Files
SVMClassifier_cgpt/liblinear-2.49/newton.cpp

252 lines
5.0 KiB
C++

#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include "newton.h"
#ifndef min
template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
#endif
#ifndef max
template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
#endif
#ifdef __cplusplus
extern "C" {
#endif
extern double dnrm2_(int *, double *, int *);
extern double ddot_(int *, double *, int *, double *, int *);
extern int daxpy_(int *, double *, double *, int *, double *, int *);
extern int dscal_(int *, double *, double *, int *);
#ifdef __cplusplus
}
#endif
static void default_print(const char *buf)
{
fputs(buf,stdout);
fflush(stdout);
}
// On entry *f must be the function value of w
// On exit w is updated and *f is the new function value
double function::linesearch_and_update(double *w, double *s, double *f, double *g, double alpha)
{
double gTs = 0;
double eta = 0.01;
int n = get_nr_variable();
int max_num_linesearch = 20;
double *w_new = new double[n];
double fold = *f;
for (int i=0;i<n;i++)
gTs += s[i] * g[i];
int num_linesearch = 0;
for(num_linesearch=0; num_linesearch < max_num_linesearch; num_linesearch++)
{
for (int i=0;i<n;i++)
w_new[i] = w[i] + alpha*s[i];
*f = fun(w_new);
if (*f - fold <= eta * alpha * gTs)
break;
else
alpha *= 0.5;
}
if (num_linesearch >= max_num_linesearch)
{
*f = fold;
return 0;
}
else
memcpy(w, w_new, sizeof(double)*n);
delete [] w_new;
return alpha;
}
void NEWTON::info(const char *fmt,...)
{
char buf[BUFSIZ];
va_list ap;
va_start(ap,fmt);
vsprintf(buf,fmt,ap);
va_end(ap);
(*newton_print_string)(buf);
}
NEWTON::NEWTON(const function *fun_obj, double eps, double eps_cg, int max_iter)
{
this->fun_obj=const_cast<function *>(fun_obj);
this->eps=eps;
this->eps_cg=eps_cg;
this->max_iter=max_iter;
newton_print_string = default_print;
}
NEWTON::~NEWTON()
{
}
void NEWTON::newton(double *w)
{
int n = fun_obj->get_nr_variable();
int i, cg_iter;
double step_size;
double f, fold, actred;
double init_step_size = 1;
int search = 1, iter = 1, inc = 1;
double *s = new double[n];
double *r = new double[n];
double *g = new double[n];
const double alpha_pcg = 0.01;
double *M = new double[n];
// calculate gradient norm at w=0 for stopping condition.
double *w0 = new double[n];
for (i=0; i<n; i++)
w0[i] = 0;
fun_obj->fun(w0);
fun_obj->grad(w0, g);
double gnorm0 = dnrm2_(&n, g, &inc);
delete [] w0;
f = fun_obj->fun(w);
fun_obj->grad(w, g);
double gnorm = dnrm2_(&n, g, &inc);
info("init f %5.3e |g| %5.3e\n", f, gnorm);
if (gnorm <= eps*gnorm0)
search = 0;
while (iter <= max_iter && search)
{
fun_obj->get_diag_preconditioner(M);
for(i=0; i<n; i++)
M[i] = (1-alpha_pcg) + alpha_pcg*M[i];
cg_iter = pcg(g, M, s, r);
fold = f;
step_size = fun_obj->linesearch_and_update(w, s, &f, g, init_step_size);
if (step_size == 0)
{
info("WARNING: line search fails\n");
break;
}
fun_obj->grad(w, g);
gnorm = dnrm2_(&n, g, &inc);
info("iter %2d f %5.3e |g| %5.3e CG %3d step_size %4.2e \n", iter, f, gnorm, cg_iter, step_size);
if (gnorm <= eps*gnorm0)
break;
if (f < -1.0e+32)
{
info("WARNING: f < -1.0e+32\n");
break;
}
actred = fold - f;
if (fabs(actred) <= 1.0e-12*fabs(f))
{
info("WARNING: actred too small\n");
break;
}
iter++;
}
if(iter >= max_iter)
info("\nWARNING: reaching max number of Newton iterations\n");
delete[] g;
delete[] r;
delete[] s;
delete[] M;
}
int NEWTON::pcg(double *g, double *M, double *s, double *r)
{
int i, inc = 1;
int n = fun_obj->get_nr_variable();
double one = 1;
double *d = new double[n];
double *Hd = new double[n];
double zTr, znewTrnew, alpha, beta, cgtol, dHd;
double *z = new double[n];
double Q = 0, newQ, Qdiff;
for (i=0; i<n; i++)
{
s[i] = 0;
r[i] = -g[i];
z[i] = r[i] / M[i];
d[i] = z[i];
}
zTr = ddot_(&n, z, &inc, r, &inc);
double gMinv_norm = sqrt(zTr);
cgtol = min(eps_cg, sqrt(gMinv_norm));
int cg_iter = 0;
int max_cg_iter = max(n, 5);
while (cg_iter < max_cg_iter)
{
cg_iter++;
fun_obj->Hv(d, Hd);
dHd = ddot_(&n, d, &inc, Hd, &inc);
// avoid 0/0 in getting alpha
if (dHd <= 1.0e-16)
break;
alpha = zTr/dHd;
daxpy_(&n, &alpha, d, &inc, s, &inc);
alpha = -alpha;
daxpy_(&n, &alpha, Hd, &inc, r, &inc);
// Using quadratic approximation as CG stopping criterion
newQ = -0.5*(ddot_(&n, s, &inc, r, &inc) - ddot_(&n, s, &inc, g, &inc));
Qdiff = newQ - Q;
if (newQ <= 0 && Qdiff <= 0)
{
if (cg_iter * Qdiff >= cgtol * newQ)
break;
}
else
{
info("WARNING: quadratic approximation > 0 or increasing in CG\n");
break;
}
Q = newQ;
for (i=0; i<n; i++)
z[i] = r[i] / M[i];
znewTrnew = ddot_(&n, z, &inc, r, &inc);
beta = znewTrnew/zTr;
dscal_(&n, &beta, d, &inc);
daxpy_(&n, &one, z, &inc, d, &inc);
zTr = znewTrnew;
}
if (cg_iter == max_cg_iter)
info("WARNING: reaching maximal number of CG steps\n");
delete[] d;
delete[] Hd;
delete[] z;
return cg_iter;
}
void NEWTON::set_print_string(void (*print_string) (const char *buf))
{
newton_print_string = print_string;
}