACC), float(MSE), float(SCC))
def csr_find_scale_param(x, lower=-1, upper=1):
assert isinstance(x, sparse.csr_matrix)
assert lower < upper
l, n = x.shape
feat_min = x.min(axis=0).toarray().flatten()
feat_max = x.max(axis=0).toarray().flatten()
coef = (feat_max - feat_min) / (upper - lower)
coef[coef != 0] = 1.0 / coef[coef != 0]
# (x - ones(l,1) * feat_min') * diag(coef) + lower
# = x * diag(coef) - ones(l, 1) * (feat_min' * diag(coef)) + lower
# = x * diag(coef) + ones(l, 1) * (-feat_min' * diag(coef) + lower)
# = x * diag(coef) + ones(l, 1) * offset'
offset = -feat_min * coef + lower
offset[coef == 0] = 0
if sum(offset != 0) * l > 3 * x.getnnz():
print(
"WARNING: The #nonzeros of the scaled data is at least 2 times larger than the original one.\n"
"If feature values are non-negative and sparse, set lower=0 rather than the default lower=-1.",
file=sys.stderr)
return {'coef':coef, 'offset':offset}
def csr_scale(x, scale_param):
assert isinstance(x, sparse.csr_matrix)
offset = scale_param['offset']
coef = scale_param['coef']
assert len(coef) == len(offset)
l, n = x.shape
if not n == len(coef):
print("WARNING: The dimension of scaling parameters and feature number do not match.", file=sys.stderr)
coef = coef.resize(n) # zeros padded if n > len(coef)
offset = offset.resize(n)
# scaled_x = x * diag(coef) + ones(l, 1) * offset'
offset = sparse.csr_matrix(offset.reshape(1, n))
offset = sparse.vstack([offset] * l, format='csr', dtype=x.dtype)
scaled_x = x.dot(sparse.diags(coef, 0, shape=(n, n))) + offset
if scaled_x.getnnz() > x.getnnz():
print(
"WARNING: original #nonzeros %d\n" % x.getnnz() +
" > new #nonzeros %d\n" % scaled_x.getnnz() +
"If feature values are non-negative and sparse, get scale_param by setting lower=0 rather than the default lower=-1.",
file=sys.stderr)
return scaled_x

View File

@@ -0,0 +1,479 @@
from ctypes import *
from ctypes.util import find_library
from os import path
from glob import glob
import sys
from enum import IntEnum
try:
import numpy as np
import scipy
from scipy import sparse
except:
scipy = None
if sys.version_info[0] < 3:
range = xrange
from itertools import izip as zip
__all__ = ['liblinear', 'feature_node', 'gen_feature_nodearray', 'problem',
'parameter', 'model', 'toPyModel', 'solver_names',
'print_null']
try:
dirname = path.dirname(path.abspath(__file__))
dynamic_lib_name = 'clib.cp*'
path_to_so = glob(path.join(dirname, dynamic_lib_name))[0]
liblinear = CDLL(path_to_so)
except:
try :
if sys.platform == 'win32':
liblinear = CDLL(path.join(dirname, r'..\..\windows\liblinear.dll'))
else:
liblinear = CDLL(path.join(dirname, '../../liblinear.so.6'))
except:
# For unix the prefix 'lib' is not considered.
if find_library('linear'):
liblinear = CDLL(find_library('linear'))
elif find_library('liblinear'):
liblinear = CDLL(find_library('liblinear'))
else:
raise Exception('LIBLINEAR library not found.')
class solver_names(IntEnum):
L2R_LR = 0
L2R_L2LOSS_SVC_DUAL = 1
L2R_L2LOSS_SVC = 2
L2R_L1LOSS_SVC_DUAL = 3
MCSVM_CS = 4
L1R_L2LOSS_SVC = 5
L1R_LR = 6
L2R_LR_DUAL = 7
L2R_L2LOSS_SVR = 11
L2R_L2LOSS_SVR_DUAL = 12
L2R_L1LOSS_SVR_DUAL = 13
ONECLASS_SVM = 21
PRINT_STRING_FUN = CFUNCTYPE(None, c_char_p)
def print_null(s):
return
# In multi-threading, all threads share the same memory space of
# the dynamic library (liblinear). Thus, we use a module-level
# variable to keep a reference to ctypes print_null, preventing
# python from garbage collecting it in thread B while thread A
# still needs it. Check the usage of svm_set_print_string_function()
# in LIBLINEAR README for details.
ctypes_print_null = PRINT_STRING_FUN(print_null)
def genFields(names, types):
return list(zip(names, types))
def fillprototype(f, restype, argtypes):
f.restype = restype
f.argtypes = argtypes
class feature_node(Structure):
_names = ["index", "value"]
_types = [c_int, c_double]
_fields_ = genFields(_names, _types)
def __str__(self):
return '%d:%g' % (self.index, self.value)
def gen_feature_nodearray(xi, feature_max=None):
if feature_max:
assert(isinstance(feature_max, int))
xi_shift = 0 # ensure correct indices of xi
if scipy and isinstance(xi, tuple) and len(xi) == 2\
and isinstance(xi[0], np.ndarray) and isinstance(xi[1], np.ndarray): # for a sparse vector
index_range = xi[0] + 1 # index starts from 1
if feature_max:
index_range = index_range[np.where(index_range <= feature_max)]
elif scipy and isinstance(xi, np.ndarray):
xi_shift = 1
index_range = xi.nonzero()[0] + 1 # index starts from 1
if feature_max:
index_range = index_range[np.where(index_range <= feature_max)]
elif isinstance(xi, (dict, list, tuple)):
if isinstance(xi, dict):
index_range = sorted(xi.keys())
elif isinstance(xi, (list, tuple)):
xi_shift = 1
index_range = range(1, len(xi) + 1)
index_range = list(filter(lambda j: xi[j-xi_shift] != 0, index_range))
if feature_max:
index_range = list(filter(lambda j: j <= feature_max, index_range))
else:
raise TypeError('xi should be a dictionary, list, tuple, 1-d numpy array, or tuple of (index, data)')
ret = (feature_node*(len(index_range)+2))()
ret[-1].index = -1 # for bias term
ret[-2].index = -1
if scipy and isinstance(xi, tuple) and len(xi) == 2\
and isinstance(xi[0], np.ndarray) and isinstance(xi[1], np.ndarray): # for a sparse vector
# since xi=(indices, values), we must sort them simultaneously.
for idx, arg in enumerate(np.argsort(index_range)):
ret[idx].index = index_range[arg]
ret[idx].value = (xi[1])[arg]
else:
for idx, j in enumerate(index_range):
ret[idx].index = j
ret[idx].value = xi[j - xi_shift]
max_idx = 0
if len(index_range) > 0:
max_idx = index_range[-1]
return ret, max_idx
try:
from numba import jit
jit_enabled = True
except:
