Files
SVMClassifier_cgpt/liblinear-2.49/linear.cpp

3774 lines
79 KiB
C++

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <locale.h>
#include "linear.h"
#include "newton.h"
int liblinear_version = LIBLINEAR_VERSION;
typedef signed char schar;
template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
#ifndef min
template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
#endif
#ifndef max
template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
#endif
template <class S, class T> static inline void clone(T*& dst, S* src, int n)
{
dst = new T[n];
memcpy((void *)dst,(void *)src,sizeof(T)*n);
}
#define INF HUGE_VAL
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
static void print_string_stdout(const char *s)
{
fputs(s,stdout);
fflush(stdout);
}
static void print_null(const char *s) {}
static void (*liblinear_print_string) (const char *) = &print_string_stdout;
#if 1
static void info(const char *fmt,...)
{
char buf[BUFSIZ];
va_list ap;
va_start(ap,fmt);
vsprintf(buf,fmt,ap);
va_end(ap);
(*liblinear_print_string)(buf);
}
#else
static void info(const char *fmt,...) {}
#endif
class sparse_operator
{
public:
static double nrm2_sq(const feature_node *x)
{
double ret = 0;
while(x->index != -1)
{
ret += x->value*x->value;
x++;
}
return ret;
}
static double dot(const double *s, const feature_node *x)
{
double ret = 0;
while(x->index != -1)
{
ret += s[x->index-1]*x->value;
x++;
}
return ret;
}
static double sparse_dot(const feature_node *x1, const feature_node *x2)
{
double ret = 0;
while(x1->index != -1 && x2->index != -1)
{
if(x1->index == x2->index)
{
ret += x1->value * x2->value;
++x1;
++x2;
}
else
{
if(x1->index > x2->index)
++x2;
else
++x1;
}
}
return ret;
}
static void axpy(const double a, const feature_node *x, double *y)
{
while(x->index != -1)
{
y[x->index-1] += a*x->value;
x++;
}
}
};
// L2-regularized empirical risk minimization
// min_w w^Tw/2 + \sum C_i \xi(w^Tx_i), where \xi() is the loss
class l2r_erm_fun: public function
{
public:
l2r_erm_fun(const problem *prob, const parameter *param, double *C);
~l2r_erm_fun();
double fun(double *w);
double linesearch_and_update(double *w, double *d, double *f, double *g, double alpha);
int get_nr_variable(void);
protected:
virtual double C_times_loss(int i, double wx_i) = 0;
void Xv(double *v, double *Xv);
void XTv(double *v, double *XTv);
double *C;
const problem *prob;
double *wx;
double *tmp; // a working array
double wTw;
int regularize_bias;
};
l2r_erm_fun::l2r_erm_fun(const problem *prob, const parameter *param, double *C)
{
int l=prob->l;
this->prob = prob;
wx = new double[l];
tmp = new double[l];
this->C = C;
this->regularize_bias = param->regularize_bias;
}
l2r_erm_fun::~l2r_erm_fun()
{
delete[] wx;
delete[] tmp;
}
double l2r_erm_fun::fun(double *w)
{
int i;
double f=0;
int l=prob->l;
int w_size=get_nr_variable();
wTw = 0;
Xv(w, wx);
for(i=0;i<w_size;i++)
wTw += w[i]*w[i];
if(regularize_bias == 0)
wTw -= w[w_size-1]*w[w_size-1];
for(i=0;i<l;i++)
f += C_times_loss(i, wx[i]);
f = f + 0.5 * wTw;
return f;
}
int l2r_erm_fun::get_nr_variable(void)
{
return prob->n;
}
// On entry *f must be the function value of w
// On exit w is updated and *f is the new function value
double l2r_erm_fun::linesearch_and_update(double *w, double *s, double *f, double *g, double alpha)
{
int i;
int l = prob->l;
double sTs = 0;
double wTs = 0;
double gTs = 0;
double eta = 0.01;
int w_size = get_nr_variable();
int max_num_linesearch = 20;
double fold = *f;
Xv(s, tmp);
for (i=0;i<w_size;i++)
{
sTs += s[i] * s[i];
wTs += s[i] * w[i];
gTs += s[i] * g[i];
}
if(regularize_bias == 0)
{
// bias not used in calculating (w + \alpha s)^T (w + \alpha s)
sTs -= s[w_size-1] * s[w_size-1];
wTs -= s[w_size-1] * w[w_size-1];
}
int num_linesearch = 0;
for(num_linesearch=0; num_linesearch < max_num_linesearch; num_linesearch++)
{
double loss = 0;
for(i=0;i<l;i++)
{
double inner_product = tmp[i] * alpha + wx[i];
loss += C_times_loss(i, inner_product);
}
*f = loss + (alpha * alpha * sTs + wTw) / 2.0 + alpha * wTs;
if (*f - fold <= eta * alpha * gTs)
{
for (i=0;i<l;i++)
wx[i] += alpha * tmp[i];
break;
}
else
alpha *= 0.5;
}
if (num_linesearch >= max_num_linesearch)
{
*f = fold;
return 0;
}
else
for (i=0;i<w_size;i++)
w[i] += alpha * s[i];
wTw += alpha * alpha * sTs + 2* alpha * wTs;
return alpha;
}
void l2r_erm_fun::Xv(double *v, double *Xv)
{
int i;
int l=prob->l;
feature_node **x=prob->x;
for(i=0;i<l;i++)
Xv[i]=sparse_operator::dot(v, x[i]);
}
void l2r_erm_fun::XTv(double *v, double *XTv)
{
int i;
int l=prob->l;
int w_size=get_nr_variable();
feature_node **x=prob->x;
for(i=0;i<w_size;i++)
XTv[i]=0;
for(i=0;i<l;i++)
sparse_operator::axpy(v[i], x[i], XTv);
}
class l2r_lr_fun: public l2r_erm_fun
{
public:
l2r_lr_fun(const problem *prob, const parameter *param, double *C);
~l2r_lr_fun();
void grad(double *w, double *g);
void Hv(double *s, double *Hs);
void get_diag_preconditioner(double *M);
private:
double *D;
double C_times_loss(int i, double wx_i);
};
l2r_lr_fun::l2r_lr_fun(const problem *prob, const parameter *param, double *C):
l2r_erm_fun(prob, param, C)
{
int l=prob->l;
D = new double[l];
}
l2r_lr_fun::~l2r_lr_fun()
{
delete[] D;
}
double l2r_lr_fun::C_times_loss(int i, double wx_i)
{
double ywx_i = wx_i * prob->y[i];
if (ywx_i >= 0)
return C[i]*log(1 + exp(-ywx_i));
else
return C[i]*(-ywx_i + log(1 + exp(ywx_i)));
}
void l2r_lr_fun::grad(double *w, double *g)
{
int i;
double *y=prob->y;
int l=prob->l;
int w_size=get_nr_variable();
for(i=0;i<l;i++)
{
tmp[i] = 1/(1 + exp(-y[i]*wx[i]));
D[i] = tmp[i]*(1-tmp[i]);
tmp[i] = C[i]*(tmp[i]-1)*y[i];
}
XTv(tmp, g);
for(i=0;i<w_size;i++)
g[i] = w[i] + g[i];
if(regularize_bias == 0)
g[w_size-1] -= w[w_size-1];
}
void l2r_lr_fun::get_diag_preconditioner(double *M)
{
int i;
int l = prob->l;
int w_size=get_nr_variable();
feature_node **x = prob->x;
for (i=0; i<w_size; i++)
M[i] = 1;
if(regularize_bias == 0)
M[w_size-1] = 0;
for (i=0; i<l; i++)
{
feature_node *xi = x[i];
while (xi->index!=-1)
{
M[xi->index-1] += xi->value*xi->value*C[i]*D[i];
xi++;
}
}
}
void l2r_lr_fun::Hv(double *s, double *Hs)
{
int i;
int l=prob->l;
int w_size=get_nr_variable();
feature_node **x=prob->x;
for(i=0;i<w_size;i++)
Hs[i] = 0;
for(i=0;i<l;i++)
{
feature_node * const xi=x[i];
double xTs = sparse_operator::dot(s, xi);
xTs = C[i]*D[i]*xTs;
sparse_operator::axpy(xTs, xi, Hs);
}
for(i=0;i<w_size;i++)
Hs[i] = s[i] + Hs[i];
if(regularize_bias == 0)
Hs[w_size-1] -= s[w_size-1];
}
class l2r_l2_svc_fun: public l2r_erm_fun
{
public:
l2r_l2_svc_fun(const problem *prob, const parameter *param, double *C);
~l2r_l2_svc_fun();
void grad(double *w, double *g);
void Hv(double *s, double *Hs);
void get_diag_preconditioner(double *M);
protected:
void subXTv(double *v, double *XTv);
int *I;
int sizeI;
private:
double C_times_loss(int i, double wx_i);
};
l2r_l2_svc_fun::l2r_l2_svc_fun(const problem *prob, const parameter *param, double *C):
l2r_erm_fun(prob, param, C)
{
I = new int[prob->l];
}
l2r_l2_svc_fun::~l2r_l2_svc_fun()
{
delete[] I;
}
double l2r_l2_svc_fun::C_times_loss(int i, double wx_i)
{
double d = 1 - prob->y[i] * wx_i;
if (d > 0)
return C[i] * d * d;
else
return 0;
}
void l2r_l2_svc_fun::grad(double *w, double *g)
{
int i;
double *y=prob->y;
int l=prob->l;
int w_size=get_nr_variable();
sizeI = 0;
for (i=0;i<l;i++)
{
tmp[i] = wx[i] * y[i];
if (tmp[i] < 1)
{
tmp[sizeI] = C[i]*y[i]*(tmp[i]-1);
I[sizeI] = i;
sizeI++;
}
}
subXTv(tmp, g);
for(i=0;i<w_size;i++)
g[i] = w[i] + 2*g[i];
if(regularize_bias == 0)
g[w_size-1] -= w[w_size-1];
}
void l2r_l2_svc_fun::get_diag_preconditioner(double *M)
{
int i;
int w_size=get_nr_variable();
feature_node **x = prob->x;
for (i=0; i<w_size; i++)
M[i] = 1;
if(regularize_bias == 0)
M[w_size-1] = 0;
for (i=0; i<sizeI; i++)
{
int idx = I[i];
feature_node *xi = x[idx];
while (xi->index!=-1)
{
M[xi->index-1] += xi->value*xi->value*C[idx]*2;
xi++;
}
}
}
void l2r_l2_svc_fun::Hv(double *s, double *Hs)
{
int i;
int w_size=get_nr_variable();
feature_node **x=prob->x;
for(i=0;i<w_size;i++)
Hs[i]=0;
for(i=0;i<sizeI;i++)
{
feature_node * const xi=x[I[i]];
double xTs = sparse_operator::dot(s, xi);
xTs = C[I[i]]*xTs;
sparse_operator::axpy(xTs, xi, Hs);
}
for(i=0;i<w_size;i++)
Hs[i] = s[i] + 2*Hs[i];
if(regularize_bias == 0)
Hs[w_size-1] -= s[w_size-1];
}
void l2r_l2_svc_fun::subXTv(double *v, double *XTv)
{
int i;
int w_size=get_nr_variable();
feature_node **x=prob->x;
for(i=0;i<w_size;i++)
XTv[i]=0;
for(i=0;i<sizeI;i++)
sparse_operator::axpy(v[i], x[I[i]], XTv);
}
class l2r_l2_svr_fun: public l2r_l2_svc_fun
{
public:
l2r_l2_svr_fun(const problem *prob, const parameter *param, double *C);
void grad(double *w, double *g);
private:
double C_times_loss(int i, double wx_i);
double p;
};
l2r_l2_svr_fun::l2r_l2_svr_fun(const problem *prob, const parameter *param, double *C):
l2r_l2_svc_fun(prob, param, C)
{
this->p = param->p;
this->regularize_bias = param->regularize_bias;
}
double l2r_l2_svr_fun::C_times_loss(int i, double wx_i)
{
double d = wx_i - prob->y[i];
if(d < -p)
return C[i]*(d+p)*(d+p);
else if(d > p)
return C[i]*(d-p)*(d-p);
return 0;
}
void l2r_l2_svr_fun::grad(double *w, double *g)
{
int i;
double *y=prob->y;
int l=prob->l;
int w_size=get_nr_variable();
double d;
sizeI = 0;
for(i=0;i<l;i++)
{
d = wx[i] - y[i];
// generate index set I
if(d < -p)
{
tmp[sizeI] = C[i]*(d+p);
I[sizeI] = i;
sizeI++;
}
else if(d > p)
{
tmp[sizeI] = C[i]*(d-p);
I[sizeI] = i;
sizeI++;
}
}
subXTv(tmp, g);
for(i=0;i<w_size;i++)
g[i] = w[i] + 2*g[i];
if(regularize_bias == 0)
g[w_size-1] -= w[w_size-1];
}
// A coordinate descent algorithm for
// multi-class support vector machines by Crammer and Singer
//
// min_{\alpha} 0.5 \sum_m ||w_m(\alpha)||^2 + \sum_i \sum_m e^m_i alpha^m_i
// s.t. \alpha^m_i <= C^m_i \forall m,i , \sum_m \alpha^m_i=0 \forall i
//
// where e^m_i = 0 if y_i = m,
// e^m_i = 1 if y_i != m,
