Add log and fix some mistakes in integration
This commit is contained in:
2009
lib/log/loguru.cpp
Normal file
2009
lib/log/loguru.cpp
Normal file
File diff suppressed because it is too large
Load Diff
1475
lib/log/loguru.hpp
Normal file
1475
lib/log/loguru.hpp
Normal file
File diff suppressed because it is too large
Load Diff
@@ -1,5 +1,6 @@
|
||||
include_directories(
|
||||
## Libs
|
||||
${Platform_SOURCE_DIR}/lib/log
|
||||
${Platform_SOURCE_DIR}/lib/Files
|
||||
${Platform_SOURCE_DIR}/lib/folding
|
||||
${Platform_SOURCE_DIR}/lib/mdlp/src
|
||||
|
@@ -10,10 +10,14 @@
|
||||
#include <tuple>
|
||||
#include "XBAODE.h"
|
||||
#include "TensorUtils.hpp"
|
||||
#include <loguru.hpp>
|
||||
#include <loguru.cpp>
|
||||
|
||||
namespace platform {
|
||||
XBAODE::XBAODE() : semaphore_{ CountingSemaphore::getInstance() }, Boost(false)
|
||||
{
|
||||
validHyperparameters = { "alpha_block", "order", "convergence", "convergence_best", "bisection", "threshold", "maxTolerance",
|
||||
"predict_voting", "select_features" };
|
||||
}
|
||||
void XBAODE::trainModel(const torch::Tensor& weights, const bayesnet::Smoothing_t smoothing)
|
||||
{
|
||||
@@ -22,23 +26,23 @@ namespace platform {
|
||||
y_train_ = TensorUtils::to_vector<int>(y_train);
|
||||
X_test_ = TensorUtils::to_matrix(X_test);
|
||||
y_test_ = TensorUtils::to_vector<int>(y_test);
|
||||
maxTolerance = 5;
|
||||
//
|
||||
// Logging setup
|
||||
//
|
||||
// loguru::set_thread_name("XBAODE");
|
||||
// loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||||
// loguru::add_file("boostAODE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||||
loguru::set_thread_name("XBAODE");
|
||||
loguru::g_stderr_verbosity = loguru::Verbosity_OFF;
|
||||
loguru::add_file("XBAODE.log", loguru::Truncate, loguru::Verbosity_MAX);
|
||||
|
||||
// Algorithm based on the adaboost algorithm for classification
|
||||
// as explained in Ensemble methods (Zhi-Hua Zhou, 2012)
|
||||
double alpha_t = 0;
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0, torch::kFloat64);
|
||||
torch::Tensor weights_ = torch::full({ m }, 1.0 / m, torch::kFloat64);
|
||||
bool finished = false;
|
||||
std::vector<int> featuresUsed;
|
||||
int num_instances = m;
|
||||
int num_attributes = n;
|
||||
significanceModels.resize(num_attributes, 0.0);
|
||||
significanceModels.resize(n, 0.0); // n possible spodes
|
||||
aode_.fit(X_train_, y_train_, features, className, states, smoothing);
|
||||
n_models = 0;
|
||||
if (selectFeatures) {
|
||||
featuresUsed = featureSelection(weights_);
|
||||
aode_.set_active_parents(featuresUsed);
|
||||
@@ -49,6 +53,8 @@ namespace platform {
|
||||
for (const auto& parent : featuresUsed) {
|
||||
significanceModels[parent] = alpha_t;
|
||||
}
|
||||
n_models = featuresUsed.size();
|
||||
VLOG_SCOPE_F(1, "SelectFeatures. alpha_t: %f n_models: %d", alpha_t, n_models);
|
||||
if (finished) {
|
||||
return;
|
||||
}
|
||||
@@ -78,46 +84,41 @@ namespace platform {
|
||||
);
|
||||
int k = bisection ? pow(2, tolerance) : 1;
|
||||
int counter = 0; // The model counter of the current pack
|
||||
// VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||
VLOG_SCOPE_F(1, "counter=%d k=%d featureSelection.size: %zu", counter, k, featureSelection.size());
|
||||
while (counter++ < k && featureSelection.size() > 0) {
|
||||
auto feature = featureSelection[0];
|
||||
featureSelection.erase(featureSelection.begin());
|
||||
aode_.add_active_parent(feature);
