Fix json key automatic ordering error when creating Score from json
This commit is contained in:
@@ -5,7 +5,7 @@
|
||||
#include "Scores.h"
|
||||
#include "Experiment.h"
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
void Experiment::saveResult()
|
||||
{
|
||||
|
||||
@@ -9,7 +9,7 @@
|
||||
#include "results/Result.h"
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
class Experiment {
|
||||
public:
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
using json = nlohmann::ordered_json;
|
||||
class HyperParameters {
|
||||
public:
|
||||
HyperParameters() = default;
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
using json = nlohmann::ordered_json;
|
||||
class PartialResult {
|
||||
|
||||
public:
|
||||
|
||||
@@ -37,11 +37,16 @@ namespace platform {
|
||||
}
|
||||
i++;
|
||||
}
|
||||
// Compute accuracy with the confusion matrix
|
||||
compute_accuracy_value();
|
||||
}
|
||||
void Scores::compute_accuracy_value()
|
||||
{
|
||||
accuracy_value = 0;
|
||||
for (int i = 0; i < num_classes; i++) {
|
||||
accuracy_value += confusion_matrix[i][i].item<int>();
|
||||
}
|
||||
accuracy_value /= total;
|
||||
accuracy_value = std::min(accuracy_value, 1.0f);
|
||||
}
|
||||
void Scores::init_confusion_matrix()
|
||||
{
|
||||
@@ -59,8 +64,7 @@ namespace platform {
|
||||
throw std::invalid_argument("The number of classes must be the same");
|
||||
confusion_matrix += a.confusion_matrix;
|
||||
total += a.total;
|
||||
accuracy_value += a.accuracy_value;
|
||||
accuracy_value /= 2;
|
||||
compute_accuracy_value();
|
||||
}
|
||||
float Scores::accuracy()
|
||||
{
|
||||
@@ -71,6 +75,7 @@ namespace platform {
|
||||
// Compute f1_score in a one vs rest fashion
|
||||
auto precision_value = precision(num_class);
|
||||
auto recall_value = recall(num_class);
|
||||
if (precision_value + recall_value == 0) return 0; // Avoid division by zero (0/0 = 0)
|
||||
return 2 * precision_value * recall_value / (precision_value + recall_value);
|
||||
}
|
||||
float Scores::f1_weighted()
|
||||
@@ -94,6 +99,7 @@ namespace platform {
|
||||
int tp = confusion_matrix[num_class][num_class].item<int>();
|
||||
int fp = confusion_matrix.index({ "...", num_class }).sum().item<int>() - tp;
|
||||
int fn = confusion_matrix[num_class].sum().item<int>() - tp;
|
||||
if (tp + fp == 0) return 0; // Avoid division by zero (0/0 = 0
|
||||
return float(tp) / (tp + fp);
|
||||
}
|
||||
float Scores::recall(int num_class)
|
||||
@@ -101,6 +107,7 @@ namespace platform {
|
||||
int tp = confusion_matrix[num_class][num_class].item<int>();
|
||||
int fp = confusion_matrix.index({ "...", num_class }).sum().item<int>() - tp;
|
||||
int fn = confusion_matrix[num_class].sum().item<int>() - tp;
|
||||
if (tp + fn == 0) return 0; // Avoid division by zero (0/0 = 0
|
||||
return float(tp) / (tp + fn);
|
||||
}
|
||||
std::string Scores::classification_report_line(std::string label, float precision, float recall, float f1_score, int support)
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
#include <torch/torch.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
namespace platform {
|
||||
using json = nlohmann::json;
|
||||
using json = nlohmann::ordered_json;
|
||||
class Scores {
|
||||
public:
|
||||
Scores(torch::Tensor& y_test, torch::Tensor& y_pred, int num_classes, std::vector<std::string> labels = {});
|
||||
@@ -24,6 +24,7 @@ namespace platform {
|
||||
std::string classification_report_line(std::string label, float precision, float recall, float f1_score, int support);
|
||||
void init_confusion_matrix();
|
||||
void init_default_labels();
|
||||
void compute_accuracy_value();
|
||||
int num_classes;
|
||||
float accuracy_value;
|
||||
int total;
|
||||
|
||||
Reference in New Issue
Block a user