// C^m_i = C if m = y_i,
// C^m_i = 0 if m != y_i,
// and w_m(\alpha) = \sum_i \alpha^m_i x_i
//
// Given:
// x, y, C
// eps is the stopping tolerance
//
// solution will be put in w
//
// See Appendix of LIBLINEAR paper, Fan et al. (2008)
#define GETI(i) ((int) prob->y[i])
// To support weights for instances, use GETI(i) (i)
class Solver_MCSVM_CS
{
public:
Solver_MCSVM_CS(const problem *prob, int nr_class, double *C, double eps=0.1, int max_iter=100000);
~Solver_MCSVM_CS();
void Solve(double *w);
private:
void solve_sub_problem(double A_i, int yi, double C_yi, int active_i, double *alpha_new);
bool be_shrunk(int i, int m, int yi, double alpha_i, double minG);
double *B, *C, *G;
int w_size, l;
int nr_class;
int max_iter;
double eps;
const problem *prob;
};
Solver_MCSVM_CS::Solver_MCSVM_CS(const problem *prob, int nr_class, double *weighted_C, double eps, int max_iter)
{
this->w_size = prob->n;
this->l = prob->l;
this->nr_class = nr_class;
this->eps = eps;
this->max_iter = max_iter;
this->prob = prob;
this->B = new double[nr_class];
this->G = new double[nr_class];
this->C = weighted_C;
}
Solver_MCSVM_CS::~Solver_MCSVM_CS()
{
delete[] B;
delete[] G;
}
int compare_double(const void *a, const void *b)
{
if(*(double *)a > *(double *)b)
return -1;
if(*(double *)a < *(double *)b)
return 1;
return 0;
}
void Solver_MCSVM_CS::solve_sub_problem(double A_i, int yi, double C_yi, int active_i, double *alpha_new)
{
int r;
double *D;
clone(D, B, active_i);
if(yi < active_i)
D[yi] += A_i*C_yi;
qsort(D, active_i, sizeof(double), compare_double);
double beta = D[0] - A_i*C_yi;
for(r=1;r<active_i && beta<r*D[r];r++)
beta += D[r];
beta /= r;
for(r=0;r<active_i;r++)
{
if(r == yi)
alpha_new[r] = min(C_yi, (beta-B[r])/A_i);
else
alpha_new[r] = min((double)0, (beta - B[r])/A_i);
}
delete[] D;
}
bool Solver_MCSVM_CS::be_shrunk(int i, int m, int yi, double alpha_i, double minG)
{
double bound = 0;
if(m == yi)
bound = C[GETI(i)];
if(alpha_i == bound && G[m] < minG)
return true;
return false;
}
void Solver_MCSVM_CS::Solve(double *w)
{
int i, m, s;
int iter = 0;
double *alpha = new double[l*nr_class];
double *alpha_new = new double[nr_class];
int *index = new int[l];
double *QD = new double[l];
int *d_ind = new int[nr_class];
double *d_val = new double[nr_class];
int *alpha_index = new int[nr_class*l];
int *y_index = new int[l];
int active_size = l;
int *active_size_i = new int[l];
double eps_shrink = max(10.0*eps, 1.0); // stopping tolerance for shrinking
bool start_from_all = true;
// Initial alpha can be set here. Note that
// sum_m alpha[i*nr_class+m] = 0, for all i=1,...,l-1
// alpha[i*nr_class+m] <= C[GETI(i)] if prob->y[i] == m
// alpha[i*nr_class+m] <= 0 if prob->y[i] != m
// If initial alpha isn't zero, uncomment the for loop below to initialize w
for(i=0;i<l*nr_class;i++)
alpha[i] = 0;
for(i=0;i<w_size*nr_class;i++)
w[i] = 0;
for(i=0;i<l;i++)
{
for(m=0;m<nr_class;m++)
alpha_index[i*nr_class+m] = m;
feature_node *xi = prob->x[i];
QD[i] = 0;
while(xi->index != -1)
{
double val = xi->value;
QD[i] += val*val;
// Uncomment the for loop if initial alpha isn't zero
// for(m=0; m<nr_class; m++)
// w[(xi->index-1)*nr_class+m] += alpha[i*nr_class+m]*val;
xi++;
}
active_size_i[i] = nr_class;
y_index[i] = (int)prob->y[i];
index[i] = i;
}
while(iter < max_iter)
{
double stopping = -INF;
for(i=0;i<active_size;i++)
{
int j = i+rand()%(active_size-i);
swap(index[i], index[j]);
}
for(s=0;s<active_size;s++)
{
i = index[s];
double Ai = QD[i];
double *alpha_i = &alpha[i*nr_class];
int *alpha_index_i = &alpha_index[i*nr_class];
if(Ai > 0)
{
for(m=0;m<active_size_i[i];m++)
G[m] = 1;
if(y_index[i] < active_size_i[i])
G[y_index[i]] = 0;
feature_node *xi = prob->x[i];
while(xi->index!= -1)
{
double *w_i = &w[(xi->index-1)*nr_class];
for(m=0;m<active_size_i[i];m++)
G[m] += w_i[alpha_index_i[m]]*(xi->value);
xi++;
}
double minG = INF;
double maxG = -INF;
for(m=0;m<active_size_i[i];m++)
{
if(alpha_i[alpha_index_i[m]] < 0 && G[m] < minG)
minG = G[m];
if(G[m] > maxG)
maxG = G[m];
}
if(y_index[i] < active_size_i[i])
if(alpha_i[(int) prob->y[i]] < C[GETI(i)] && G[y_index[i]] < minG)
minG = G[y_index[i]];
for(m=0;m<active_size_i[i];m++)
{
if(be_shrunk(i, m, y_index[i], alpha_i[alpha_index_i[m]], minG))
{
active_size_i[i]--;
while(active_size_i[i]>m)
{
if(!be_shrunk(i, active_size_i[i], y_index[i],
alpha_i[alpha_index_i[active_size_i[i]]], minG))
{
swap(alpha_index_i[m], alpha_index_i[active_size_i[i]]);
swap(G[m], G[active_size_i[i]]);
if(y_index[i] == active_size_i[i])
y_index[i] = m;
else if(y_index[i] == m)
y_index[i] = active_size_i[i];
break;
}
active_size_i[i]--;
}
}
}
if(active_size_i[i] <= 1)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
if(maxG-minG <= 1e-12)
continue;
else
stopping = max(maxG - minG, stopping);
for(m=0;m<active_size_i[i];m++)
B[m] = G[m] - Ai*alpha_i[alpha_index_i[m]] ;
solve_sub_problem(Ai, y_index[i], C[GETI(i)], active_size_i[i], alpha_new);
int nz_d = 0;
for(m=0;m<active_size_i[i];m++)
{
double d = alpha_new[m] - alpha_i[alpha_index_i[m]];
alpha_i[alpha_index_i[m]] = alpha_new[m];
if(fabs(d) >= 1e-12)
{
d_ind[nz_d] = alpha_index_i[m];
d_val[nz_d] = d;
nz_d++;
}
}
xi = prob->x[i];
while(xi->index != -1)
{
double *w_i = &w[(xi->index-1)*nr_class];
for(m=0;m<nz_d;m++)
w_i[d_ind[m]] += d_val[m]*xi->value;
xi++;
}
}
}
iter++;
if(iter % 10 == 0)
{
info(".");
}
if(stopping < eps_shrink)
{
if(stopping < eps && start_from_all == true)
break;
else
{
active_size = l;
for(i=0;i<l;i++)
active_size_i[i] = nr_class;
info("*");
eps_shrink = max(eps_shrink/2, eps);
start_from_all = true;
}
}
else
start_from_all = false;
}
info("\noptimization finished, #iter = %d\n",iter);
if (iter >= max_iter)
info("\nWARNING: reaching max number of iterations\n");
// calculate objective value
double v = 0;
int nSV = 0;
for(i=0;i<w_size*nr_class;i++)
v += w[i]*w[i];
v = 0.5*v;
for(i=0;i<l*nr_class;i++)
{
v += alpha[i];
if(fabs(alpha[i]) > 0)
nSV++;
}
for(i=0;i<l;i++)
v -= alpha[i*nr_class+(int)prob->y[i]];
info("Objective value = %lf\n",v);
info("nSV = %d\n",nSV);
delete [] alpha;
delete [] alpha_new;
delete [] index;
delete [] QD;
delete [] d_ind;
delete [] d_val;
delete [] alpha_index;
delete [] y_index;
delete [] active_size_i;
}
// A coordinate descent algorithm for
// L1-loss and L2-loss SVM dual problems
//
// min_\alpha 0.5(\alpha^T (Q + D)\alpha) - e^T \alpha,
// s.t. 0 <= \alpha_i <= upper_bound_i,
//
// where Qij = yi yj xi^T xj and
// D is a diagonal matrix
//
// In L1-SVM case:
// upper_bound_i = Cp if y_i = 1
// upper_bound_i = Cn if y_i = -1
// D_ii = 0
// In L2-SVM case:
// upper_bound_i = INF
// D_ii = 1/(2*Cp) if y_i = 1
// D_ii = 1/(2*Cn) if y_i = -1
//
// Given:
// x, y, Cp, Cn
// eps is the stopping tolerance
//
// solution will be put in w
//
// this function returns the number of iterations
//
// See Algorithm 3 of Hsieh et al., ICML 2008
#undef GETI
#define GETI(i) (y[i]+1)
// To support weights for instances, use GETI(i) (i)
static int solve_l2r_l1l2_svc(const problem *prob, const parameter *param, double *w, double Cp, double Cn, int max_iter=300)
{
int l = prob->l;
int w_size = prob->n;
double eps = param->eps;
int solver_type = param->solver_type;
int i, s, iter = 0;
double C, d, G;
double *QD = new double[l];
int *index = new int[l];
double *alpha = new double[l];
schar *y = new schar[l];
int active_size = l;
// PG: projected gradient, for shrinking and stopping
double PG;
double PGmax_old = INF;
double PGmin_old = -INF;
double PGmax_new, PGmin_new;
// default solver_type: L2R_L2LOSS_SVC_DUAL
double diag[3] = {0.5/Cn, 0, 0.5/Cp};
double upper_bound[3] = {INF, 0, INF};
if(solver_type == L2R_L1LOSS_SVC_DUAL)
{
diag[0] = 0;
diag[2] = 0;
upper_bound[0] = Cn;
upper_bound[2] = Cp;
}
for(i=0; i<l; i++)
{
if(prob->y[i] > 0)
{
y[i] = +1;
}
else
{
y[i] = -1;
}
}
// Initial alpha can be set here. Note that
// 0 <= alpha[i] <= upper_bound[GETI(i)]
for(i=0; i<l; i++)
alpha[i] = 0;
for(i=0; i<w_size; i++)
w[i] = 0;
for(i=0; i<l; i++)
{
QD[i] = diag[GETI(i)];
feature_node * const xi = prob->x[i];
QD[i] += sparse_operator::nrm2_sq(xi);
sparse_operator::axpy(y[i]*alpha[i], xi, w);
index[i] = i;
}
while (iter < max_iter)
{
PGmax_new = -INF;
PGmin_new = INF;
for (i=0; i<active_size; i++)
{
int j = i+rand()%(active_size-i);
swap(index[i], index[j]);
}
for (s=0; s<active_size; s++)
{
i = index[s];
const schar yi = y[i];
feature_node * const xi = prob->x[i];
G = yi*sparse_operator::dot(w, xi)-1;
C = upper_bound[GETI(i)];
G += alpha[i]*diag[GETI(i)];
PG = 0;
if (alpha[i] == 0)
{
if (G > PGmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G < 0)
PG = G;
}
else if (alpha[i] == C)
{
if (G < PGmin_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G > 0)
PG = G;
}
else
PG = G;
PGmax_new = max(PGmax_new, PG);
PGmin_new = min(PGmin_new, PG);
if(fabs(PG) > 1.0e-12)
{
double alpha_old = alpha[i];
alpha[i] = min(max(alpha[i] - G/QD[i], 0.0), C);
d = (alpha[i] - alpha_old)*yi;
sparse_operator::axpy(d, xi, w);
}
}
iter++;
if(iter % 10 == 0)
info(".");
if(PGmax_new - PGmin_new <= eps &&
fabs(PGmax_new) <= eps && fabs(PGmin_new) <= eps)
{
if(active_size == l)
break;
else
{
active_size = l;
info("*");
PGmax_old = INF;
PGmin_old = -INF;
continue;
}
}
PGmax_old = PGmax_new;
PGmin_old = PGmin_new;
if (PGmax_old <= 0)
PGmax_old = INF;
if (PGmin_old >= 0)
PGmin_old = -INF;
}
info("\noptimization finished, #iter = %d\n",iter);
// calculate objective value
double v = 0;
int nSV = 0;
for(i=0; i<w_size; i++)
v += w[i]*w[i];
for(i=0; i<l; i++)
{
v += alpha[i]*(alpha[i]*diag[GETI(i)] - 2);
if(alpha[i] > 0)
++nSV;
}
info("Objective value = %lf\n",v/2);
info("nSV = %d\n",nSV);
// Reconstruct w from the primal-dual relationship w=sum(\alpha_i y_i x_i)
// This may reduce the weight density. Some zero weights become non-zeros
// due to the numerical update w <- w + (alpha[i] - alpha_old) y_i x_i.