# We need to support two cases: when jit is called with no arguments, and when jit is called with
# a keyword argument.
def jit(func=None, *args, **kwargs):
if func is None:
# This handles the case where jit is used with parentheses: @jit(nopython=True)
return lambda x: x
else:
# This handles the case where jit is used without parentheses: @jit
return func
jit_enabled = False
@jit(nopython=True)
def csr_to_problem_jit(l, x_val, x_ind, x_rowptr, prob_val, prob_ind, prob_rowptr):
for i in range(l):
b1,e1 = x_rowptr[i], x_rowptr[i+1]
b2,e2 = prob_rowptr[i], prob_rowptr[i+1]-2
for j in range(b1,e1):
prob_ind[j-b1+b2] = x_ind[j]+1
prob_val[j-b1+b2] = x_val[j]
def csr_to_problem_nojit(l, x_val, x_ind, x_rowptr, prob_val, prob_ind, prob_rowptr):
for i in range(l):
x_slice = slice(x_rowptr[i], x_rowptr[i+1])
prob_slice = slice(prob_rowptr[i], prob_rowptr[i+1]-2)
prob_ind[prob_slice] = x_ind[x_slice]+1
prob_val[prob_slice] = x_val[x_slice]
def csr_to_problem(x, prob):
if not x.has_sorted_indices:
x.sort_indices()
# Extra space for termination node and (possibly) bias term
x_space = prob.x_space = np.empty((x.nnz+x.shape[0]*2), dtype=feature_node)
# rowptr has to be a 64bit integer because it will later be used for pointer arithmetic,
# which overflows when the added pointer points to an address that is numerically high.
prob.rowptr = x.indptr.astype(np.int64, copy=True)
prob.rowptr[1:] += 2*np.arange(1,x.shape[0]+1)
prob_ind = x_space["index"]
prob_val = x_space["value"]
prob_ind[:] = -1
if jit_enabled:
csr_to_problem_jit(x.shape[0], x.data, x.indices, x.indptr, prob_val, prob_ind, prob.rowptr)
else:
csr_to_problem_nojit(x.shape[0], x.data, x.indices, x.indptr, prob_val, prob_ind, prob.rowptr)
class problem(Structure):
_names = ["l", "n", "y", "x", "bias"]
_types = [c_int, c_int, POINTER(c_double), POINTER(POINTER(feature_node)), c_double]
_fields_ = genFields(_names, _types)
def __init__(self, y, x, bias = -1):
if (not isinstance(y, (list, tuple))) and (not (scipy and isinstance(y, np.ndarray))):
raise TypeError("type of y: {0} is not supported!".format(type(y)))
if isinstance(x, (list, tuple)):
if len(y) != len(x):
raise ValueError("len(y) != len(x)")
elif scipy != None and isinstance(x, (np.ndarray, sparse.spmatrix)):
if len(y) != x.shape[0]:
raise ValueError("len(y) != len(x)")
if isinstance(x, np.ndarray):
x = np.ascontiguousarray(x) # enforce row-major
if isinstance(x, sparse.spmatrix):
x = x.tocsr()
pass
else:
raise TypeError("type of x: {0} is not supported!".format(type(x)))
self.l = l = len(y)
self.bias = -1
max_idx = 0
x_space = self.x_space = []
if scipy != None and isinstance(x, sparse.csr_matrix):
csr_to_problem(x, self)
max_idx = x.shape[1]
else:
for i, xi in enumerate(x):
tmp_xi, tmp_idx = gen_feature_nodearray(xi)
x_space += [tmp_xi]
max_idx = max(max_idx, tmp_idx)
self.n = max_idx
self.y = (c_double * l)()
if scipy != None and isinstance(y, np.ndarray):
np.ctypeslib.as_array(self.y, (self.l,))[:] = y
else:
for i, yi in enumerate(y): self.y[i] = yi
self.x = (POINTER(feature_node) * l)()
if scipy != None and isinstance(x, sparse.csr_matrix):
base = addressof(self.x_space.ctypes.data_as(POINTER(feature_node))[0])
x_ptr = cast(self.x, POINTER(c_uint64))
x_ptr = np.ctypeslib.as_array(x_ptr,(self.l,))
x_ptr[:] = self.rowptr[:-1]*sizeof(feature_node)+base
else:
for i, xi in enumerate(self.x_space): self.x[i] = xi
self.set_bias(bias)
def set_bias(self, bias):
if self.bias == bias:
return
if bias >= 0 and self.bias < 0:
self.n += 1
node = feature_node(self.n, bias)
if bias < 0 and self.bias >= 0:
self.n -= 1
node = feature_node(-1, bias)
if isinstance(self.x_space, list):
for xi in self.x_space:
xi[-2] = node
else:
self.x_space["index"][self.rowptr[1:]-2] = node.index
self.x_space["value"][self.rowptr[1:]-2] = node.value
self.bias = bias
def copy(self):
prob_copy = problem.__new__(problem)
for key in problem._names + list(vars(self)):
setattr(prob_copy, key, getattr(self, key))
return prob_copy
class parameter(Structure):
_names = ["solver_type", "eps", "C", "nr_weight", "weight_label",
"weight", "p", "nu", "init_sol", "regularize_bias",
"w_recalc"]
_types = [c_int, c_double, c_double, c_int, POINTER(c_int),
POINTER(c_double), c_double, c_double, POINTER(c_double), c_int,c_bool]
_fields_ = genFields(_names, _types)
def __init__(self, options = None):
if options == None:
options = ''
self.parse_options(options)
def __str__(self):
s = ''
attrs = parameter._names + list(self.__dict__.keys())
values = map(lambda attr: getattr(self, attr), attrs)
for attr, val in zip(attrs, values):
s += (' %s: %s\n' % (attr, val))
s = s.strip()
return s
def set_to_default_values(self):
self.solver_type = solver_names.L2R_L2LOSS_SVC_DUAL
self.eps = float('inf')
self.C = 1
self.p = 0.1
self.nu = 0.5
self.nr_weight = 0
self.weight_label = None
self.weight = None
self.init_sol = None
self.bias = -1
self.regularize_bias = 1
self.w_recalc = False
self.flag_cross_validation = False
self.flag_C_specified = False
self.flag_p_specified = False
self.flag_solver_specified = False
self.flag_find_parameters = False
self.nr_fold = 0
self.print_func = cast(None, PRINT_STRING_FUN)
def parse_options(self, options):
if isinstance(options, list):
argv = options
elif isinstance(options, str):
argv = options.split()
else:
raise TypeError("arg 1 should be a list or a str.")