|
||||
alpha_t = 0.0;
|
||||
if (!block_update) {
|
||||
std::vector<int> ypred;
|
||||
if (alpha_block) {
|
||||
//
|
||||
// Compute the prediction with the current ensemble + model
|
||||
//
|
||||
// Add the model to the ensemble
|
||||
n_models++;
|
||||
significanceModels[feature] = 1.0;
|
||||
aode_.add_active_parent(feature);
|
||||
// Compute the prediction
|
||||
ypred = aode_.predict(X_train_);
|
||||
// Remove the model from the ensemble
|
||||
significanceModels[feature] = 0.0;
|
||||
aode_.remove_last_parent();
|
||||
n_models--;
|
||||
} else {
|
||||
ypred = aode_.predict_spode(X_train_, feature);
|
||||
}
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
auto ypred_t = torch::tensor(ypred);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred_t, weights_);
|
||||
std::vector<int> ypred;
|
||||
if (alpha_block) {
|
||||
//
|
||||
// Compute the prediction with the current ensemble + model
|
||||
//
|
||||
// Add the model to the ensemble
|
||||
n_models++;
|
||||
significanceModels[feature] = 1.0;
|
||||
aode_.add_active_parent(feature);
|
||||
// Compute the prediction
|
||||
ypred = aode_.predict(X_train_);
|
||||
// Remove the model from the ensemble
|
||||
significanceModels[feature] = 0.0;
|
||||
aode_.remove_last_parent();
|
||||
n_models--;
|
||||
} else {
|
||||
ypred = aode_.predict_spode(X_train_, feature);
|
||||
}
|
||||
// Step 3.1: Compute the classifier amout of say
|
||||
auto ypred_t = torch::tensor(ypred);
|
||||
std::tie(weights_, alpha_t, finished) = update_weights(y_train, ypred_t, weights_);
|
||||
// Step 3.4: Store classifier and its accuracy to weigh its future vote
|
||||
numItemsPack++;
|
||||
featuresUsed.push_back(feature);
|
||||
aode_.add_active_parent(feature);
|
||||
significanceModels.push_back(alpha_t);
|
||||
n_models++;
|
||||
// VLOG_SCOPE_F(2, "numItemsPack: %d n_models: %d featuresUsed: %zu", numItemsPack, n_models, featuresUsed.size());
|
||||
}
|
||||
if (block_update) {
|
||||
std::tie(weights_, alpha_t, finished) = update_weights_block(k, y_train, weights_);
|
||||
}
|
||||
VLOG_SCOPE_F(2, "finished: %d numItemsPack: %d n_models: %d featuresUsed: %zu", finished, numItemsPack, n_models, featuresUsed.size());
|
||||
} // End of the pack
|
||||
if (convergence && !finished) {
|
||||
auto y_val_predict = predict(X_test);
|
||||
double accuracy = (y_val_predict == y_test).sum().item<double>() / (double)y_test.size(0);
|
||||
@@ -127,10 +128,10 @@ namespace platform {
|
||||
improvement = accuracy - priorAccuracy;
|
||||
}
|
||||
if (improvement < convergence_threshold) {
|
||||
// VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
VLOG_SCOPE_F(3, " (improvement<threshold) tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance++;
|
||||
} else {
|
||||
// VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
VLOG_SCOPE_F(3, "* (improvement>=threshold) Reset. tolerance: %d numItemsPack: %d improvement: %f prior: %f current: %f", tolerance, numItemsPack, improvement, priorAccuracy, accuracy);
|
||||
tolerance = 0; // Reset the counter if the model performs better
|
||||
numItemsPack = 0;
|
||||
}
|
||||
@@ -142,13 +143,13 @@ namespace platform {
|
||||
priorAccuracy = accuracy;
|
||||
}
|
||||
}
|
||||
// VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
||||
VLOG_SCOPE_F(1, "tolerance: %d featuresUsed.size: %zu features.size: %zu", tolerance, featuresUsed.size(), features.size());
|
||||