if (param->w_recalc)
{
for(i=0; i<w_size; i++)
w[i] = 0;
for(i=0; i<l; i++)
{
feature_node * const xi = prob->x[i];
if(alpha[i] > 0)
sparse_operator::axpy(y[i]*alpha[i], xi, w);
}
}
delete [] QD;
delete [] alpha;
delete [] y;
delete [] index;
return iter;
}
// A coordinate descent algorithm for
// L1-loss and L2-loss epsilon-SVR dual problem
//
// min_\beta 0.5\beta^T (Q + diag(lambda)) \beta - p \sum_{i=1}^l|\beta_i| + \sum_{i=1}^l yi\beta_i,
// s.t. -upper_bound_i <= \beta_i <= upper_bound_i,
//
// where Qij = xi^T xj and
// D is a diagonal matrix
//
// In L1-SVM case:
// upper_bound_i = C
// lambda_i = 0
// In L2-SVM case:
// upper_bound_i = INF
// lambda_i = 1/(2*C)
//
// Given:
// x, y, p, C
// eps is the stopping tolerance
//
// solution will be put in w
//
// this function returns the number of iterations
//
// See Algorithm 4 of Ho and Lin, 2012
#undef GETI
#define GETI(i) (0)
// To support weights for instances, use GETI(i) (i)
static int solve_l2r_l1l2_svr(const problem *prob, const parameter *param, double *w, int max_iter=300)
{
const int solver_type = param->solver_type;
int l = prob->l;
double C = param->C;
double p = param->p;
int w_size = prob->n;
double eps = param->eps;
int i, s, iter = 0;
int active_size = l;
int *index = new int[l];
double d, G, H;
double Gmax_old = INF;
double Gmax_new, Gnorm1_new;
double Gnorm1_init = -1.0; // Gnorm1_init is initialized at the first iteration
double *beta = new double[l];
double *QD = new double[l];
double *y = prob->y;
// L2R_L2LOSS_SVR_DUAL
double lambda[1], upper_bound[1];
lambda[0] = 0.5/C;
upper_bound[0] = INF;
if(solver_type == L2R_L1LOSS_SVR_DUAL)
{
lambda[0] = 0;
upper_bound[0] = C;
}
// Initial beta can be set here. Note that
// -upper_bound <= beta[i] <= upper_bound
for(i=0; i<l; i++)
beta[i] = 0;
for(i=0; i<w_size; i++)
w[i] = 0;
for(i=0; i<l; i++)
{
feature_node * const xi = prob->x[i];
QD[i] = sparse_operator::nrm2_sq(xi);
sparse_operator::axpy(beta[i], xi, w);
index[i] = i;
}
while(iter < max_iter)
{
Gmax_new = 0;
Gnorm1_new = 0;
for(i=0; i<active_size; i++)
{
int j = i+rand()%(active_size-i);
swap(index[i], index[j]);
}
for(s=0; s<active_size; s++)
{
i = index[s];
G = -y[i] + lambda[GETI(i)]*beta[i];
H = QD[i] + lambda[GETI(i)];
feature_node * const xi = prob->x[i];
G += sparse_operator::dot(w, xi);
double Gp = G+p;
double Gn = G-p;
double violation = 0;
if(beta[i] == 0)
{
if(Gp < 0)
violation = -Gp;
else if(Gn > 0)
violation = Gn;
else if(Gp>Gmax_old && Gn<-Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(beta[i] >= upper_bound[GETI(i)])
{
if(Gp > 0)
violation = Gp;
else if(Gp < -Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(beta[i] <= -upper_bound[GETI(i)])
{
if(Gn < 0)
violation = -Gn;
else if(Gn > Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(beta[i] > 0)
violation = fabs(Gp);
else
violation = fabs(Gn);
Gmax_new = max(Gmax_new, violation);
Gnorm1_new += violation;
// obtain Newton direction d
if(Gp < H*beta[i])
d = -Gp/H;
else if(Gn > H*beta[i])
d = -Gn/H;
else
d = -beta[i];
if(fabs(d) < 1.0e-12)
continue;
double beta_old = beta[i];
beta[i] = min(max(beta[i]+d, -upper_bound[GETI(i)]), upper_bound[GETI(i)]);
d = beta[i]-beta_old;
if(d != 0)
sparse_operator::axpy(d, xi, w);
}
if(iter == 0)
Gnorm1_init = Gnorm1_new;
iter++;
if(iter % 10 == 0)
info(".");
if(Gnorm1_new <= eps*Gnorm1_init)
{
if(active_size == l)
break;
else
{
active_size = l;
info("*");
Gmax_old = INF;
continue;
}
}
Gmax_old = Gmax_new;
}
info("\noptimization finished, #iter = %d\n", iter);
// calculate objective value
double v = 0;
int nSV = 0;
for(i=0; i<w_size; i++)
v += w[i]*w[i];
v = 0.5*v;
for(i=0; i<l; i++)
{
v += p*fabs(beta[i]) - y[i]*beta[i] + 0.5*lambda[GETI(i)]*beta[i]*beta[i];
if(beta[i] != 0)
nSV++;
}
info("Objective value = %lf\n", v);
info("nSV = %d\n",nSV);
delete [] beta;
delete [] QD;
delete [] index;
return iter;
}
// A coordinate descent algorithm for
// the dual of L2-regularized logistic regression problems
//
// min_\alpha 0.5(\alpha^T Q \alpha) + \sum \alpha_i log (\alpha_i) + (upper_bound_i - \alpha_i) log (upper_bound_i - \alpha_i),
// s.t. 0 <= \alpha_i <= upper_bound_i,
//
// where Qij = yi yj xi^T xj and
// upper_bound_i = Cp if y_i = 1
// upper_bound_i = Cn if y_i = -1
//
// Given:
// x, y, Cp, Cn
// eps is the stopping tolerance
//
// solution will be put in w
//
// this function returns the number of iterations
//
// See Algorithm 5 of Yu et al., MLJ 2010
#undef GETI
#define GETI(i) (y[i]+1)
// To support weights for instances, use GETI(i) (i)
static int solve_l2r_lr_dual(const problem *prob, const parameter *param, double *w, double Cp, double Cn, int max_iter=300)
{
int l = prob->l;
int w_size = prob->n;
double eps = param->eps;
int i, s, iter = 0;
double *xTx = new double[l];
int *index = new int[l];
double *alpha = new double[2*l]; // store alpha and C - alpha
schar *y = new schar[l];
int max_inner_iter = 100; // for inner Newton
double innereps = 1e-2;
double innereps_min = min(1e-8, eps);
double upper_bound[3] = {Cn, 0, Cp};
for(i=0; i<l; i++)
{
if(prob->y[i] > 0)
{
y[i] = +1;
}
else
{
y[i] = -1;
}
}
// Initial alpha can be set here. Note that
// 0 < alpha[i] < upper_bound[GETI(i)]
// alpha[2*i] + alpha[2*i+1] = upper_bound[GETI(i)]
for(i=0; i<l; i++)
{
alpha[2*i] = min(0.001*upper_bound[GETI(i)], 1e-8);
alpha[2*i+1] = upper_bound[GETI(i)] - alpha[2*i];
}
for(i=0; i<w_size; i++)
w[i] = 0;
for(i=0; i<l; i++)
{
feature_node * const xi = prob->x[i];
xTx[i] = sparse_operator::nrm2_sq(xi);
sparse_operator::axpy(y[i]*alpha[2*i], xi, w);
index[i] = i;
}
while (iter < max_iter)
{
for (i=0; i<l; i++)
{
int j = i+rand()%(l-i);
swap(index[i], index[j]);
}
int newton_iter = 0;
double Gmax = 0;
for (s=0; s<l; s++)
{
i = index[s];
const schar yi = y[i];
double C = upper_bound[GETI(i)];
double ywTx = 0, xisq = xTx[i];
feature_node * const xi = prob->x[i];
ywTx = yi*sparse_operator::dot(w, xi);
double a = xisq, b = ywTx;
// Decide to minimize g_1(z) or g_2(z)
int ind1 = 2*i, ind2 = 2*i+1, sign = 1;
if(0.5*a*(alpha[ind2]-alpha[ind1])+b < 0)
{
ind1 = 2*i+1;
ind2 = 2*i;
sign = -1;
}
// g_t(z) = z*log(z) + (C-z)*log(C-z) + 0.5a(z-alpha_old)^2 + sign*b(z-alpha_old)
double alpha_old = alpha[ind1];
double z = alpha_old;
if(C - z < 0.5 * C)
z = 0.1*z;
double gp = a*(z-alpha_old)+sign*b+log(z/(C-z));
Gmax = max(Gmax, fabs(gp));
// Newton method on the sub-problem
const double eta = 0.1; // xi in the paper
int inner_iter = 0;
while (inner_iter <= max_inner_iter)
{
if(fabs(gp) < innereps)
break;
double gpp = a + C/(C-z)/z;
double tmpz = z - gp/gpp;
if(tmpz <= 0)
z *= eta;
else // tmpz in (0, C)
z = tmpz;
gp = a*(z-alpha_old)+sign*b+log(z/(C-z));
newton_iter++;
inner_iter++;
}
if(inner_iter > 0) // update w
{
alpha[ind1] = z;
alpha[ind2] = C-z;
sparse_operator::axpy(sign*(z-alpha_old)*yi, xi, w);
}
}
iter++;
if(iter % 10 == 0)
info(".");
if(Gmax < eps)
break;
if(newton_iter <= l/10)
innereps = max(innereps_min, 0.1*innereps);
}
info("\noptimization finished, #iter = %d\n",iter);
// calculate objective value
double v = 0;
for(i=0; i<w_size; i++)
v += w[i] * w[i];
v *= 0.5;
for(i=0; i<l; i++)
v += alpha[2*i] * log(alpha[2*i]) + alpha[2*i+1] * log(alpha[2*i+1])
- upper_bound[GETI(i)] * log(upper_bound[GETI(i)]);
info("Objective value = %lf\n", v);
delete [] xTx;
delete [] alpha;
delete [] y;
delete [] index;
return iter;
}
// A coordinate descent algorithm for
// L1-regularized L2-loss support vector classification
//
// min_w \sum |wj| + C \sum max(0, 1-yi w^T xi)^2,
//
// Given:
// x, y, Cp, Cn
// eps is the stopping tolerance
//
// solution will be put in w
//
// this function returns the number of iterations
//
// See Yuan et al. (2010) and appendix of LIBLINEAR paper, Fan et al. (2008)
//
// To not regularize the bias (i.e., regularize_bias = 0), a constant feature = 1
// must have been added to the original data. (see -B and -R option)
#undef GETI
#define GETI(i) (y[i]+1)
// To support weights for instances, use GETI(i) (i)
static int solve_l1r_l2_svc(const problem *prob_col, const parameter* param, double *w, double Cp, double Cn, double eps)
{
int l = prob_col->l;
int w_size = prob_col->n;
int regularize_bias = param->regularize_bias;
int j, s, iter = 0;
int max_iter = 1000;
int active_size = w_size;
int max_num_linesearch = 20;
double sigma = 0.01;
double d, G_loss, G, H;
double Gmax_old = INF;
double Gmax_new, Gnorm1_new;
double Gnorm1_init = -1.0; // Gnorm1_init is initialized at the first iteration
double d_old, d_diff;
double loss_old = 0, loss_new;
double appxcond, cond;
int *index = new int[w_size];
schar *y = new schar[l];
double *b = new double[l]; // b = 1-ywTx
double *xj_sq = new double[w_size];
feature_node *x;
double C[3] = {Cn,0,Cp};
// Initial w can be set here.