self.set_to_default_values()
self.print_func = cast(None, PRINT_STRING_FUN)
weight_label = []
weight = []
i = 0
while i < len(argv) :
if argv[i] == "-s":
i = i + 1
self.solver_type = solver_names(int(argv[i]))
self.flag_solver_specified = True
elif argv[i] == "-c":
i = i + 1
self.C = float(argv[i])
self.flag_C_specified = True
elif argv[i] == "-p":
i = i + 1
self.p = float(argv[i])
self.flag_p_specified = True
elif argv[i] == "-n":
i = i + 1
self.nu = float(argv[i])
elif argv[i] == "-e":
i = i + 1
self.eps = float(argv[i])
elif argv[i] == "-B":
i = i + 1
self.bias = float(argv[i])
elif argv[i] == "-v":
i = i + 1
self.flag_cross_validation = 1
self.nr_fold = int(argv[i])
if self.nr_fold < 2 :
raise ValueError("n-fold cross validation: n must >= 2")
elif argv[i].startswith("-w"):
i = i + 1
self.nr_weight += 1
weight_label += [int(argv[i-1][2:])]
weight += [float(argv[i])]
elif argv[i] == "-q":
self.print_func = ctypes_print_null
elif argv[i] == "-C":
self.flag_find_parameters = True
elif argv[i] == "-R":
self.regularize_bias = 0
else:
raise ValueError("Wrong options")
i += 1
liblinear.set_print_string_function(self.print_func)
self.weight_label = (c_int*self.nr_weight)()
self.weight = (c_double*self.nr_weight)()
for i in range(self.nr_weight):
self.weight[i] = weight[i]
self.weight_label[i] = weight_label[i]
# default solver for parameter selection is L2R_L2LOSS_SVC
if self.flag_find_parameters:
if not self.flag_cross_validation:
self.nr_fold = 5
if not self.flag_solver_specified:
self.solver_type = solver_names.L2R_L2LOSS_SVC
self.flag_solver_specified = True
elif self.solver_type not in [solver_names.L2R_LR, solver_names.L2R_L2LOSS_SVC, solver_names.L2R_L2LOSS_SVR]:
raise ValueError("Warm-start parameter search only available for -s 0, -s 2 and -s 11")
if self.eps == float('inf'):
if self.solver_type in [solver_names.L2R_LR, solver_names.L2R_L2LOSS_SVC]:
self.eps = 0.01
elif self.solver_type in [solver_names.L2R_L2LOSS_SVR]:
self.eps = 0.0001
elif self.solver_type in [solver_names.L2R_L2LOSS_SVC_DUAL, solver_names.L2R_L1LOSS_SVC_DUAL, solver_names.MCSVM_CS, solver_names.L2R_LR_DUAL]:
self.eps = 0.1
elif self.solver_type in [solver_names.L1R_L2LOSS_SVC, solver_names.L1R_LR]:
self.eps = 0.01
elif self.solver_type in [solver_names.L2R_L2LOSS_SVR_DUAL, solver_names.L2R_L1LOSS_SVR_DUAL]:
self.eps = 0.1
elif self.solver_type in [solver_names.ONECLASS_SVM]:
self.eps = 0.01
class model(Structure):
_names = ["param", "nr_class", "nr_feature", "w", "label", "bias", "rho"]
_types = [parameter, c_int, c_int, POINTER(c_double), POINTER(c_int), c_double, c_double]
_fields_ = genFields(_names, _types)
def __init__(self):
self.__createfrom__ = 'python'
def __del__(self):
# free memory created by C to avoid memory leak
if hasattr(self, '__createfrom__') and self.__createfrom__ == 'C':
liblinear.free_and_destroy_model(pointer(self))
def get_nr_feature(self):
return liblinear.get_nr_feature(self)
def get_nr_class(self):
return liblinear.get_nr_class(self)
def get_labels(self):
nr_class = self.get_nr_class()
labels = (c_int * nr_class)()
liblinear.get_labels(self, labels)
return labels[:nr_class]
def get_decfun_coef(self, feat_idx, label_idx=0):
return liblinear.get_decfun_coef(self, feat_idx, label_idx)
def get_decfun_bias(self, label_idx=0):
return liblinear.get_decfun_bias(self, label_idx)
def get_decfun_rho(self):
return liblinear.get_decfun_rho(self)
def get_decfun(self, label_idx=0):
w = [liblinear.get_decfun_coef(self, feat_idx, label_idx) for feat_idx in range(1, self.nr_feature+1)]
if self.is_oneclass_model():
rho = self.get_decfun_rho()
return (w, -rho)
else:
b = liblinear.get_decfun_bias(self, label_idx)
return (w, b)
def is_probability_model(self):
return (liblinear.check_probability_model(self) == 1)
def is_regression_model(self):
return (liblinear.check_regression_model(self) == 1)
def is_oneclass_model(self):
return (liblinear.check_oneclass_model(self) == 1)
def toPyModel(model_ptr):
"""
toPyModel(model_ptr) -> model
Convert a ctypes POINTER(model) to a Python model
"""
if bool(model_ptr) == False:
raise ValueError("Null pointer")
m = model_ptr.contents
m.__createfrom__ = 'C'
return m
fillprototype(liblinear.train, POINTER(model), [POINTER(problem), POINTER(parameter)])
fillprototype(liblinear.find_parameters, None, [POINTER(problem), POINTER(parameter), c_int, c_double, c_double, POINTER(c_double), POINTER(c_double), POINTER(c_double)])
fillprototype(liblinear.cross_validation, None, [POINTER(problem), POINTER(parameter), c_int, POINTER(c_double)])
fillprototype(liblinear.predict_values, c_double, [POINTER(model), POINTER(feature_node), POINTER(c_double)])
fillprototype(liblinear.predict, c_double, [POINTER(model), POINTER(feature_node)])
fillprototype(liblinear.predict_probability, c_double, [POINTER(model), POINTER(feature_node), POINTER(c_double)])
fillprototype(liblinear.save_model, c_int, [c_char_p, POINTER(model)])
fillprototype(liblinear.load_model, POINTER(model), [c_char_p])
fillprototype(liblinear.get_nr_feature, c_int, [POINTER(model)])
fillprototype(liblinear.get_nr_class, c_int, [POINTER(model)])
fillprototype(liblinear.get_labels, None, [POINTER(model), POINTER(c_int)])
fillprototype(liblinear.get_decfun_coef, c_double, [POINTER(model), c_int, c_int])
fillprototype(liblinear.get_decfun_bias, c_double, [POINTER(model), c_int])
fillprototype(liblinear.get_decfun_rho, c_double, [POINTER(model)])
fillprototype(liblinear.free_model_content, None, [POINTER(model)])
fillprototype(liblinear.free_and_destroy_model, None, [POINTER(POINTER(model))])
fillprototype(liblinear.destroy_param, None, [POINTER(parameter)])
fillprototype(liblinear.check_parameter, c_char_p, [POINTER(problem), POINTER(parameter)])
fillprototype(liblinear.check_probability_model, c_int, [POINTER(model)])
fillprototype(liblinear.check_regression_model, c_int, [POINTER(model)])
fillprototype(liblinear.check_oneclass_model, c_int, [POINTER(model)])
fillprototype(liblinear.set_print_string_function, None, [CFUNCTYPE(None, c_char_p)])

View File

@@ -0,0 +1,285 @@
import os, sys
from .liblinear import *
from .liblinear import __all__ as liblinear_all
from .commonutil import *
from .commonutil import __all__ as common_all
from ctypes import c_double
try:
import numpy as np
import scipy
from scipy import sparse
except:
scipy = None
if sys.version_info[0] < 3:
range = xrange
from itertools import izip as zip
_cstr = lambda s: s.encode("utf-8") if isinstance(s,unicode) else str(s)
else:
_cstr = lambda s: bytes(s, "utf-8")
__all__ = ['load_model', 'save_model', 'train', 'predict'] + liblinear_all + common_all
def load_model(model_file_name):
"""
load_model(model_file_name) -> model
Load a LIBLINEAR model from model_file_name and return.
"""
model = liblinear.load_model(_cstr(model_file_name))
if not model:
print("can't open model file %s" % model_file_name)
return None
model = toPyModel(model)
return model
def save_model(model_file_name, model):
"""
save_model(model_file_name, model) -> None
Save a LIBLINEAR model to the file model_file_name.
