Add confusion matrix to json results
Add Aggregate method to Scores
This commit is contained in:
@@ -2,6 +2,7 @@
|
||||
#include "reports/ReportConsole.h"
|
||||
#include "common/Paths.h"
|
||||
#include "Models.h"
|
||||
#include "Scores.h"
|
||||
#include "Experiment.h"
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
@@ -96,6 +97,7 @@ namespace platform {
|
||||
auto nodes = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto edges = torch::zeros({ nResults }, torch::kFloat64);
|
||||
auto num_states = torch::zeros({ nResults }, torch::kFloat64);
|
||||
json confusion_matrices = json::array();
|
||||
std::vector<std::string> notes;
|
||||
Timer train_timer, test_timer;
|
||||
int item = 0;
|
||||
@@ -150,10 +152,13 @@ namespace platform {
|
||||
if (!quiet)
|
||||
showProgress(nfold + 1, getColor(clf->getStatus()), "c");
|
||||
test_timer.start();
|
||||
auto accuracy_test_value = clf->score(X_test, y_test);
|
||||
auto y_predict = clf->predict(X_test);
|
||||
Scores scores(y_test, y_predict, states[className].size());
|
||||
auto accuracy_test_value = scores.accuracy();
|
||||
test_time[item] = test_timer.getDuration();
|
||||
accuracy_train[item] = accuracy_train_value;
|
||||
accuracy_test[item] = accuracy_test_value;
|
||||
confusion_matrices.push_back(scores.get_confusion_matrix_json());
|
||||
if (!quiet)
|
||||
std::cout << "\b\b\b, " << flush;
|
||||
// Store results and times in std::vector
|
||||
@@ -173,6 +178,7 @@ namespace platform {
|
||||
partial_result.setTestTimeStd(torch::std(test_time).item<double>()).setTrainTimeStd(torch::std(train_time).item<double>());
|
||||
partial_result.setNodes(torch::mean(nodes).item<double>()).setLeaves(torch::mean(edges).item<double>()).setDepth(torch::mean(num_states).item<double>());
|
||||
partial_result.setDataset(fileName).setNotes(notes);
|
||||
partial_result.setConfusionMatrices(confusion_matrices);
|
||||
addResult(partial_result);
|
||||
}
|
||||
}
|
@@ -27,6 +27,7 @@ namespace platform {
|
||||
data["notes"].insert(data["notes"].end(), notes_.begin(), notes_.end());
|
||||
return *this;
|
||||
}
|
||||
PartialResult& setConfusionMatrices(const json& confusion_matrices) { data["confusion_matrices"] = confusion_matrices; return *this; }
|
||||
PartialResult& setHyperparameters(const json& hyperparameters) { data["hyperparameters"] = hyperparameters; return *this; }
|
||||
PartialResult& setSamples(int samples) { data["samples"] = samples; return *this; }
|
||||
PartialResult& setFeatures(int features) { data["features"] = features; return *this; }
|
||||
|
@@ -25,6 +25,15 @@ namespace platform {
|
||||
labels.push_back("Class " + std::to_string(i));
|
||||
}
|
||||
}
|
||||
void Scores::aggregate(const Scores& a)
|
||||
{
|
||||
if (a.num_classes != num_classes)
|
||||
throw std::invalid_argument("The number of classes must be the same");
|
||||
confusion_matrix += a.confusion_matrix;
|
||||
total += a.total;
|
||||
accuracy_value += a.accuracy_value;
|
||||
accuracy_value /= 2;
|
||||
}
|
||||
Scores::Scores(json& confusion_matrix_)
|
||||
{
|
||||
json values;
|
||||
@@ -46,7 +55,6 @@ namespace platform {
|
||||
confusion_matrix[i][j] = value_int;
|
||||
total += value_int;
|
||||
}
|
||||
std::cout << std::endl;
|
||||
i++;
|
||||
}
|
||||
// Compute accuracy with the confusion matrix
|
||||
|
@@ -19,6 +19,7 @@ namespace platform {
|
||||
torch::Tensor get_confusion_matrix() { return confusion_matrix; }
|
||||
std::string classification_report();
|
||||
json get_confusion_matrix_json(bool labels_as_keys = false);
|
||||
void aggregate(const Scores& a);
|
||||
private:
|
||||
std::string classification_report_line(std::string label, float precision, float recall, float f1_score, int support);
|
||||
void init_confusion_matrix();
|
||||
|
Reference in New Issue
Block a user