for(j=0; j<w_size; j++)
w[j] = 0;
for(j=0; j<l; j++)
{
b[j] = 1;
if(prob_col->y[j] > 0)
y[j] = 1;
else
y[j] = -1;
}
for(j=0; j<w_size; j++)
{
index[j] = j;
xj_sq[j] = 0;
x = prob_col->x[j];
while(x->index != -1)
{
int ind = x->index-1;
x->value *= y[ind]; // x->value stores yi*xij
double val = x->value;
b[ind] -= w[j]*val;
xj_sq[j] += C[GETI(ind)]*val*val;
x++;
}
}
while(iter < max_iter)
{
Gmax_new = 0;
Gnorm1_new = 0;
for(j=0; j<active_size; j++)
{
int i = j+rand()%(active_size-j);
swap(index[i], index[j]);
}
for(s=0; s<active_size; s++)
{
j = index[s];
G_loss = 0;
H = 0;
x = prob_col->x[j];
while(x->index != -1)
{
int ind = x->index-1;
if(b[ind] > 0)
{
double val = x->value;
double tmp = C[GETI(ind)]*val;
G_loss -= tmp*b[ind];
H += tmp*val;
}
x++;
}
G_loss *= 2;
G = G_loss;
H *= 2;
H = max(H, 1e-12);
double violation = 0;
double Gp = 0, Gn = 0;
if(j == w_size-1 && regularize_bias == 0)
violation = fabs(G);
else
{
Gp = G+1;
Gn = G-1;
if(w[j] == 0)
{
if(Gp < 0)
violation = -Gp;
else if(Gn > 0)
violation = Gn;
else if(Gp>Gmax_old/l && Gn<-Gmax_old/l)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(w[j] > 0)
violation = fabs(Gp);
else
violation = fabs(Gn);
}
Gmax_new = max(Gmax_new, violation);
Gnorm1_new += violation;
// obtain Newton direction d
if(j == w_size-1 && regularize_bias == 0)
d = -G/H;
else
{
if(Gp < H*w[j])
d = -Gp/H;
else if(Gn > H*w[j])
d = -Gn/H;
else
d = -w[j];
}
if(fabs(d) < 1.0e-12)
continue;
double delta;
if(j == w_size-1 && regularize_bias == 0)
delta = G*d;
else
delta = fabs(w[j]+d)-fabs(w[j]) + G*d;
d_old = 0;
int num_linesearch;
for(num_linesearch=0; num_linesearch < max_num_linesearch; num_linesearch++)
{
d_diff = d_old - d;
if(j == w_size-1 && regularize_bias == 0)
cond = -sigma*delta;
else
cond = fabs(w[j]+d)-fabs(w[j]) - sigma*delta;
appxcond = xj_sq[j]*d*d + G_loss*d + cond;
if(appxcond <= 0)
{
x = prob_col->x[j];
sparse_operator::axpy(d_diff, x, b);
break;
}
if(num_linesearch == 0)
{
loss_old = 0;
loss_new = 0;
x = prob_col->x[j];
while(x->index != -1)
{
int ind = x->index-1;
if(b[ind] > 0)
loss_old += C[GETI(ind)]*b[ind]*b[ind];
double b_new = b[ind] + d_diff*x->value;
b[ind] = b_new;
if(b_new > 0)
loss_new += C[GETI(ind)]*b_new*b_new;
x++;
}
}
else
{
loss_new = 0;
x = prob_col->x[j];
while(x->index != -1)
{
int ind = x->index-1;
double b_new = b[ind] + d_diff*x->value;
b[ind] = b_new;
if(b_new > 0)
loss_new += C[GETI(ind)]*b_new*b_new;
x++;
}
}
cond = cond + loss_new - loss_old;
if(cond <= 0)
break;
else
{
d_old = d;
d *= 0.5;
delta *= 0.5;
}
}
w[j] += d;
// recompute b[] if line search takes too many steps
if(num_linesearch >= max_num_linesearch)
{
info("#");
for(int i=0; i<l; i++)
b[i] = 1;
for(int i=0; i<w_size; i++)
{
if(w[i]==0) continue;
x = prob_col->x[i];
sparse_operator::axpy(-w[i], x, b);
}
}
}
if(iter == 0)
Gnorm1_init = Gnorm1_new;
iter++;
if(iter % 10 == 0)
info(".");
if(Gnorm1_new <= eps*Gnorm1_init)
{
if(active_size == w_size)
break;
else
{
active_size = w_size;
info("*");
Gmax_old = INF;
continue;
}
}
Gmax_old = Gmax_new;
}
info("\noptimization finished, #iter = %d\n", iter);
if(iter >= max_iter)
info("\nWARNING: reaching max number of iterations\n");
// calculate objective value
double v = 0;
int nnz = 0;
for(j=0; j<w_size; j++)
{
x = prob_col->x[j];
while(x->index != -1)
{
x->value *= prob_col->y[x->index-1]; // restore x->value
x++;
}
if(w[j] != 0)
{
v += fabs(w[j]);
nnz++;
}
}
if (regularize_bias == 0)
v -= fabs(w[w_size-1]);
for(j=0; j<l; j++)
if(b[j] > 0)
v += C[GETI(j)]*b[j]*b[j];
info("Objective value = %lf\n", v);
info("#nonzeros/#features = %d/%d\n", nnz, w_size);
delete [] index;
delete [] y;
delete [] b;
delete [] xj_sq;
return iter;
}
// A coordinate descent algorithm for
// L1-regularized logistic regression problems
//
// min_w \sum |wj| + C \sum log(1+exp(-yi w^T xi)),
//
// Given:
// x, y, Cp, Cn
// eps is the stopping tolerance
//
// solution will be put in w
//
// this function returns the number of iterations
//
// See Yuan et al. (2011) and appendix of LIBLINEAR paper, Fan et al. (2008)
//
// To not regularize the bias (i.e., regularize_bias = 0), a constant feature = 1
// must have been added to the original data. (see -B and -R option)
#undef GETI
#define GETI(i) (y[i]+1)
// To support weights for instances, use GETI(i) (i)
static int solve_l1r_lr(const problem *prob_col, const parameter *param, double *w, double Cp, double Cn, double eps)
{
int l = prob_col->l;
int w_size = prob_col->n;
int regularize_bias = param->regularize_bias;
int j, s, newton_iter=0, iter=0;
int max_newton_iter = 100;
int max_iter = 1000;
int max_num_linesearch = 20;
int active_size;
int QP_active_size;
double nu = 1e-12;
double inner_eps = 1;
double sigma = 0.01;
double w_norm, w_norm_new;
double z, G, H;
double Gnorm1_init = -1.0; // Gnorm1_init is initialized at the first iteration
double Gmax_old = INF;
double Gmax_new, Gnorm1_new;
double QP_Gmax_old = INF;
double QP_Gmax_new, QP_Gnorm1_new;
double delta, negsum_xTd, cond;
int *index = new int[w_size];
schar *y = new schar[l];
double *Hdiag = new double[w_size];
double *Grad = new double[w_size];
double *wpd = new double[w_size];
double *xjneg_sum = new double[w_size];
double *xTd = new double[l];
double *exp_wTx = new double[l];
double *exp_wTx_new = new double[l];
double *tau = new double[l];
double *D = new double[l];
feature_node *x;
double C[3] = {Cn,0,Cp};
// Initial w can be set here.