"""
liblinear.save_model(_cstr(model_file_name), model)
def train(arg1, arg2=None, arg3=None):
"""
train(y, x [, options]) -> model | ACC
y: a list/tuple/ndarray of l true labels (type must be int/double).
x: 1. a list/tuple of l training instances. Feature vector of
each training instance is a list/tuple or dictionary.
2. an l * n numpy ndarray or scipy spmatrix (n: number of features).
train(prob [, options]) -> model | ACC
train(prob, param) -> model | ACC
Train a model from data (y, x) or a problem prob using
'options' or a parameter param.
If '-v' is specified in 'options' (i.e., cross validation)
either accuracy (ACC) or mean-squared error (MSE) is returned.
options:
-s type : set type of solver (default 1)
for multi-class classification
0 -- L2-regularized logistic regression (primal)
1 -- L2-regularized L2-loss support vector classification (dual)
2 -- L2-regularized L2-loss support vector classification (primal)
3 -- L2-regularized L1-loss support vector classification (dual)
4 -- support vector classification by Crammer and Singer
5 -- L1-regularized L2-loss support vector classification
6 -- L1-regularized logistic regression
7 -- L2-regularized logistic regression (dual)
for regression
11 -- L2-regularized L2-loss support vector regression (primal)
12 -- L2-regularized L2-loss support vector regression (dual)
13 -- L2-regularized L1-loss support vector regression (dual)
for outlier detection
21 -- one-class support vector machine (dual)
-c cost : set the parameter C (default 1)
-p epsilon : set the epsilon in loss function of SVR (default 0.1)
-e epsilon : set tolerance of termination criterion
-s 0 and 2
|f'(w)|_2 <= eps*min(pos,neg)/l*|f'(w0)|_2,
where f is the primal function, (default 0.01)
-s 11
|f'(w)|_2 <= eps*|f'(w0)|_2 (default 0.0001)
-s 1, 3, 4, 7, and 21
Dual maximal violation <= eps; similar to libsvm (default 0.1 except 0.01 for -s 21)
-s 5 and 6
|f'(w)|_inf <= eps*min(pos,neg)/l*|f'(w0)|_inf,
where f is the primal function (default 0.01)
-s 12 and 13
|f'(alpha)|_1 <= eps |f'(alpha0)|,
where f is the dual function (default 0.1)
-B bias : if bias >= 0, instance x becomes [x; bias]; if < 0, no bias term added (default -1)
-R : not regularize the bias; must with -B 1 to have the bias; DON'T use this unless you know what it is
(for -s 0, 2, 5, 6, 11)"
-wi weight: weights adjust the parameter C of different classes (see README for details)
-v n: n-fold cross validation mode
-C : find parameters (C for -s 0, 2 and C, p for -s 11)
-q : quiet mode (no outputs)
"""
prob, param = None, None
if isinstance(arg1, (list, tuple)) or (scipy and isinstance(arg1, np.ndarray)):
assert isinstance(arg2, (list, tuple)) or (scipy and isinstance(arg2, (np.ndarray, sparse.spmatrix)))
y, x, options = arg1, arg2, arg3
prob = problem(y, x)
param = parameter(options)
elif isinstance(arg1, problem):
prob = arg1
if isinstance(arg2, parameter):
param = arg2
else:
param = parameter(arg2)
if prob == None or param == None :
raise TypeError("Wrong types for the arguments")
prob.set_bias(param.bias)
liblinear.set_print_string_function(param.print_func)
err_msg = liblinear.check_parameter(prob, param)
if err_msg :
raise ValueError('Error: %s' % err_msg)
if param.flag_find_parameters:
nr_fold = param.nr_fold
best_C = c_double()
best_p = c_double()
best_score = c_double()
if param.flag_C_specified:
start_C = param.C
else:
start_C = -1.0
if param.flag_p_specified:
start_p = param.p
else:
start_p = -1.0
liblinear.find_parameters(prob, param, nr_fold, start_C, start_p, best_C, best_p, best_score)
if param.solver_type in [solver_names.L2R_LR, solver_names.L2R_L2LOSS_SVC]:
print("Best C = %g CV accuracy = %g%%\n"% (best_C.value, 100.0*best_score.value))
elif param.solver_type in [solver_names.L2R_L2LOSS_SVR]:
print("Best C = %g Best p = %g CV MSE = %g\n"% (best_C.value, best_p.value, best_score.value))
return best_C.value,best_p.value,best_score.value
elif param.flag_cross_validation:
l, nr_fold = prob.l, param.nr_fold
target = (c_double * l)()
liblinear.cross_validation(prob, param, nr_fold, target)
ACC, MSE, SCC = evaluations(prob.y[:l], target[:l])
if param.solver_type in [solver_names.L2R_L2LOSS_SVR, solver_names.L2R_L2LOSS_SVR_DUAL, solver_names.L2R_L1LOSS_SVR_DUAL]:
print("Cross Validation Mean squared error = %g" % MSE)
print("Cross Validation Squared correlation coefficient = %g" % SCC)
return MSE
else:
print("Cross Validation Accuracy = %g%%" % ACC)
return ACC
else:
m = liblinear.train(prob, param)
m = toPyModel(m)
return m
def predict(y, x, m, options=""):
"""
predict(y, x, m [, options]) -> (p_labels, p_acc, p_vals)
y: a list/tuple/ndarray of l true labels (type must be int/double).
It is used for calculating the accuracy. Use [] if true labels are
unavailable.
x: 1. a list/tuple of l training instances. Feature vector of
each training instance is a list/tuple or dictionary.
2. an l * n numpy ndarray or scipy spmatrix (n: number of features).
Predict data (y, x) with the SVM model m.
options:
-b probability_estimates: whether to output probability estimates, 0 or 1 (default 0); currently for logistic regression only
-q quiet mode (no outputs)
The return tuple contains
p_labels: a list of predicted labels
p_acc: a tuple including accuracy (for classification), mean-squared
error, and squared correlation coefficient (for regression).
p_vals: a list of decision values or probability estimates (if '-b 1'
is specified). If k is the number of classes, for decision values,
each element includes results of predicting k binary-class
SVMs. if k = 2 and solver is not MCSVM_CS, only one decision value
is returned. For probabilities, each element contains k values
indicating the probability that the testing instance is in each class.
Note that the order of classes here is the same as 'model.label'
field in the model structure.