finished = finished || tolerance > maxTolerance || featuresUsed.size() == features.size();
|
||||
}
|
||||
if (tolerance > maxTolerance) {
|
||||
if (numItemsPack < n_models) {
|
||||
notes.push_back("Convergence threshold reached & " + std::to_string(numItemsPack) + " models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
||||
VLOG_SCOPE_F(4, "Convergence threshold reached & %d models eliminated of %d", numItemsPack, n_models);
|
||||
for (int i = 0; i < numItemsPack; ++i) {
|
||||
significanceModels.pop_back();
|
||||
models.pop_back();
|
||||
@@ -156,7 +157,7 @@ namespace platform {
|
||||
}
|
||||
} else {
|
||||
notes.push_back("Convergence threshold reached & 0 models eliminated");
|
||||
// VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||
VLOG_SCOPE_F(4, "Convergence threshold reached & 0 models eliminated n_models=%d numItemsPack=%d", n_models, numItemsPack);
|
||||
}
|
||||
}
|
||||
if (featuresUsed.size() != features.size()) {
|
||||
|
@@ -40,9 +40,8 @@ namespace platform {
|
||||
// where states.back() = number of class states.
|
||||
//
|
||||
// We'll store:
|
||||
// 1) p(c) in classPriors_
|
||||
// 2) p(x_i=si | c) in classFeatureProbs_
|
||||
// 3) p(x_j=sj | c, x_i=si) in data_, with i<j => i is "superparent," j is "child."
|
||||
// 1) p(x_i=si | c) in classFeatureProbs_
|
||||
// 2) p(x_j=sj | c, x_i=si) in data_, with i<j => i is "superparent," j is "child."
|
||||
//
|
||||
// Internally, in COUNTS mode, data_ accumulates raw counts, then
|
||||
// computeProbabilities(...) normalizes them into conditionals.
|
||||
@@ -98,9 +97,8 @@ namespace platform {
|
||||
classFeatureCounts_.resize(feature_offset * statesClass_);
|
||||
classFeatureProbs_.resize(feature_offset * statesClass_);
|
||||
|
||||
// classCounts_[c] & p(c) in classPriors_
|
||||
// classCounts_[c]
|
||||
classCounts_.resize(statesClass_, 0.0);
|
||||
classPriors_.resize(statesClass_, 0.0);
|
||||
|
||||
matrixState_ = MatrixState::COUNTS;
|
||||
}
|
||||
@@ -122,8 +120,6 @@ namespace platform {
|
||||
for (int s : states_) std::cout << s << " "; std::cout << std::endl;
|
||||
std::cout << "- classCounts: size: " << classCounts_.size() << std::endl;
|
||||
for (double cc : classCounts_) std::cout << cc << " "; std::cout << std::endl;
|
||||
std::cout << "- classPriors: size: " << classPriors_.size() << std::endl;
|
||||
for (double cp : classPriors_) std::cout << cp << " "; std::cout << std::endl;
|
||||
std::cout << "- classFeatureCounts: size: " << classFeatureCounts_.size() << std::endl;
|
||||
for (double cfc : classFeatureCounts_) std::cout << cfc << " "; std::cout << std::endl;
|
||||
std::cout << "- classFeatureProbs: size: " << classFeatureProbs_.size() << std::endl;
|
||||
@@ -191,29 +187,16 @@ namespace platform {
|
||||
// -------------------------------------------------------
|
||||
//
|
||||
// Once all samples are added in COUNTS mode, call this to:
|
||||
// 1) compute class priors p(c)
|
||||
// 2) compute p(x_i=si | c) => classFeatureProbs_
|
||||
// 3) compute p(x_j=sj | c, x_i=si) => data_ (for i<j) dataOpp_ (for i>j)
|
||||
// 1) compute p(x_i=si | c) => classFeatureProbs_
|
||||
// 2) compute p(x_j=sj | c, x_i=si) => data_ (for i<j) dataOpp_ (for i>j)
|
||||
//
|
||||
void computeProbabilities()
|
||||
{
|
||||
if (matrixState_ != MatrixState::COUNTS) {
|
||||
throw std::logic_error("computeProbabilities: must be in COUNTS mode.");
|
||||
}
|
||||
// (1) p(c)
|
||||