for(j=0; j<w_size; j++)
w[j] = 0;
for(j=0; j<l; j++)
{
if(prob_col->y[j] > 0)
y[j] = 1;
else
y[j] = -1;
exp_wTx[j] = 0;
}
w_norm = 0;
for(j=0; j<w_size; j++)
{
w_norm += fabs(w[j]);
wpd[j] = w[j];
index[j] = j;
xjneg_sum[j] = 0;
x = prob_col->x[j];
while(x->index != -1)
{
int ind = x->index-1;
double val = x->value;
exp_wTx[ind] += w[j]*val;
if(y[ind] == -1)
xjneg_sum[j] += C[GETI(ind)]*val;
x++;
}
}
if (regularize_bias == 0)
w_norm -= fabs(w[w_size-1]);
for(j=0; j<l; j++)
{
exp_wTx[j] = exp(exp_wTx[j]);
double tau_tmp = 1/(1+exp_wTx[j]);
tau[j] = C[GETI(j)]*tau_tmp;
D[j] = C[GETI(j)]*exp_wTx[j]*tau_tmp*tau_tmp;
}
while(newton_iter < max_newton_iter)
{
Gmax_new = 0;
Gnorm1_new = 0;
active_size = w_size;
for(s=0; s<active_size; s++)
{
j = index[s];
Hdiag[j] = nu;
Grad[j] = 0;
double tmp = 0;
x = prob_col->x[j];
while(x->index != -1)
{
int ind = x->index-1;
Hdiag[j] += x->value*x->value*D[ind];
tmp += x->value*tau[ind];
x++;
}
Grad[j] = -tmp + xjneg_sum[j];
double violation = 0;
if (j == w_size-1 && regularize_bias == 0)
violation = fabs(Grad[j]);
else
{
double Gp = Grad[j]+1;
double Gn = Grad[j]-1;
if(w[j] == 0)
{
if(Gp < 0)
violation = -Gp;
else if(Gn > 0)
violation = Gn;
//outer-level shrinking
else if(Gp>Gmax_old/l && Gn<-Gmax_old/l)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(w[j] > 0)
violation = fabs(Gp);
else
violation = fabs(Gn);
}
Gmax_new = max(Gmax_new, violation);
Gnorm1_new += violation;
}
if(newton_iter == 0)
Gnorm1_init = Gnorm1_new;
if(Gnorm1_new <= eps*Gnorm1_init)
break;
iter = 0;
QP_Gmax_old = INF;
QP_active_size = active_size;
for(int i=0; i<l; i++)
xTd[i] = 0;
// optimize QP over wpd
while(iter < max_iter)
{
QP_Gmax_new = 0;
QP_Gnorm1_new = 0;
for(j=0; j<QP_active_size; j++)
{
int i = j+rand()%(QP_active_size-j);
swap(index[i], index[j]);
}
for(s=0; s<QP_active_size; s++)
{
j = index[s];
H = Hdiag[j];
x = prob_col->x[j];
G = Grad[j] + (wpd[j]-w[j])*nu;
while(x->index != -1)
{
int ind = x->index-1;
G += x->value*D[ind]*xTd[ind];
x++;
}
double violation = 0;
if (j == w_size-1 && regularize_bias == 0)
{
// bias term not shrunken
violation = fabs(G);
z = -G/H;
}
else
{
double Gp = G+1;
double Gn = G-1;
if(wpd[j] == 0)
{
if(Gp < 0)
violation = -Gp;
else if(Gn > 0)
violation = Gn;
//inner-level shrinking
else if(Gp>QP_Gmax_old/l && Gn<-QP_Gmax_old/l)
{
QP_active_size--;
swap(index[s], index[QP_active_size]);
s--;
continue;
}
}
else if(wpd[j] > 0)
violation = fabs(Gp);
else
violation = fabs(Gn);
// obtain solution of one-variable problem
if(Gp < H*wpd[j])
z = -Gp/H;
else if(Gn > H*wpd[j])
z = -Gn/H;
else
z = -wpd[j];
}
QP_Gmax_new = max(QP_Gmax_new, violation);
QP_Gnorm1_new += violation;
if(fabs(z) < 1.0e-12)
continue;
z = min(max(z,-10.0),10.0);
wpd[j] += z;
x = prob_col->x[j];
sparse_operator::axpy(z, x, xTd);
}
iter++;
if(QP_Gnorm1_new <= inner_eps*Gnorm1_init)
{
//inner stopping
if(QP_active_size == active_size)
break;
//active set reactivation
else
{
QP_active_size = active_size;
QP_Gmax_old = INF;
continue;
}
}
QP_Gmax_old = QP_Gmax_new;
}
if(iter >= max_iter)
info("WARNING: reaching max number of inner iterations\n");
delta = 0;
w_norm_new = 0;
for(j=0; j<w_size; j++)
{
delta += Grad[j]*(wpd[j]-w[j]);
if(wpd[j] != 0)
w_norm_new += fabs(wpd[j]);
}
if (regularize_bias == 0)
w_norm_new -= fabs(wpd[w_size-1]);
delta += (w_norm_new-w_norm);
negsum_xTd = 0;
for(int i=0; i<l; i++)
if(y[i] == -1)
negsum_xTd += C[GETI(i)]*xTd[i];
int num_linesearch;
for(num_linesearch=0; num_linesearch < max_num_linesearch; num_linesearch++)
{
cond = w_norm_new - w_norm + negsum_xTd - sigma*delta;
for(int i=0; i<l; i++)
{
double exp_xTd = exp(xTd[i]);
exp_wTx_new[i] = exp_wTx[i]*exp_xTd;
cond += C[GETI(i)]*log((1+exp_wTx_new[i])/(exp_xTd+exp_wTx_new[i]));
}
if(cond <= 0)
{
w_norm = w_norm_new;
for(j=0; j<w_size; j++)
w[j] = wpd[j];
for(int i=0; i<l; i++)
{
exp_wTx[i] = exp_wTx_new[i];
double tau_tmp = 1/(1+exp_wTx[i]);
tau[i] = C[GETI(i)]*tau_tmp;
D[i] = C[GETI(i)]*exp_wTx[i]*tau_tmp*tau_tmp;
}
break;
}
else
{
w_norm_new = 0;
for(j=0; j<w_size; j++)
{
wpd[j] = (w[j]+wpd[j])*0.5;
if(wpd[j] != 0)
w_norm_new += fabs(wpd[j]);
}
if (regularize_bias == 0)
w_norm_new -= fabs(wpd[w_size-1]);
delta *= 0.5;
negsum_xTd *= 0.5;
for(int i=0; i<l; i++)
xTd[i] *= 0.5;
}
}
// Recompute some info due to too many line search steps
if(num_linesearch >= max_num_linesearch)
{
for(int i=0; i<l; i++)
exp_wTx[i] = 0;
for(int i=0; i<w_size; i++)
{
if(w[i]==0) continue;
x = prob_col->x[i];
sparse_operator::axpy(w[i], x, exp_wTx);
}
for(int i=0; i<l; i++)
exp_wTx[i] = exp(exp_wTx[i]);
}
if(iter == 1)
inner_eps *= 0.25;
newton_iter++;
Gmax_old = Gmax_new;
info("iter %3d #CD cycles %d\n", newton_iter, iter);
}
info("=========================\n");
info("optimization finished, #iter = %d\n", newton_iter);
if(newton_iter >= max_newton_iter)
info("WARNING: reaching max number of iterations\n");
// calculate objective value
double v = 0;
int nnz = 0;
for(j=0; j<w_size; j++)
if(w[j] != 0)
{
v += fabs(w[j]);
nnz++;
}
if (regularize_bias == 0)
v -= fabs(w[w_size-1]);
for(j=0; j<l; j++)
if(y[j] == 1)
v += C[GETI(j)]*log(1+1/exp_wTx[j]);
else
v += C[GETI(j)]*log(1+exp_wTx[j]);
info("Objective value = %lf\n", v);
info("#nonzeros/#features = %d/%d\n", nnz, w_size);
delete [] index;
delete [] y;
delete [] Hdiag;
delete [] Grad;
delete [] wpd;
delete [] xjneg_sum;
delete [] xTd;
delete [] exp_wTx;
delete [] exp_wTx_new;
delete [] tau;
delete [] D;
return newton_iter;
}
static int compare_feature_node(const void *a, const void *b)
{
double a_value = (*(feature_node *)a).value;
double b_value = (*(feature_node *)b).value;
int a_index = (*(feature_node *)a).index;
int b_index = (*(feature_node *)b).index;
if(a_value < b_value)
return -1;
else if(a_value == b_value)
{
if(a_index < b_index)
return -1;
else if(a_index == b_index)
return 0;
}
return 1;
}
// elements before the returned index are < pivot, while those after are >= pivot
static int partition(feature_node *nodes, int low, int high)
{
int i;
int index;
swap(nodes[low + rand()%(high-low+1)], nodes[high]); // select and move pivot to the end
index = low;
for(i = low; i < high; i++)
if (compare_feature_node(&nodes[i], &nodes[high]) == -1)
{
swap(nodes[index], nodes[i]);
index++;
}
swap(nodes[high], nodes[index]);
return index;
}
// rearrange nodes so that
// nodes[i] <= nodes[k] for all i < k
// nodes[k] <= nodes[j] for all j > k
// low and high are the bounds of the index range during the rearranging process
static void quick_select_min_k(feature_node *nodes, int low, int high, int k)
{
int pivot;
if(low == high || high < k)
return;
pivot = partition(nodes, low, high);
if(pivot == k)
return;
else if(k-1 < pivot)
return quick_select_min_k(nodes, low, pivot-1, k);
else
return quick_select_min_k(nodes, pivot+1, high, k);
}
// A two-level coordinate descent algorithm for
// a scaled one-class SVM dual problem
//
// min_\alpha 0.5(\alpha^T Q \alpha),
// s.t. 0 <= \alpha_i <= 1 and
// e^T \alpha = \nu l
//
// where Qij = xi^T xj
//
// Given:
// x, nu
// eps is the stopping tolerance
//
// solution will be put in w and rho
//
// this function returns the number of iterations
//
// See Algorithm 7 in supplementary materials of Chou et al., SDM 2020.
static int solve_oneclass_svm(const problem *prob, const parameter *param, double *w, double *rho)
{
int l = prob->l;
int w_size = prob->n;
double eps = param->eps;
double nu = param->nu;
int i, j, s, iter = 0;
double Gi, Gj;
double Qij, quad_coef, delta, sum;
double old_alpha_i;
double *QD = new double[l];
double *G = new double[l];
int *index = new int[l];
double *alpha = new double[l];
int max_inner_iter;
int max_iter = 1000;
int active_size = l;
double negGmax; // max { -grad(f)_i | i in Iup }
double negGmin; // min { -grad(f)_i | i in Ilow }
// Iup = { i | alpha_i < 1 }, Ilow = { i | alpha_i > 0 }
feature_node *max_negG_of_Iup = new feature_node[l];
feature_node *min_negG_of_Ilow = new feature_node[l];
feature_node node;
int n = (int)(nu*l); // # of alpha's at upper bound
for(i=0; i<n; i++)
alpha[i] = 1;
if (n<l)
alpha[i] = nu*l-n;
for(i=n+1; i<l; i++)
alpha[i] = 0;
for(i=0; i<w_size; i++)
w[i] = 0;
for(i=0; i<l; i++)
{
feature_node * const xi = prob->x[i];
QD[i] = sparse_operator::nrm2_sq(xi);
sparse_operator::axpy(alpha[i], xi, w);
index[i] = i;
}
while (iter < max_iter)
{
negGmax = -INF;
negGmin = INF;
for (s=0; s<active_size; s++)
{
i = index[s];
feature_node * const xi = prob->x[i];
G[i] = sparse_operator::dot(w, xi);
if (alpha[i] < 1)
negGmax = max(negGmax, -G[i]);
if (alpha[i] > 0)
negGmin = min(negGmin, -G[i]);
}
if (negGmax - negGmin < eps)
{
if (active_size == l)
break;
else
{
active_size = l;
info("*");
continue;
}
}
for(s=0; s<active_size; s++)
{
i = index[s];
if ((alpha[i] == 1 && -G[i] > negGmax) ||
(alpha[i] == 0 && -G[i] < negGmin))
{
active_size--;
swap(index[s], index[active_size]);
s--;
}
}
max_inner_iter = max(active_size/10, 1);
int len_Iup = 0;
int len_Ilow = 0;
for(s=0; s<active_size; s++)
{
i = index[s];
node.index = i;
node.value = -G[i];
if (alpha[i] < 1)
{
max_negG_of_Iup[len_Iup] = node;
len_Iup++;
}
if (alpha[i] > 0)
{
min_negG_of_Ilow[len_Ilow] = node;
len_Ilow++;
}
}
max_inner_iter = min(max_inner_iter, min(len_Iup, len_Ilow));
quick_select_min_k(max_negG_of_Iup, 0, len_Iup-1, len_Iup-max_inner_iter);
qsort(&(max_negG_of_Iup[len_Iup-max_inner_iter]), max_inner_iter, sizeof(struct feature_node), compare_feature_node);
quick_select_min_k(min_negG_of_Ilow, 0, len_Ilow-1, max_inner_iter);
qsort(min_negG_of_Ilow, max_inner_iter, sizeof(struct feature_node), compare_feature_node);
for (s=0; s<max_inner_iter; s++)
{
i = max_negG_of_Iup[len_Iup-s-1].index;
j = min_negG_of_Ilow[s].index;
if ((alpha[i] == 0 && alpha[j] == 0) ||
(alpha[i] == 1 && alpha[j] == 1))
continue;
feature_node const * xi = prob->x[i];
feature_node const * xj = prob->x[j];
Gi = sparse_operator::dot(w, xi);
Gj = sparse_operator::dot(w, xj);
int violating_pair = 0;
if (alpha[i] < 1 && alpha[j] > 0 && -Gj + 1e-12 < -Gi)
violating_pair = 1;
else
if (alpha[i] > 0 && alpha[j] < 1 && -Gi + 1e-12 < -Gj)
violating_pair = 1;
if (violating_pair == 0)
continue;
Qij = sparse_operator::sparse_dot(xi, xj);
quad_coef = QD[i] + QD[j] - 2*Qij;
if(quad_coef <= 0)
quad_coef = 1e-12;
delta = (Gi - Gj) / quad_coef;
old_alpha_i = alpha[i];
sum = alpha[i] + alpha[j];
alpha[i] = alpha[i] - delta;
alpha[j] = alpha[j] + delta;
if (sum > 1)
{
if (alpha[i] > 1)
{
alpha[i] = 1;
alpha[j] = sum - 1;
}
}
else
{
if (alpha[j] < 0)
{
alpha[j] = 0;
alpha[i] = sum;
}
}
if (sum > 1)
{
if (alpha[j] > 1)
{
alpha[j] = 1;
alpha[i] = sum - 1;
}
}
else
{
if (alpha[i] < 0)
{
alpha[i] = 0;
alpha[j] = sum;
}
}
delta = alpha[i] - old_alpha_i;
sparse_operator::axpy(delta, xi, w);
sparse_operator::axpy(-delta, xj, w);
}
iter++;
if (iter % 10 == 0)
info(".");
}
info("\noptimization finished, #iter = %d\n",iter);
if (iter >= max_iter)
info("\nWARNING: reaching max number of iterations\n\n");
// calculate object value
double v = 0;
for(i=0; i<w_size; i++)
v += w[i]*w[i];
int nSV = 0;
for(i=0; i<l; i++)
{
if (alpha[i] > 0)
++nSV;
}
info("Objective value = %lf\n", v/2);
info("nSV = %d\n", nSV);
// calculate rho
double nr_free = 0;
double ub = INF, lb = -INF, sum_free = 0;
for(i=0; i<l; i++)
{
double G = sparse_operator::dot(w, prob->x[i]);
if (alpha[i] == 1)
lb = max(lb, G);
else if (alpha[i] == 0)
ub = min(ub, G);
else
{
++nr_free;
sum_free += G;
}
}
if (nr_free > 0)
*rho = sum_free/nr_free;
else
*rho = (ub + lb)/2;
info("rho = %lf\n", *rho);
delete [] QD;
delete [] G;
delete [] index;
delete [] alpha;
delete [] max_negG_of_Iup;
delete [] min_negG_of_Ilow;
return iter;
}
// transpose matrix X from row format to column format
static void transpose(const problem *prob, feature_node **x_space_ret, problem *prob_col)
{
int i;
int l = prob->l;
int n = prob->n;
size_t nnz = 0;
size_t *col_ptr = new size_t [n+1];
feature_node *x_space;
prob_col->l = l;
prob_col->n = n;
prob_col->y = new double[l];
prob_col->x = new feature_node*[n];
for(i=0; i<l; i++)
prob_col->y[i] = prob->y[i];
for(i=0; i<n+1; i++)
col_ptr[i] = 0;
for(i=0; i<l; i++)
{
feature_node *x = prob->x[i];
while(x->index != -1)
{
nnz++;
col_ptr[x->index]++;
x++;
}
}
for(i=1; i<n+1; i++)
col_ptr[i] += col_ptr[i-1] + 1;
x_space = new feature_node[nnz+n];
for(i=0; i<n; i++)
prob_col->x[i] = &x_space[col_ptr[i]];
for(i=0; i<l; i++)
{
feature_node *x = prob->x[i];
while(x->index != -1)
{
int ind = x->index-1;
x_space[col_ptr[ind]].index = i+1; // starts from 1
x_space[col_ptr[ind]].value = x->value;
col_ptr[ind]++;
x++;
}
}
for(i=0; i<n; i++)
x_space[col_ptr[i]].index = -1;
*x_space_ret = x_space;
delete [] col_ptr;
}
// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
// perm, length l, must be allocated before calling this subroutine
static void group_classes(const problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
{
int l = prob->l;
int max_nr_class = 16;
int nr_class = 0;
int *label = Malloc(int,max_nr_class);
int *count = Malloc(int,max_nr_class);
int *data_label = Malloc(int,l);
int i;
for(i=0;i<l;i++)
{
int this_label = (int)prob->y[i];
int j;
for(j=0;j<nr_class;j++)
{
if(this_label == label[j])
{
++count[j];
break;
}
}
data_label[i] = j;
if(j == nr_class)
{
if(nr_class == max_nr_class)
{
max_nr_class *= 2;
label = (int *)realloc(label,max_nr_class*sizeof(int));
count = (int *)realloc(count,max_nr_class*sizeof(int));
}
label[nr_class] = this_label;
count[nr_class] = 1;
++nr_class;
}
}
//
// Labels are ordered by their first occurrence in the training set.