"""
def info(s):
print(s)
if scipy and isinstance(x, np.ndarray):
x = np.ascontiguousarray(x) # enforce row-major
elif scipy and isinstance(x, sparse.spmatrix):
x = x.tocsr()
elif not isinstance(x, (list, tuple)):
raise TypeError("type of x: {0} is not supported!".format(type(x)))
if (not isinstance(y, (list, tuple))) and (not (scipy and isinstance(y, np.ndarray))):
raise TypeError("type of y: {0} is not supported!".format(type(y)))
predict_probability = 0
argv = options.split()
i = 0
while i < len(argv):
if argv[i] == '-b':
i += 1
predict_probability = int(argv[i])
elif argv[i] == '-q':
info = print_null
else:
raise ValueError("Wrong options")
i+=1
solver_type = m.param.solver_type
nr_class = m.get_nr_class()
nr_feature = m.get_nr_feature()
is_prob_model = m.is_probability_model()
bias = m.bias
if bias >= 0:
biasterm = feature_node(nr_feature+1, bias)
else:
biasterm = feature_node(-1, bias)
pred_labels = []
pred_values = []
if scipy and isinstance(x, sparse.spmatrix):
nr_instance = x.shape[0]
else:
nr_instance = len(x)
if predict_probability:
if not is_prob_model:
raise TypeError('probability output is only supported for logistic regression')
prob_estimates = (c_double * nr_class)()
for i in range(nr_instance):
if scipy and isinstance(x, sparse.spmatrix):
indslice = slice(x.indptr[i], x.indptr[i+1])
xi, idx = gen_feature_nodearray((x.indices[indslice], x.data[indslice]), feature_max=nr_feature)
else:
xi, idx = gen_feature_nodearray(x[i], feature_max=nr_feature)
xi[-2] = biasterm
label = liblinear.predict_probability(m, xi, prob_estimates)
values = prob_estimates[:nr_class]
pred_labels += [label]
pred_values += [values]
else:
if nr_class <= 2:
nr_classifier = 1
else:
nr_classifier = nr_class
dec_values = (c_double * nr_classifier)()
for i in range(nr_instance):
if scipy and isinstance(x, sparse.spmatrix):
indslice = slice(x.indptr[i], x.indptr[i+1])
xi, idx = gen_feature_nodearray((x.indices[indslice], x.data[indslice]), feature_max=nr_feature)
else:
xi, idx = gen_feature_nodearray(x[i], feature_max=nr_feature)
xi[-2] = biasterm
label = liblinear.predict_values(m, xi, dec_values)
values = dec_values[:nr_classifier]
pred_labels += [label]
pred_values += [values]
if len(y) == 0:
y = [0] * nr_instance
ACC, MSE, SCC = evaluations(y, pred_labels)
if m.is_regression_model():
info("Mean squared error = %g (regression)" % MSE)
info("Squared correlation coefficient = %g (regression)" % SCC)
else:
info("Accuracy = %g%% (%d/%d) (classification)" % (ACC, int(round(nr_instance*ACC/100)), nr_instance))
return pred_labels, (ACC, MSE, SCC), pred_values

View File

@@ -0,0 +1,123 @@
#!/usr/bin/env python
import sys, os
from os import path
from shutil import copyfile, rmtree
from glob import glob
from setuptools import setup, Extension
from distutils.command.clean import clean as clean_cmd
# a technique to build a shared library on windows
from distutils.command.build_ext import build_ext
build_ext.get_export_symbols = lambda x, y: []
PACKAGE_DIR = "liblinear"
PACKAGE_NAME = "liblinear-official"
VERSION = "2.49.0"
cpp_dir = "cpp-source"
# should be consistent with dynamic_lib_name in liblinear/liblinear.py
dynamic_lib_name = "clib"
# sources to be included to build the shared library
source_codes = [
path.join("blas", "daxpy.c"),
path.join("blas", "ddot.c"),
path.join("blas", "dnrm2.c"),
path.join("blas", "dscal.c"),
"linear.cpp",
"newton.cpp",
]
headers = [
path.join("blas", "blas.h"),
path.join("blas", "blasp.h"),
"newton.h",
"linear.h",
"linear.def",
]
# license parameters
license_source = path.join("..", "COPYRIGHT")
license_file = "LICENSE"
license_name = "BSD-3-Clause"
kwargs_for_extension = {
"sources": [path.join(cpp_dir, f) for f in source_codes],
"depends": [path.join(cpp_dir, f) for f in headers],
"include_dirs": [cpp_dir],
"language": "c++",
}
# see ../Makefile.win
if sys.platform == "win32":
kwargs_for_extension.update(
{
"define_macros": [("_WIN64", ""), ("_CRT_SECURE_NO_DEPRECATE", "")],
"extra_link_args": ["-DEF:{}\linear.def".format(cpp_dir)],
}
)
def create_cpp_source():
for f in source_codes + headers:
src_file = path.join("..", f)
tgt_file = path.join(cpp_dir, f)
# ensure blas directory is created
os.makedirs(path.dirname(tgt_file), exist_ok=True)
copyfile(src_file, tgt_file)
class CleanCommand(clean_cmd):
def run(self):
clean_cmd.run(self)
to_be_removed = ["build/", "dist/", "MANIFEST", cpp_dir, "{}.egg-info".format(PACKAGE_NAME), license_file]
to_be_removed += glob("./{}/{}.*".format(PACKAGE_DIR, dynamic_lib_name))
for root, dirs, files in os.walk(os.curdir, topdown=False):
if "__pycache__" in dirs:
to_be_removed.append(path.join(root, "__pycache__"))
to_be_removed += [f for f in files if f.endswith(".pyc")]
for f in to_be_removed:
print("remove {}".format(f))
if f == ".":
continue
elif path.isfile(f):
os.remove(f)
elif path.isdir(f):
rmtree(f)
def main():
if not path.exists(cpp_dir):
create_cpp_source()
if not path.exists(license_file):
copyfile(license_source, license_file)
with open("README") as f:
long_description = f.read()
setup(
name=PACKAGE_NAME,
packages=[PACKAGE_DIR],
version=VERSION,
description="Python binding of LIBLINEAR",
long_description=long_description,
long_description_content_type="text/plain",
author="ML group @ National Taiwan University",
author_email="cjlin@csie.ntu.edu.tw",
url="https://www.csie.ntu.edu.tw/~cjlin/liblinear",
license=license_name,
install_requires=["scipy"],
ext_modules=[
Extension(
"{}.{}".format(PACKAGE_DIR, dynamic_lib_name), **kwargs_for_extension
)
],
cmdclass={"clean": CleanCommand},
)
main()

405
liblinear-2.49/svm-scale.c Normal file
View File

@@ -0,0 +1,405 @@
#include <float.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
void exit_with_help()
{
printf(
"Usage: svm-scale [options] data_filename\n"
"options:\n"
"-l lower : x scaling lower limit (default -1)\n"
"-u upper : x scaling upper limit (default +1)\n"
"-y y_lower y_upper : y scaling limits (default: no y scaling)\n"
"-s save_filename : save scaling parameters to save_filename\n"
"-r restore_filename : restore scaling parameters from restore_filename\n"
);
exit(1);
}
char *line = NULL;