double totalCount = std::accumulate(classCounts_.begin(), classCounts_.end(), 0.0);
|
||||
if (totalCount <= 0.0) {
|
||||
// fallback => uniform
|
||||
double unif = 1.0 / statesClass_;
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
classPriors_[c] = unif;
|
||||
}
|
||||
} else {
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
classPriors_[c] = classCounts_[c] / totalCount;
|
||||
}
|
||||
}
|
||||
// (2) p(x_i=si | c) => classFeatureProbs_
|
||||
// (1) p(x_i=si | c) => classFeatureProbs_
|
||||
int idx, sf;
|
||||
double denom, countVal, p;
|
||||
for (int feature = 0; feature < nFeatures_; ++feature) {
|
||||
@@ -237,8 +220,8 @@ namespace platform {
|
||||
}
|
||||
}
|
||||
// getCountFromTable(int classVal, int pIndex, int childIndex)
|
||||
// (3) p(x_j=sj | c, x_i=si) => data_(i,si,j,sj,c)
|
||||
// (3) p(x_i=si | c, x_j=sj) => dataOpp_(j,sj,i,si,c)
|
||||
// (2) p(x_j=sj | c, x_i=si) => data_(i,si,j,sj,c)
|
||||
// (2) p(x_i=si | c, x_j=sj) => dataOpp_(j,sj,i,si,c)
|
||||
double pccCount, pcCount, ccCount;
|
||||
double conditionalProb, oppositeCondProb;
|
||||
int part1, part2, p1, part2_class, p1_class;
|
||||
@@ -286,76 +269,66 @@ namespace platform {
|
||||
// We multiply p(c) * p(x_sp| c) * p(x_i| c, x_sp).
|
||||
// Then normalize the distribution.
|
||||
//
|
||||
std::vector<double> predict_proba_spode(const std::vector<int>& instance, int parent) const
|
||||
std::vector<double> predict_proba_spode(const std::vector<int>& instance, int parent)
|
||||
{
|
||||
if (matrixState_ != MatrixState::PROBS) {
|
||||
throw std::logic_error("predict_proba_spode: Xaode not in PROBS state.");
|
||||
}
|
||||
if ((int)instance.size() != nFeatures_) {
|
||||
throw std::invalid_argument("predict_proba_spode: instance.size() != nFeatures_.");
|
||||
}
|
||||
if (parent < 0 || parent >= nFeatures_) {
|
||||
throw std::out_of_range("predict_proba_spode: invalid superparent index.");
|
||||
}
|
||||
|
||||
std::vector<double> scores(statesClass_, 0.0);
|
||||
// accumulates posterior probabilities for each class
|
||||
auto probs = std::vector<double>(statesClass_);
|
||||
auto spodeProbs = std::vector<double>(statesClass_);
|
||||
// Initialize the probabilities with the feature|class probabilities
|
||||
int localOffset;
|
||||
int sp = instance[parent];
|
||||
int idx;
|
||||
double pSpGivenC, pChildGivenSp, product;
|
||||
double base;
|
||||
double offset = (featureClassOffset_[parent] + sp) * statesClass_;
|
||||
double parent_offset = pairOffset_[featureClassOffset_[parent] + sp];
|
||||
// For each class c
|
||||
localOffset = (featureClassOffset_[parent] + sp) * statesClass_;
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
// Start with p(c) * p(x_sp=spState| c)
|
||||
pSpGivenC = classFeatureProbs_[offset + c];
|
||||
product = pSpGivenC;
|
||||
bool zeroProb = false;
|
||||
for (int feature = 0; feature < nFeatures_; ++feature) {
|
||||
if (feature == parent) continue;
|
||||
int sf = instance[feature];
|
||||
// Retrieve p(x_i= state_i | c, x_sp= spState)
|
||||
base = (parent_offset + featureClassOffset_[feature] + sf) * statesClass_;
|
||||
idx = base + c;
|
||||
pChildGivenSp = data_[idx] * dataOpp_[idx];
|
||||
if (pChildGivenSp <= 0.0) {
|
||||
zeroProb = true;
|
||||
break;
|
||||
}
|
||||
product *= pChildGivenSp;
|
||||
}
|
||||
scores[c] = zeroProb ? 0.0 : product;
|
||||
spodeProbs[c] = classFeatureProbs_[localOffset + c];
|
||||
}
|
||||
normalize(scores);
|
||||
return scores;
|
||||