// However, for two-class sets with -1/+1 labels and -1 appears first,
// we swap labels to ensure that internally the binary SVM has positive data corresponding to the +1 instances.
//
if (nr_class == 2 && label[0] == -1 && label[1] == 1)
{
swap(label[0],label[1]);
swap(count[0],count[1]);
for(i=0;i<l;i++)
{
if(data_label[i] == 0)
data_label[i] = 1;
else
data_label[i] = 0;
}
}
int *start = Malloc(int,nr_class);
start[0] = 0;
for(i=1;i<nr_class;i++)
start[i] = start[i-1]+count[i-1];
for(i=0;i<l;i++)
{
perm[start[data_label[i]]] = i;
++start[data_label[i]];
}
start[0] = 0;
for(i=1;i<nr_class;i++)
start[i] = start[i-1]+count[i-1];
*nr_class_ret = nr_class;
*label_ret = label;
*start_ret = start;
*count_ret = count;
free(data_label);
}
static void train_one(const problem *prob, const parameter *param, double *w, double Cp, double Cn)
{
int solver_type = param->solver_type;
int dual_solver_max_iter = 300;
int iter;
bool is_regression = (solver_type==L2R_L2LOSS_SVR ||
solver_type==L2R_L1LOSS_SVR_DUAL ||
solver_type==L2R_L2LOSS_SVR_DUAL);
// Some solvers use Cp,Cn but not C array; extensions possible but no plan for now
double *C = new double[prob->l];
double primal_solver_tol = param->eps;
if(is_regression)
{
for(int i=0;i<prob->l;i++)
C[i] = param->C;
}
else
{
int pos = 0;
for(int i=0;i<prob->l;i++)
{
if(prob->y[i] > 0)
{
pos++;
C[i] = Cp;
}
else
C[i] = Cn;
}
int neg = prob->l - pos;
primal_solver_tol = param->eps*max(min(pos,neg), 1)/prob->l;
}
switch(solver_type)
{
case L2R_LR:
{
l2r_lr_fun fun_obj(prob, param, C);
NEWTON newton_obj(&fun_obj, primal_solver_tol);
newton_obj.set_print_string(liblinear_print_string);
newton_obj.newton(w);
break;
}
case L2R_L2LOSS_SVC:
{
l2r_l2_svc_fun fun_obj(prob, param, C);
NEWTON newton_obj(&fun_obj, primal_solver_tol);
newton_obj.set_print_string(liblinear_print_string);
newton_obj.newton(w);
break;
}
case L2R_L2LOSS_SVC_DUAL:
{
iter = solve_l2r_l1l2_svc(prob, param, w, Cp, Cn, dual_solver_max_iter);
if(iter >= dual_solver_max_iter)
{
info("\nWARNING: reaching max number of iterations\nSwitching to use -s 2\n\n");
// primal_solver_tol obtained from eps for dual may be too loose
primal_solver_tol *= 0.1;
l2r_l2_svc_fun fun_obj(prob, param, C);
NEWTON newton_obj(&fun_obj, primal_solver_tol);
newton_obj.set_print_string(liblinear_print_string);
newton_obj.newton(w);
}
break;
}
case L2R_L1LOSS_SVC_DUAL:
{
iter = solve_l2r_l1l2_svc(prob, param, w, Cp, Cn, dual_solver_max_iter);
if(iter >= dual_solver_max_iter)
info("\nWARNING: reaching max number of iterations\nUsing -s 2 may be faster (also see FAQ)\n\n");
break;
}
case L1R_L2LOSS_SVC:
{
problem prob_col;
feature_node *x_space = NULL;
transpose(prob, &x_space ,&prob_col);
solve_l1r_l2_svc(&prob_col, param, w, Cp, Cn, primal_solver_tol);
delete [] prob_col.y;
delete [] prob_col.x;
delete [] x_space;
break;
}
case L1R_LR:
{
problem prob_col;
feature_node *x_space = NULL;
transpose(prob, &x_space ,&prob_col);
solve_l1r_lr(&prob_col, param, w, Cp, Cn, primal_solver_tol);
delete [] prob_col.y;
delete [] prob_col.x;
delete [] x_space;
break;
}
case L2R_LR_DUAL:
{
iter = solve_l2r_lr_dual(prob, param, w, Cp, Cn, dual_solver_max_iter);
if(iter >= dual_solver_max_iter)
{
info("\nWARNING: reaching max number of iterations\nSwitching to use -s 0\n\n");
// primal_solver_tol obtained from eps for dual may be too loose
primal_solver_tol *= 0.1;
l2r_lr_fun fun_obj(prob, param, C);
NEWTON newton_obj(&fun_obj, primal_solver_tol);
newton_obj.set_print_string(liblinear_print_string);
newton_obj.newton(w);
}
break;
}
case L2R_L2LOSS_SVR:
{
l2r_l2_svr_fun fun_obj(prob, param, C);
NEWTON newton_obj(&fun_obj, primal_solver_tol);
newton_obj.set_print_string(liblinear_print_string);
newton_obj.newton(w);
break;
}
case L2R_L1LOSS_SVR_DUAL:
{
iter = solve_l2r_l1l2_svr(prob, param, w, dual_solver_max_iter);
if(iter >= dual_solver_max_iter)
info("\nWARNING: reaching max number of iterations\nUsing -s 11 may be faster (also see FAQ)\n\n");
break;
}
case L2R_L2LOSS_SVR_DUAL:
{
iter = solve_l2r_l1l2_svr(prob, param, w, dual_solver_max_iter);
if(iter >= dual_solver_max_iter)
{
info("\nWARNING: reaching max number of iterations\nSwitching to use -s 11\n\n");
// primal_solver_tol obtained from eps for dual may be too loose
primal_solver_tol *= 0.001;
l2r_l2_svr_fun fun_obj(prob, param, C);
NEWTON newton_obj(&fun_obj, primal_solver_tol);
newton_obj.set_print_string(liblinear_print_string);
newton_obj.newton(w);
}
break;
}
default:
fprintf(stderr, "ERROR: unknown solver_type\n");
break;
}
delete[] C;
}
// Calculate the initial C for parameter selection
static double calc_start_C(const problem *prob, const parameter *param)
{
int i;
double xTx, max_xTx;
max_xTx = 0;
for(i=0; i<prob->l; i++)
{
xTx = 0;
feature_node *xi=prob->x[i];
while(xi->index != -1)
{
double val = xi->value;
xTx += val*val;
xi++;
}
if(xTx > max_xTx)
max_xTx = xTx;
}
double min_C = 1.0;
if(param->solver_type == L2R_LR)
min_C = 1.0 / (prob->l * max_xTx);
else if(param->solver_type == L2R_L2LOSS_SVC)
min_C = 1.0 / (2 * prob->l * max_xTx);
else if(param->solver_type == L2R_L2LOSS_SVR)
{
double sum_y, loss, y_abs;
double delta2 = 0.1;
sum_y = 0, loss = 0;
for(i=0; i<prob->l; i++)
{
y_abs = fabs(prob->y[i]);
sum_y += y_abs;
loss += max(y_abs - param->p, 0.0) * max(y_abs - param->p, 0.0);
}
if(loss > 0)
min_C = delta2 * delta2 * loss / (8 * sum_y * sum_y * max_xTx);
else
min_C = INF;
}
return pow( 2, floor(log(min_C) / log(2.0)) );
}
static double calc_max_p(const problem *prob)
{
int i;
double max_p = 0.0;
for(i = 0; i < prob->l; i++)
max_p = max(max_p, fabs(prob->y[i]));
return max_p;
}
static void find_parameter_C(const problem *prob, parameter *param_tmp, double start_C, double max_C, double *best_C, double *best_score, const int *fold_start, const int *perm, const problem *subprob, int nr_fold)
{
// variables for CV
int i;
double *target = Malloc(double, prob->l);
// variables for warm start
double ratio = 2;
double **prev_w = Malloc(double*, nr_fold);
for(i = 0; i < nr_fold; i++)
prev_w[i] = NULL;
int num_unchanged_w = 0;
void (*default_print_string) (const char *) = liblinear_print_string;
if(param_tmp->solver_type == L2R_LR || param_tmp->solver_type == L2R_L2LOSS_SVC)
*best_score = 0.0;
else if(param_tmp->solver_type == L2R_L2LOSS_SVR)
*best_score = INF;
*best_C = start_C;
param_tmp->C = start_C;
while(param_tmp->C <= max_C)
{
//Output disabled for running CV at a particular C
set_print_string_function(&print_null);
for(i=0; i<nr_fold; i++)
{
int j;
int begin = fold_start[i];
int end = fold_start[i+1];
param_tmp->init_sol = prev_w[i];
struct model *submodel = train(&subprob[i],param_tmp);
int total_w_size;
if(submodel->nr_class == 2)
total_w_size = subprob[i].n;
else
total_w_size = subprob[i].n * submodel->nr_class;
if(prev_w[i] == NULL)
{
prev_w[i] = Malloc(double, total_w_size);
for(j=0; j<total_w_size; j++)
prev_w[i][j] = submodel->w[j];
}
else if(num_unchanged_w >= 0)
{
double norm_w_diff = 0;
for(j=0; j<total_w_size; j++)
{
norm_w_diff += (submodel->w[j] - prev_w[i][j])*(submodel->w[j] - prev_w[i][j]);
prev_w[i][j] = submodel->w[j];
}
norm_w_diff = sqrt(norm_w_diff);
if(norm_w_diff > 1e-15)
num_unchanged_w = -1;
}
else
{
for(j=0; j<total_w_size; j++)
prev_w[i][j] = submodel->w[j];
}
for(j=begin; j<end; j++)
target[perm[j]] = predict(submodel,prob->x[perm[j]]);
free_and_destroy_model(&submodel);
}
set_print_string_function(default_print_string);
if(param_tmp->solver_type == L2R_LR || param_tmp->solver_type == L2R_L2LOSS_SVC)
{
int total_correct = 0;
for(i=0; i<prob->l; i++)
if(target[i] == prob->y[i])
++total_correct;
double current_rate = (double)total_correct/prob->l;
if(current_rate > *best_score)
{
*best_C = param_tmp->C;
*best_score = current_rate;
}
info("log2c=%7.2f\trate=%g\n",log(param_tmp->C)/log(2.0),100.0*current_rate);
}
else if(param_tmp->solver_type == L2R_L2LOSS_SVR)
{
double total_error = 0.0;
for(i=0; i<prob->l; i++)
{
double y = prob->y[i];
double v = target[i];
total_error += (v-y)*(v-y);
}
double current_error = total_error/prob->l;
if(current_error < *best_score)
{
*best_C = param_tmp->C;
*best_score = current_error;
}
info("log2c=%7.2f\tp=%7.2f\tMean squared error=%g\n",log(param_tmp->C)/log(2.0),param_tmp->p,current_error);
}
num_unchanged_w++;
if(num_unchanged_w == 5)
break;
param_tmp->C = param_tmp->C*ratio;
}
if(param_tmp->C > max_C)
info("WARNING: maximum C reached.\n");
free(target);
for(i=0; i<nr_fold; i++)
free(prev_w[i]);
free(prev_w);
}
//
// Interface functions
//
model* train(const problem *prob, const parameter *param)
{
int i,j;
int l = prob->l;
int n = prob->n;
int w_size = prob->n;
model *model_ = Malloc(model,1);
if(prob->bias>=0)
model_->nr_feature=n-1;
else
model_->nr_feature=n;
model_->param = *param;
model_->bias = prob->bias;
if(check_regression_model(model_))
{
model_->w = Malloc(double, w_size);
if(param->init_sol != NULL)
for(i=0;i<w_size;i++)
model_->w[i] = param->init_sol[i];
else
for(i=0;i<w_size;i++)
model_->w[i] = 0;
model_->nr_class = 2;
model_->label = NULL;
train_one(prob, param, model_->w, 0, 0);
}
else if(check_oneclass_model(model_))
{
model_->w = Malloc(double, w_size);
model_->nr_class = 2;
model_->label = NULL;
solve_oneclass_svm(prob, param, model_->w, &(model_->rho));
}
else
{
int nr_class;
int *label = NULL;
int *start = NULL;