int max_line_len = 1024;
double lower=-1.0,upper=1.0,y_lower,y_upper;
int y_scaling = 0;
double *feature_max;
double *feature_min;
double y_max = -DBL_MAX;
double y_min = DBL_MAX;
int max_index;
int min_index;
long int num_nonzeros = 0;
long int new_num_nonzeros = 0;
#define max(x,y) (((x)>(y))?(x):(y))
#define min(x,y) (((x)<(y))?(x):(y))
void output_target(double value);
void output(int index, double value);
char* readline(FILE *input);
int clean_up(FILE *fp_restore, FILE *fp, const char *msg);
int main(int argc,char **argv)
{
int i,index;
FILE *fp, *fp_restore = NULL;
char *save_filename = NULL;
char *restore_filename = NULL;
for(i=1;i<argc;i++)
{
if(argv[i][0] != '-') break;
++i;
switch(argv[i-1][1])
{
case 'l': lower = atof(argv[i]); break;
case 'u': upper = atof(argv[i]); break;
case 'y':
y_lower = atof(argv[i]);
++i;
y_upper = atof(argv[i]);
y_scaling = 1;
break;
case 's': save_filename = argv[i]; break;
case 'r': restore_filename = argv[i]; break;
default:
fprintf(stderr,"unknown option\n");
exit_with_help();
}
}
if(!(upper > lower) || (y_scaling && !(y_upper > y_lower)))
{
fprintf(stderr,"inconsistent lower/upper specification\n");
exit(1);
}
if(restore_filename && save_filename)
{
fprintf(stderr,"cannot use -r and -s simultaneously\n");
exit(1);
}
if(argc != i+1)
exit_with_help();
fp=fopen(argv[i],"r");
if(fp==NULL)
{
fprintf(stderr,"can't open file %s\n", argv[i]);
exit(1);
}
line = (char *) malloc(max_line_len*sizeof(char));
#define SKIP_TARGET\
while(isspace(*p)) ++p;\
while(!isspace(*p)) ++p;
#define SKIP_ELEMENT\
while(*p!=':') ++p;\
++p;\
while(isspace(*p)) ++p;\
while(*p && !isspace(*p)) ++p;
/* assumption: min index of attributes is 1 */
/* pass 1: find out max index of attributes */
max_index = 0;
min_index = 1;
if(restore_filename)
{
int idx, c;
fp_restore = fopen(restore_filename,"r");
if(fp_restore==NULL)
{
fprintf(stderr,"can't open file %s\n", restore_filename);
exit(1);
}
c = fgetc(fp_restore);
if(c == 'y')
{
readline(fp_restore);
readline(fp_restore);
readline(fp_restore);
}
readline(fp_restore);
readline(fp_restore);
while(fscanf(fp_restore,"%d %*f %*f\n",&idx) == 1)
max_index = max(idx,max_index);
rewind(fp_restore);
}
while(readline(fp)!=NULL)
{
char *p=line;
SKIP_TARGET
while(sscanf(p,"%d:%*f",&index)==1)
{
max_index = max(max_index, index);
min_index = min(min_index, index);
SKIP_ELEMENT
num_nonzeros++;
}
}
if(min_index < 1)
fprintf(stderr,
"WARNING: minimal feature index is %d, but indices should start from 1\n", min_index);
rewind(fp);
feature_max = (double *)malloc((max_index+1)* sizeof(double));
feature_min = (double *)malloc((max_index+1)* sizeof(double));
if(feature_max == NULL || feature_min == NULL)
{
fprintf(stderr,"can't allocate enough memory\n");
exit(1);
}
for(i=0;i<=max_index;i++)
{
feature_max[i]=-DBL_MAX;
feature_min[i]=DBL_MAX;
}
/* pass 2: find out min/max value */
while(readline(fp)!=NULL)
{
char *p=line;
int next_index=1;
double target;
double value;
if (sscanf(p,"%lf",&target) != 1)
return clean_up(fp_restore, fp, "ERROR: failed to read labels\n");
y_max = max(y_max,target);
y_min = min(y_min,target);
SKIP_TARGET
while(sscanf(p,"%d:%lf",&index,&value)==2)
{
for(i=next_index;i<index;i++)
{
feature_max[i]=max(feature_max[i],0);
feature_min[i]=min(feature_min[i],0);
}
feature_max[index]=max(feature_max[index],value);
feature_min[index]=min(feature_min[index],value);
SKIP_ELEMENT
next_index=index+1;
}
for(i=next_index;i<=max_index;i++)
{
feature_max[i]=max(feature_max[i],0);
feature_min[i]=min(feature_min[i],0);
}
}
rewind(fp);
/* pass 2.5: save/restore feature_min/feature_max */
if(restore_filename)
{
/* fp_restore rewinded in finding max_index */
int idx, c;
double fmin, fmax;
int next_index = 1;
if((c = fgetc(fp_restore)) == 'y')
{
if(fscanf(fp_restore, "%lf %lf\n", &y_lower, &y_upper) != 2 ||
fscanf(fp_restore, "%lf %lf\n", &y_min, &y_max) != 2)
return clean_up(fp_restore, fp, "ERROR: failed to read scaling parameters\n");
y_scaling = 1;
}
else
ungetc(c, fp_restore);
if (fgetc(fp_restore) == 'x')
{
if(fscanf(fp_restore, "%lf %lf\n", &lower, &upper) != 2)
return clean_up(fp_restore, fp, "ERROR: failed to read scaling parameters\n");
while(fscanf(fp_restore,"%d %lf %lf\n",&idx,&fmin,&fmax)==3)
{
for(i = next_index;i<idx;i++)
if(feature_min[i] != feature_max[i])
{
fprintf(stderr,
"WARNING: feature index %d appeared in file %s was not seen in the scaling factor file %s. The feature is scaled to 0.\n",
i, argv[argc-1], restore_filename);
feature_min[i] = 0;
feature_max[i] = 0;
}
feature_min[idx] = fmin;
feature_max[idx] = fmax;
next_index = idx + 1;
}
for(i=next_index;i<=max_index;i++)
if(feature_min[i] != feature_max[i])
{
fprintf(stderr,
"WARNING: feature index %d appeared in file %s was not seen in the scaling factor file %s. The feature is scaled to 0.\n",
i, argv[argc-1], restore_filename);
feature_min[i] = 0;
feature_max[i] = 0;
}
}
fclose(fp_restore);
}
if(save_filename)
{
FILE *fp_save = fopen(save_filename,"w");
if(fp_save==NULL)
{
fprintf(stderr,"can't open file %s\n", save_filename);
exit(1);
}
if(y_scaling)
{
fprintf(fp_save, "y\n");
fprintf(fp_save, "%.17g %.17g\n", y_lower, y_upper);
fprintf(fp_save, "%.17g %.17g\n", y_min, y_max);
}
fprintf(fp_save, "x\n");
fprintf(fp_save, "%.17g %.17g\n", lower, upper);
for(i=1;i<=max_index;i++)
{
if(feature_min[i]!=feature_max[i])
fprintf(fp_save,"%d %.17g %.17g\n",i,feature_min[i],feature_max[i]);
}
if(min_index < 1)
fprintf(stderr,
"WARNING: scaling factors with indices smaller than 1 are not stored to the file %s.\n", save_filename);
fclose(fp_save);
}
/* pass 3: scale */
while(readline(fp)!=NULL)
{
char *p=line;
int next_index=1;
double target;
double value;
if (sscanf(p,"%lf",&target) != 1)
return clean_up(NULL, fp, "ERROR: failed to read labels\n");
output_target(target);
SKIP_TARGET
while(sscanf(p,"%d:%lf",&index,&value)==2)
{
for(i=next_index;i<index;i++)
output(i,0);
output(index,value);
SKIP_ELEMENT
next_index=index+1;
}
for(i=next_index;i<=max_index;i++)
output(i,0);
printf("\n");
}
if (new_num_nonzeros > num_nonzeros)
fprintf(stderr,
"WARNING: original #nonzeros %ld\n"
" > new #nonzeros %ld\n"