int idx, base, sc, parent_offset;
|
||||
sp = instance[parent];
|
||||
parent_offset = pairOffset_[featureClassOffset_[parent] + sp];
|
||||
for (int child = 0; child < parent; ++child) {
|
||||
sc = instance[child];
|
||||
base = (parent_offset + featureClassOffset_[child] + sc) * statesClass_;
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
/*
|
||||
* The probability P(xc|xp,c) is stored in dataOpp_, and
|
||||
* the probability P(xp|xc,c) is stored in data_
|
||||
*/
|
||||
/*
|
||||
int base = pairOffset_[i * nFeatures_ + j];
|
||||
int blockSize = states_[i] * states_[j];
|
||||
return base + c * blockSize + (si * states_[j] + sj);
|
||||
*/
|
||||
// index = compute_index(parent, instance[parent], child, instance[child], classVal);
|
||||
idx = base + c;
|
||||
spodeProbs[c] *= data_[idx];
|
||||
spodeProbs[c] *= dataOpp_[idx];
|
||||
}
|
||||
}
|
||||
// Normalize the probabilities
|
||||
normalize(probs);
|
||||
return probs;
|
||||
}
|
||||
int predict_spode(const std::vector<int>& instance, int parent) const
|
||||
int predict_spode(const std::vector<int>& instance, int parent)
|
||||
{
|
||||
auto probs = predict_proba_spode(instance, parent);
|
||||
return (int)std::distance(probs.begin(), std::max_element(probs.begin(), probs.end()));
|
||||
}
|
||||
std::vector<double> predict_proba(std::vector<int>& instance)
|
||||
std::vector<double> predict_proba(const std::vector<int>& instance)
|
||||
{
|
||||
Timer timer;
|
||||
timer.start();
|
||||
if (matrixState_ != MatrixState::PROBS) {
|
||||
throw std::logic_error("predict_proba: Xaode not in PROBS state.");
|
||||
}
|
||||
if ((int)instance.size() != nFeatures_) {
|
||||
throw std::invalid_argument("predict_proba: instance.size() != nFeatures_.");
|
||||
}
|
||||
// accumulates posterior probabilities for each class
|
||||
auto probs = std::vector<double>(statesClass_);
|
||||
auto spodeProbs = std::vector<std::vector<double>>(nFeatures_, std::vector<double>(statesClass_));
|
||||
// Initialize the probabilities with the feature|class probabilities
|
||||
int localOffset;
|
||||
for (int feature = 0; feature < nFeatures_; ++feature) {
|
||||
// if feature is not in the active_parents, skip it
|
||||
if (std::find(active_parents.begin(), active_parents.end(), feature) == active_parents.end()) {
|
||||
continue;
|
||||
}
|
||||
localOffset = (featureClassOffset_[feature] + instance[feature]) * statesClass_;
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
spodeProbs[feature][c] = classFeatureProbs_[localOffset + c];
|
||||
}
|
||||
}
|
||||
duration_first += timer.getDuration(); timer.start();
|
||||
int idx, base, sp, sc, parent_offset;
|
||||
for (int parent = 1; parent < nFeatures_; ++parent) {
|
||||
// if parent is not in the active_parents, skip it
|
||||
@@ -386,7 +359,6 @@ namespace platform {
|
||||
}
|
||||
}
|
||||
}
|
||||
duration_second += timer.getDuration(); timer.start();
|
||||
/* add all the probabilities for each class */
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
for (int i = 0; i < nFeatures_; ++i) {
|
||||
@@ -414,140 +386,6 @@ namespace platform {
|
||||
}
|
||||
}
|
||||
|
||||
// -------------------------------------------------------
|
||||
// checkCoherence
|
||||
// -------------------------------------------------------
|
||||
//
|
||||
// Check that the class priors, feature–class distributions and pairwise conditionals
|
||||
// are coherent. They have to sum to 1.0 within a threshold.