int *count = NULL;
int *perm = Malloc(int,l);
// group training data of the same class
group_classes(prob,&nr_class,&label,&start,&count,perm);
model_->nr_class=nr_class;
model_->label = Malloc(int,nr_class);
for(i=0;i<nr_class;i++)
model_->label[i] = label[i];
// calculate weighted C
double *weighted_C = Malloc(double, nr_class);
for(i=0;i<nr_class;i++)
weighted_C[i] = param->C;
for(i=0;i<param->nr_weight;i++)
{
for(j=0;j<nr_class;j++)
if(param->weight_label[i] == label[j])
break;
if(j == nr_class)
fprintf(stderr,"WARNING: class label %d specified in weight is not found\n", param->weight_label[i]);
else
weighted_C[j] *= param->weight[i];
}
// constructing the subproblem
feature_node **x = Malloc(feature_node *,l);
for(i=0;i<l;i++)
x[i] = prob->x[perm[i]];
int k;
problem sub_prob;
sub_prob.l = l;
sub_prob.n = n;
sub_prob.x = Malloc(feature_node *,sub_prob.l);
sub_prob.y = Malloc(double,sub_prob.l);
for(k=0; k<sub_prob.l; k++)
sub_prob.x[k] = x[k];
// multi-class svm by Crammer and Singer
if(param->solver_type == MCSVM_CS)
{
model_->w=Malloc(double, n*nr_class);
for(i=0;i<nr_class;i++)
for(j=start[i];j<start[i]+count[i];j++)
sub_prob.y[j] = i;
Solver_MCSVM_CS Solver(&sub_prob, nr_class, weighted_C, param->eps);
Solver.Solve(model_->w);
}
else
{
if(nr_class == 2)
{
model_->w=Malloc(double, w_size);
int e0 = start[0]+count[0];
k=0;
for(; k<e0; k++)
sub_prob.y[k] = +1;
for(; k<sub_prob.l; k++)
sub_prob.y[k] = -1;
if(param->init_sol != NULL)
for(i=0;i<w_size;i++)
model_->w[i] = param->init_sol[i];
else
for(i=0;i<w_size;i++)
model_->w[i] = 0;
train_one(&sub_prob, param, model_->w, weighted_C[0], weighted_C[1]);
}
else
{
model_->w=Malloc(double, w_size*nr_class);
double *w=Malloc(double, w_size);
for(i=0;i<nr_class;i++)
{
int si = start[i];
int ei = si+count[i];
k=0;
for(; k<si; k++)
sub_prob.y[k] = -1;
for(; k<ei; k++)
sub_prob.y[k] = +1;
for(; k<sub_prob.l; k++)
sub_prob.y[k] = -1;
if(param->init_sol != NULL)
for(j=0;j<w_size;j++)
w[j] = param->init_sol[j*nr_class+i];
else
for(j=0;j<w_size;j++)
w[j] = 0;
train_one(&sub_prob, param, w, weighted_C[i], param->C);
for(j=0;j<w_size;j++)
model_->w[j*nr_class+i] = w[j];
}
free(w);
}
}
free(x);
free(label);
free(start);
free(count);
free(perm);
free(sub_prob.x);
free(sub_prob.y);
free(weighted_C);
}
return model_;
}
void cross_validation(const problem *prob, const parameter *param, int nr_fold, double *target)
{
int i;
int *fold_start;
int l = prob->l;
int *perm = Malloc(int,l);
if (nr_fold > l)
{
nr_fold = l;
fprintf(stderr,"WARNING: # folds > # data. Will use # folds = # data instead (i.e., leave-one-out cross validation)\n");
}
fold_start = Malloc(int,nr_fold+1);
for(i=0;i<l;i++) perm[i]=i;
for(i=0;i<l;i++)
{
int j = i+rand()%(l-i);
swap(perm[i],perm[j]);
}
for(i=0;i<=nr_fold;i++)
fold_start[i]=i*l/nr_fold;
for(i=0;i<nr_fold;i++)
{
int begin = fold_start[i];
int end = fold_start[i+1];
int j,k;
struct problem subprob;
subprob.bias = prob->bias;
subprob.n = prob->n;
subprob.l = l-(end-begin);
subprob.x = Malloc(struct feature_node*,subprob.l);
subprob.y = Malloc(double,subprob.l);
k=0;
for(j=0;j<begin;j++)
{
subprob.x[k] = prob->x[perm[j]];
subprob.y[k] = prob->y[perm[j]];
++k;
}
for(j=end;j<l;j++)
{
subprob.x[k] = prob->x[perm[j]];
subprob.y[k] = prob->y[perm[j]];
++k;
}
struct model *submodel = train(&subprob,param);
for(j=begin;j<end;j++)
target[perm[j]] = predict(submodel,prob->x[perm[j]]);
free_and_destroy_model(&submodel);
free(subprob.x);
free(subprob.y);
}
free(fold_start);
free(perm);
}
void find_parameters(const problem *prob, const parameter *param, int nr_fold, double start_C, double start_p, double *best_C, double *best_p, double *best_score)
{
// prepare CV folds
int i;
int *fold_start;
int l = prob->l;
int *perm = Malloc(int, l);
struct problem *subprob = Malloc(problem,nr_fold);
if (nr_fold > l)
{
nr_fold = l;
fprintf(stderr,"WARNING: # folds > # data. Will use # folds = # data instead (i.e., leave-one-out cross validation)\n");
}
fold_start = Malloc(int,nr_fold+1);
for(i=0;i<l;i++) perm[i]=i;
for(i=0;i<l;i++)
{
int j = i+rand()%(l-i);
swap(perm[i],perm[j]);
}
for(i=0;i<=nr_fold;i++)
fold_start[i]=i*l/nr_fold;
for(i=0;i<nr_fold;i++)
{
int begin = fold_start[i];
int end = fold_start[i+1];
int j,k;
subprob[i].bias = prob->bias;
subprob[i].n = prob->n;
subprob[i].l = l-(end-begin);
subprob[i].x = Malloc(struct feature_node*,subprob[i].l);
subprob[i].y = Malloc(double,subprob[i].l);
k=0;
for(j=0;j<begin;j++)
{
subprob[i].x[k] = prob->x[perm[j]];
subprob[i].y[k] = prob->y[perm[j]];
++k;
}
for(j=end;j<l;j++)
{
subprob[i].x[k] = prob->x[perm[j]];
subprob[i].y[k] = prob->y[perm[j]];
++k;
}
}
struct parameter param_tmp = *param;
*best_p = -1;
if(param->solver_type == L2R_LR || param->solver_type == L2R_L2LOSS_SVC)
{
if(start_C <= 0)
start_C = calc_start_C(prob, &param_tmp);
double max_C = 1024;
start_C = min(start_C, max_C);
double best_C_tmp, best_score_tmp;
find_parameter_C(prob, &param_tmp, start_C, max_C, &best_C_tmp, &best_score_tmp, fold_start, perm, subprob, nr_fold);
*best_C = best_C_tmp;
*best_score = best_score_tmp;
}
else if(param->solver_type == L2R_L2LOSS_SVR)
{
double max_p = calc_max_p(prob);
int num_p_steps = 20;
double max_C = 1048576;
*best_score = INF;
i = num_p_steps-1;
if(start_p > 0)
i = min((int)(start_p/(max_p/num_p_steps)), i);
for(; i >= 0; i--)
{
param_tmp.p = i*max_p/num_p_steps;
double start_C_tmp;
if(start_C <= 0)
start_C_tmp = calc_start_C(prob, &param_tmp);
else
start_C_tmp = start_C;
start_C_tmp = min(start_C_tmp, max_C);
double best_C_tmp, best_score_tmp;
find_parameter_C(prob, &param_tmp, start_C_tmp, max_C, &best_C_tmp, &best_score_tmp, fold_start, perm, subprob, nr_fold);
if(best_score_tmp < *best_score)
{
*best_p = param_tmp.p;
*best_C = best_C_tmp;
*best_score = best_score_tmp;
}
}
}
free(fold_start);
free(perm);
for(i=0; i<nr_fold; i++)
{
free(subprob[i].x);
free(subprob[i].y);
}
free(subprob);
}
double predict_values(const struct model *model_, const struct feature_node *x, double *dec_values)
{
int idx;
int n;
if(model_->bias>=0)
n=model_->nr_feature+1;
else
n=model_->nr_feature;
double *w=model_->w;
int nr_class=model_->nr_class;
int i;
int nr_w;
if(nr_class==2 && model_->param.solver_type != MCSVM_CS)
nr_w = 1;
else
nr_w = nr_class;
const feature_node *lx=x;
for(i=0;i<nr_w;i++)
dec_values[i] = 0;
for(; (idx=lx->index)!=-1; lx++)
{
// the dimension of testing data may exceed that of training
if(idx<=n)
for(i=0;i<nr_w;i++)
dec_values[i] += w[(idx-1)*nr_w+i]*lx->value;
}
if(check_oneclass_model(model_))
dec_values[0] -= model_->rho;
if(nr_class==2)
{
if(check_regression_model(model_))
return dec_values[0];
else if(check_oneclass_model(model_))
return (dec_values[0]>0)?1:-1;
else
return (dec_values[0]>0)?model_->label[0]:model_->label[1];
}
else
{
int dec_max_idx = 0;
for(i=1;i<nr_class;i++)
{
if(dec_values[i] > dec_values[dec_max_idx])
dec_max_idx = i;
}
return model_->label[dec_max_idx];
}
}
double predict(const model *model_, const feature_node *x)
{
double *dec_values = Malloc(double, model_->nr_class);
double label=predict_values(model_, x, dec_values);
free(dec_values);
return label;
}
double predict_probability(const struct model *model_, const struct feature_node *x, double* prob_estimates)
{
if(check_probability_model(model_))
{
int i;
int nr_class=model_->nr_class;
int nr_w;
if(nr_class==2)
nr_w = 1;
else
nr_w = nr_class;
double label=predict_values(model_, x, prob_estimates);
for(i=0;i<nr_w;i++)
prob_estimates[i]=1/(1+exp(-prob_estimates[i]));
if(nr_class==2) // for binary classification
prob_estimates[1]=1.-prob_estimates[0];
else
{
double sum=0;
for(i=0; i<nr_class; i++)
sum+=prob_estimates[i];
for(i=0; i<nr_class; i++)
prob_estimates[i]=prob_estimates[i]/sum;
}
return label;
}
else
return 0;
}
static const char *solver_type_table[]=
{
"L2R_LR", "L2R_L2LOSS_SVC_DUAL", "L2R_L2LOSS_SVC", "L2R_L1LOSS_SVC_DUAL", "MCSVM_CS",
"L1R_L2LOSS_SVC", "L1R_LR", "L2R_LR_DUAL",
"", "", "",
"L2R_L2LOSS_SVR", "L2R_L2LOSS_SVR_DUAL", "L2R_L1LOSS_SVR_DUAL",
"", "", "", "", "", "", "",
"ONECLASS_SVM", NULL
};
int save_model(const char *model_file_name, const struct model *model_)
{
int i;
int nr_feature=model_->nr_feature;
int n;
const parameter& param = model_->param;
if(model_->bias>=0)
n=nr_feature+1;
else
n=nr_feature;
int w_size = n;
FILE *fp = fopen(model_file_name,"w");
if(fp==NULL) return -1;
char *old_locale = setlocale(LC_ALL, NULL);
if (old_locale)
{
old_locale = strdup(old_locale);
}
setlocale(LC_ALL, "C");
int nr_w;
if(model_->nr_class==2 && model_->param.solver_type != MCSVM_CS)
nr_w=1;
else
nr_w=model_->nr_class;
fprintf(fp, "solver_type %s\n", solver_type_table[param.solver_type]);
fprintf(fp, "nr_class %d\n", model_->nr_class);
if(model_->label)
{
fprintf(fp, "label");
for(i=0; i<model_->nr_class; i++)
fprintf(fp, " %d", model_->label[i]);
fprintf(fp, "\n");
}
fprintf(fp, "nr_feature %d\n", nr_feature);
fprintf(fp, "bias %.17g\n", model_->bias);
if(check_oneclass_model(model_))
fprintf(fp, "rho %.17g\n", model_->rho);
fprintf(fp, "w\n");
for(i=0; i<w_size; i++)
{
int j;
for(j=0; j<nr_w; j++)
fprintf(fp, "%.17g ", model_->w[i*nr_w+j]);
fprintf(fp, "\n");
}
setlocale(LC_ALL, old_locale);
free(old_locale);
if (ferror(fp) != 0 || fclose(fp) != 0) return -1;
else return 0;
}
//
// FSCANF helps to handle fscanf failures.