"If feature values are non-negative and sparse, use -l 0 rather than the default -l -1\n",
num_nonzeros, new_num_nonzeros);
free(line);
free(feature_max);
free(feature_min);
fclose(fp);
return 0;
}
char* readline(FILE *input)
{
int len;
if(fgets(line,max_line_len,input) == NULL)
return NULL;
while(strrchr(line,'\n') == NULL)
{
max_line_len *= 2;
line = (char *) realloc(line, max_line_len);
len = (int) strlen(line);
if(fgets(line+len,max_line_len-len,input) == NULL)
break;
}
return line;
}
void output_target(double value)
{
if(y_scaling)
{
if(value == y_min)
value = y_lower;
else if(value == y_max)
value = y_upper;
else value = y_lower + (y_upper-y_lower) *
(value - y_min)/(y_max-y_min);
}
printf("%.17g ",value);
}
void output(int index, double value)
{
/* skip single-valued attribute */
if(feature_max[index] == feature_min[index])
return;
if(value == feature_min[index])
value = lower;
else if(value == feature_max[index])
value = upper;
else
value = lower + (upper-lower) *
(value-feature_min[index])/
(feature_max[index]-feature_min[index]);
if(value != 0)
{
printf("%d:%g ",index, value);
new_num_nonzeros++;
}
}
int clean_up(FILE *fp_restore, FILE *fp, const char* msg)
{
fprintf(stderr, "%s", msg);
free(line);
free(feature_max);
free(feature_min);
fclose(fp);
if (fp_restore)
fclose(fp_restore);
return -1;
}

479
liblinear-2.49/train.c Normal file
View File

@@ -0,0 +1,479 @@
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <errno.h>
#include "linear.h"
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
#define INF HUGE_VAL
void print_null(const char *s) {}
void exit_with_help()
{
printf(
"Usage: train [options] training_set_file [model_file]\n"
"options:\n"
"-s type : set type of solver (default 1)\n"
" for multi-class classification\n"
" 0 -- L2-regularized logistic regression (primal)\n"
" 1 -- L2-regularized L2-loss support vector classification (dual)\n"
" 2 -- L2-regularized L2-loss support vector classification (primal)\n"
" 3 -- L2-regularized L1-loss support vector classification (dual)\n"
" 4 -- support vector classification by Crammer and Singer\n"
" 5 -- L1-regularized L2-loss support vector classification\n"
" 6 -- L1-regularized logistic regression\n"
" 7 -- L2-regularized logistic regression (dual)\n"
" for regression\n"
" 11 -- L2-regularized L2-loss support vector regression (primal)\n"
" 12 -- L2-regularized L2-loss support vector regression (dual)\n"
" 13 -- L2-regularized L1-loss support vector regression (dual)\n"
" for outlier detection\n"
" 21 -- one-class support vector machine (dual)\n"
"-c cost : set the parameter C (default 1)\n"
"-p epsilon : set the epsilon in loss function of SVR (default 0.1)\n"
"-n nu : set the parameter nu of one-class SVM (default 0.5)\n"
"-e epsilon : set tolerance of termination criterion\n"
" -s 0 and 2\n"
" |f'(w)|_2 <= eps*min(pos,neg)/l*|f'(w0)|_2,\n"
" where f is the primal function and pos/neg are # of\n"
" positive/negative data (default 0.01)\n"
" -s 11\n"
" |f'(w)|_2 <= eps*|f'(w0)|_2 (default 0.0001)\n"
" -s 1, 3, 4, 7, and 21\n"
" Dual maximal violation <= eps; similar to libsvm (default 0.1 except 0.01 for -s 21)\n"
" -s 5 and 6\n"
" |f'(w)|_1 <= eps*min(pos,neg)/l*|f'(w0)|_1,\n"
" where f is the primal function (default 0.01)\n"
" -s 12 and 13\n"
" |f'(alpha)|_1 <= eps |f'(alpha0)|,\n"
" where f is the dual function (default 0.1)\n"
"-B bias : if bias >= 0, instance x becomes [x; bias]; if < 0, no bias term added (default -1)\n"
"-R : not regularize the bias; must with -B 1 to have the bias; DON'T use this unless you know what it is\n"
" (for -s 0, 2, 5, 6, 11)\n"
"-wi weight: weights adjust the parameter C of different classes (see README for details)\n"
"-v n: n-fold cross validation mode\n"
"-C : find parameters (C for -s 0, 2 and C, p for -s 11)\n"
"-q : quiet mode (no outputs)\n"
);
exit(1);
}
void exit_input_error(int line_num)
{
fprintf(stderr,"Wrong input format at line %d\n", line_num);
exit(1);
}
static char *line = NULL;
static int max_line_len;
static char* readline(FILE *input)
{
int len;
if(fgets(line,max_line_len,input) == NULL)
return NULL;
while(strrchr(line,'\n') == NULL)
{
max_line_len *= 2;
line = (char *) realloc(line,max_line_len);
len = (int) strlen(line);
if(fgets(line+len,max_line_len-len,input) == NULL)
break;
}
return line;
}
void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name);
void read_problem(const char *filename);
void do_cross_validation();
void do_find_parameters();
struct feature_node *x_space;
struct parameter param;
struct problem prob;
struct model* model_;
int flag_cross_validation;
int flag_find_parameters;
int flag_C_specified;
int flag_p_specified;
int flag_solver_specified;
int nr_fold;
double bias;
int main(int argc, char **argv)
{
char input_file_name[1024];
char model_file_name[1024];
const char *error_msg;
parse_command_line(argc, argv, input_file_name, model_file_name);
read_problem(input_file_name);
error_msg = check_parameter(&prob,&param);
if(error_msg)
{
fprintf(stderr,"ERROR: %s\n",error_msg);
exit(1);
}
if (flag_find_parameters)
{
do_find_parameters();
}
else if(flag_cross_validation)
{
do_cross_validation();
}
else
{
model_=train(&prob, &param);
if(save_model(model_file_name, model_))
{
fprintf(stderr,"can't save model to file %s\n",model_file_name);
exit(1);
}
free_and_destroy_model(&model_);
}
destroy_param(&param);
free(prob.y);
free(prob.x);
free(x_space);
free(line);
return 0;
}
void do_find_parameters()
{
double start_C, start_p, best_C, best_p, best_score;
if (flag_C_specified)
start_C = param.C;
else
start_C = -1.0;
if (flag_p_specified)
start_p = param.p;
else
start_p = -1.0;
printf("Doing parameter search with %d-fold cross validation.\n", nr_fold);
find_parameters(&prob, &param, nr_fold, start_C, start_p, &best_C, &best_p, &best_score);
if(param.solver_type == L2R_LR || param.solver_type == L2R_L2LOSS_SVC)
printf("Best C = %g CV accuracy = %g%%\n", best_C, 100.0*best_score);
else if(param.solver_type == L2R_L2LOSS_SVR)
printf("Best C = %g Best p = %g CV MSE = %g\n", best_C, best_p, best_score);
}
void do_cross_validation()
{
int i;
int total_correct = 0;