|
||||
//
|
||||
void checkCoherenceApprox(double threshold) const
|
||||
{
|
||||
if (matrixState_ != MatrixState::PROBS) {
|
||||
throw std::logic_error("checkCoherenceApprox: must be in PROBS state.");
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------
|
||||
// 1) Check that sum of class priors ~ 1
|
||||
// ------------------------------------------------------------------
|
||||
double sumPriors = 0.0;
|
||||
for (double pc : classPriors_) {
|
||||
sumPriors += pc;
|
||||
}
|
||||
if (std::fabs(sumPriors - 1.0) > threshold) {
|
||||
std::ostringstream oss;
|
||||
oss << "Xaode::checkCoherenceApprox - sum of classPriors = " << sumPriors
|
||||
<< ", differs from 1.0 by more than " << threshold;
|
||||
throw std::runtime_error(oss.str());
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------
|
||||
// 2) For each feature i and class c, the sum over all states si of
|
||||
// classFeatureProbs_ should match the prior p(c) ~ classPriors_[c].
|
||||
//
|
||||
// (Because if you're storing p(x_i=si, c)/total or a scaled version,
|
||||
// summing over si is effectively p(c).)
|
||||
// ------------------------------------------------------------------
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
for (int i = 0; i < nFeatures_; ++i) {
|
||||
double sumFeature = 0.0;
|
||||
for (int si = 0; si < states_[i]; ++si) {
|
||||
int idx = (featureClassOffset_[i] + si) * statesClass_ + c;
|
||||
sumFeature += classFeatureProbs_[idx];
|
||||
}
|
||||
double expected = classPriors_[c];
|
||||
if (std::fabs(sumFeature - expected) > threshold) {
|
||||
std::ostringstream oss;
|
||||
oss << "Xaode::checkCoherenceApprox - sum_{si} classFeatureProbs_ "
|
||||
<< "for (feature=" << i << ", class=" << c << ") = " << sumFeature
|
||||
<< ", expected ~ " << expected
|
||||
<< ", difference is " << std::fabs(sumFeature - expected)
|
||||
<< " > threshold=" << threshold;
|
||||
throw std::runtime_error(oss.str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------
|
||||
// 3) For data_: sum_{child states} data_ should match the "parent" row
|
||||
// in classFeatureProbs_, i.e. p(x_i=si, c).
|
||||
//
|
||||
// Because if data_[... i, si, j, sj, c] holds something like
|
||||
// p(x_i=si, x_j=sj, c) (or a scaled fraction),
|
||||
// then sum_{ sj } data_ = p(x_i=si, c).
|
||||
// ------------------------------------------------------------------
|
||||
for (int parent = 1; parent < nFeatures_; ++parent) {
|
||||
for (int child = 0; child < parent; ++child) {
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
for (int spVal = 0; spVal < states_[parent]; ++spVal) {
|
||||
double sumChildProb = 0.0;
|
||||
// pairOffset_ gives the offset for (parent featureVal),
|
||||
// then we add the child's offset and multiply by statesClass_.