// Its do-while block avoids the ambiguity when
// if (...)
// FSCANF();
// is used
//
#define FSCANF(_stream, _format, _var)do\
{\
if (fscanf(_stream, _format, _var) != 1)\
{\
fprintf(stderr, "ERROR: fscanf failed to read the model\n");\
EXIT_LOAD_MODEL()\
}\
}while(0)
// EXIT_LOAD_MODEL should NOT end with a semicolon.
#define EXIT_LOAD_MODEL()\
{\
setlocale(LC_ALL, old_locale);\
free(model_->label);\
free(model_);\
free(old_locale);\
return NULL;\
}
struct model *load_model(const char *model_file_name)
{
FILE *fp = fopen(model_file_name,"r");
if(fp==NULL) return NULL;
int i;
int nr_feature;
int n;
int nr_class;
double bias;
double rho;
model *model_ = Malloc(model,1);
parameter& param = model_->param;
// parameters for training only won't be assigned, but arrays are assigned as NULL for safety
param.nr_weight = 0;
param.weight_label = NULL;
param.weight = NULL;
param.init_sol = NULL;
model_->label = NULL;
char *old_locale = setlocale(LC_ALL, NULL);
if (old_locale)
{
old_locale = strdup(old_locale);
}
setlocale(LC_ALL, "C");
char cmd[81];
while(1)
{
FSCANF(fp,"%80s",cmd);
if(strcmp(cmd,"solver_type")==0)
{
FSCANF(fp,"%80s",cmd);
int i;
for(i=0;solver_type_table[i];i++)
{
if(strcmp(solver_type_table[i],cmd)==0)
{
param.solver_type=i;
break;
}
}
if(solver_type_table[i] == NULL)
{
fprintf(stderr,"unknown solver type.\n");
EXIT_LOAD_MODEL()
}
}
else if(strcmp(cmd,"nr_class")==0)
{
FSCANF(fp,"%d",&nr_class);
model_->nr_class=nr_class;
}
else if(strcmp(cmd,"nr_feature")==0)
{
FSCANF(fp,"%d",&nr_feature);
model_->nr_feature=nr_feature;
}
else if(strcmp(cmd,"bias")==0)
{
FSCANF(fp,"%lf",&bias);
model_->bias=bias;
}
else if(strcmp(cmd,"rho")==0)
{
FSCANF(fp,"%lf",&rho);
model_->rho=rho;
}
else if(strcmp(cmd,"w")==0)
{
break;
}
else if(strcmp(cmd,"label")==0)
{
int nr_class = model_->nr_class;
model_->label = Malloc(int,nr_class);
for(int i=0;i<nr_class;i++)
FSCANF(fp,"%d",&model_->label[i]);
}
else
{
fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
EXIT_LOAD_MODEL()
}
}
nr_feature=model_->nr_feature;
if(model_->bias>=0)
n=nr_feature+1;
else
n=nr_feature;
int w_size = n;
int nr_w;
if(nr_class==2 && param.solver_type != MCSVM_CS)
nr_w = 1;
else
nr_w = nr_class;
model_->w=Malloc(double, w_size*nr_w);
for(i=0; i<w_size; i++)
{
int j;
for(j=0; j<nr_w; j++)
FSCANF(fp, "%lf ", &model_->w[i*nr_w+j]);
}
setlocale(LC_ALL, old_locale);
free(old_locale);
if (ferror(fp) != 0 || fclose(fp) != 0) return NULL;
return model_;
}
int get_nr_feature(const model *model_)
{
return model_->nr_feature;
}
int get_nr_class(const model *model_)
{
return model_->nr_class;
}
void get_labels(const model *model_, int* label)
{
if (model_->label != NULL)
for(int i=0;i<model_->nr_class;i++)
label[i] = model_->label[i];
}
// use inline here for better performance (around 20% faster than the non-inline one)
static inline double get_w_value(const struct model *model_, int idx, int label_idx)
{
int nr_class = model_->nr_class;
int solver_type = model_->param.solver_type;
const double *w = model_->w;
if(idx < 0 || idx > model_->nr_feature)
return 0;
if(check_regression_model(model_) || check_oneclass_model(model_))
return w[idx];
else
{
if(label_idx < 0 || label_idx >= nr_class)
return 0;
if(nr_class == 2 && solver_type != MCSVM_CS)
{
if(label_idx == 0)
return w[idx];
else
return -w[idx];
}
else
return w[idx*nr_class+label_idx];
}
}
// feat_idx: starting from 1 to nr_feature
// label_idx: starting from 0 to nr_class-1 for classification models;
// for regression and one-class SVM models, label_idx is
// ignored.
double get_decfun_coef(const struct model *model_, int feat_idx, int label_idx)
{
if(feat_idx > model_->nr_feature)
return 0;
return get_w_value(model_, feat_idx-1, label_idx);
}
double get_decfun_bias(const struct model *model_, int label_idx)
{
if(check_oneclass_model(model_))
{
fprintf(stderr, "ERROR: get_decfun_bias can not be called for a one-class SVM model\n");
return 0;
}
int bias_idx = model_->nr_feature;
double bias = model_->bias;
if(bias <= 0)
return 0;
else
return bias*get_w_value(model_, bias_idx, label_idx);
}
double get_decfun_rho(const struct model *model_)
{
if(check_oneclass_model(model_))
return model_->rho;
else
{
fprintf(stderr, "ERROR: get_decfun_rho can be called only for a one-class SVM model\n");
return 0;
}
}
void free_model_content(struct model *model_ptr)
{
free(model_ptr->w);
model_ptr->w = NULL;
free(model_ptr->label);
model_ptr->label = NULL;
}
void free_and_destroy_model(struct model **model_ptr_ptr)
{
struct model *model_ptr = *model_ptr_ptr;
if(model_ptr != NULL)
{
free_model_content(model_ptr);
free(model_ptr);
*model_ptr_ptr = NULL;
}
}
void destroy_param(parameter* param)
{
free(param->weight_label);
param->weight_label = NULL;
free(param->weight);
param->weight = NULL;
free(param->init_sol);
param->init_sol = NULL;
}
const char *check_parameter(const problem *prob, const parameter *param)
{
if(param->eps <= 0)
return "eps <= 0";
if(param->C <= 0)
return "C <= 0";
if(param->p < 0 && param->solver_type == L2R_L2LOSS_SVR)
return "p < 0";
if(prob->bias >= 0 && param->solver_type == ONECLASS_SVM)
return "prob->bias >=0, but this is ignored in ONECLASS_SVM";
if(param->regularize_bias == 0)
{
if(prob->bias != 1.0)
return "To not regularize bias, must specify -B 1 along with -R";
if(param->solver_type != L2R_LR
&& param->solver_type != L2R_L2LOSS_SVC
&& param->solver_type != L1R_L2LOSS_SVC
&& param->solver_type != L1R_LR
&& param->solver_type != L2R_L2LOSS_SVR)
return "-R option supported only for solver L2R_LR, L2R_L2LOSS_SVC, L1R_L2LOSS_SVC, L1R_LR, and L2R_L2LOSS_SVR";
}
if(param->solver_type != L2R_LR
&& param->solver_type != L2R_L2LOSS_SVC_DUAL
&& param->solver_type != L2R_L2LOSS_SVC
&& param->solver_type != L2R_L1LOSS_SVC_DUAL
&& param->solver_type != MCSVM_CS
&& param->solver_type != L1R_L2LOSS_SVC
&& param->solver_type != L1R_LR
&& param->solver_type != L2R_LR_DUAL
&& param->solver_type != L2R_L2LOSS_SVR
&& param->solver_type != L2R_L2LOSS_SVR_DUAL
&& param->solver_type != L2R_L1LOSS_SVR_DUAL
&& param->solver_type != ONECLASS_SVM)
return "unknown solver type";
if(param->init_sol != NULL
&& param->solver_type != L2R_LR
&& param->solver_type != L2R_L2LOSS_SVC
&& param->solver_type != L2R_L2LOSS_SVR)
return "Initial-solution specification supported only for solvers L2R_LR, L2R_L2LOSS_SVC, and L2R_L2LOSS_SVR";
if(param->w_recalc == true
&& param->solver_type != L2R_L2LOSS_SVC_DUAL
&& param->solver_type != L2R_L1LOSS_SVC_DUAL)
return "Recalculating w in the end is only for dual solvers for L2-regularized L1/L2-loss SVM";
return NULL;
}
int check_probability_model(const struct model *model_)
{
return (model_->param.solver_type==L2R_LR ||
model_->param.solver_type==L2R_LR_DUAL ||
model_->param.solver_type==L1R_LR);
}
int check_regression_model(const struct model *model_)
{
return (model_->param.solver_type==L2R_L2LOSS_SVR ||
model_->param.solver_type==L2R_L1LOSS_SVR_DUAL ||
model_->param.solver_type==L2R_L2LOSS_SVR_DUAL);
}
int check_oneclass_model(const struct model *model_)
{
return model_->param.solver_type == ONECLASS_SVM;
}
void set_print_string_function(void (*print_func)(const char*))
{
if (print_func == NULL)
liblinear_print_string = &print_string_stdout;
else
liblinear_print_string = print_func;
}