double total_error = 0;
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
double *target = Malloc(double, prob.l);
cross_validation(&prob,&param,nr_fold,target);
if(param.solver_type == L2R_L2LOSS_SVR ||
param.solver_type == L2R_L1LOSS_SVR_DUAL ||
param.solver_type == L2R_L2LOSS_SVR_DUAL)
{
for(i=0;i<prob.l;i++)
{
double y = prob.y[i];
double v = target[i];
total_error += (v-y)*(v-y);
sumv += v;
sumy += y;
sumvv += v*v;
sumyy += y*y;
sumvy += v*y;
}
printf("Cross Validation Mean squared error = %g\n",total_error/prob.l);
printf("Cross Validation Squared correlation coefficient = %g\n",
((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/
((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy))
);
}
else
{
for(i=0;i<prob.l;i++)
if(target[i] == prob.y[i])
++total_correct;
printf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l);
}
free(target);
}
void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name)
{
int i;
void (*print_func)(const char*) = NULL; // default printing to stdout
// default values
param.solver_type = L2R_L2LOSS_SVC_DUAL;
param.C = 1;
param.p = 0.1;
param.nu = 0.5;
param.eps = INF; // see setting below
param.nr_weight = 0;
param.regularize_bias = 1;
param.weight_label = NULL;
param.weight = NULL;
param.init_sol = NULL;
param.w_recalc = false;
flag_cross_validation = 0;
flag_C_specified = 0;
flag_p_specified = 0;
flag_solver_specified = 0;
flag_find_parameters = 0;
bias = -1;
// parse options
for(i=1;i<argc;i++)
{
if(argv[i][0] != '-') break;
if(++i>=argc)
exit_with_help();
switch(argv[i-1][1])
{
case 's':
param.solver_type = atoi(argv[i]);
flag_solver_specified = 1;
break;
case 'c':
param.C = atof(argv[i]);
flag_C_specified = 1;
break;
case 'p':
flag_p_specified = 1;
param.p = atof(argv[i]);
break;
case 'n':
param.nu = atof(argv[i]);
break;
case 'e':
param.eps = atof(argv[i]);
break;
case 'B':
bias = atof(argv[i]);
break;
case 'w':
++param.nr_weight;
param.weight_label = (int *) realloc(param.weight_label,sizeof(int)*param.nr_weight);
param.weight = (double *) realloc(param.weight,sizeof(double)*param.nr_weight);
param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]);
param.weight[param.nr_weight-1] = atof(argv[i]);
break;
case 'v':
flag_cross_validation = 1;
nr_fold = atoi(argv[i]);
if(nr_fold < 2)
{
fprintf(stderr,"n-fold cross validation: n must >= 2\n");
exit_with_help();
}
break;
case 'q':
print_func = &print_null;
i--;
break;
case 'C':
flag_find_parameters = 1;
i--;
break;
case 'R':
param.regularize_bias = 0;
i--;
break;
default:
fprintf(stderr,"unknown option: -%c\n", argv[i-1][1]);
exit_with_help();
break;
}
}
set_print_string_function(print_func);
// determine filenames
if(i>=argc)
exit_with_help();
strcpy(input_file_name, argv[i]);
if(i<argc-1)
strcpy(model_file_name,argv[i+1]);
else
{
char *p = strrchr(argv[i],'/');
if(p==NULL)
p = argv[i];
else
++p;
sprintf(model_file_name,"%s.model",p);
}
// default solver for parameter selection is L2R_L2LOSS_SVC
if(flag_find_parameters)
{
if(!flag_cross_validation)
nr_fold = 5;
if(!flag_solver_specified)
{
fprintf(stderr, "Solver not specified. Using -s 2\n");
param.solver_type = L2R_L2LOSS_SVC;
}
else if(param.solver_type != L2R_LR && param.solver_type != L2R_L2LOSS_SVC && param.solver_type != L2R_L2LOSS_SVR)
{
fprintf(stderr, "Warm-start parameter search only available for -s 0, -s 2 and -s 11\n");
exit_with_help();
}
}
if(param.eps == INF)
{
switch(param.solver_type)
{
case L2R_LR:
case L2R_L2LOSS_SVC:
param.eps = 0.01;
break;
case L2R_L2LOSS_SVR:
param.eps = 0.0001;
break;
case L2R_L2LOSS_SVC_DUAL:
case L2R_L1LOSS_SVC_DUAL:
case MCSVM_CS:
case L2R_LR_DUAL:
param.eps = 0.1;
break;
case L1R_L2LOSS_SVC:
case L1R_LR:
param.eps = 0.01;
break;
case L2R_L1LOSS_SVR_DUAL:
case L2R_L2LOSS_SVR_DUAL:
param.eps = 0.1;
break;
case ONECLASS_SVM:
param.eps = 0.01;
break;
}
}
}
// read in a problem (in libsvm format)
void read_problem(const char *filename)
{
int max_index, inst_max_index, i;
size_t elements, j;
FILE *fp = fopen(filename,"r");
char *endptr;
char *idx, *val, *label;
if(fp == NULL)
{
fprintf(stderr,"can't open input file %s\n",filename);
exit(1);
}
prob.l = 0;
elements = 0;
max_line_len = 1024;
line = Malloc(char,max_line_len);
while(readline(fp)!=NULL)
{
char *p = strtok(line," \t"); // label
// features
while(1)
{
p = strtok(NULL," \t");
if(p == NULL || *p == '\n') // check '\n' as ' ' may be after the last feature
break;
elements++;
}
elements++; // for bias term
prob.l++;
}
rewind(fp);
prob.bias=bias;
prob.y = Malloc(double,prob.l);
prob.x = Malloc(struct feature_node *,prob.l);
x_space = Malloc(struct feature_node,elements+prob.l);
max_index = 0;
j=0;
for(i=0;i<prob.l;i++)
{
inst_max_index = 0; // strtol gives 0 if wrong format
readline(fp);
prob.x[i] = &x_space[j];
label = strtok(line," \t\n");
if(label == NULL) // empty line
exit_input_error(i+1);
prob.y[i] = strtod(label,&endptr);
if(endptr == label || *endptr != '\0')
exit_input_error(i+1);
while(1)
{
idx = strtok(NULL,":");
val = strtok(NULL," \t");
if(val == NULL)
break;
errno = 0;
x_space[j].index = (int) strtol(idx,&endptr,10);
if(endptr == idx || errno != 0 || *endptr != '\0' || x_space[j].index <= inst_max_index)
exit_input_error(i+1);
else
inst_max_index = x_space[j].index;
errno = 0;
x_space[j].value = strtod(val,&endptr);
if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
exit_input_error(i+1);
++j;
}
if(inst_max_index > max_index)
max_index = inst_max_index;
if(prob.bias >= 0)
x_space[j++].value = prob.bias;
x_space[j++].index = -1;
}
if(prob.bias >= 0)
{
prob.n=max_index+1;
for(i=1;i<prob.l;i++)
(prob.x[i]-2)->index = prob.n;
x_space[j-2].index = prob.n;
}
else
prob.n=max_index;
fclose(fp);
}

9
liblinear-2.49/windows/README Executable file
View File

@@ -0,0 +1,9 @@
-------------------------------------
--- Windows binaries of LIBLINEAR ---
-------------------------------------
Starting from version 2.48, we no longer provide pre-built Windows binaries.
If you would like to build them, please follow the instruction of building
Windows binaries in LIBLINEAR README.
For any question, please contact Chih-Jen Lin <cjlin@csie.ntu.edu.tw>.