|
||||
int part1 = pairOffset_[featureClassOffset_[parent] + spVal];
|
||||
for (int scVal = 0; scVal < states_[child]; ++scVal) {
|
||||
int part2 = featureClassOffset_[child] + scVal;
|
||||
int idx = (part1 + part2) * statesClass_ + c;
|
||||
sumChildProb += data_[idx];
|
||||
}
|
||||
// Compare with classFeatureProbs_[parent, spVal, c]
|
||||
double expected = classFeatureProbs_[
|
||||
(featureClassOffset_[parent] + spVal) * statesClass_ + c
|
||||
];
|
||||
if (std::fabs(sumChildProb - expected) > threshold) {
|
||||
std::ostringstream oss;
|
||||
oss << "Xaode::checkCoherenceApprox - sum_{sj} data_ "
|
||||
<< "for (parentFeature=" << parent
|
||||
<< ", parentVal=" << spVal
|
||||
<< ", childFeature=" << child
|
||||
<< ", class=" << c << ") = " << sumChildProb
|
||||
<< ", expected ~ " << expected
|
||||
<< ", diff " << std::fabs(sumChildProb - expected)
|
||||
<< " > threshold=" << threshold;
|
||||
throw std::runtime_error(oss.str());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------
|
||||
// 4) For dataOpp_: sum_{parent states} dataOpp_ should match the "child"
|
||||
// row in classFeatureProbs_, i.e. p(x_j=sj, c).
|
||||
// ------------------------------------------------------------------
|
||||
for (int parent = 1; parent < nFeatures_; ++parent) {
|
||||
for (int child = 0; child < parent; ++child) {
|
||||
for (int c = 0; c < statesClass_; ++c) {
|
||||
for (int scVal = 0; scVal < states_[child]; ++scVal) {
|
||||
double sumParentProb = 0.0;
|
||||
int part2 = featureClassOffset_[child] + scVal;
|
||||
for (int spVal = 0; spVal < states_[parent]; ++spVal) {
|
||||
int part1 = pairOffset_[featureClassOffset_[parent] + spVal];
|
||||
int idx = (part1 + part2) * statesClass_ + c;
|
||||
sumParentProb += dataOpp_[idx];
|
||||
}
|
||||
// Compare with classFeatureProbs_[child, scVal, c]
|
||||
double expected = classFeatureProbs_[
|
||||
(featureClassOffset_[child] + scVal) * statesClass_ + c
|
||||
];
|
||||
if (std::fabs(sumParentProb - expected) > threshold) {
|
||||
std::ostringstream oss;
|
||||
oss << "Xaode::checkCoherenceApprox - sum_{spVal} dataOpp_ "
|
||||
<< "for (childFeature=" << child
|
||||
<< ", childVal=" << scVal
|
||||
<< ", parentFeature=" << parent
|
||||
<< ", class=" << c << ") = " << sumParentProb
|
||||
<< ", expected ~ " << expected
|
||||
<< ", diff " << std::fabs(sumParentProb - expected)
|
||||
<< " > threshold=" << threshold;
|
||||
throw std::runtime_error(oss.str());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we get here, all sums are coherent under this "joint distribution" interpretation
|
||||
}
|
||||
int statesClass() const
|
||||
{
|
||||
return statesClass_;
|
||||
@@ -602,8 +440,6 @@ namespace platform {
|
||||
std::vector<double> classFeatureCounts_;
|
||||
std::vector<double> classFeatureProbs_; // => p(x_i=si | c) after normalization
|
||||
|
||||
std::vector<double> classPriors_; // => p(c)
|
||||
|
||||
MatrixState matrixState_;
|
||||
|
||||
double SMOOTHING = 1.0;
|
||||
|
Reference in New Issue
Block a user